Picosecond energy transfer and multiexciton transfer of binary CdSe nanoplatelet solids

Nature Materials

14, 484-489

DOI: 10.1038/nmat4231

Citation Report

#	Article	IF	CITATIONS
3	Exciton size and quantum transport in nanoplatelets. Journal of Chemical Physics, 2015, 143, 224106.	1.2	5
4	Colloidal CdSe _{1–<i>x</i>} S _{<i>x</i>} Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence. Nano Letters, 2015, 15, 4611-4615.	4.5	114
5	Ultrasound accelerated sugar based gel for in situ construction of a Eu ³⁺ -based metallogel via energy transfer in a supramolecular scaffold. RSC Advances, 2015, 5, 107694-107699.	1.7	11
6	Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. Journal of the American Chemical Society, 2015, 137, 16008-16011.	6.6	1,004
7	Tuning the surface properties of alloyed CdS _x Se _{1â^'x} 2D nanosheets. RSC Advances, 2015, 5, 100834-100837.	1.7	9
8	Energy transfer is speeded up in 2D. Nature Materials, 2015, 14, 464-465.	13.3	21
9	Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications. Chemical Society Reviews, 2015, 44, 8714-8746.	18.7	166
10	Stacking and Colloidal Stability of CdSe Nanoplatelets. Langmuir, 2015, 31, 10532-10539.	1.6	56
11	Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets. ACS Nano, 2015, 9, 9475-9485.	7.3	240
12	Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Letters, 2015, 15, 6521-6527.	4.5	785
13	CdSe Nanoplatelets: Living Polymers. Angewandte Chemie, 2016, 128, 9517-9520.	1.6	7
14	Largeâ€6cale Synthesis of Highly Luminescent Perovskiteâ€Related CsPb ₂ Br ₅ Nanoplatelets and Their Fast Anion Exchange. Angewandte Chemie - International Edition, 2016, 55, 8328-8332.	7.2	243
15	CdSe Nanoplatelets: Living Polymers. Angewandte Chemie - International Edition, 2016, 55, 9371-9374.	7.2	26
16	Controlled Deposition and Spectroscopic Signatures of Ordered Multilayer Nanocrystal Assemblies for Optoelectronic Applications. Advanced Optical Materials, 2016, 4, 378-383.	3.6	5
17	Sub-Nanosecond Resonance Energy Transfer in the Near-Infrared within Self-Assembled Conjugates of PbS Quantum Dots and Cyanine Dye J-Aggregates. Journal of the American Chemical Society, 2016, 138, 9557-9564.	6.6	37
18	Largeâ€Scale Synthesis of Highly Luminescent Perovskiteâ€Related CsPb ₂ Br ₅ Nanoplatelets and Their Fast Anion Exchange. Angewandte Chemie, 2016, 128, 8468-8472.	1.6	33
19	Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum Dots to Wells for Sensitive Noncontact Temperature Probing. Advanced Functional Materials, 2016, 26, 2891-2899.	7.8	16
20	Shape control of zincblende CdSe nanoplatelets. Chemical Communications, 2016, 52, 11975-11978.	2.2	92

