Inflammation and Neuroprotection in Traumatic Brain

JAMA Neurology 72, 355

DOI: 10.1001/jamaneurol.2014.3558

Citation Report

#	Article	IF	CITATIONS
1	Mild Traumatic Brain Injury and Attention-Deficit Hyperactivity Disorder in Young Student Athletes. Journal of Nervous and Mental Disease, 2015, 203, 813-819.	0.5	60
2	A Review of Neuroimaging Findings in Repetitive Brain Trauma. Brain Pathology, 2015, 25, 318-349.	2.1	107
3	Low serum ficolin-3 levels are associated with severity and poor outcome in traumatic brain injury. Journal of Neuroinflammation, 2015, 12, 226.	3.1	19
4	Traumatic brain injury. Current Opinion in Neurology, 2015, 28, 565-573.	1.8	47
5	Blood Biomarkers in Moderate-To-Severe Traumatic Brain Injury: Potential Utility of a Multi-Marker Approach in Characterizing Outcome. Frontiers in Neurology, 2015, 6, 110.	1.1	83
6	Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Frontiers in Neurology, 2015, 6, 178.	1.1	76
7	Microglial Kv1.3 Channels and P2Y12 Receptors Differentially Regulate Cytokine and Chemokine Release from Brain Slices of Young Adult and Aged Mice. PLoS ONE, 2015, 10, e0128463.	1.1	42
8	Early Dynamics of Cerebrospinal CD14+ Monocytes and CD15+ Granulocytes in Patients after Severe Traumatic Brain Injury: A Cohort Study. Mediators of Inflammation, 2015, 2015, 1-7.	1.4	1
9	Lipocalin-2 in the Inflammatory Activation of Brain Astrocytes. Critical Reviews in Immunology, 2015, 35, 77-84.	1.0	57
10	Risk of Coronary Artery Disease in Patients With Traumatic Intracranial Hemorrhage. Medicine (United) Tj ETQq1	1 8.7843	14 ₃ rgBT /Over
10	Risk of Coronary Artery Disease in Patients With Traumatic Intracranial Hemorrhage. Medicine (United) Tj ETQq1 Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers. Neuroscience Letters, 2015, 598, 96-101.	1 0.7843	14 _g rgBT /Over
	Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate	0.1	O
11	Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers. Neuroscience Letters, 2015, 598, 96-101. Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment.	1.0	6
11	Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers. Neuroscience Letters, 2015, 598, 96-101. Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment. JAMA Neurology, 2015, 72, 1109. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory	1.0	6
11 12 13	Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers. Neuroscience Letters, 2015, 598, 96-101. Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment. JAMA Neurology, 2015, 72, 1109. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discovery Today, 2015, 20, 928-941. Elucidation of monocyte/macrophage dynamics and function by intravital imaging. Journal of	1.0	6 152 52
11 12 13	Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers. Neuroscience Letters, 2015, 598, 96-101. Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment. JAMA Neurology, 2015, 72, 1109. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discovery Today, 2015, 20, 928-941. Elucidation of monocyte/macrophage dynamics and function by intravital imaging. Journal of Leukocyte Biology, 2015, 98, 319-332. Stress sounds the alarmin: The role of the danger-associated molecular pattern HMGB1 in	1.0 4.5 3.2	6 152 52
11 12 13 14	Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers. Neuroscience Letters, 2015, 598, 96-101. Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment. JAMA Neurology, 2015, 72, 1109. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discovery Today, 2015, 20, 928-941. Elucidation of monocyte/macrophage dynamics and function by intravital imaging. Journal of Leukocyte Biology, 2015, 98, 319-332. Stress sounds the alarmin: The role of the danger-associated molecular pattern HMCB1 in stress-induced neuroinflammatory priming. Brain, Behavior, and Immunity, 2015, 48, 1-7.	1.0 4.5 3.2 1.5	6 152 52 34 178

#	ARTICLE	IF	CITATIONS
19	ATP Induces Disruption of Tight Junction Proteins via IL-1 Beta-Dependent MMP-9 Activation of Human Blood-Brain Barrier <i>In Vitro </i> Neural Plasticity, 2016, 2016, 1-12.	1.0	56
20	Emerging Roles for the Immune System in Traumatic Brain Injury. Frontiers in Immunology, 2016, 7, 556.	2.2	198
21	Older Age Results in Differential Gene Expression after Mild Traumatic Brain Injury and Is Linked to Imaging Differences at Acute Follow-up. Frontiers in Aging Neuroscience, 2016, 8, 168.	1.7	22
22	Neuroimaging Assessment of Cerebrovascular Reactivity in Concussion: Current Concepts, Methodological Considerations, and Review of the Literature. Frontiers in Neurology, 2016, 7, 61.	1.1	76
23	Neurovascular and Immuno-Imaging: From Mechanisms to Therapies. Proceedings of the Inaugural Symposium. Frontiers in Neuroscience, 2016, 10, 46.	1.4	3
24	Combined [18F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice. Journal of Neuroinflammation, 2016, 13, 140.	3.1	59
25	Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip. PLoS ONE, 2016, 11, e0150360.	1.1	335
26	Dynamic Profiling: Modeling the Dynamics of Inflammation and Predicting Outcomes in Traumatic Brain Injury Patients. Frontiers in Pharmacology, 2016, 7, 383.	1.6	13
27	Resolution of Concussion Symptoms After Osteopathic Manipulative Treatment: A Case Report. Journal of Osteopathic Medicine, 2016, 116, e13-e17.	0.4	15
28	Postâ€ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia. Journal of Neurochemistry, 2016, 138, 295-306.	2.1	35
29	Systematic Review of Traumatic Brain Injury and the Impact of Antioxidant Therapy on Clinical Outcomes. Worldviews on Evidence-Based Nursing, 2016, 13, 380-389.	1.2	44
30	EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain. Neurobiology of Disease, 2016, 94, 73-84.	2.1	27
31	Brain trauma elicits non-canonical macrophage activation states. Journal of Neuroinflammation, 2016, 13, 117.	3.1	127
32	Rhein and rhubarb similarly protect the blood-brain barrier after experimental traumatic brain injury via gp91phox subunit of NADPH oxidase/ROS/ERK/MMP-9 signaling pathway. Scientific Reports, 2016, 6, 37098.	1.6	45
33	Mapping the Connectome Following Traumatic Brain Injury. Current Neurology and Neuroscience Reports, 2016, 16, 44.	2.0	33
34	Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends in Neurosciences, 2016, 39, 311-324.	4.2	241
35	Protective effects of PARP inhibitor, PJ34, is related to down-regulation of calpain and NF- $\langle i \rangle$ ^{\hat{l}^{2}} $\langle i \rangle$ B in a mouse model of TBI. Brain Injury, 2016, , 1-11.	0.6	3
36	Hydroxysafflor yellow A exerts antioxidant effects in a rat model of traumatic brain injury. Molecular Medicine Reports, 2016, 14, 3690-3696.	1.1	47

3

#	Article	IF	Citations
37	Differential regulation of NSC phenotype and genotype by chronically activated microglia within cocultures. Integrative Biology (United Kingdom), 2016, 8, 1145-1157.	0.6	7
38	Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. Journal of Neuroinflammation, 2016, 13, 264.	3.1	235
39	A potential role for gliaâ€derived extracellular matrix remodeling in postinjury epilepsy. Journal of Neuroscience Research, 2016, 94, 794-803.	1.3	33
40	Inflammatory neuroprotection following traumatic brain injury. Science, 2016, 353, 783-785.	6.0	297
41	Cytokineâ€mediated blood brain barrier disruption as a conduit for cancer/chemotherapyâ€associated neurotoxicity and cognitive dysfunction. International Journal of Cancer, 2016, 139, 2635-2645.	2.3	108
42	Therapeutic hypothermia attenuates tissue damage and cytokine expression after traumatic brain injury by inhibiting necroptosis in the rat. Scientific Reports, 2016, 6, 24547.	1.6	63
43	Bedside Neurologic Monitoring. , 2016, , 13-21.		0
44	Xuefu Zhuyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Scientific Reports, 2016, 6, 20040.	1.6	87
45	Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. Journal of Neuroscience, 2016, 36, 11084-11096.	1.7	30
46	Mnesic Profiles According to the Size of Pericerebral Hematoma in Patients with Traumatic Brain Injury. European Neurology, 2016, 74, 303-309.	0.6	0
47	Serum Biomarkers Help Predict Attention Problems in Critically III Children With Traumatic Brain Injury. Pediatric Critical Care Medicine, 2016, 17, 638-648.	0.2	14
48	Neuroinflammation: the devil is in the details. Journal of Neurochemistry, 2016, 139, 136-153.	2.1	915
49	Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair?. Journal of Neuroinflammation, 2016, 13, 64.	3.1	21
50	Effects of Hyperbaric Oxygen Therapy on Inflammasome Signaling after Traumatic Brain Injury. NeuroImmunoModulation, 2016, 23, 122-129.	0.9	19
51	Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 2016, 63, 177-190.	2.9	203
52	Human neural progenitor cells in central nervous system lesions. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 31, 69-81.	1.4	7
53	Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neuroscience and Biobehavioral Reviews, 2016, 67, 125-136.	2.9	28
54	Change of serum levels of thioredoxin in patients with severe traumatic brain injury. Clinica Chimica Acta, 2016, 453, 62-66.	0.5	12

#	Article	IF	Citations
55	The immune system in traumatic brain injury. Current Opinion in Pharmacology, 2016, 26, 110-117.	1.7	65
56	Sigma-1 Receptor Modulates Neuroinflammation After Traumatic Brain Injury. Cellular and Molecular Neurobiology, 2016, 36, 639-645.	1.7	35
57	An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology, 2016, 104, 4-17.	2.0	157
58	Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiology of Sleep and Circadian Rhythms, 2017, 2, 71-84.	1.4	25
59	Bexarotene protects against traumatic brain injury in mice partially through apolipoprotein E. Neuroscience, 2017, 343, 434-448.	1.1	46
60	Upregulation of 3-MST Relates to Neuronal Autophagy After Traumatic Brain Injury in Mice. Cellular and Molecular Neurobiology, 2017, 37, 291-302.	1.7	26
61	The use of antioxidants in the treatment of traumatic brain injury. Journal of Advanced Nursing, 2017, 73, 1331-1338.	1.5	18
62	Alterations in nitric oxide homeostasis during traumatic brain injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2627-2632.	1.8	42
63	The P2X7 receptor links mechanical strain to cytokine <scp>IL</scp> â€6 upâ€regulation and release in neurons and astrocytes. Journal of Neurochemistry, 2017, 141, 436-448.	2.1	40
64	Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration. Scientific Reports, 2017, 7, 41689.	1.6	120
65	Age modulates the injury-induced metallomic profile in the brain. Metallomics, 2017, 9, 402-410.	1.0	21
66	The far-reaching scope of neuroinflammation after traumatic brain injury. Nature Reviews Neurology, 2017, 13, 171-191.	4.9	687
67	Neuroprotective pentapeptide CN-105 is associated with reduced sterile inflammation and improved functional outcomes in a traumatic brain injury murine model. Scientific Reports, 2017, 7, 46461.	1.6	51
68	Interleukin-33 Promotes Recruitment of Microglia/Macrophages in Response to Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 3173-3182.	1.7	45
69	Cellular microparticles and pathophysiology of traumatic brain injury. Protein and Cell, 2017, 8, 801-810.	4.8	37
70	Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. BMC Complementary and Alternative Medicine, 2017, 17, 140.	3.7	33
71	Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurology, The, 2017, 16, 452-464.	4.9	277
72	Intestinal microbial dysbiosis aggravates the progression of Alzheimer's disease in Drosophila. Nature Communications, 2017, 8, 24.	5.8	181

