NADPH oxidase 5 and renal disease

Current Opinion in Nephrology and Hypertension 24, 81-87 DOI: 10.1097/mnh.00000000000081

Citation Report

#	Article	IF	CITATIONS
1	Foam cells and the pathogenesis of kidney disease. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	2.0	23
2	Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones. Free Radical Biology and Medicine, 2015, 89, 793-805.	2.9	39
3	Tirapazamine has no Effect on Hepatotoxicity of Cisplatin and 5â€fluorouracil but Interacts with Doxorubicin Leading to Side Changes in Redox Equilibrium. Basic and Clinical Pharmacology and Toxicology, 2016, 119, 330-340.	2.5	4
4	Expression dynamics of NADPH oxidases during early zebrafish development. Journal of Comparative Neurology, 2016, 524, 2130-2141.	1.6	30
5	Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opinion on Investigational Drugs, 2016, 25, 1045-1058.	4.1	68
6	Oxidant Mechanisms in Renal Injury and Disease. Antioxidants and Redox Signaling, 2016, 25, 119-146.	5.4	468
7	APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Laboratory Investigation, 2017, 97, 419-431.	3.7	68
8	Diabetic nephropathy: Is there a role for oxidative stress?. Free Radical Biology and Medicine, 2018, 116, 50-63.	2.9	152
9	Nox4 in renal diseases: An update. Free Radical Biology and Medicine, 2018, 124, 466-472.	2.9	84
10	Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Frontiers in Physiology, 2018, 9, 105.	2.8	102
11	NOX5: Molecular biology and pathophysiology. Experimental Physiology, 2019, 104, 605-616.	2.0	72
12	Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. Pharmacogenomics Journal, 2019, 19, 315-336.	2.0	17
13	Vascular Biology of Superoxide-Generating NADPH Oxidase 5—Implications in Hypertension and Cardiovascular Disease. Antioxidants and Redox Signaling, 2019, 30, 1027-1040.	5.4	63
14	Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production. Free Radical Research, 2020, 54, 695-721.	3.3	10
15	Xuesaitong Protects Podocytes from Apoptosis in Diabetic Rats through Modulating PTEN-PDK1-Akt-mTOR Pathway. Journal of Diabetes Research, 2020, 2020, 1-12.	2.3	11
16	Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environmental Science and Pollution Research, 2021, 28, 34121-34153.	5.3	27
17	Inhibition of NADPH Oxidase 5 (NOX5) Suppresses High Glucose-Induced Oxidative Stress, Inflammation and Extracellular Matrix Accumulation in Human Glomerular Mesangial Cells. Medical Science Monitor, 2020, 26, e919399.	1.1	6
18	NOX5-induced uncoupling of endothelial NO synthase is a causal mechanism and theragnostic target of an age-related hypertension endotype. PLoS Biology, 2020, 18, e3000885.	5.6	23

CITATION REPORT

#	Article	IF	CITATIONS
19	Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Current Pharmaceutical Design, 2015, 21, 6032-6035.	1.9	44
21	Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells, 2022, 11, 552.	4.1	183
22	Hydrogen Sulfide and the Kidney: Physiological Roles, Contribution to Pathophysiology, and Therapeutic Potential. Antioxidants and Redox Signaling, 2022, 36, 220-243.	5.4	16
23	Nephrotoxicity of gasoline fumes in male albino rat: a mechanism-based approach study. International Journal of Transgender Health, 2022, 15, 1075-1085.	2.3	0