SIRT1 Suppresses Doxorubicin-Induced Cardiotoxicity and p38MAPK Pathways

Cellular Physiology and Biochemistry 35, 1116-1124 DOI: 10.1159/000373937

Citation Report

#	Article	IF	CITATIONS
1	NICOTINAMIDE RIBOSIDE DELIVERY GENERATES NAD+ RESERVES TO PROTECT VASCULAR CELLS AGAINST OXIDATIVE DAMAGE. Canadian Journal of Cardiology, 2015, 31, S226.	0.8	0
2	Sirtuins, aging, and cardiovascular risks. Age, 2015, 37, 9804.	3.0	27
3	Targeting Dynamin 2 as a Novel Pathway to Inhibit Cardiomyocyte Apoptosis Following Oxidative Stress. Cellular Physiology and Biochemistry, 2016, 39, 2121-2134.	1.1	19
4	Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 2016, 22, 547-556.	15.2	573
5	Effect of Resveratrol on the Prevention of Intra-Abdominal Adhesion Formation in a Rat Model. Cellular Physiology and Biochemistry, 2016, 39, 33-46.	1.1	34
6	1,2,3-Triazole-Dithiocarbamate Hybrids, a Group of Novel Cell Active SIRT1 Inhibitors. Cellular Physiology and Biochemistry, 2016, 38, 185-193.	1.1	8
7	The role of sirtuins in mitochondrial function and doxorubicin-induced cardiac dysfunction. Biological Chemistry, 2017, 398, 955-974.	1.2	36
8	Salidroside Attenuates Ventilation Induced Lung Injury via SIRT1-Dependent Inhibition of NLRP3 Inflammasome. Cellular Physiology and Biochemistry, 2017, 42, 34-43.	1.1	41
9	Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicology Letters, 2017, 275, 28-38.	0.4	65
10	Sulforaphane protection against the development of doxorubicinâ€induced chronic heart failure is associated with Nrf2 Upregulation. Cardiovascular Therapeutics, 2017, 35, e12277.	1.1	52
11	The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. British Journal of Pharmacology, 2017, 174, 1533-1554.	2.7	165
12	Oxymatrine Ameliorates Doxorubicin-Induced Cardiotoxicity in Rats. Cellular Physiology and Biochemistry, 2017, 43, 626-635.	1.1	74
13	Expression of Signal Molecules in Culture of Human Endothelial Cells in Atherosclerosis and Restenosis. Bulletin of Experimental Biology and Medicine, 2017, 163, 566-569.	0.3	2
14	Tremella fuciformis polysaccharide suppresses hydrogen peroxide-triggered injury of human skin fibroblasts via upregulation of SIRT1. Molecular Medicine Reports, 2017, 16, 1340-1346.	1.1	49
15	Silencing of <i>HJURP</i> induces dysregulation of cell cycle and ROS metabolism in bladder cancer cells via PPARγ-SIRT1 feedback loop. Journal of Cancer, 2017, 8, 2282-2295.	1.2	35
16	Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients, 2017, 9, 1201.	1.7	97
17	Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	47
18	Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C. PLoS ONE, 2017, 12, e0179452.	1.1	36