#	Article	IF	CITATIONS
73	Traumatic brain injury causes long-term behavioral changes related to region-specific increases of cerebral blood flow. Brain Structure and Function, 2017, 222, 4005-4021.	1.2	32
74	Early heparin administration after traumatic brain injury. Journal of Trauma and Acute Care Surgery, 2017, 83, 406-412.	1.1	19
75	Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia, 2017, 65, 1423-1438.	2.5	230
76	Cytokine cascades induced by mechanical trauma injury alter voltage-gated sodium channel activity in intact cortical neurons. Journal of Neuroinflammation, 2017, 14, 73.	3.1	17
77	DL-3-n-butylphthalide induced neuroprotection, regenerative repair, functional recovery and psychological benefits following traumatic brain injury in mice. Neurochemistry International, 2017, 111, 82-92.	1.9	55
78	Chronic Traumatic Encephalopathy. Physical Medicine and Rehabilitation Clinics of North America, 2017, 28, 301-321.	0.7	14
79	DRα1-MOG-35-55 treatment reduces lesion volumes and improves neurological deficits after traumatic brain injury. Metabolic Brain Disease, 2017, 32, 1395-1402.	1.4	15
80	A Protective Role for Interleukin-1 Signaling during Mouse Adenovirus Type 1-Induced Encephalitis. Journal of Virology, 2017, 91, .	1.5	12
81	Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us?. Neurolmage, 2017, 160, 113-123.	2.1	93
82	Salsalate treatment following traumatic brain injury reduces inflammation and promotes a neuroprotective and neurogenic transcriptional response with concomitant functional recovery. Brain, Behavior, and Immunity, 2017, 61, 96-109.	2.0	41
83	Brain-Derived Microparticles in Patients with Severe Isolated TBI. Brain Injury, 2017, 31, 1856-1862.	0.6	35
84	Nonclassical Monocytes Mediate Secondary Injury, Neurocognitive Outcome, and Neutrophil Infiltration after Traumatic Brain Injury. Journal of Immunology, 2017, 199, 3583-3591.	0.4	73
85	Dimethyl fumarate treatment after traumatic brain injury prevents depletion of antioxidative brain glutathione and confers neuroprotection. Journal of Neurochemistry, 2017, 143, 523-533.	2.1	33
86	Hyperbaric oxygen alleviates the activation of NLRP-3-inflammasomes in traumatic brain injury. Molecular Medicine Reports, 2017, 16, 3922-3928.	1.1	39
87	Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron, 2017, 95, 1246-1265.	3.8	518
88	Pathological vascular and inflammatory biomarkers of acute- and chronic-phase traumatic brain injury. Concussion, 2017, 2, CNC30.	1.2	25
89	Metabotropic glutamate receptor 5 deficiency inhibits neutrophil infiltration after traumatic brain injury in mice. Scientific Reports, 2017, 7, 9998.	1.6	18
90	Can head trauma trigger adult-onset Rasmussen's encephalitis?. Epilepsy and Behavior, 2017, 74, 119-123.	0.9	2

#	Article	IF	CITATIONS
91	Neurotrophy and immunomodulation of induced neural stem cell grafts in a mouse model of closed head injury. Stem Cell Research, 2017, 23, 132-142.	0.3	11
92	Acute ethanol administration results in a protective cytokine and neuroinflammatory profile in traumatic brain injury. International Immunopharmacology, 2017, 51, 66-75.	1.7	28
93	<i>RAS</i> mutation prevalence among patients with metastatic colorectal cancer: a meta-analysis of real-world data. Biomarkers in Medicine, 2017, 11, 751-760.	0.6	33
94	Long non-coding RNA Gm4419 promotes trauma-induced astrocyte apoptosis by targeting tumor necrosis factor ͱ. Biochemical and Biophysical Research Communications, 2017, 491, 478-485.	1.0	31
95	Protective Functions of PJ34, a Poly(ADP-ribose) Polymerase Inhibitor, Are Related to Down-Regulation of Calpain and Nuclear Factor-κB in a Mouse Model of Traumatic Brain Injury. World Neurosurgery, 2017, 107, 888-899.	0.7	5
96	Synaptoimmunology - roles in health and disease. Molecular Brain, 2017, 10, 26.	1.3	36
97	Injectable uncrosslinked biomimetic hydrogels as candidate scaffolds for neural stem cell delivery. Journal of Biomedical Materials Research - Part A, 2017, 105, 790-805.	2.1	27
98	Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals. Journal of Neurotrauma, 2017, 34, 1491-1510.	1.7	19
99	Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia, 2017, 65, 278-292.	2.5	65
100	Danger Signals and Inflammasomes: Stress-Evoked Sterile Inflammation in Mood Disorders. Neuropsychopharmacology, 2017, 42, 36-45.	2.8	160
101	Treatment of traumatic brain injury with $17\hat{l}_{\pm}$ -ethinylestradiol-3-sulfate in a rat model. Journal of Neurosurgery, 2017, 127, 23-31.	0.9	28
102	The implantation effect: delay in seizure occurrence with implantation of intracranial electrodes. Acta Neurologica Scandinavica, 2017, 135, 115-121.	1.0	12
103	Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury?. Brain, Behavior, and Immunity, 2017, 60, 369-382.	2.0	66
104	Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 971-986.	1.7	15
105	The Emerging Role of GLP-1 Receptors in DNA Repair: Implications in Neurological Disorders. International Journal of Molecular Sciences, 2017, 18, 1861.	1.8	15
106	Therapeutic Potential of Intravenous Immunoglobulin in Acute Brain Injury. Frontiers in Immunology, 2017, 8, 875.	2.2	19
107	The P2X7 Receptor Primes IL- $\hat{1}^2$ and the NLRP3 Inflammasome in Astrocytes Exposed to Mechanical Strain. Frontiers in Cellular Neuroscience, 2017, 11, 227.	1.8	109
108	Protective Effect of N-Acetylcysteine Amide on Blast-Induced Increase in Intracranial Pressure in Rats. Frontiers in Neurology, 2017, 8, 219.	1.1	20

#	Article	IF	CITATIONS
109	Considerations for Experimental Animal Models of Concussion, Traumatic Brain Injury, and Chronic Traumatic Encephalopathyâ€"These Matters Matter. Frontiers in Neurology, 2017, 8, 240.	1.1	60
110	Cerebrospinal Fluid and Microdialysis Cytokines in Severe Traumatic Brain Injury: A Scoping Systematic Review. Frontiers in Neurology, 2017, 8, 331.	1.1	51
111	Traumatic Brain Injury and Stem Cell: Pathophysiology and Update on Recent Treatment Modalities. Stem Cells International, 2017, 2017, 1-13.	1.2	36
112	Sterile Neuroinflammation and Strategies for Therapeutic Intervention. International Journal of Inflammation, 2017, 2017, 1-20.	0.9	61
113	Effects of dexmedetomidine on TNF- \hat{l}_{\pm} and interleukin-2 in serum of rats with severe craniocerebral injury. BMC Anesthesiology, 2017, 17, 130.	0.7	19
114	1H-nuclear magnetic resonance metabolomics revealing the intrinsic relationships between neurochemical alterations and neurobehavioral and neuropathological abnormalities in rats exposed to tris(2-chloroethyl)phosphate. Chemosphere, 2018, 200, 649-659.	4.2	31
115	Neurobiology of Opioid Use Disorder and Comorbid Traumatic Brain Injury. JAMA Psychiatry, 2018, 75, 642.	6.0	3
116	Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nature Immunology, 2018, 19, 442-452.	7.0	101
117	Exosomes in Acquired Neurological Disorders: New Insights into Pathophysiology and Treatment. Molecular Neurobiology, 2018, 55, 9280-9293.	1.9	86
118	Brain docosahexaenoic acid uptake and metabolism. Molecular Aspects of Medicine, 2018, 64, 109-134.	2.7	120
119	The pericyte–glia interface at the blood–brain barrier. Clinical Science, 2018, 132, 361-374.	1.8	63
120	Sphingosine 1-Phosphate Receptor Subtype 1 as a Therapeutic Target for Brain Trauma. Journal of Neurotrauma, 2018, 35, 1452-1466.	1.7	23
121	MCC950, the Selective Inhibitor of Nucleotide Oligomerization Domain-Like Receptor Protein-3 Inflammasome, Protects Mice against Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1294-1303.	1.7	130
122	Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chinese Journal of Traumatology - English Edition, 2018, 21, 137-151.	0.7	135
123	Advances in Meningeal Immunity. Trends in Molecular Medicine, 2018, 24, 542-559.	3.5	196
124	Opioid Use Disorder After Self-medicating Pain From Traumatic Brain Injury. JAMA Psychiatry, 2018, 75, 649.	6.0	4
125	Adenosine, lidocaine, and Mg2+ (ALM) resuscitation fluid protects against experimental traumatic brain injury. Journal of Trauma and Acute Care Surgery, 2018, 84, 908-916.	1.1	20
126	Nano-Pulsed Laser Therapy Is Neuroprotective in a Rat Model of Blast-Induced Neurotrauma. Journal of Neurotrauma, 2018, 35, 1510-1522.	1.7	25