ATION REI

#	Article	IF	CITATIONS
21	Efficient Blue Electroluminescence Using Quantum-Confined Two-Dimensional Perovskites. ACS Nano, 2016, 10, 9720-9729.	7.3	299
22	Nearâ€Field Energy Transfer Using Nanoemitters For Optoelectronics. Advanced Functional Materials, 2016, 26, 8158-8177.	7.8	73
23	Photon Driven Transformation of Cesium Lead Halide Perovskites from Fewâ€Monolayer Nanoplatelets to Bulk Phase. Advanced Materials, 2016, 28, 10637-10643.	11.1	130
24	Electronic Processes within Quantum Dot-Molecule Complexes. Chemical Reviews, 2016, 116, 12865-12919.	23.0	276
25	Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews, 2016, 116, 11220-11289.	23.0	1,485
26	Gas-Responsive Photoluminescence of YVO4:Eu3+ Nanoparticles Dispersed in an Ultralight, Three-Dimensional Nanofiber Network. Chemistry of Materials, 2016, 28, 8466-8469.	3.2	28
27	Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets. ACS Nano, 2016, 10, 10936-10944.	7.3	130
28	Sub-Picosecond Auger-Mediated Hole-Trapping Dynamics in Colloidal CdSe/CdS Core/Shell Nanoplatelets. ACS Nano, 2016, 10, 9370-9378.	7.3	43
29	Tuning the Optical Properties of Perovskite Nanoplatelets through Composition and Thickness by Ligandâ€Assisted Exfoliation. Advanced Materials, 2016, 28, 9478-9485.	11.1	276
30	Face-Dependent Electron Transfer in CdSe Nanoplatelet–Methyl Viologen Complexes. Journal of Physical Chemistry C, 2016, 120, 17052-17059.	1.5	21
31	Threeâ€Dimensional Self Assembly of Semiconducting Colloidal Nanocrystals: From Fundamental Forces to Collective Optical Properties. ChemPhysChem, 2016, 17, 618-631.	1.0	25
32	Generalized colloidal synthesis of high-quality, two-dimensional cesium lead halide perovskite nanosheets and their applications in photodetectors. Nanoscale, 2016, 8, 13589-13596.	2.8	252
33	Temperature-Dependent Emission Kinetics of Colloidal Semiconductor Nanoplatelets Strongly Modified by Stacking. Journal of Physical Chemistry Letters, 2016, 7, 548-554.	2.1	28
34	Temporary Charge Carrier Separation Dominates the Photoluminescence Decay Dynamics of Colloidal CdSe Nanoplatelets. Nano Letters, 2016, 16, 2047-2053.	4.5	103
35	Tunable and Energetically Robust PbS Nanoplatelets for Optoelectronic Applications. Chemistry of Materials, 2016, 28, 1888-1896.	3.2	35
36	Colloidal Nanoplatelet/Conducting Polymer Hybrids: Excitonic and Material Properties. Journal of Physical Chemistry C, 2016, 120, 3573-3582.	1.5	11
37	Self-Assembly of CdSe Nanoplatelets into Stacks of Controlled Size Induced by Ligand Exchange. Journal of Physical Chemistry C, 2016, 120, 5764-5775.	1.5	64
38	Lipoprotein Nanoplatelets: Brightly Fluorescent, Zwitterionic Probes with Rapid Cellular Entry. Journal of the American Chemical Society, 2016, 138, 64-67.	6.6	17

#	Article	IF	CITATIONS
39	Materials aspects of semiconductor nanocrystals for optoelectronic applications. Materials Horizons, 2017, 4, 155-205.	6.4	78
40	Efficient Heterotransfer between Visible Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 4799-4805.	1.5	5
41	Cellular Applications of Semiconductor Quantum Dots at the U.S. Naval Research Laboratory: 2006–2016. Reviews in Fluorescence, 2017, , 203-242.	0.5	0
42	Distance-Dependence of Interparticle Energy Transfer in the Near-Infrared within Electrostatic Assemblies of PbS Quantum Dots. ACS Nano, 2017, 11, 5041-5050.	7.3	38
43	Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chemistry of Materials, 2017, 29, 5019-5030.	3.2	237
44	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters, 2017, 17, 3701-3709.	4.5	409
45	CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment. Nano Letters, 2017, 17, 3837-3843.	4.5	135
46	Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength. Chemistry of Materials, 2017, 29, 5671-5680.	3.2	96
47	An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nature Materials, 2017, 16, 743-748.	13.3	193
48	Solution-processed approach to highly luminescent trigonal Cs4PbBr6 nanodisks and their underlying shape evolution. Journal of Alloys and Compounds, 2017, 710, 244-252.	2.8	15
49	Percolation of optical excitation mediated by near-field interactions. Physica A: Statistical Mechanics and Its Applications, 2017, 471, 162-168.	1.2	1
50			
	A strain-induced exciton transition energy shift in CdSe nanoplatelets: the impact of an organic ligand shell. Nanoscale, 2017, 9, 18042-18053.	2.8	71
51	A strain-induced exciton transition energy shift in CdSe nanoplatelets: the impact of an organic ligand shell. Nanoscale, 2017, 9, 18042-18053. Single component Mn-doped perovskite-related CsPb ₂ Cl _x Br _{5â^'x} nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes. Nanoscale, 2017, 9, 16858-16863.	2.8 2.8	71 56
51 52	ligand shell. Nanoscale, 2017, 9, 18042-18053. Single component Mn-doped perovskite-related CsPb ₂ Cl _x Br _{5â^'x} nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion		
	 ligand shell. Nanoscale, 2017, 9, 18042-18053. Single component Mn-doped perovskite-related CsPb₂Cl_xBr_{5â[^]x} nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes. Nanoscale, 2017, 9, 16858-16863. Efficient Energy Transfer (EnT) in Pyrene- and Porphyrin-Based Mixed-Ligand Metal–Organic 	2.8	56
52	 ligand shell. Nanoscale, 2017, 9, 18042-18053. Single component Mn-doped perovskite-related CsPb₂Cl_xBr_{5â^'x}nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes. Nanoscale, 2017, 9, 16858-16863. Efficient Energy Transfer (EnT) in Pyrene- and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks. ACS Applied Materials & amp; Interfaces, 2017, 9, 38670-38677. Control of Multiple Exciton Generation and Electron–Phonon Coupling by Interior Nanospace in Hyperstructured Quantum Dot Superlattice. ACS Applied Materials & amp; Interfaces, 2017, 9, 	2.8 4.0	56 63
52 53	 ligand shell. Nanoscale, 2017, 9, 18042-18053. Single component Mn-doped perovskite-related CsPb₂Cl_xBr_{5â[*]x} nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes. Nanoscale, 2017, 9, 16858-16863. Efficient Energy Transfer (EnT) in Pyrene- and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks. ACS Applied Materials & amp; Interfaces, 2017, 9, 38670-38677. Control of Multiple Exciton Generation and Electron–Phonon Coupling by Interior Nanospace in Hyperstructured Quantum Dot Superlattice. ACS Applied Materials & amp; Interfaces, 2017, 9, 32080-32088. Ligand-induced twisting of nanoplatelets and their self-assembly into chiral ribbons. Science 	2.8 4.0 4.0	56 63 5