#	Article	IF	CITATIONS
19	Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 2017, 8, 34082-34098.	0.8	137
20	Attenuated SUMOylation of sirtuin 1 in premature neonates with bronchopulmonary dysplasia. Molecular Medicine Reports, 2017, 17, 1283-1288.	1.1	10
21	Astragalus polysaccharide restores autophagic flux and improves cardiomyocyte function in doxorubicin-induced cardiotoxicity. Oncotarget, 2017, 8, 4837-4848.	0.8	63
22	Eleutheroside E inhibits doxorubicin-induced inflammation and apoptosis in rat cardiomyocytes by modulating activation of NF-ήB pathway. Tropical Journal of Pharmaceutical Research, 2017, 16, 515.	0.2	3
23	Expression of MicroRNA-448 and SIRT1 and Prognosis of Obese Type 2 Diabetic Mellitus Patients After Laparoscopic Bariatric Surgery. Cellular Physiology and Biochemistry, 2018, 45, 935-950.	1.1	17
24	Roles for Sirtuins in Cardiovascular Biology. , 2018, , 155-173.		3
25	Cardiac-Specific Overexpression of Silent Information Regulator 1 Protects Against Heart and Kidney Deterioration in Cardiorenal Syndrome via Inhibition of Endoplasmic Reticulum Stress. Cellular Physiology and Biochemistry, 2018, 46, 9-22.	1.1	9
26	A single-domain rhodanese homologue MnRDH1 helps to maintain redox balance in Macrobrachium nipponense. Developmental and Comparative Immunology, 2018, 78, 160-168.	1.0	8
27	TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via the PPARγ-SIRT1 feedback loop in human bladder cancer cells. Cancer Letters, 2018, 414, 278-293.	3.2	58
28	Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacologica Sinica, 2018, 39, 59-73.	2.8	140
29	Ascorbic acid inhibits cadmium-induced disruption of the blood-testis barrier by regulating oxidative stress-mediated p38 MAPK pathways. Environmental Science and Pollution Research, 2018, 25, 21713-21720.	2.7	51
30	Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: A possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity?. Toxicology and Applied Pharmacology, 2018, 358, 86-101.	1.3	38
31	The anti-cancer drug doxorubicin induces substantial epigenetic changes in cultured cardiomyocytes. Chemico-Biological Interactions, 2019, 313, 108834.	1.7	38
32	Protective properties of glycogen synthase kinase-3 inhibition against doxorubicin-induced oxidative damage to mouse ovarian reserve. Biomedicine and Pharmacotherapy, 2019, 116, 108963.	2.5	22
33	Sirtuin 1 knockdown inhibits glioma cell proliferation and potentiates temozolomide toxicity via facilitation of reactive oxygen species generation. Oncology Letters, 2019, 17, 5343-5350.	0.8	14
34	Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGCâ€1α/PI3K/Akt signaling. Journal of Cellular Physiology, 2019, 234, 23705-23718.	2.0	59
35	MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacological Research, 2019, 146, 104276.	3.1	69
36	Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients, 2019, 11, 627.	1.7	27

CITATION REPORT

#	Article	IF	CITATIONS
37	The Potential Beneficial Effects of Resveratrol on Cardiovascular Complications in Marfan Syndrome Patients–Insights from Rodent-Based Animal Studies. International Journal of Molecular Sciences, 2019, 20, 1122.	1.8	22
38	Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	1.9	76
39	Effect of bilateral sympathectomy in a rat model of dilated cardiomyopathy induced by doxorubicin. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, e135-e144.	0.4	5
40	Doxorubicin cardiomyopathy is ameliorated by acacetin via Sirt1â€mediated activation of AMPK/Nrf2 signal molecules. Journal of Cellular and Molecular Medicine, 2020, 24, 12141-12153.	1.6	39
41	Molecular mechanisms of action of resveratrol in modulation of diabetic and non-diabetic cardiomyopathy. Pharmacological Research, 2020, 161, 105112.	3.1	19
42	Molecular, Cellular, and Clinical Evidence That Sodiumâ€Glucose Cotransporter 2 Inhibitors Act as Neurohormonal Antagonists When Used for the Treatment of Chronic Heart Failure. Journal of the American Heart Association, 2020, 9, e016270.	1.6	30
43	Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: implications for understanding the effects of current and future treatments for heart failure. European Heart Journal, 2020, 41, 3856-3861.	1.0	40
44	The Role of AMPK Activation for Cardioprotection in Doxorubicin-Induced Cardiotoxicity. Cardiovascular Drugs and Therapy, 2020, 34, 255-269.	1.3	97
45	Molecular mechanisms of doxorubicin-induced cardiotoxicity: novel roles of sirtuin 1-mediated signaling pathways. Cellular and Molecular Life Sciences, 2021, 78, 3105-3125.	2.4	37
46	Sirtuins in aging, age-related pathologies and their association with circadian rhythm. , 2021, , 103-115.		0
47	Roflumilast Attenuates Doxorubicin-Induced Cardiotoxicity by Targeting Inflammation and Cellular Senescence in Cardiomyocytes Mediated by SIRT1. Drug Design, Development and Therapy, 2021, Volume 15, 87-97.	2.0	19
48	MiR-200a-3p Aggravates DOX-Induced Cardiotoxicity by Targeting PEG3 Through SIRT1/NF-ήB Signal Pathway. Cardiovascular Toxicology, 2021, 21, 302-313.	1.1	15
49	Acylated ghrelin protects against doxorubicinâ€induced nephropathy by activating silent information regulator 1. Basic and Clinical Pharmacology and Toxicology, 2021, 128, 805-821.	1.2	13
50	Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death and Disease, 2021, 12, 339.	2.7	273
51	Investigation of niclosamide as a repurposing agent for skeletal muscle atrophy. PLoS ONE, 2021, 16, e0252135.	1.1	3
52	Anthracycline chemotherapyâ€mediated vascular dysfunction as a model of accelerated vascular aging. Aging and Cancer, 2021, 2, 45-69.	0.5	14
53	Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy. Trends in Molecular Medicine, 2021, 27, 554-571.	3.5	22
54	A Systematic Review of the Potential Chemoprotective Effects of Resveratrol on Doxorubicin-Induced Cardiotoxicity: Focus on the Antioxidant, Antiapoptotic, and Anti-Inflammatory Activities. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.	1.9	21