#	Article	IF	CITATIONS
127	Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxidants and Redox Signaling, 2018, 29, 75-108.	2.5	80
128	Microglial Function during Glucose Deprivation: Inflammatory and Neuropsychiatric Implications. Molecular Neurobiology, 2018, 55, 1477-1487.	1.9	44
129	MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist, 2018, 24, 221-245.	2.6	184
130	Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Medicinal Research Reviews, 2018, 38, 1126-1158.	5.0	35
131	NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biology, 2018, 68-69, 571-588.	1.5	51
132	Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. Journal of Neurotrauma, 2018, 35, 210-225.	1.7	91
133	TiO2-Nanowired Delivery of DL-3-n-butylphthalide (DL-NBP) Attenuates Blood-Brain Barrier Disruption, Brain Edema Formation, and Neuronal Damages Following Concussive Head Injury. Molecular Neurobiology, 2018, 55, 350-358.	1.9	30
134	The role of nanomaterials in cell delivery systems. Medical Molecular Morphology, 2018, 51, 1-12.	0.4	29
135	Rat Model of Brain Injury to Occupants of Vehicles Targeted by Land Mines: Mitigation by Elastomeric Frame Designs. Journal of Neurotrauma, 2018, 35, 1192-1203.	1.7	9
136	Applications of Proteomics in Traumatic Brain Injury. Chinese Medical Journal, 2018, 131, 2143-2145.	0.9	3
137	Untangling PTSD and TBI: Challenges and Strategies in Clinical Care and Research. Current Neurology and Neuroscience Reports, 2018, 18, 106.	2.0	30
138	A mathematical model of neuroinflammation in severe clinical traumatic brain injury. Journal of Neuroinflammation, 2018, 15, 345.	3.1	14
139	Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Frontiers in Neurology, 2018, 9, 964.	1.1	57
140	Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. Journal of Neuroinflammation, 2018, 15, 276.	3.1	353
141	Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Frontiers in Cellular Neuroscience, 2018, 12, 350.	1.8	16
142	Neuroprotective Effects of Platonin, a Therapeutic Immunomodulating Medicine, on Traumatic Brain Injury in Mice after Controlled Cortical Impact. International Journal of Molecular Sciences, 2018, 19, 1100.	1.8	15
143	The evolving role of neuroâ€immune interaction in brain repair after cerebral ischemic stroke. CNS Neuroscience and Therapeutics, 2018, 24, 1100-1114.	1.9	81
144	Pathophysiology of severe traumatic brain injury. Journal of Neurosurgical Sciences, 2018, 62, 542-548.	0.3	32

#	Article	lF	Citations
145	Expression profile of plasma microRNAs and their roles in diagnosis of mild to severe traumatic brain injury. PLoS ONE, 2018, 13, e0204051.	1.1	32
146	Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: A study using a hypnotic bromovalerylurea. Glia, 2018, 66, 2158-2173.	2.5	47
147	Design synthesis in silico in vitro and in vivo evaluation of novel l-cysteine derivatives as multi-target-directed ligands for the treatment of neurodegenerative diseases. Beni-Suef University Journal of Basic and Applied Sciences, 2018, 7, 452-460.	0.8	1
148	Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury. Neurobiology of Disease, 2018, 117, 15-27.	2.1	161
150	Oxidized phospholipid signaling in traumatic brain injury. Free Radical Biology and Medicine, 2018, 124, 493-503.	1.3	63
151	Neurochemical Aspects of Traumatic Brain Injury. , 2018, , 239-286.		0
153	Role of the immune response in initiating central nervous system regeneration in vertebrates: learning from the fish. International Journal of Developmental Biology, 2018, 62, 403-417.	0.3	20
154	Systematic Review of Human and Animal Studies Examining the Efficacy and Safety of N-Acetylcysteine (NAC) and N-Acetylcysteine Amide (NACA) in Traumatic Brain Injury: Impact on Neurofunctional Outcome and Biomarkers of Oxidative Stress and Inflammation. Frontiers in Neurology, 2017, 8, 744.	1.1	57
155	The Role of Gaseous Molecules in Traumatic Brain Injury: An Updated Review. Frontiers in Neuroscience, 2018, 12, 392.	1.4	28
156	Effective Treatment of Traumatic Brain Injury in Rowett Nude Rats with Stromal Vascular Fraction Transplantation. Brain Sciences, 2018, 8, 112.	1.1	2
157	The role of inflammation in the development of epilepsy. Journal of Neuroinflammation, 2018, 15, 144.	3.1	400
158	IDH2 Deficiency in Microglia Decreases the Pro-inflammatory Response via the ERK and NF-κB Pathways. Inflammation, 2018, 41, 1965-1973.	1.7	11
159	Stress and aging act through common mechanisms to elicit neuroinflammatory priming. Brain, Behavior, and Immunity, 2018, 73, 133-148.	2.0	57
160	HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model. Cellular Physiology and Biochemistry, 2018, 46, 2532-2542.	1.1	41
161	Growth Differentiation Factor 5 Improves Neurogenesis and Functional Recovery in Adult Mouse Hippocampus Following Traumatic Brain Injury. Frontiers in Neurology, 2018, 9, 592.	1.1	20
162	Adjudin Attenuates Cerebral Edema and Improves Neurological Function in Mice with Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2850-2860.	1.7	18
163	How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. Journal of Cellular Physiology, 2019, 234, 320-334.	2.0	17
164	Role of Toll-like receptor mediated signaling in traumatic brain injury. Neuropharmacology, 2019, 145, 259-267.	2.0	56

#	Article	IF	CITATIONS
165	Lack of Benefit on Brain Edema, Blood–Brain Barrier Permeability, or Cognitive Outcome in Global Inducible High Mobility Group Box 1 Knockout Mice Despite Tissue Sparing after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 360-369.	1.7	16
166	Systemic Estrone Production and Injury-Induced Sex Hormone Steroidogenesis after Severe Traumatic Brain Injury: A Prognostic Indicator of Traumatic Brain Injury-Related Mortality. Journal of Neurotrauma, 2019, 36, 1156-1167.	1.7	12
167	MRS Reveals Chronic Inflammation in T2w MRI-Negative Perilesional Cortex – A 6-Months Multimodal Imaging Follow-Up Study. Frontiers in Neuroscience, 2019, 13, 863.	1.4	13
168	Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon- \hat{l}^3 gene expression in acute experimental traumatic brain injury. Journal of Neuroinflammation, 2019, 16, 163.	3.1	80
169	Traumatic Brain Injury within Domestic Relationships: Complications, Consequences and Contributing Factors. Journal of Aggression, Maltreatment and Trauma, 2019, 28, 660-676.	0.9	17
170	Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD-based cerebrovascular reactivity associated with a history of sport concussion. Brain Injury, 2019, 33, 1479-1489.	0.6	14
171	The anatomy and immunology of vasculature in the central nervous system. Science Immunology, 2019, 4 , .	5.6	190
172	Immunomodulatory Therapeutic Strategies in Stroke. Frontiers in Pharmacology, 2019, 10, 630.	1.6	45
173	The preparation of oxidized methylcellulose crosslinked by adipic acid dihydrazide loaded with vitamin C for traumatic brain injury. Journal of Materials Chemistry B, 2019, 7, 4499-4508.	2.9	19
174	Mechanisms and Clinical Applications of Stem Cell Therapy. , 2019, , 133-161.		1
175	Innate immune suppression after traumatic brain injury and hemorrhage in a juvenile rat model of polytrauma. Journal of Neuroimmunology, 2019, 337, 577073.	1,1	3
176	Resolution of neuroinflammation: mechanisms and potential therapeutic option. Seminars in Immunopathology, 2019, 41, 699-709.	2.8	65
177	Iduna protects HT22†cells by inhibiting parthanatos: The role of the p53-MDM2 pathway. Experimental Cell Research, 2019, 384, 111547.	1,2	8
178	Neurosteroids as regulators of neuroinflammation. Frontiers in Neuroendocrinology, 2019, 55, 100788.	2.5	133
179	The Neutrophil/Lymphocyte Count Ratio Predicts Mortality in Severe Traumatic Brain Injury Patients. Journal of Clinical Medicine, 2019, 8, 1453.	1.0	31
180	Nanozyme-Based Bandage with Single-Atom Catalysis for Brain Trauma. ACS Nano, 2019, 13, 11552-11560.	7. 3	193
181	Micromechanical heterogeneity of the rat pia-arachnoid complex. Acta Biomaterialia, 2019, 100, 29-37.	4.1	20
182	Progress in the Field of Micro-Electrocorticography. Micromachines, 2019, 10, 62.	1.4	34

#	Article	IF	Citations
183	Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochemical Research, 2019, 44, 1410-1424.	1.6	82
184	Enduring Neuroprotective Effect of Subacute Neural Stem Cell Transplantation After Penetrating TBI. Frontiers in Neurology, 2018, 9, 1097.	1.1	12
185	The TRPC6 inhibitor, larixyl acetate, is effective in protecting against traumatic brain injury-induced systemic endothelial dysfunction. Journal of Neuroinflammation, 2019, 16, 21.	3.1	22
186	Neuroinflammation in organophosphate-induced neurotoxicity. Advances in Neurotoxicology, 2019, 3, 35-79.	0.7	20
187	Repeated In Vitro Impact Conditioning of Astrocytes Decreases the Expression and Accumulation of Extracellular Matrix. Annals of Biomedical Engineering, 2019, 47, 967-979.	1.3	5
188	Neuroimmune responses in the developing brain following traumatic brain injury. Experimental Neurology, 2019, 320, 112957.	2.0	44
189	Microglial-targeting induced by intranasal linalool during neurological protection postischemia. European Journal of Pharmacology, 2019, 857, 172420.	1.7	14
190	Myeloid Cell and Transcriptome Signatures Associated With Inflammation Resolution in a Model of Self-Limiting Acute Brain Inflammation. Frontiers in Immunology, 2019, 10, 1048.	2.2	16
191	Contact sport participation and chronic traumatic encephalopathy are associated with altered severity and distribution of cerebral amyloid angiopathy. Acta Neuropathologica, 2019, 138, 401-413.	3.9	26
192	Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injury. Scientific Reports, 2019, 9, 8564.	1.6	15
193	Glial response in early stages of traumatic brain injury. Neuroscience Letters, 2019, 708, 134335.	1.0	14
194	Blood Biomarkers for Traumatic Brain Injury: A Quantitative Assessment of Diagnostic and Prognostic Accuracy. Frontiers in Neurology, 2019, 10, 446.	1.1	127
195	Roscovitine, an experimental CDK5 inhibitor, causes delayed suppression of microglial, but not astroglial recruitment around intracerebral dopaminergic grafts. Experimental Neurology, 2019, 318, 135-144.	2.0	14
196	Concentration of microtubule associated protein tau (MAPT) in urine and saliva as a potential biomarker of traumatic brain injury in relationship with blood–brain barrier disruption in postmortem examination. Forensic Science International, 2019, 301, 28-36.	1.3	23
197	Autoimmunity After Ischemic Stroke and Brain Injury. Frontiers in Immunology, 2019, 10, 686.	2.2	75
198	Myeloid-Derived Suppressor Cells Infiltrate the Brain and Suppress Neuroinflammation in a Mouse Model of Focal Traumatic Brain Injury. Neuroscience, 2019, 406, 457-466.	1.1	17
199	Intensive Care in Traumatic Brain Injury Including Multi-Modal Monitoring and Neuroprotection. Medical Sciences (Basel, Switzerland), 2019, 7, 37.	1.3	20
200	Role of MSK1 in the Induction of NF-κB by the Chemokine CX3CL1 in Microglial Cells. Cellular and Molecular Neurobiology, 2019, 39, 331-340.	1.7	18

