The transcription factor IRF1 and guanylate-binding proinflammasome by Francisella infection

Nature Immunology 16, 467-475 DOI: 10.1038/ni.3118

Citation Report

#	Article	IF	CITATIONS
3	Interferon-Î ³ Inhibits Ebola Virus Infection. PLoS Pathogens, 2015, 11, e1005263.	2.1	71
4	Ubiquitination of pathogen-containing vacuoles promotes host defense to <i>Chlamydia trachomatis</i> and <i>Toxoplasma gondii</i> . Communicative and Integrative Biology, 2015, 8, e1115163.	0.6	17
5	Critical Role for the DNA Sensor AIM2 in Stem Cell Proliferation and Cancer. Cell, 2015, 162, 45-58.	13.5	266
6	Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine, 2015, 21, 677-687.	15.2	2,476
7	GBPs take AIM at Francisella. Nature Immunology, 2015, 16, 443-444.	7.0	6
8	Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5628-37.	3.3	147
9	Guanylate Binding Proteins Enable Rapid Activation of Canonical and Noncanonical Inflammasomes in Chlamydia-Infected Macrophages. Infection and Immunity, 2015, 83, 4740-4749.	1.0	126
10	Fish IRF3 up-regulates the transcriptional level of IRF1, IRF2, IRF3 and IRF7 in CIK cells. Fish and Shellfish Immunology, 2015, 47, 978-985.	1.6	13
11	The Duality of AIM2 Inflammasome: A Focus on its Role in Autoimmunity and Skin Diseases. American Journal of Pharmacology and Toxicology, 2016, 11, 8-19.	0.7	0
12	The Listeria monocytogenes PASTA Kinase PrkA and Its Substrate YvcK Are Required for Cell Wall Homeostasis, Metabolism, and Virulence. PLoS Pathogens, 2016, 12, e1006001.	2.1	60
13	Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19. MBio, 2016, 7, e02243.	1.8	6
14	NLRC3 is an inhibitory sensor of PI3K–mTOR pathways in cancer. Nature, 2016, 540, 583-587.	13.7	160
15	Evolution of Cell-Autonomous Effector Mechanisms in Macrophages versus Non-Immune Cells. Microbiology Spectrum, 2016, 4, .	1.2	21
16	Interferons and inflammasomes: Cooperation and counterregulation in disease. Journal of Allergy and Clinical Immunology, 2016, 138, 37-46.	1.5	68
17	Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease. Journal of Molecular Biology, 2016, 428, 3495-3513.	2.0	183
18	Inflammasomes as polyvalent cell death platforms. Cellular and Molecular Life Sciences, 2016, 73, 2335-2347.	2.4	52
19	DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota. Pathogens and Disease, 2016, 74, ftw028.	0.8	37
20	Interferon-induced guanylate-binding proteins in inflammasome activation and host defense. Nature Immunology, 2016, 17, 481-489.	7.0	125

ATION REDO

		CITATION REPORT		
#	Article		IF	CITATIONS
21	Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell, 2016, 1	65, 792-800.	13.5	761
22	The role of cGAS in innate immunity and beyond. Journal of Molecular Medicine, 2016, 9	94, 1085-1093.	1.7	46
23	For Better or Worse: Cytosolic DNA Sensing during Intracellular Bacterial Infection Indu Innate Immune Responses. Journal of Molecular Biology, 2016, 428, 3372-3386.	ces Potent	2.0	18
24	Integrating Inflammasome Signaling in Sexually Transmitted Infections. Trends in Immu 703-714.	nology, 2016, 37,	2.9	20
25	IRGB10 Liberates Bacterial Ligands for Sensing by the AIM2 and Caspase-11-NLRP3 Infla 2016, 167, 382-396.e17.	ammasomes. Cell,	13.5	237
26	Sensing the enemy, containing the threat: cell-autonomous immunity to <i>Chlamydia t FEMS Microbiology Reviews, 2016, 40, 875-893.</i>	irachomatis.	3.9	54
27	AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflar innate immunity. European Journal of Immunology, 2016, 46, 269-280.	nmation, and	1.6	253
28	Human GBP1 does not localize to pathogen vacuoles but restricts <i>Toxoplasma gondi Microbiology, 2016, 18, 1056-1064.</i>	i. Cellular	1.1	95
29	Inflammasome Signaling and Bacterial Infections. Current Topics in Microbiology and In 2016, , .	nmunology,	0.7	6
30	Interferon-inducible GTPases in cell autonomous and innate immunity. Cellular Microbic 168-180.	ology, 2016, 18,	1.1	99
31	Francisella Inflammasomes: Integrated Responses to a CytosolicÂStealthÂBacterium. Ci Microbiology and Immunology, 2016, 397, 229-256.	urrent Topics in	0.7	16
32	Cathepsin B modulates lysosomal biogenesis and host defense against <i>Francisella no infection. Journal of Experimental Medicine, 2016, 213, 2081-2097.</i>	ovicida	4.2	72
33	Innate recognition of microbial-derived signals in immunity and inflammation. Science C Sciences, 2016, 59, 1210-1217.	China Life	2.3	50
34	Post-Translational Modification Control of Innate Immunity. Immunity, 2016, 45, 15-30		6.6	456
35	Cellular and molecular regulation of innate inflammatory responses. Cellular and Molec Immunology, 2016, 13, 711-721.	ular	4.8	134
36	Advances in innate immune signaling: new activators and regulators. National Science F 160-162.	Review, 2016, 3,	4.6	4
37	The cell biology of inflammasomes: Mechanisms of inflammasome activation and regula of Cell Biology, 2016, 213, 617-629.	ation. Journal	2.3	536
38	Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Imr 16, 407-420.	nunology, 2016,	10.6	2,353

