Scientific and Regulatory Policy Committee Points-to-c

Toxicologic Pathology 43, 935-944

DOI: 10.1177/0192623315570341

Citation Report

#	Article	IF	CITATIONS
1	Scientific and Regulatory Policy Committee Points-to-consider Paper*. Toxicologic Pathology, 2015, 43, 915-934.	0.9	28
3	Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discovery Today, 2017, 22, 823-833.	3.2	195
4	Delivery is key: lessons learnt from developing spliceâ€switching antisense therapies. EMBO Molecular Medicine, 2017, 9, 545-557.	3.3	119
5	The Minipig is a Suitable Non-Rodent Model in the Safety Assessment of Single Stranded Oligonucleotides. Toxicological Sciences, 2017, 157, kfx025.	1.4	11
6	Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regulatory Toxicology and Pharmacology, 2017, 90, 328-341.	1.3	20
8	Natural antisense transcripts in diseases: From modes of action to targeted therapies. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1461.	3.2	50
9	Designing aptamers which respond to intracellular oxidative stress and inhibit aggregation of mutant huntingtin. Free Radical Biology and Medicine, 2018, 120, 311-316.	1.3	8
10	Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. European Heart Journal, 2018, 39, 2704-2716.	1.0	300
11	Translating New Science Into the Drug Review Process: The US FDA's Division of Applied Regulatory Science. Therapeutic Innovation and Regulatory Science, 2018, 52, 244-255.	0.8	24
13	Animal models for analysis of immunological responses to nanomaterials: Challenges and considerations. Advanced Drug Delivery Reviews, 2018, 136-137, 82-96.	6.6	43
15	The Nonclinical Safety Profile of GalNAc-conjugated RNAi Therapeutics in Subacute Studies. Toxicologic Pathology, 2018, 46, 735-745.	0.9	51
16	Drug-induced Glomerulonephritis: The Spectre of Biotherapeutic and Antisense Oligonucleotide Immune Activation in the Kidney. Toxicologic Pathology, 2018, 46, 904-917.	0.9	28
17	Toxicologic evaluation of repetitive 4-week intravenous injections of midkine antisense oligonucleotide nanoliposomes in rats. Regulatory Toxicology and Pharmacology, 2019, 103, 130-139.	1.3	1
18	Nanotechnology Characterization Tools for Environment, Health, and Safety. , 2019, , .		2
19	Unusual inclusions in cerebrospinal fluid macrophages of spinal muscular atrophy patients treated with nusinersen. International Journal of Laboratory Hematology, 2021, 43, e104-e106.	0.7	6
20	International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Dog. Toxicologic Pathology, 2021, 49, 5-109.	0.9	15
21	International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate (<i>M. fascicularis</i>). Journal of Toxicologic Pathology, 2021, 34, 1S-182S.	0.3	16
22	Delivery of oligonucleotideâ€based therapeutics: challenges and opportunities. EMBO Molecular Medicine, 2021, 13, e13243.	3.3	181

#	Article	IF	Citations
23	Pathology of the Urinary System. , 2019, , 201-250.		2
24	Preclinical and Clinical Drug-metabolism, Pharmacokinetics and Safety of Therapeutic Oligonucleotides. RSC Drug Discovery Series, 2019, , 474-531.	0.2	7
25	Pathology of the Cardiovascular System. , 2019, , 279-309.		0
26	Practices to Optimize Generation, Interpretation, and Reporting of Pathology DataÂfrom Toxicity Studies. , 2022, , 1029-1076.		0
27	Differential Uptake of Antisense Oligonucleotides in Mouse Hepatocytes and Macrophages Revealed by Simultaneous Two-Photon Excited Fluorescence and Coherent Raman Imaging. Nucleic Acid Therapeutics, 2021, , .	2.0	6
28	Safe and Effective Cynomolgus Monkey GLPâ€"Tox Study with Repetitive Intrathecal Application of a TGFBR2 Targeting LNA-Gapmer Antisense Oligonucleotide as Treatment Candidate for Neurodegenerative Disorders. Pharmaceutics, 2022, 14, 200.	2.0	2
29	Targeting TGF-ß in the Central Nervous System: Assessment of Cynomolgus Monkey—Toxicity and Pharmacokinetics for an LNA-Antisense Oligonucleotide. Applied Sciences (Switzerland), 2022, 12, 973.	1.3	0
30	Preclinical Evaluation of the Renal Toxicity of Oligonucleotide Therapeutics in Mice. Methods in Molecular Biology, 2022, 2434, 371-384.	0.4	2
31	Preclinical Safety Assessment of Therapeutic Oligonucleotides. Methods in Molecular Biology, 2022, 2434, 355-370.	0.4	6
32	Kidney Effects by Alternative Classes of Medicines in Patients and Relationship to Effects in Nonclinical Toxicity Studies. Toxicologic Pathology, 0, , 019262332211004.	0.9	1
33	Assessment of the Immunogenicity Potential for Oligonucleotide-Based Drugs. Nucleic Acid Therapeutics, 2022, 32, 369-377.	2.0	5
34	Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Therapeutics, 2023, 33, 1-16.	2.0	13
35	Interpretation of Clinical Pathology Results in Nonclinical Toxicity Testing., 2023,, 505-566.		0
36	Nucleic Acid Pharmaceutical Agents. , 2023, , 231-268.		0
37	The nervous system of the non-human primate., 2023,, 185-228.		0
38	The integumentary system of the non-human primate. , 2023, , 299-325.		0
39	The cardiovascular system of the non-human primate. , 2023, , 459-486.		0