#	Article	IF	CITATIONS
201	Dissemination of brain inflammation in traumatic brain injury. Cellular and Molecular Immunology, 2019, 16, 523-530.	4.8	91
202	VEGF-C Induces Alternative Activation of Microglia to Promote Recovery from Traumatic Brain Injury. Journal of Alzheimer's Disease, 2019, 68, 1687-1697.	1.2	15
203	Histoarchitecture restoration of cerebellar sub-layers as a response to estradiol treatment following Kainic acid-induced spinal cord injury. Cell and Tissue Research, 2019, 376, 309-323.	1.5	4
204	What Is a Concussive Brain Injury?., 2019, , 33-92.		1
205	The Pathophysiology of Concussive Brain Injury. , 2019, , 138-152.		2
206	Prophylactic hypothermia for traumatic brain injury patients: It is not cool to be cooled. Anaesthesia, Critical Care & Dain Medicine, 2019, 38, 97-98.	0.6	1
207	Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Predicting the 6-Month Outcome of Patients with Traumatic Brain Injury: A Retrospective Study. World Neurosurgery, 2019, 124, e411-e416.	0.7	24
208	Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacology and Translational Science, 2019, 2, 66-91.	2.5	28
209	Elevated Serum Levels of Inflammation-Related Cytokines in Mild Traumatic Brain Injury Are Associated With Cognitive Performance. Frontiers in Neurology, 2019, 10, 1120.	1.1	49
210	Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sciences, 2019, 9, 318.	1.1	49
211	Aggravating effects of treadmill exercises during the early-onset period in a rat traumatic brain injury model: When should rehabilitation exercises be initiated? IBRO Reports, 2019, 7, 82-89.	0.3	12
212	The Potassium SK Channel Activator NS309 Protects Against Experimental Traumatic Brain Injury Through Anti-Inflammatory and Immunomodulatory Mechanisms. Frontiers in Pharmacology, 2019, 10, 1432.	1.6	13
213	Immunoreactive Cells After Cerebral Ischemia. Frontiers in Immunology, 2019, 10, 2781.	2.2	31
214	Cannabis Influences the Putative Cytokines-Related Pathway of Epilepsy among Egyptian Epileptic Patients. Brain Sciences, 2019, 9, 332.	1.1	9
215	Significant changes in circular RNA in the mouse cerebral cortex around an injury site after traumatic brain injury. Experimental Neurology, 2019, 313, 37-48.	2.0	33
216	Therapeutic Effect of a Novel Fatty Acid Amide Hydrolase Inhibitor PF04457845 in the Repetitive Closed Head Injury Mouse Model. Journal of Neurotrauma, 2019, 36, 1655-1669.	1.7	19
217	Rapamycin improves the neuroprotection effect of inhibition of NLRP3 inflammasome activation after TBI. Brain Research, 2019, 1710, 163-172.	1.1	61
218	Age and sex differences in the pathophysiology of acute CNS injury. Neurochemistry International, 2019, 127, 22-28.	1.9	45

#	Article	IF	CITATIONS
219	Subventricular zone neural precursor cell responses after traumatic brain injury and binge alcohol in male rats. Journal of Neuroscience Research, 2019, 97, 554-567.	1.3	3
220	Microglial Calcium Release-Activated Calcium Channel Inhibition Improves Outcome from Experimental Traumatic Brain Injury and Microglia-Induced Neuronal Death. Journal of Neurotrauma, 2019, 36, 996-1007.	1.7	31
221	Comprehensive Characterization of Cerebrovascular Dysfunction in Blast Traumatic Brain Injury Using Photoacoustic Microscopy. Journal of Neurotrauma, 2019, 36, 1526-1534.	1.7	16
222	Acute Inflammation After Traumatic Brain Injury. , 2019, , 221-239.		1
223	Intracellular transport and regulation of transcytosis across the blood–brain barrier. Cellular and Molecular Life Sciences, 2019, 76, 1081-1092.	2.4	141
224	Icariin Improves Functional Behavior in a Mouse Model of Traumatic Brain Injury and Promotes Synaptic Plasticity Markers. Planta Medica, 2019, 85, 231-238.	0.7	13
225	Plasma and cerebrospinal fluid pharmacokinetics of hydroxysafflor yellow A in patients with traumatic brain injury after intravenous administration of Xuebijing using LC-MS/MS method. Xenobiotica, 2020, 50, 545-551.	0.5	11
226	Neural-respiratory inflammasome axis in traumatic brain injury. Experimental Neurology, 2020, 323, 113080.	2.0	35
227	S100 Calcium-Binding Protein A9 Knockout Contributes to Neuroprotection and Functional Improvement after Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 950-965.	1.7	9
228	Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods, 2020, 171, 41-61.	1.9	37
229	Geniposide Alleviates Traumatic Brain Injury in Rats Via Anti-Inflammatory Effect and MAPK/NF-kB Inhibition. Cellular and Molecular Neurobiology, 2020, 40, 511-520.	1.7	31
230	FNDC5/Irisin: A New Protagonist in Acute Brain Injury. Stem Cells and Development, 2020, 29, 533-543.	1.1	17
231	Intravenous Immunomodulatory Nanoparticle Treatment for Traumatic Brain Injury. Annals of Neurology, 2020, 87, 442-455.	2.8	29
232	Phillyrin protects mice from traumatic brain injury by inhibiting the inflammation of microglia via PPARÎ ³ signaling pathway. International Immunopharmacology, 2020, 79, 106083.	1.7	41
233	Large-earthquake rupturing and slipping behavior along the range-front Maidan fault in the southern Tian Shan, northwestern China. Journal of Asian Earth Sciences, 2020, 190, 104193.	1.0	3
234	RAR-Related Orphan Receptor Gamma T (RoR \hat{I}^3 t)-Related Cytokines Play a Role in Neutrophil Infiltration of the Central Nervous System After Subarachnoid Hemorrhage. Neurocritical Care, 2020, 33, 140-151.	1.2	11
235	Therapeutic effects of supplementation with Curcuminoids in critically ill patients receiving enteral nutrition: a randomized controlled trial protocol. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1609-1614.	0.8	7
236	Exogenous CGRP Regulates Apoptosis and Autophagy to Alleviate Traumatic Brain Injury Through Akt/mTOR Signalling Pathway. Neurochemical Research, 2020, 45, 2926-2938.	1.6	25

#	Article	IF	CITATIONS
237	Role of CAPE in reducing oxidative stress in animal models with traumaticÂbrain injury. Annals of Medicine and Surgery, 2020, 57, 118-122.	0.5	21
238	Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Frontiers in Physiology, 2020, 11, 565667.	1.3	26
239	Role of Circular Ribonucleic Acids in the Treatment of Traumatic Brain and Spinal Cord Injury. Molecular Neurobiology, 2020, 57, 4296-4304.	1.9	10
240	CRP Albumin ratio is positively associated with poor outcome in patients with traumatic brain injury. Clinical Neurology and Neurosurgery, 2020, 195, 106051.	0.6	15
241	The closed-head impact model of engineered rotational acceleration (CHIMERA) as an application for traumatic brain injury pre-clinical research: A status report. Experimental Neurology, 2020, 333, 113409.	2.0	35
242	Autoantibodies in central nervous system trauma: new frontiers for diagnosis and prognosis biomarkers., 2020,, 431-451.		0
243	Bioinformatic analysis identifies key transcriptome signatures in temporal lobe epilepsy. CNS Neuroscience and Therapeutics, 2020, 26, 1266-1277.	1.9	27
244	Neuroprotective Effect of Oridonin on Traumatic Brain Injury via Inhibiting NLRP3 Inflammasome in Experimental Mice. Frontiers in Neuroscience, 2020, 14, 557170.	1.4	29
245	Adenosine A3 receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. Journal of Neuroinflammation, 2020, 17, 339.	3.1	33
246	Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Molecular Neurobiology, 2020, 57, 4692-4703.	1.9	24
247	Modification of the Marmarou model in developing countries. Annals of Medicine and Surgery, 2020, 57, 109-113.	0.5	6
248	Rhein Suppresses Neuroinflammation via Multiple Signaling Pathways in LPS-Stimulated BV2 Microglia Cells. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-12.	0.5	7
249	Serum Albumin Levels in Severe Traumatic Brain Injury: Role as a Predictor of Outcome. Indian Journal of Neurotrauma, 2020, 17, 24-27.	0.3	0
250	Epilepsy and Alterations of the Blood–Brain Barrier: Cause or Consequence of Epileptic Seizures or Both?. Handbook of Experimental Pharmacology, 2020, , 1.	0.9	10
251	Microglia dynamics in adolescent traumatic brain injury. Journal of Neuroinflammation, 2020, 17, 326.	3.1	30
252	The Role of NLRP3 Inflammasome in the Pathogenesis of Traumatic Brain Injury. International Journal of Molecular Sciences, 2020, 21, 6204.	1.8	64
253	Inhibition of Macrophage Migration Inhibitory Factor Protects against Inflammation through a Toll-like Receptor-Related Pathway after Diffuse Axonal Injury in Rats. BioMed Research International, 2020, 2020, 1-10.	0.9	10
254	Low brain endocannabinoids associated with persistent non-goal directed nighttime hyperactivity after traumatic brain injury in mice. Scientific Reports, 2020, 10, 14929.	1.6	19