#	Article	IF	CITATIONS
58	Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets. ACS Nano, 2017, 11, 9119-9127.	7.3	66
59	Biexciton and trion energy transfer from CdSe/CdS giant nanocrystals to Si substrates. Nanoscale, 2017, 9, 19398-19407.	2.8	2
60	Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides. Nano Letters, 2017, 17, 7761-7766.	4.5	46
61	Impact of Element Doping on Photoexcited Electron Dynamics in CdS Nanocrystals. Journal of Physical Chemistry Letters, 2017, 8, 5680-5686.	2.1	20
62	Self-Assembly of Nanoparticles. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 1-56.	0.1	1
63	Simple correlated wave-function for excitons in 0D, quasi-1D and quasi-2D quantum dots. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	14
64	CSSTag: Optical Nanoscale Radar and Particle Tracking for In-Body and Microfluidic Systems With Vibrating Graphene and Resonance Energy Transfer. IEEE Transactions on Nanobioscience, 2017, 16, 905-916.	2.2	8
65	Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells. Science Advances, 2017, 3, eaaq0208.	4.7	65
66	Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures. Materials, 2017, 10, 1095.	1.3	24
67	Defect Variants Based on the 2D Hybrid Organic–Inorganic Low-Dimensional Semiconductor (4-Fluoro-phenethylamine- <i>H</i>) ₂ PbBr ₄ for Fabrication of Single-Layer Deep Blue LEDs. ACS Applied Nano Materials, 2018, 1, 2129-2142.	2.4	7
68	Firefly-like Water Splitting Cells Based on FRET Phenomena with Ultrahigh Performance over 12%. ACS Applied Materials & Interfaces, 2018, 10, 5007-5013.	4.0	15
69	Carrier Dynamics, Optical Gain, and Lasing with Colloidal Quantum Wells. Journal of Physical Chemistry C, 2018, 122, 10659-10674.	1.5	58
70	Engineering the Exciton Dissociation in Quantumâ€Confined 2D CsPbBr ₃ Nanosheet Films. Advanced Functional Materials, 2018, 28, 1705908.	7.8	98
71	Highly mobile charge-transfer excitons in two-dimensional WS ₂ /tetracene heterostructures. Science Advances, 2018, 4, eaao3104.	4.7	132
72	Efficient Solution-Processed Nanoplatelet-Based Light-Emitting Diodes with High Operational Stability in Air. Nano Letters, 2018, 18, 3441-3448.	4.5	88
73	Nanocrystal light-emitting diodes based on type II nanoplatelets. Nano Energy, 2018, 47, 115-122.	8.2	62
74	Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1619-1630.	1.4	4
75	Addressing the exciton fine structure in colloidal nanocrystals: the case of CdSe nanoplatelets. Nanoscale, 2018, 10, 646-656.	2.8	89