#	Article	IF	CITATIONS
55	Content changes of Jiupei tripeptide Tyr-Gly-Asp during simulated distillation process of baijiu and the potential in vivo antioxidant ability investigation. Journal of Food Composition and Analysis, 2021, 102, 104034.	1.9	8
56	Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biology, 2021, 46, 102089.	3.9	59
57	Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clinical Science, 2020, 134, 1859-1885.	1.8	7
58	CYP1B1 as a therapeutic target in cardio-oncology. Clinical Science, 2020, 134, 2897-2927.	1.8	21
59	Omega-3 fatty acids ameliorate doxorubicin-induced cardiorenal toxicity: In-vivo regulation of oxidative stress, apoptosis and renal Nox4, and in-vitro preservation of the cytotoxic efficacy. PLoS ONE, 2020, 15, e0242175.	1.1	6
60	The Molecular Mechanisms Associated with Aerobic Exercise-Induced Cardiac Regeneration. Biomolecules, 2021, 11, 19.	1.8	14
61	Apocynum venetum leaf extract alleviated doxorubicin-induced cardiotoxicity through the AKT/Bcl-2 signaling pathway. Phytomedicine, 2022, 94, 153815.	2.3	23
62	The beneficial efficacy of liposomal resveratrol against doxorubicin-induced hepatotoxicity in rats: Role of TGF-β1 and SIRT1. Journal of King Saud University - Science, 2021, 33, 101640.	1.6	7
63	SIRTUINO 1 (SIRT1) GENO POLIMORFIZMŲ Ä®TAKA HIPOFIZÄ−S ADENOMŲ VYSTYMUISI. LITERATŪROS APŽ Neurologijos Seminarai, 2018, 22, 105-109.	VALGA.	0
64	Nutritional Regulation of Mitochondrial Health and Its Implication in Treating Obesity and Diabetes: Lessons Learned From the Resveratrol–Sirt1 Axis. Food Chemistry, Function and Analysis, 2020, , 164-190.	0.1	0
65	The modulation of SIRT1 and SIRT3 by natural compounds as a therapeutic target in doxorubicinâ€induced cardiotoxicity: A review. Journal of Biochemical and Molecular Toxicology, 2022, 36, e22946.	1.4	20
67	Beneficial Oxidative Stress-Related trans-Resveratrol Effects in the Treatment and Prevention of Breast Cancer. Applied Sciences (Switzerland), 2021, 11, 11041.	1.3	12
68	Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling. Journal of Functional Foods, 2022, 89, 104918.	1.6	5
69	Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovascular Toxicology, 2022, 22, 292-310.	1.1	57
70	Therapeutic Targets for DOX-Induced Cardiomyopathy: Role of Apoptosis vs. Ferroptosis. International Journal of Molecular Sciences, 2022, 23, 1414.	1.8	47
71	Resveratrol drives cancer cell senescence <i>via</i> enhancing p38MAPK and DLC1 expressions. Food and Function, 2022, 13, 3283-3293.	2.1	8
72	Mitochondrial-Targeted Therapy for Doxorubicin-Induced Cardiotoxicity. International Journal of Molecular Sciences, 2022, 23, 1912.	1.8	45
73	Cardiomyocyte Atrophy, an Underestimated Contributor in Doxorubicin-Induced Cardiotoxicity. Frontiers in Cardiovascular Medicine, 2022, 9, 812578.	1.1	5