#	Article	IF	CITATIONS
255	<p>Preparation, Characterization and in vivo Study of Borneol-Baicalin-Liposomes for Treatment of Cerebral Ischemia-Reperfusion Injury</p> . International Journal of Nanomedicine, 2020, Volume 15, 5977-5989.	3.3	22
256	Microbial Diversity and Community Structures Among Those With Moderate to Severe TBI: A United States-Veteran Microbiome Project Study. Journal of Head Trauma Rehabilitation, 2020, 35, 332-341.	1.0	16
257	Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nature Communications, 2020, 11 , 4524.	5.8	174
258	Impact of Age on Plasma Inflammatory Biomarkers in the 6 Months Following Mild Traumatic Brain Injury. Journal of Head Trauma Rehabilitation, 2020, 35, 324-331.	1.0	14
259	Circulating neutrophil-to-lymphocyte ratio at admission predicts the long-term outcome in acute traumatic cervical spinal cord injury patients. BMC Musculoskeletal Disorders, 2020, 21, 548.	0.8	26
260	Dentate Gyrus Proliferative Responses After Traumatic Brain Injury and Binge Alcohol in Adult Rats. Neuroscience Insights, 2020, 15, 263310552096890.	0.9	3
261	<p>Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury</p> . Neuropsychiatric Disease and Treatment, 2020, Volume 16, 2975-2987.	1.0	7
262	The ketone ester, 3-hydroxybutyl-3-hydroxybutyrate, attenuates neurobehavioral deficits and improves neuropathology following controlled cortical impact in male rats. Nutritional Neuroscience, 2022, 25, 1287-1299.	1.5	7
263	Inflammation in Traumatic Brain Injury. Journal of Alzheimer's Disease, 2020, 74, 1-28.	1.2	36
264	Persistent Neurovascular Unit Dysfunction: Pathophysiological Substrate and Trigger for Late-Onset Neurodegeneration After Traumatic Brain Injury. Frontiers in Neuroscience, 2020, 14, 581.	1.4	21
265	A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. Journal of Neuroinflammation, 2020, 17, 155.	3.1	121
266	High IL-6 in military personnel relates to multiple traumatic brain injuries and post-traumatic stress disorder. Behavioural Brain Research, 2020, 392, 112715.	1.2	23
267	Secondary effects on brain physiology caused by focused ultrasound-mediated disruption of the blood–brain barrier. Journal of Controlled Release, 2020, 324, 450-459.	4.8	45
268	Human adipose-derived mesenchymal stem cells for acute and sub-acute TBI. PLoS ONE, 2020, 15, e0233263.	1.1	15
269	Evaluation of M2-like macrophage enrichment after diffuse traumatic brain injury through transient interleukin-4 expression from engineered mesenchymal stromal cells. Journal of Neuroinflammation, 2020, 17, 197.	3.1	30
270	Effects of mild hypothermia on serum HMGB1 of brain-dead donors and its impact on kidney transplantation recipients. Medicine (United States), 2020, 99, e20425.	0.4	О
271	Testing a Novel Heat-Shock Protein Inducer in the Cellular Model of Traumatic Brain Injury Response. Cell and Tissue Biology, 2020, 14, 52-56.	0.2	0
272	MCC950, a Selective Inhibitor of NLRP3 Inflammasome, Reduces the Inflammatory Response and Improves Neurological Outcomes in Mice Model of Spinal Cord Injury. Frontiers in Molecular Biosciences, 2020, 7, 37.	1.6	52

#	ARTICLE	IF	CITATIONS
273	Role of Glia in the Regulation of Sleep in Health and Disease. , 2020, 10, 687-712.		30
274	In Vivo Imaging of Neuroinflammatory Targets in Treatment-Resistant Epilepsy. Current Neurology and Neuroscience Reports, 2020, 20, 5.	2.0	15
275	Using the neutrophil-to-lymphocyte ratio to predict outcomes in pediatric patients with traumatic brain injury. Clinical Neurology and Neurosurgery, 2020, 193, 105772.	0.6	8
276	Sleep Disruption Exacerbates and Prolongs the Inflammatory Response to Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1829-1843.	1.7	28
277	Molecular therapeutic strategies in neurodegenerative diseases and injury. , 2020, , 435-486.		0
278	Elevated intracranial pressure after head trauma can be suppressed by antisecretory factor—a pilot study. Acta Neurochirurgica, 2020, 162, 1629-1637.	0.9	6
279	Pediatric Traumatic Brain Injury Causes Long-Term Deficits in Adult Hippocampal Neurogenesis and Cognition. Journal of Neurotrauma, 2020, 37, 1656-1667.	1.7	17
280	Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both?. International Journal of Molecular Sciences, 2020, 21, 591.	1.8	130
281	Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia, 2020, 61, 203-215.	2.6	29
282	Resilience to Injury: A New Approach to Neuroprotection?. Neurotherapeutics, 2020, 17, 457-474.	2.1	6
283	Withaferin A alleviates traumatic brain injury induced secondary brain injury via suppressing apoptosis in endothelia cells and modulating activation in the microglia. European Journal of Pharmacology, 2020, 874, 172988.	1.7	14
284	Therapeutic Development of Apolipoprotein E Mimetics for Acute Brain Injury: Augmenting Endogenous Responses to Reduce Secondary Injury. Neurotherapeutics, 2020, 17, 475-483.	2.1	14
285	Efficacy and Safety of Wendan Decoction for Acute Brain Injury: A Randomized Controlled Study. Journal of Alternative and Complementary Medicine, 2020, 26, 392-397.	2.1	4
286	A Novel Highly Sensitive Method for Measuring Inflammatory Neural-Derived APC Activity in Glial Cell Lines, Mouse Brain and Human CSF. International Journal of Molecular Sciences, 2020, 21, 2422.	1.8	3
287	Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Communication and Signaling, 2020, 18, 62.	2.7	111
288	Phosphoglycerate Mutase 5 Knockdown Alleviates Neuronal Injury After Traumatic Brain Injury Through Drp1-Mediated Mitochondrial Dysfunction. Antioxidants and Redox Signaling, 2021, 34, 154-170.	2 . 5	21
289	Apolipoprotein E4 Polymorphism and Outcomes from Traumatic Brain Injury: A Living Systematic Review and Meta-Analysis. Journal of Neurotrauma, 2021, 38, 1124-1136.	1.7	51
290	Biomechanics of Sport-Related Neurological Injury. Clinics in Sports Medicine, 2021, 40, 19-38.	0.9	4

#	Article	IF	CITATIONS
291	Estrogen Attenuates Traumatic Brain Injury by Inhibiting the Activation of Microglia and Astrocyte-Mediated Neuroinflammatory Responses. Molecular Neurobiology, 2021, 58, 1052-1061.	1.9	72
292	Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Translational Medicine, 2021, 10, 164-180.	1.6	5
293	Links between thrombosis and inflammation in traumatic brain injury. Thrombosis Research, 2021, 198, 62-71.	0.8	22
294	Applying a novel 3D hydrogel cell culture to investigate activation of microglia due to rotational kinematics associated with mild traumatic brain injury. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104176.	1.5	7
295	Argon Inhalation for 24Âh After Closed-Head Injury Does not Improve Recovery, Neuroinflammation, or Neurologic Outcome in Mice. Neurocritical Care, 2021, 34, 833-843.	1.2	9
296	IGF-1 Alleviates Mitochondrial Apoptosis through the GSK3β/NF-κB/NLRP3 Signaling Pathway in LPS-Treated PC-12 Cells. Journal of Molecular Neuroscience, 2021, 71, 1320-1328.	1.1	5
297	The potential for immune checkpoint modulators in cerebrovascular injury and inflammation. Expert Opinion on Therapeutic Targets, 2021, 25, 101-113.	1.5	13
298	Why It Is Necessary to Use the Entire Root rather than Partial Root When Doing Contralateral C7 Nerve Transfer: Cortical Plasticity Also Matters besides the Amount of Nerve Fibers. Neural Plasticity, 2021, 2021, 1-12.	1.0	1
299	The effect of doxycycline on neuron-specific enolase in patients with traumatic brain injury: a randomized controlled trial. Therapeutic Advances in Chronic Disease, 2021, 12, 204062232110243.	1.1	9
301	Catalytic patch with redox Cr/CeO ₂ nanozyme of noninvasive intervention for brain trauma. Theranostics, 2021, 11, 2806-2821.	4.6	60
302	Inhibition of miR-129 Improves Neuronal Pyroptosis and Cognitive Impairment Through IGF-1/GSK3β Signaling Pathway: An In Vitro and In Vivo Study. Journal of Molecular Neuroscience, 2021, 71, 2299-2309.	1.1	8
303	Immune Dysfunction in Obsessive-Compulsive Disorder: From Risk Factors to Multisystem Involvement. , 2021, , 289-307.		0
304	Association between vasopressor use and mortality in patients with severe traumatic brain injury: a nationwide retrospective cohort study in Japan. Acute Medicine & Surgery, 2021, 8, e695.	0.5	0
305	LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection. Molecular Neurobiology, 2021, 58, 2407-2422.	1.9	23
306	cGAS- Stimulator of Interferon Genes Signaling in Central Nervous System Disorders., 2021, 12, 1658.		12
307	A multiscale computational model of angiogenesis after traumatic brain injury, investigating the role location plays in volumetric recovery. Mathematical Biosciences and Engineering, 2021, 18, 3227-3257.	1.0	0
308	Vitamin D3 Supplement Attenuates Blood–Brain Barrier Disruption and Cognitive Impairments in a Rat Model of Traumatic Brain Injury. NeuroMolecular Medicine, 2021, 23, 491-499.	1.8	12
309	The Complexity of Secondary Cascade Consequent to Traumatic Brain Injury: Pathobiology and Potential Treatments. Current Neuropharmacology, 2021, 19, 1984-2011.	1.4	12

#	Article	IF	CITATIONS
310	Novel Synthetic and Natural Therapies for Traumatic Brain Injury. Current Neuropharmacology, 2021, 19, 1661-1687.	1.4	13
311	Repeated Low-Level Blast Acutely Alters Brain Cytokines, Neurovascular Proteins, Mechanotransduction, and Neurodegenerative Markers in a Rat Model. Frontiers in Cellular Neuroscience, 2021, 15, 636707.	1.8	17
312	Astrocyte-immune cell interactions in physiology and pathology. Immunity, 2021, 54, 211-224.	6.6	105
313	Neuroinflammation and Hypothalamo-Pituitary Dysfunction: Focus of Traumatic Brain Injury. International Journal of Molecular Sciences, 2021, 22, 2686.	1.8	15
314	Celecoxib in a Preclinical Model of Repetitive Mild Traumatic Brain Injury: Hippocampal Learning Deficits Persist with Inflammatory and Excitotoxic Neuroprotection. Trauma Care, 2021, 1, 23-37.	0.4	8
315	Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment. Frontiers in Endocrinology, 2021, 12, 634415.	1.5	29
316	Massive efflux of adenosine triphosphate into the extracellular space immediately after experimental traumatic brain injury. Experimental and Therapeutic Medicine, 2021, 21, 575.	0.8	10
317	Gene Expression Signature of Traumatic Brain Injury. Frontiers in Genetics, 2021, 12, 646436.	1.1	8
318	Gut microbiota-brain interaction: An emerging immunotherapy for traumatic brain injury. Experimental Neurology, 2021, 337, 113585.	2.0	14
319	Association of Preinjury Medical Diagnoses With Pediatric Persistent Postconcussion Symptoms in Electronic Health Records. Journal of Head Trauma Rehabilitation, 2022, 37, E80-E89.	1.0	3
320	Myeloid-Derived Suppressor Cells (MDSCs) and the Immunoinflammatory Response to Injury (Mini) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
321	Zika-exposed microcephalic neonates exhibit higher degree of inflammatory imbalance in cerebrospinal fluid. Scientific Reports, 2021, 11, 8474.	1.6	9
322	OTULIN is a new target of EA treatment in the alleviation of brain injury and glial cell activation via suppression of the NF-κB signalling pathway in acute ischaemic stroke rats. Molecular Medicine, 2021, 27, 37.	1.9	8
323	Effectiveness of CAPE in reducing vascular permeability after brain injury. Medicina Clinica Practica, 2021, 4, 100229.	0.2	7
324	Correlation of serum cystatin C with inflammatory cytokines in patients with traumatic brain injury. Synapse, 2021, 75, e22201.	0.6	2
325	Trigeminal nerve electrical stimulation: An effective arousal treatment for loss of consciousness. Brain Research Bulletin, 2021, 169, 81-93.	1.4	8
326	Inflammatory neuropsychiatric disorders and COVID-19 neuroinflammation. Acta Neuropsychiatrica, 2021, 33, 165-177.	1.0	15
327	Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood–Brain Barrier Breakdown. Cells, 2021, 10, 1009.	1.8	28