#	Article	IF	CITATIONS
76	Electron and Hole <i>g</i> -Factors and Spin Dynamics of Negatively Charged Excitons in CdSe/CdS Colloidal Nanoplatelets with Thick Shells. Nano Letters, 2018, 18, 373-380.	4.5	50
77	Identifying reactive organo-selenium precursors in the synthesis of CdSe nanoplatelets. Chemical Communications, 2018, 54, 11789-11792.	2.2	15
78	Colloidal synthesis of lead-free all-inorganic cesium bismuth bromide perovskite nanoplatelets. CrystEngComm, 2018, 20, 7473-7478.	1.3	44
79	Electronic transport in CdSe nanoplatelet based polymer fibres. Journal of Materials Chemistry C, 2018, 6, 10916-10923.	2.7	11
80	Semiconductor Nanoplatelet Excimers. Nano Letters, 2018, 18, 6948-6953.	4.5	46
81	Direct Synthesis of Six-Monolayer (1.9 nm) Thick Zinc-Blende CdSe Nanoplatelets Emitting at 585 nm. Chemistry of Materials, 2018, 30, 6957-6960.	3.2	77
82	Distinct Excitonic Circular Dichroism between Wurtzite and Zincblende CdSe Nanoplatelets. Nano Letters, 2018, 18, 6665-6671.	4.5	68
83	Chloride-Induced Thickness Control in CdSe Nanoplatelets. Nano Letters, 2018, 18, 6248-6254.	4.5	135
84	Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS ₂ . ACS Nano, 2018, 12, 8547-8554.	7.3	34
85	Material Dimensionality Effects on Electron Transfer Rates Between CsPbBr ₃ and CdSe Nanoparticles. Nano Letters, 2018, 18, 4771-4776.	4.5	49
86	Anisotropic Photoluminescence from Isotropic Optical Transition Dipoles in Semiconductor Nanoplatelets. Nano Letters, 2018, 18, 4647-4652.	4.5	38
87	Resonance Energy Transfer Mediated by Metal–Dielectric Composite Nanostructures. Journal of Physical Chemistry C, 2018, 122, 18256-18265.	1.5	13
88	Emergence of Nanoplatelet Light-Emitting Diodes. Materials, 2018, 11, 1376.	1.3	37
89	Insights into the Formation Mechanism of CdSe Nanoplatelets Using in Situ X-ray Scattering. Nano Letters, 2019, 19, 6466-6474.	4.5	26
90	Lightâ€Emitting Diodes with Cuâ€Doped Colloidal Quantum Wells: From Ultrapure Green, Tunable Dualâ€Emission to White Light. Small, 2019, 15, 1901983.	5.2	45
91	Exciton-Driven Chemical Sensors Based on Excitation-Dependent Photoluminescent Two-Dimensional SnS. ACS Applied Materials & Interfaces, 2019, 11, 42462-42468.	4.0	42
92	On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection. Npj 2D Materials and Applications, 2019, 3, .	3.9	53
93	<p>Impact Of Underlying Pulmonary Diseases On Treatment Outcomes In Early-Stage Non-Small Cell Lung Cancer Treated With Definitive Radiotherapy</p> . International Journal of COPD, 2019, Volume 14, 2273-2281.	0.9	14