#	Article	IF	CITATIONS
74	Cardioprotective Strategies for Doxorubicin-induced Cardiotoxicity: Present and Future. Rational Pharmacotherapy in Cardiology, 2022, 18, 103-112.	0.3	14
75	In Vivo Murine Models of Cardiotoxicity Due to Anticancer Drugs: Challenges and Opportunities for Clinical Translation. Journal of Cardiovascular Translational Research, 2022, , 1.	1.1	2
76	Targeting NAD+: is it a common strategy to delay heart aging?. Cell Death Discovery, 2022, 8, 230.	2.0	7
77	Protective effects and mechanisms of lycorine against adriamycin-induced cardiotoxicity. Phytomedicine, 2022, 102, 154178.	2.3	3
78	Cariporide Attenuates Doxorubicin-Induced Cardiotoxicity in Rats by Inhibiting Oxidative Stress, Inflammation and Apoptosis Partly Through Regulation of Akt/GSK-3β and Sirt1 Signaling Pathway. Frontiers in Pharmacology, 0, 13, .	1.6	10
79	Activation of SIRT-1 Pathway by Nanoceria Sheds Light on Its Ameliorative Effect on Doxorubicin-Induced Cognitive Impairment (Chemobrain): Restraining Its Neuroinflammation, Synaptic Dysplasticity and Apoptosis. Pharmaceuticals, 2022, 15, 918.	1.7	3
80	Doxorubicin induced cardio toxicity through sirtuins mediated mitochondrial disruption. Chemico-Biological Interactions, 2022, 365, 110028.	1.7	6
81	MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Frontiers in Pharmacology, 0, 13, .	1.6	5
82	Gemcitabine: An Alternative Treatment for Oxaliplatin-Resistant Colorectal Cancer. Cancers, 2022, 14, 5894.	1.7	3
83	Doxorubicin induced ROS-dependent HIF1α activation mediates blockage of IGF1R survival signaling by IGFBP3 promotes cardiac apoptosis. Aging, 2023, 15, 164-178.	1.4	2
84	Protective effect of urotensin II receptor antagonist urantide and exercise training on doxorubicin-induced cardiotoxicity. Scientific Reports, 2023, 13, .	1.6	1
85	CSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis in doxorubicin-induced heart failure through inhibition of NADPH oxidase-derived oxidative stress. Toxicology and Applied Pharmacology, 2023, 463, 116412.	1.3	2
86	Empagliflozin attenuates doxorubicin-induced cardiotoxicity by activating AMPK/SIRT-1/PGC-1α-mediated mitochondrial biogenesis. Toxicology Research, 2023, 12, 216-223.	0.9	9
87	Potential Roles of Melatonin in Doxorubicin-Induced Cardiotoxicity: From Cellular Mechanisms to Clinical Application. Pharmaceutics, 2023, 15, 785.	2.0	4
95	A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. , 2024, 10, .		0