#	Article	IF	CITATIONS
328	Design and Evaluation of an In Vitro Mild Traumatic Brain Injury Modeling System Using 3D Printed Mini Impact Device on the 3D Cultured Human iPSC Derived Neural Progenitor Cells. Advanced Healthcare Materials, 2021, 10, e2100180.	3.9	13
329	Acute and late administration of colony stimulating factor 1 attenuates chronic cognitive impairment following mild traumatic brain injury in mice. Brain, Behavior, and Immunity, 2021, 94, 274-288.	2.0	8
330	Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points. PLoS ONE, 2021, 16, e0251315.	1.1	13
331	Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. Journal of Neurotrauma, 2021, 38, 1251-1266.	1.7	14
332	Cell Proliferation in the Piriform Cortex of Rats with Motor Cortex Ablation Treated with Growth Hormone and Rehabilitation. International Journal of Molecular Sciences, 2021, 22, 5440.	1.8	2
333	The Role of Neuroinflammation in Post-traumatic Epilepsy. Frontiers in Neurology, 2021, 12, 646152.	1.1	11
334	Risk Factors for Cerebral Infarction After Moderate or Severe Traumatic Brain Injury. Therapeutics and Clinical Risk Management, 2021, Volume 17, 433-440.	0.9	5
335	Biocatalytic and Antioxidant Nanostructures for ROS Scavenging and Biotherapeutics. Advanced Functional Materials, 2021, 31, 2101804.	7.8	71
336	Transcriptome analysis reveals disparate expression of inflammation-related miRNAs and their gene targets in iPSC-astrocytes from people with schizophrenia. Brain, Behavior, and Immunity, 2021, 94, 235-244.	2.0	17
337	From seed to flower: blossoming of microglia in development and brain repair. Cell and Tissue Research, 2022, 387, 377-389.	1.5	2
338	Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biological Psychiatry, 2022, 91, 498-507.	0.7	105
339	Neuroimmune cleanup crews in brain injury. Trends in Immunology, 2021, 42, 480-494.	2.9	27
340	Sirtuins, a potential target in Traumatic Brain Injury and relevant experimental models. Brain Research Bulletin, 2021, 171, 135-141.	1.4	2
341	Survival outcomes after traumatic brain injury during national academic meeting days in Japan. Scientific Reports, 2021, 11, 15206.	1.6	1
342	Does Traumatic Brain Injury Cause Risky Substance Use or Substance Use Disorder?. Biological Psychiatry, 2022, 91, 421-437.	0.7	18
343	The impact of exercise, sleep, and diet on neurocognitive recovery from mild traumatic brain injury in older adults: A narrative review. Ageing Research Reviews, 2021, 68, 101322.	5.0	18
344	Rhamnazin Ameliorates Traumatic Brain Injury in Mice via Reduction in Apoptosis, Oxidative Stress, and Inflammation. NeuroImmunoModulation, 2022, 29, 28-35.	0.9	4
345	Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Frontiers in Cellular Neuroscience, 2021, 15, 703944.	1.8	57

#	Article	IF	CITATIONS
346	GPR110 ligands reduce chronic optic tract gliosis and visual deficit following repetitive mild traumatic brain injury in mice. Journal of Neuroinflammation, 2021, 18, 157.	3.1	6
347	Pathophysiology of Pediatric Traumatic Brain Injury. Frontiers in Neurology, 2021, 12, 696510.	1.1	17
348	Mechanisms Underlying Disorders of Consciousness: Bridging Gaps to Move Toward an Integrated Translational Science. Neurocritical Care, 2021, 35, 37-54.	1.2	38
349	Ferroptosis and traumatic brain injury. Brain Research Bulletin, 2021, 172, 212-219.	1.4	35
350	Peripheral inflammatory markers in patients with prolonged disorder of consciousness after severe traumatic brain injury. Annals of Palliative Medicine, 2021, 10, 9114-9121.	0.5	3
351	Targeting NLRP3 Inflammasome in Translational Treatment of Nervous System Diseases: An Update. Frontiers in Pharmacology, 2021, 12, 707696.	1.6	25
352	Combination of Neutrophil-to-Lymphocyte Ratio and Admission Glasgow Coma Scale Score Is Independent Predictor of Clinical Outcome in Diffuse Axonal Injury. World Neurosurgery, 2021, 152, e118-e127.	0.7	5
353	Repetitive Mild Traumatic Brain Injury in Rats Impairs Cognition, Enhances Prefrontal Cortex Neuronal Activity, and Reduces Pre-synaptic Mitochondrial Function. Frontiers in Cellular Neuroscience, 2021, 15, 689334.	1.8	9
354	Extracellular vesicles in the treatment of neurological disorders. Neurobiology of Disease, 2021, 157, 105445.	2.1	28
355	Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury. Journal of Neuroimaging, 2021, 31, 879-892.	1.0	6
356	Neuroinflammation Mediates Faster Brachial Plexus Regeneration in Subjects with Cerebral Injury. Neuroscience Bulletin, 2021, 37, 1542-1554.	1.5	0
357	Chlorpyrifos pesticide promotes oxidative stress and increases inflammatory states in BV-2 microglial cells: A role in neuroinflammation. Chemosphere, 2021, 278, 130417.	4.2	27
358	CCR2 deficiency alters activation of microglia subsets in traumatic brain injury. Cell Reports, 2021, 36, 109727.	2.9	23
359	Long non-coding RNA: An underlying bridge linking neuroinflammation and central nervous system diseases. Neurochemistry International, 2021, 148, 105101.	1.9	13
360	Higher n-3 Polyunsaturated Fatty Acid Diet Improves Long-Term Neuropathological and Functional Outcome after Repeated Mild Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 2622-2632.	1.7	9
361	Post-traumatic Neuroinflammation: Relevance to Pediatrics. Pediatric Neurology, 2021, 122, 50-58.	1.0	1
362	Effects of NLRP3 inflammasome blockade on postresuscitation cerebral function in a rat model of cardiopulmonary resuscitation. Biomedicine and Pharmacotherapy, 2021, 143, 112093.	2.5	3
363	Admission Lymphocytopenia is Associated with Urinary Tract Infection and Nosocomial Infections in Hemorrhagic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 106079.	0.7	3

#	Article	IF	CITATIONS
364	The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neuroscience and Biobehavioral Reviews, 2021, 130, 15-30.	2.9	11
365	Contribution of neuroinflammation, resolution, and neuroprotection in neurotraumatic diseases. , 2022, , 83-119.		0
366	Beyond Acute Traumatic Brain Injury: Molecular Implications of Associated Neuroinflammation in Higher-Order Cognitive Processes., 2021,, 237-259.		1
367	Niche Cells Crosstalk In Neuroinflammation After Traumatic Brain Injury. International Journal of Biological Sciences, 2021, 17, 368-378.	2.6	8
368	An overview of management of intracranial hypertension in the intensive care unit. Journal of Anesthesia, 2020, 34, 741-757.	0.7	50
369	Imaging Acute Metabolic Changes in Patients with Mild Traumatic Brain Injury Using Hyperpolarized [1-13C]Pyruvate. IScience, 2020, 23, 101885.	1.9	15
373	Platelet-generated amyloid beta peptides in Alzheimer's disease and glaucoma. Histology and Histopathology, 2019, 34, 843-856.	0.5	28
374	Immune-Based Therapies for Traumatic Brain Injury: Insights from Pre-Clinical Studies. Current Medicinal Chemistry, 2020, 27, 5374-5402.	1.2	3
375	Effects of Minocycline on Neurological Outcomes In Patients With Acute Traumatic Brain Injury: A Pilot Study. Iranian Journal of Pharmaceutical Research, 2019, 18, 1086-1096.	0.3	8
376	Free Radicals in Oxidative Stress, Aging, and Neurodegenerative Disorders. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 48-75.	0.1	1
377	Differences in pathological changes between two rat models of severe traumatic brain injury. Neural Regeneration Research, 2019, 14, 1796.	1.6	15
378	Clial cells in intracerebral transplantation for Parkinson's disease. Neural Regeneration Research, 2020, 15, 1173.	1.6	11
379	Combined therapy potential of apocynin and tert-butylhydroquinone as a therapeutic agent to prevent secondary progression to traumatic brain injury. Journal of Innovative Optical Health Sciences, 2020, 15, 10-15.	0.5	7
380	The Peripheral Immune System and Traumatic Brain Injury: Insight into the role of T-helper cells. International Journal of Medical Sciences, 2021, 18, 3644-3651.	1.1	16
381	Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics, 2021, 13, 1624.	2.0	28
382	Moderate and Severe Traumatic Brain Injury. CONTINUUM Lifelong Learning in Neurology, 2021, 27, 1278-1300.	0.4	16
383	Neuroprotective Roles of the Adenosine A3 Receptor Agonist AST-004 in Mouse Model of Traumatic Brain Injury. Neurotherapeutics, 2021, 18, 2707-2721.	2.1	12
384	Cortical-Sulcal Hyperintensity in Fluid-attenuated Inversion Recovery Images and Postoperative Transient Neurological Events after Indirect Revascularization Surgery for Moyamoya Disease. Surgery for Cerebral Stroke, 2018, 46, 439-444.	0.0	1