#	Article	IF	CITATIONS
94	Aqueous Carbon Quantum Dot-Embedded PC60-PC ₆₁ BM Nanospheres for Ecological Fluorescent Printing: Contrasting Fluorescence Resonance Energy-Transfer Signals between Watermelon-like and Random Morphologies. Journal of Physical Chemistry Letters, 2019, 10, 6525-6535.	2.1	17
95	Mutual Energy Transfer in a Binary Colloidal Quantum Well Complex. Journal of Physical Chemistry Letters, 2019, 10, 5193-5199.	2.1	13
96	Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nature Energy, 2019, 4, 197-205.	19.8	132
97	Low-dimensional perovskite nanoplatelet synthesis using <i>in situ</i> photophysical monitoring to establish controlled growth. Nanoscale, 2019, 11, 17262-17269.	2.8	18
98	Core–Shell Cadmium Telluride Quantum Platelets with Absorptions Spanning the Visible Spectrum. ACS Nano, 2019, 13, 6982-6991.	7.3	18
99	Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor. Nano Letters, 2019, 19, 4297-4305.	4.5	53
100	Why Do Colloidal Wurtzite Semiconductor Nanoplatelets Have an Atomically Uniform Thickness of Eight Monolayers?. Journal of Physical Chemistry Letters, 2019, 10, 3465-3471.	2.1	17
101	Pushing the Efficiency Envelope for Semiconductor Nanocrystal-Based Electroluminescence Devices Using Anisotropic Nanocrystals. Chemistry of Materials, 2019, 31, 3066-3082.	3.2	51
102	Reducing the Optical Gain Threshold in Two-Dimensional CdSe Nanoplatelets by the Giant Oscillator Strength Transition Effect. Journal of Physical Chemistry Letters, 2019, 10, 1624-1632.	2.1	38
103	Twoâ€Photon Photoemission Spectroscopy for Studying Energetics and Electron Dynamics at Semiconductor Interfaces. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800738.	0.8	5
104	Controlled synthesis and photostability of blue emitting Cs ₃ Bi ₂ Br ₉ perovskite nanocrystals by employing weak polar solvents at room temperature. Journal of Materials Chemistry C, 2019, 7, 3688-3695.	2.7	50
105	Nonradiative Energy Transfer between Doped and Undoped Flat Semiconductor Nanocrystals of Colloidal Quasi-2D Nanoplatelets. Journal of Physical Chemistry C, 2019, 123, 1470-1476.	1.5	7
106	Resonant Energy Transfer can Trigger Multiexciton Recombination in Dense Quantum Dot Ensembles. Small, 2019, 15, 1803798.	5.2	7
107	Correlated Roles of Temperature and Dimensionality for Multiple Exciton Generation and Electronic Structures in Quantum Dot Superlattices. Journal of Physical Chemistry C, 2019, 123, 2549-2556.	1.5	6
108	Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 419-426.	2.1	74
109	Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters, 2019, 19, 108-115.	4.5	23
110	Mixing Entropy-Induced Layering Polydispersity Enabling Efficient and Stable Perovskite Nanocrystal Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 118-125.	8.8	24
111	Controlling the Lateral Size and Excitonic Properties of Colloidal PbS Nanosheets. ChemNanoMat, 2020, 6, 816-820.	1.5	3

#	Article	IF	CITATIONS
112	Record High External Quantum Efficiency of 19.2% Achieved in Lightâ€Emitting Diodes of Colloidal Quantum Wells Enabled by Hotâ€Injection Shell Growth. Advanced Materials, 2020, 32, e1905824.	11.1	95
113	How Exciton and Single Carriers Block the Excitonic Transition in Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Nano Letters, 2020, 20, 6162-6169.	4.5	6
114	Progress and Prospects of Solution-Processed Two-Dimensional Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 21895-21908.	1.5	32
115	Fourier-Imaging of Single Self-Assembled CdSe Nanoplatelet Chains and Clusters Reveals out-of-Plane Dipole Contribution. ACS Photonics, 2020, 7, 2825-2833.	3.2	8
116	A time-domain view of charge carriers in semiconductor nanocrystal solids. Chemical Science, 2020, 11, 5157-5167.	3.7	8
117	Charge Separation Dynamics in CdSe/CdS Core/Shell Nanoplatelets Addressed by Coherent Electron Spin Precession. ACS Nano, 2020, 14, 7237-7244.	7.3	19
118	Roadmap toward the 10 ps time-of-flight PET challenge. Physics in Medicine and Biology, 2020, 65, 21RM01.	1.6	136
119	Faceted Colloidal Au/Fe ₃ O ₄ Binary Supracrystals Dictated by Intrinsic Lattice Structures and Their Collective Optical Properties. Journal of Physical Chemistry C, 2020, 124, 14775-14786.	1.5	14
120	Kinetic Control over Self-Assembly of Semiconductor Nanoplatelets. Nano Letters, 2020, 20, 4102-4110.	4.5	57
121	All-optical control of exciton flow in a colloidal quantum well complex. Light: Science and Applications, 2020, 9, 27.	7.7	21
122	Ketones as Molecular Co atalysts for Boosting Excitonâ€Based Photocatalytic Molecular Oxygen Activation. Angewandte Chemie - International Edition, 2020, 59, 11093-11100.	7.2	43
123	Let There Be Order, in Films of Colloidal CdSe 2D Nanocrystals. Nano Letters, 2020, 20, 2941-2942.	4.5	1
124	Efficient Energy Funnelling by Engineering the Bandgap of a Perovskite: Förster Resonance Energy Transfer or Charge Transfer?. Journal of Physical Chemistry Letters, 2020, 11, 5963-5971.	2.1	14
125	Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nature Communications, 2020, 11, 3305.	5.8	39
126	Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226.	1.9	10
127	Trion Emission Dominates the Low-Temperature Photoluminescence of CdSe Nanoplatelets. Nano Letters, 2020, 20, 5814-5820.	4.5	27
128	TiO ₂ superstructures with oriented nanospaces: a strategy for efficient and selective photocatalysis. Nanoscale, 2020, 12, 6420-6428.	2.8	8
129	Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS–PIETA NMR Spectroscopy. Nano Letters, 2020, 20, 3003-3018.	4.5	24