#	Article	IF	CITATIONS
385	Rapid Detection and Monitoring of Brain Injury Using Sensory-Evoked Responses. Neuromethods, 2018, , 243-256.	0.2	0
386	Hemostasis Disturbances in Patients in the Acute Period of Isolated Traumatic Brain Injury (Review). Obshchaya Reanimatologiya, 2018, 14, 85-95.	0.2	6
388	EFFECT OF MANGOSTEEN EXTRACT ON NEUROINFLAMMATION IN RAT MODEL OF ACUTE TRAUMATIC BRAIN INJURY. Asian Journal of Pharmaceutical and Clinical Research, 0, , 61-63.	0.3	0
389	The dual role of the immune system in the pathogenesis of traumatic brain injury. Ukrainian Neurosurgical Journal, 2019, 25, 5-11.	0.1	0
390	Chronic traumatic encephalopathy: the nature, mechanisms and stages of development. Ukrainian Neurosurgical Journal, 2019, 25, 5-11.	0.1	0
393	Stem cells application for the treatment of traumatic brain injury. Ukrainian Neurosurgical Journal, 2020, 26, 20-29.	0.1	0
394	Neurogenic dysfunction of the respiratory system in traumatic brain injury. Bulletin Physiology and Pathology of Respiration, 2020, , 118-125.	0.0	0
395	Pharmacological Neuroprotection. , 2020, , 409-419.		0
396	The Monocyte-to-Lymphocyte Ratio at Hospital Admission Is a Novel Predictor for Acute Traumatic Intraparenchymal Hemorrhage Expansion after Cerebral Contusion. Mediators of Inflammation, 2020, 2020, 1-12.	1.4	13
397	Solid Organ Injury. , 2020, , 337-430.		0
398	Increased Behavioral Deficits and Inflammation in a Mouse Model of Co-Morbid Traumatic Brain Injury and Post-Traumatic Stress Disorder. ASN Neuro, 2020, 12, 175909142097956.	1.5	6
399	Phillyrin Prevents Neuroinflammation-Induced Blood–Brain Barrier Damage Following Traumatic Brain Injury via Altering Microglial Polarization. Frontiers in Pharmacology, 2021, 12, 719823.	1.6	17
402	Alantolactone plays neuroprotective roles in traumatic brain injury in rats via anti-inflammatory, anti-oxidative and anti-apoptosis pathways. American Journal of Translational Research (discontinued), 2018, 10, 368-380.	0.0	15
403	Dexmedetomidine inhibits the PSD95-NMDA receptor interaction to promote functional recovery following traumatic brain injury. Experimental and Therapeutic Medicine, 2021, 21, 4.	0.8	2
404	Neurological Theories., 2021,, 69-87.		0
405	Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Frontiers in Molecular Neuroscience, 2021, 14, 750810.	1.4	15
406	Tailored Therapeutic Doses of Dexmedetomidine in Evolving Neuroinflammation after Traumatic Brain Injury. Neurocritical Care, 2022, 36, 802-814.	1.2	8
407	Pulmonary injury as a predictor of cerebral hypoxia in traumatic brain injury: from physiology to physiopathology. Journal of Neurosurgical Sciences, 2021, , .	0.3	2

#	Article	IF	CITATIONS
409	Deep Sequencing of the Rat MCAO Cortexes Reveals Crucial circRNAs Involved in Early Stroke Events and Their Regulatory Networks. Neural Plasticity, 2021, 2021, 1-17.	1.0	12
410	Traumatic Brain Injury and Risk of Dementia and Alzheimer's Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology, 2022, 56, 4-16.	1.1	18
411	Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Reports, 2021, 2, 564-580.	0.5	0
412	Traumatic brain injury in women across lifespan. Neurobiology of Disease, 2022, 164, 105613.	2.1	22
413	elF5A regulating survivin to improve neural remodeling in rats with traumatic brain injury. , 2019, 5, 33-41.		0
414	Dexmedetomidine inhibits the PSD95‑NMDA receptor interaction to promote functional recovery following traumatic brain injury. Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	8
415	Glial immune-related pathways mediate effects of closed head traumatic brain injury on behavior and lethality in Drosophila. PLoS Biology, 2022, 20, e3001456.	2.6	15
416	Revisiting Excitotoxicity in Traumatic Brain Injury: From Bench to Bedside. Pharmaceutics, 2022, 14, 152.	2.0	28
417	Paradoxical symptomatic cerebral blood flow decreases after combined revascularization surgery for patients with pediatric moyamoya disease: illustrative case. Journal of Neurosurgery Case Lessons, 2022, 3, .	0.1	0
418	Curcumin suppress inflammatory response in traumatic brain injury via p38/ <scp>MAPK</scp> signaling pathway. Phytotherapy Research, 2022, 36, 1326-1337.	2.8	17
419	Inhibition of Exosome Release Alleviates Cognitive Impairment After Repetitive Mild Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 2022, 16, 832140.	1.8	7
420	Role of NETosis in Central Nervous System Injury. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	6
421	The Role of the Inflammatory Process in the Development of Poststroke Cognitive Impairments. Neuroscience and Behavioral Physiology, 2022, 52, 39-44.	0.2	0
422	Immune dynamics in the CNS and its barriers during homeostasis and disease*. Immunological Reviews, 2022, 306, 58-75.	2.8	38
423	Transfer RNA-Derived Fragments and isomiRs Are Novel Components of Chronic TBI-Induced Neuropathology. Biomedicines, 2022, 10, 136.	1.4	8
424	Comprehensive Landscape of Immune Infiltration and Aberrant Pathway Activation in Ischemic Stroke. Frontiers in Immunology, 2021, 12, 766724.	2.2	12
425	Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice. Neural Regeneration Research, 2022, 17, 2007.	1.6	29
426	Singleâ€Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chemistry - an Asian Journal, 2022, 17, .	1.7	19

#	Article	IF	CITATIONS
427	Nationwide improvements in geriatric mortality due to traumatic brain injury in Japan. BMC Emergency Medicine, 2022, 22, 24.	0.7	10
428	PD-L1 signaling in reactive astrocytes counteracts neuroinflammation and ameliorates neuronal damage after traumatic brain injury. Journal of Neuroinflammation, 2022, 19, 43.	3.1	21
429	Developing Biomarkers of Mild Traumatic Brain Injury: Promise and Progress of CNS-Derived Exosomes. Frontiers in Neurology, 2021, 12, 698206.	1.1	10
430	ISG15 and ISGylation in Human Diseases. Cells, 2022, 11, 538.	1.8	32
431	A review of the pathology and treatment of TBI and PTSD. Experimental Neurology, 2022, 351, 114009.	2.0	23
432	MCC950 in the treatment of NLRP3-mediated inflammatory diseases: Latest evidence and therapeutic outcomes. International Immunopharmacology, 2022, 106, 108595.	1.7	26
433	Systemic inflammation in traumatic brain injury predicts poor cognitive function. Immunity, Inflammation and Disease, 2022, 10, .	1.3	8
434	Traumatic brain injury and translational research: pharmacological and nonpharmacological perspectives., 2022,, 139-154.		0
435	Lu Tong Ke Li protects neurons from injury by regulating inflammation in rats with brain trauma. , 2022, 8, $100-108$.		2
436	Bioactive Composite Nanoparticles for Effective Microenvironment Regulation, Neuroprotection, and Cell Differentiation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15623-15631.	4.0	6
437	Neuroinflammation Following Traumatic Brain Injury: Take It Seriously or Not. Frontiers in Immunology, 2022, 13, 855701.	2.2	27
438	Chitosan Hydrogel Supplemented with Metformin Promotes Neuron–like Cell Differentiation of Gingival Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2022, 23, 3276.	1.8	10
439	2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects against neuronal cell death and traumatic brain injury-induced pathophysiology. Aging, 2022, 14, 2607-2627.	1.4	5
440	Implementing New Technologies to Improve Visual–Spatial Functions in Patients with Impaired Consciousness. International Journal of Environmental Research and Public Health, 2022, 19, 3081.	1.2	2
441	IFI16-STING-NF-l ^o B signaling controls exogenous mitochondrion-induced endothelial activation. American Journal of Transplantation, 2022, 22, 1578-1592.	2.6	3
442	HDAC1 expression is positively correlated with NADPH oxidase 4-mediated oxidative stress in a mouse model of traumatic brain injury. Journal of Neurophysiology, 2022, 127, 1438-1444.	0.9	2
443	The Role of Tissue Geometry in Spinal Cord Regeneration. Medicina (Lithuania), 2022, 58, 542.	0.8	2
444	Phosphatidylethanolamine Deficiency and Triglyceride Overload in Perilesional Cortex Contribute to Non-Goal-Directed Hyperactivity after Traumatic Brain Injury in Mice. Biomedicines, 2022, 10, 914.	1.4	7

#	ARTICLE	IF	CITATIONS
465	Pediatric traumatic brain injury: a new relation between outcome and neutrophil-to-lymphocite ratio Acta Biomedica, 2022, 92, e2021417.	0.2	2
466	Free Radicals in Oxidative Stress, Aging, and Neurodegenerative Disorders. , 2022, , 225-252.		1
467	Nano-PSO Administration Attenuates Cognitive and Neuronal Deficits Resulting from Traumatic Brain Injury. Molecules, 2022, 27, 2725.	1.7	5
468	Significance of developmental meningeal lymphatic dysfunction in experimental post-traumatic injury. Brain, Behavior, & Immunity - Health, 2022, , 100466.	1.3	0
469	Immunomodulatory protein from ganoderma microsporum protects against oxidative damages and cognitive impairments after traumatic brain injury. Molecular and Cellular Neurosciences, 2022, 120, 103735.	1.0	2
470	AKG Attenuates Cerebral Ischemia-Reperfusion Injury through c-Fos/IL-10/Stat3 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	7
471	Sirtuin 1 alleviates microglia-induced inflammation by modulating the PGC-1α/Nrf2 pathway after traumatic brain injury in male rats. Brain Research Bulletin, 2022, 185, 28-38.	1.4	5
472	The association between hematologic parameters and intracranial injuries in pediatric patients with traumatic brain injury. Brain Injury, 0, , 1-10.	0.6	1
473	Proteoglycans and glycosaminoglycans in central nervous system injury. American Journal of Physiology - Cell Physiology, 2022, 323, C46-C55.	2.1	4
475	Serum NOX4 as a Promising Prognostic Biomarker in Association with 90-Day Outcome of Severe Traumatic Brain Injury. International Journal of General Medicine, 0, Volume 15, 5307-5317.	0.8	0
476	Role of the NLRP3-Q705K polymorphism in the pathogenesis of inflammatory-mediated diseases: A brief look at impacts of the Q705 polymorphism and NLRP3 activation on cancer immunotherapy. , 2022, 33, 201057.		0
477	Ablation of GSDMD Attenuates Neurological Deficits and Neuropathological Alterations After Traumatic Brain Injury. Frontiers in Cellular Neuroscience, 0, 16 , .	1.8	11
478	The role of the stress system in recovery after traumatic brain injury: A tribute to Bruce S. McEwen. Neurobiology of Stress, 2022, 19, 100467.	1.9	6
479	Fluoxetine reduces organ injury and improves motor function after traumatic brain injury in mice. Journal of Trauma and Acute Care Surgery, 2022, 93, 38-42.	1.1	2
481	Comprehensive RNA Expression Analysis Revealed Biological Functions of Key Gene Sets and Identified Disease-Associated Cell Types Involved in Rat Traumatic Brain Injury. Journal of Clinical Medicine, 2022, 11, 3437.	1.0	2
482	Intrinsically Bioactive Manganese–Eumelanin Nanocomposites Mediated Antioxidation and Antiâ€Neuroinflammation for Targeted Theranostics of Traumatic Brain Injury. Advanced Healthcare Materials, 2022, 11, .	3.9	11
483	Selective Brain Cooling: A New Horizon of Neuroprotection. Frontiers in Neurology, 0, 13, .	1.1	8
484	A brief descriptive outline of the rules of mixed martial arts and concussion in mixed martial arts. Journal of Exercise Rehabilitation, 2022, 18, 142-154.	0.4	2

#	Article	IF	CITATIONS
485	Unveiling Leukocyte Extracellular Traps in Inflammatory Responses of the Central Nervous System. Frontiers in Immunology, $0,13,13$	2.2	1
486	Maraviroc promotes recovery from traumatic brain injury in mice by suppression of neuroinflammation and activation of neurotoxic reactive astrocytes. Neural Regeneration Research, 2023, 18, 141.	1.6	21
487	Traumatic MicroRNAs: Deconvolving the Signal After Severe Traumatic Brain Injury. Cellular and Molecular Neurobiology, 2023, 43, 1061-1075.	1.7	5
488	3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
489	Neuroinflammation in Traumatic Brain Injury. , 0, , .		1
490	Delirium in Head Trauma: Looking for a Culprit. Reviews on Recent Clinical Trials, 2022, 17, 245-249.	0.4	1
491	Hesperetin Nanoparticle Targeting Neutrophils for Enhanced TBI Therapy. Advanced Functional Materials, 2022, 32, .	7.8	6
492	Development and Validation of Indicators for Population Injury Surveillance in Hong Kong: Development and Usability Study. JMIR Public Health and Surveillance, 2022, 8, e36861.	1.2	1
493	Mesenchymal stem cells protect against TBI-induced pyroptosis in vivo and in vitro through TSG-6. Cell Communication and Signaling, 2022, 20, .	2.7	12
494	Hyaluronic acid extracellularly inhibits ferroptosis via cell-surface receptors in acute traumatic brain injury. Nano Today, 2022, 46, 101625.	6.2	6
495	How the immune system shapes neurodegenerative diseases. Trends in Neurosciences, 2022, 45, 733-748.	4.2	17
496	Multi-enzyme activity nanozymes for biosensing and disease treatment. Coordination Chemistry Reviews, 2022, 473, 214784.	9.5	44
497	The effect of Riluzole on neurological outcomes, blood-brain barrier, brain water and neuroinflammation in traumatic brain injury. Brain Disorders, 2022, 8, 100052.	1.1	5
498	Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Frontiers in Medicine, 0, 9, .	1.2	8
499	Unilateral Cervical Vagotomy Modulates Immune Cell Profiles and the Response to a Traumatic Brain Injury. International Journal of Molecular Sciences, 2022, 23, 9851.	1.8	0
500	Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Frontiers in Neuroscience, $0,16,.$	1.4	7
501	A Mouse Model of Neurodegeneration Induced by Blade Penetrating Stab Wound to the Hippocampus. Biology, 2022, 11, 1365.	1.3	4
502	Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. International Journal of Molecular Sciences, 2022, 23, 11193.	1.8	17

#	ARTICLE	IF	CITATIONS
503	Understanding Acquired Brain Injury: A Review. Biomedicines, 2022, 10, 2167.	1.4	19
505	Concussion in the UK: a contemporary narrative review. Trauma Surgery and Acute Care Open, 2022, 7, e000929.	0.8	4
506	Catalpol Ameliorates Oxidative Stress and Neuroinflammation after Traumatic Brain Injury in Rats. Neurochemical Research, 2023, 48, 681-695.	1.6	2
507	A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. Brain Disorders, 2022, , 100058.	1.1	0
508	The predictive role of systemic inflammation response index in the prognosis of traumatic brain injury: A propensity score matching study. Frontiers in Neurology, $0,13,.$	1.1	3
509	Tetrandrine alleviates inflammation and neuron apoptosis in experimental traumatic brain injury by regulating the IRE1 $\hat{l}\pm$ /JNK/CHOP signal pathway. Brain and Behavior, 2022, 12, .	1.0	5
510	Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells, 2022, 11, 3642.	1.8	9
511	Abrocitinib Attenuates Microglia-Mediated Neuroinflammation after Traumatic Brain Injury via Inhibiting the JAK1/STAT1/NF-IºB Pathway. Cells, 2022, 11, 3588.	1.8	3
512	L-Type Ca2+ Channel Inhibition Rescues the LPS-Induced Neuroinflammatory Response and Impairments in Spatial Memory and Dendritic Spine Formation. International Journal of Molecular Sciences, 2022, 23, 13606.	1.8	5
513	Neurotoxicity evoked by organophosphates and available countermeasures. Archives of Toxicology, 2023, 97, 39-72.	1.9	19
514	The Immunomodulatory Potential Role of Mesenchymal Stem Cells in Diseases of the Central Nervous System. Neurodegenerative Diseases, 2022, 22, 68-82.	0.8	6
515	Hypertonic saline for traumatic brain injury: a systematic review and meta-analysis. European Journal of Medical Research, 2022, 27, .	0.9	1
516	No one left behind: Inclusion of individuals experiencing homelessness in TBI stem cell therapy. Medical Hypotheses, 2023, 170, 111002.	0.8	1
517	Neurotrauma Update. Emergency Medicine Clinics of North America, 2023, 41, 19-33.	0.5	0
518	Progress in research on the role of clinical nutrition in treating traumatic brain injury affecting the neurovascular unit. Nutrition Reviews, 0 , , .	2.6	1
519	Acid Sphingomyelinase Inhibitor, Imipramine, Reduces Hippocampal Neuronal Death after Traumatic Brain Injury. International Journal of Molecular Sciences, 2022, 23, 14749.	1.8	5
520	NIR-II Dyad-Doped Ratiometric Nanosensor with Enhanced Spectral Fidelity in Biological Media for In Vivo Biosensing. Nano Letters, 2022, 22, 9732-9740.	4.5	13
521	Purinergic Regulation of Neuroinflammation in Traumatic Brain Injury. Neuroscience and Behavioral Physiology, 0, , .	0.2	0

#	ARTICLE	IF	CITATIONS
522	TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. Journal of Neuroinflammation, 2022, 19 , .	3.1	29
523	Brain Trauma Imaging. Journal of Nuclear Medicine, 2023, 64, 20-29.	2.8	3
524	Pharmacological components with neuroprotective effects in the management of traumatic brain injury: evidence from network meta-analysis. Neurological Sciences, 0, , .	0.9	0
525	Neuroinflammation of traumatic brain injury: Roles of extracellular vesicles. Frontiers in Immunology, 0, 13, .	2.2	8
526	The meningeal transcriptional response to traumatic brain injury and aging. ELife, 0, 12, .	2.8	17
527	An Approach to Traumatic Brain Injury-Related Hypopituitarism: Overcoming the Pediatric Challenges. Diagnostics, 2023, 13, 212.	1.3	0
528	Prolonged and intense neuroinflammation after severe traumatic brain injury assessed by cerebral microdialysis with 300ÂkDa membranes. Journal of Neuroimmunology, 2023, 377, 578020.	1.1	4
529	Data-driven approach to integrating genomic and behavioral preclinical traumatic brain injury research. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	0
530	NLRP3 inflammasome in traumatic brain injury: Its implication in the disease pathophysiology and potential as a therapeutic target. Life Sciences, 2023, 314, 121352.	2.0	13
531	Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. Journal of Neuroinflammation, 2022, 19, .	3.1	7
532	A Dedicated 21-Plex Proximity Extension Assay Panel for High-Sensitivity Protein Biomarker Detection Using Microdialysis in Severe Traumatic Brain Injury: The Next Step in Precision Medicine?. Neurotrauma Reports, 2023, 4, 25-40.	0.5	2
533	Intergenerational Perioperative Neurocognitive Disorder in Young Adult Male Rats with Traumatic Brain Injury. Anesthesiology, 2023, 138, 388-402.	1.3	2
534	Lifetime Traumatic Brain Injury and Cognitive Domain Deficits in Late Life: The PROTECT-TBI Cohort Study. Journal of Neurotrauma, 2023, 40, 1423-1435.	1.7	12
535	A Mouse Model of Spinal Cord Hypoperfusion with Immediate Paralysis Caused by Endovascular Repair of Thoracic Aortic Aneurysm. Anesthesiology, 2023, , .	1.3	0
536	α-MSH suppresses neuroinflammation and improves neurobehavioral outcomes after traumatic brain injury in mice. Medical Biological Science and Engineering, 2023, 6, 32-41.	0.5	0
537	Intergenerational Perioperative Neurocognitive Disorder. Biology, 2023, 12, 567.	1.3	1
538	Recent advances in nanomedicine development for traumatic brain injury. Tissue and Cell, 2023, 82, 102087.	1.0	0
540	A New Strategy for the Treatment of Patients With Prolonged Impairment of Consciousness Using Xenon. Prospective Pilot Study. Sklifosovsky Journal Emergency Medical Care, 2023, 11, 592-599.	0.3	0

#	ARTICLE	IF	CITATIONS
541	Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiology of Disease, 2023, 179, 106035.	2.1	7
542	Biomimetic Remodeling of Microglial Riboflavin Metabolism Ameliorates Cognitive Impairment by Modulating Neuroinflammation. Advanced Science, 2023, 10, .	5.6	12
543	Neutrophil extracellular traps contribute to coagulopathy after traumatic brain injury. JCI Insight, 2023, 8, .	2.3	6
545	Non-Invasive Vagus Nerve Stimulation Improves Brain Lesion Volume and Neurobehavioral Outcomes in a Rat Model of Traumatic Brain Injury. Journal of Neurotrauma, 2023, 40, 1481-1494.	1.7	2
546	The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2023, 24, 5240.	1.8	0
547	Meta-analysis of HMGB1 levels in the cerebrospinal fluid and serum of patients with epilepsy. Neurological Sciences, 2023, 44, 2329-2337.	0.9	3
548	Neuroinflammatory Biomarkers for Traumatic Brain Injury Diagnosis and Prognosis: A TRACK-TBI Pilot Study. Neurotrauma Reports, 2023, 4, 171-183.	0.5	9
550	Neuroinflammation as secondary damage in head injury. Annals of Clinical and Experimental Neurology, 2023, 17, 55-68.	0.1	0
551	Traumatic Brain Injury, Sleep, and Melatonin—Intrinsic Changes with Therapeutic Potential. Clocks & Sleep, 2023, 5, 177-203.	0.9	5
552	Astrocytic Chitinaseâ€3â€like protein 1 in neurological diseases: Potential roles and future perspectives. Journal of Neurochemistry, 2023, 165, 772-790.	2.1	7
553	ADAM17 Aggravates the Inflammatory Response by Modulating Microglia Polarization Through the TGF.β1/Smad Pathway Following Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2023, 40, 1495-1509.	1.7	3
554	Pathophysiology and Neuroimmune Interactions Underlying Parkinson's Disease and Traumatic Brain Injury. International Journal of Molecular Sciences, 2023, 24, 7186.	1.8	0
563	Lipids, docosahexaenoic acid (DHA), and traumatic brain injury. , 2023, , 239-255.		0
575	The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics, 2023, 20, 1565-1591.	2.1	4