#	Article	IF	CITATIONS
130	Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets. Nature Nanotechnology, 2020, 15, 277-282.	15.6	32
131	Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nature Communications, 2020, 11, 387.	5.8	29
132	Transition Dipole Moments of n = 1, 2, and 3 Perovskite Quantum Wells from the Optical Stark Effect and Many-Body Perturbation Theory. Journal of Physical Chemistry Letters, 2020, 11, 716-723.	2.1	24
133	Probing permanent dipoles in CdSe nanoplatelets with transient electric birefringence. Nanoscale, 2020, 12, 11040-11054.	2.8	7
134	Ketones as Molecular Coâ€catalysts for Boosting Excitonâ€Based Photocatalytic Molecular Oxygen Activation. Angewandte Chemie, 2020, 132, 11186-11193.	1.6	9
135	Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets. ACS Energy Letters, 2020, 5, 1380-1385.	8.8	48
136	Colloidal quantum wells for optoelectronic devices. Journal of Materials Chemistry C, 2020, 8, 10628-10640.	2.7	30
137	Hybrid Nanostructures of 2D CdSe Nanoplatelets for High-Performance Photodetector Using Charge Transfer Process. ACS Applied Nano Materials, 2020, 3, 4717-4727.	2.4	29
138	Optical properties and applications of twoâ€dimensional CdSe nanoplatelets. InformaÄnÃ-Materiály, 2020, 2, 905-927.	8.5	65
139	Tunable Metal Oxide Shell as a Spacer to Study Energy Transfer in Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 3430-3435.	2.1	13
140	Dielectric Confinement Enables Molecular Coupling in Stacked Colloidal Nanoplatelets. Journal of Physical Chemistry Letters, 2020, 11, 3294-3300.	2.1	15
141	Long Range Energy Transfer in Self-Assembled Stacks of Semiconducting Nanoplatelets. Nano Letters, 2020, 20, 3465-3470.	4.5	31
142	Heat-driven acoustic phonons in lamellar nanoplatelet assemblies. Nanoscale, 2020, 12, 9661-9668.	2.8	5
143	CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion. ACS Nano, 2020, 14, 4206-4215.	7.3	36
144	Design of novel conjugated systems bearing donor-acceptor groups (pyrene-bodipy): Optical, photophysical properties and energy transfer. Dyes and Pigments, 2021, 185, 108925.	2.0	12
145	Efficient interlayer exciton transport in two-dimensional metal-halide perovskites. Materials Horizons, 2021, 8, 639-644.	6.4	15
146	Photoluminescence Enhancement by Light Harvesting of Metal–Organic Frameworks Surrounding Semiconductor Quantum Dots. Chemistry of Materials, 2021, 33, 1607-1617.	3.2	24
147	Fabrication of complex hierarchical heterostructures with controlled luminescence via seeded self-assembly. Journal of Materials Chemistry C, 2021, 9, 12073-12078.	2.7	3

#	Article	IF	CITATIONS
148	The unconventional role of surface ligands in dictating the light harvesting properties of quantum dots. Journal of Materials Chemistry A, 2021, 9, 7422-7457.	5.2	18
149	Colloidal Metal Chalcogenide Quantum Wells for Laser Applications. Cell Reports Physical Science, 2021, 2, 100308.	2.8	13
150	Understanding Discrete Growth in Semiconductor Nanocrystals: Nanoplatelets and Magic-Sized Clusters. Accounts of Chemical Research, 2021, 54, 1545-1554.	7.6	42
151	Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length. Journal of the American Chemical Society, 2021, 143, 4244-4252.	6.6	54
152	Toward Engineering Intrinsic Line Widths and Line Broadening in Perovskite Nanoplatelets. ACS Nano, 2021, 15, 6499-6506.	7.3	17
153	Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nature Photonics, 2021, 15, 510-515.	15.6	50
154	Ion exchange for halide perovskite: From nanocrystal to bulk materials. Nano Select, 2021, 2, 2040-2060.	1.9	21
155	Manipulation of the Optical Properties of Colloidal 2D CdSe Nanoplatelets. Advanced Photonics Research, 2021, 2, 2100045.	1.7	10
156	Förster resonance energy transfer outpaces Auger recombination in CdTe/CdS quantum dots-rhodamine101 molecules system upon compression. Optics Express, 2021, 29, 27171.	1.7	10
157	Targeted transfer of self-assembled CdSe nanoplatelet film onto WS2 flakes to construct hybrid heterostructures. Journal of Semiconductors, 2021, 42, 082901.	2.0	3
158	Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine‣abeled Polyelectrolyte via Electrostatic Nanoassembling. Advanced Optical Materials, 2021, 9, 2100036.	3.6	7
159	Multiple exciton generation in isolated and interacting silicon nanocrystals. Nanoscale, 2021, 13, 12119-12142.	2.8	6
160	Perovskiteâ€Based Nanocrystals: Synthesis and Applications beyond Solar Cells. Small Methods, 2018, 2, 1700380.	4.6	140
161	Ligands as a universal molecular toolkit in synthesis and assembly of semiconductor nanocrystals. Chemical Science, 2020, 11, 2318-2329.	3.7	41
162	Charge and energy transfer in the context of colloidal nanocrystals. Chemical Physics Reviews, 2020, 1, 011305.	2.6	17
163	First-principles-derived effective mass approximation for the improved description of quantum nanostructures. JPhys Materials, 2020, 3, 034012.	1.8	9
164	Colloidal Two-Dimensional Metal Chalcogenides: Realization and Application of the Structural Anisotropy. Accounts of Chemical Research, 2021, 54, 3792-3803.	7.6	15
166	Nonradiative recombination channel of dark excitons in colloidal CdSe nanoplatelets. Journal of Physics: Conference Series, 2020, 1695, 012173.	0.3	0

#	Article	IF	CITATIONS
167	Temporally modulated energy shuffling in highly interconnected nanosystems. Nanophotonics, 2020, 10, 851-876. Resonance energy transfer from moirễ © transed excitons in complements.	2.9	5
168	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">Mo<mml:msub><mml:mi mathvariant="normal">Se<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mo>/</mml:mo><ml:mi mathvariant="normal">W<mml:msub><mml:mi< td=""><td>0.9</td><td>4</td></mml:mi<></mml:msub></ml:mi </mml:mi 	0.9	4
169	mathvariant="normal">Se <mml:mn>2</mml:mn> heterobilayers to Influence of the structural features of pyrene-dendronized bodipys on the optical and photophysical properties. MRS Advances, 0, , 1.	0.5	0
170	Past, present and future of indium phosphide quantum dots. Nano Research, 2022, 15, 4468-4489.	5.8	50
171	Curvature and self-assembly of semi-conducting nanoplatelets. Communications Chemistry, 2022, 5, .	2.0	29
172	Ultralowâ€Threshold and Highâ€Quality Whisperingâ€Galleryâ€Mode Lasing from Colloidal Core/Hybridâ€Shell Quantum Wells. Advanced Materials, 2022, 34, e2108884.	11.1	28
173	Surface Plasmon Resonance Properties of Silver Nanocrystal Superlattices Spaced by Polystyrene Ligands. Journal of Physical Chemistry C, 2022, 126, 4948-4958.	1.5	3
174	Electron–Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films. ACS Nano, 2022, 16, 6317-6324.	7.3	3
175	Monodisperse Nanocrystal Superparticles through a Source–Sink Emulsion System. Chemistry of Materials, 2022, 34, 2779-2789.	3.2	9
176	Lasing from Narrow Bandwidth Light-Emitting One-Dimensional Nanoporous Photonic Crystals. ACS Photonics, 2022, 9, 1226-1239.	3.2	5
177	Stacking-Dependent Electrical Transport in a Colloidal CdSe Nanoplatelet Thin-Film Transistor. Nano Letters, 2022, 22, 2780-2785.	4.5	7
178	Stokes-shift engineered CdSe/CdS/Cd1-xZnxSe1-ySy nanoplatelets with tunable emission wavelength. Thin Solid Films, 2022, 750, 139203.	0.8	2
179	Tailoring Transition Dipole Moment in Colloidal Nanocrystal Thin Film on Nanocomposite Materials. Advanced Optical Materials, 2022, 10, 2102050.	3.6	2
180	Modulating Emission Properties in a Host–Guest Colloidal Quantum Well Superlattice. Advanced Optical Materials, 2022, 10, 2101756.	3.6	4
181	Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes. Cell Reports Physical Science, 2022, 3, 100860.	2.8	10
182	Stimulating and Manipulating Robust Circularly Polarized Photoluminescence in Achiral Hybrid Perovskites. Nano Letters, 2022, 22, 3961-3968.	4.5	13
183	Sensitivity improvement of hybrid active layer containing 2D nanoplatelets for indirect x-ray detector. Nanotechnology, 2022, 33, 405701.	1.3	0
184	High-Performance Deep Red Colloidal Quantum Well Light-Emitting Diodes Enabled by the Understanding of Charge Dynamics. ACS Nano, 2022, 16, 10840-10851.	7.3	21

#	Article	IF	CITATIONS
185	Dielectrically Confined Stable Excitons in Few-Atom-Thick PbS Nanosheets. Journal of Physical Chemistry Letters, 2022, 13, 7756-7761.	2.1	2
186	A Sensitizer of Purpose: Generating Triplet Excitons with Semiconductor Nanocrystals. ACS Materials Au, 2022, 2, 641-654.	2.6	12
187	Energy Transfer in Stability-Optimized Perovskite Nanocrystals. Nano Letters, 2022, 22, 6709-6715.	4.5	6
188	Efficient generation of emissive many-body correlations in copper-doped colloidal quantum wells. Cell Reports Physical Science, 2022, 3, 101049.	2.8	3
189	Assembly, Properties, and Application of Ordered Group II–VI and IV–VI Colloidal Semiconductor Nanoparticle Films. Advanced Materials Interfaces, 2022, 9, 2201039.	1.9	1
190	Layer-by-Layer Deposition of 2D CdSe/CdS Nanoplatelets and Polymers for Photoluminescent Composite Materials. Langmuir, 2022, 38, 11149-11159.	1.6	5
191	Liquid Interface Self-Assembly with Colloidal Quantum Wells. SpringerBriefs in Applied Sciences and Technology, 2022, , 29-43.	0.2	0
193	Enhance luminescence or change morphology: effect of the doping method on Cu ²⁺ -doped CsPbBr ₃ perovskite nanocrystals. CrystEngComm, 2022, 24, 7962-7970.	1.3	2
194	Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement. Nature Communications, 2022, 13, .	5.8	7
195	Optical and Scintillation Properties of Record-Efficiency CdTe Nanoplatelets toward Radiation Detection Applications. Nano Letters, 2022, 22, 8900-8907.	4.5	9
196	Atomically flat semiconductor nanoplatelets for light-emitting applications. Chemical Society Reviews, 2023, 52, 318-360.	18.7	16
197	Mechanistic insight into CdSe nanoplatelet-sensitized upconversion: size and stacking induced effects. Chemical Communications, 0, , .	2.2	0
198	FRET-Mediated Collective Blinking of Self-Assembled Stacks of CdSe Semiconducting Nanoplatelets. ACS Photonics, 2023, 10, 421-429.	3.2	2
199	Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chemical Reviews, 2023, 123, 3329-3442.	23.0	23
200	2D II–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chemical Reviews, 2023, 123, 3543-3624.	23.0	48
201	Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets. Nano Letters, 2023, 23, 2148-2157.	4.5	8
202	CdS/CdSe/CdS Spherical Quantum Wells with Near-Unity Biexciton Quantum Yield for Light-Emitting-Device Applications. , 2023, 5, 1411-1419.		3