#	Article	IF	CITATIONS
39	Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nature Reviews Immunology, 2016, 16, 7-21.	10.6	521
40	AIM2 contributes to the maintenance of intestinal integrity via Akt and protects against Salmonella mucosal infection. Mucosal Immunology, 2016, 9, 1330-1339.	2.7	46
41	NLR-regulated pathways in cancer: opportunities and obstacles for therapeutic interventions. Cellular and Molecular Life Sciences, 2016, 73, 1741-1764.	2.4	27
42	Reciprocal regulation of the II9 locus by counteracting activities of transcription factors IRF1 and IRF4. Nature Communications, 2017, 8, 15366.	5.8	30
43	Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in inflectious diseases. Immunological Reviews, 2017, 277, 61-75.	2.8	1,104
44	Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nature Communications, 2017, 8, 15853.	5.8	75
45	Mechanisms governing inflammasome activation, assembly and pyroptosis induction. International Immunology, 2017, 29, 201-210.	1.8	174
46	Differential roles of caspase-1 and caspase-11 in infection and inflammation. Scientific Reports, 2017, 7, 45126.	1.6	109
47	Bacteria disarm host-defence proteins. Nature, 2017, 551, 303-304.	13.7	5
48	Inflammasome Activation by Bacterial Outer Membrane Vesicles Requires Guanylate Binding Proteins. MBio, 2017, 8, .	1.8	122
49	Mechanisms and functions of guanylate-binding proteins and related interferon-inducible GTPases: Roles in intracellular lysis of pathogens. Cellular Microbiology, 2017, 19, e12791.	1.1	47
50	Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature, 2017, 551, 378-383.	13.7	158
51	Hematopoietic MyD88 and IL-18 are essential for IFN-γ–dependent restriction of type A <i>Francisella tularensis</i> infection. Journal of Leukocyte Biology, 2017, 102, 1441-1450.	1.5	7
52	Priming and Activation of Inflammasome by Canarypox Virus Vector ALVAC via the cGAS/IFI16–STING–Type I IFN Pathway and AIM2 Sensor. Journal of Immunology, 2017, 199, 3293-3305.	0.4	33
53	The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. Cell, 2017, 171, 1110-1124.e18.	13.5	431
54	Molecular mechanisms of inflammasome signaling. Journal of Leukocyte Biology, 2018, 103, 233-257.	1.5	146
55	Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. Advances in Experimental Medicine and Biology, 2017, 1024, 1-35.	0.8	15
56	Caspaseâ€11 nonâ€canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophageâ€mediated inflammatory responses. Immunology, 2017, 152, 207-217.	2.0	183

#	Article	IF	CITATIONS
57	Innate Immunity to Intracellular Pathogens: Balancing Microbial Elimination and Inflammation. Cell Host and Microbe, 2017, 22, 166-175.	5.1	100
58	Guanylate Binding Proteins Regulate Inflammasome Activation in Response to Hyperinjected Yersinia Translocon Components. Infection and Immunity, 2017, 85, .	1.0	35
59	Detection of Cytosolic <i>Shigella flexneri</i> via a C-Terminal Triple-Arginine Motif of GBP1 Inhibits Actin-Based Motility. MBio, 2017, 8, .	1.8	103
60	Review Article. Absent in melanoma 2 (AIM2) in the intestine: diverging actions with converging consequences. Inflammasome, 2017, 3, 1-9.	0.6	2
61	Inflammasome activation and assembly at a glance. Journal of Cell Science, 2017, 130, 3955-3963.	1.2	331
62	Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death. Current Opinion in Microbiology, 2017, 40, 72-80.	2.3	91
63	Regulation of the gut microbiome by inflammasomes. Free Radical Biology and Medicine, 2017, 105, 35-40.	1.3	25
64	Interferon-Î ³ in Salmonella pathogenesis: New tricks for an old dog. Cytokine, 2017, 98, 27-32.	1.4	26
65	Bacterial secretion systems and regulation of inflammasome activation. Journal of Leukocyte Biology, 2017, 101, 165-181.	1.5	22
66	Microbiota as a mediator of cancer progression and therapy. Translational Research, 2017, 179, 139-154.	2.2	57
67	Interferon-inducible guanylate-binding proteins at the interface of cell-autonomous immunity and inflammasome activation. Journal of Leukocyte Biology, 2017, 101, 143-150.	1.5	90
68	The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection. Seminars in Immunopathology, 2017, 39, 215-223.	2.8	54
69	Comprehensive Proteomic Characterization of Ontogenic Changes in Hematopoietic Stem and Progenitor Cells. Cell Reports, 2017, 21, 3285-3297.	2.9	25
70	Evolution of Cell-Autonomous Effector Mechanisms in Macrophages versus Non-Immune Cells. , 2017, , 615-635.		0
71	Innate Immune Recognition: Implications for the Interaction of Francisella tularensis with the Host Immune System. Frontiers in Cellular and Infection Microbiology, 2017, 7, 446.	1.8	13
72	The Role of Interferons in Inflammation and Inflammasome Activation. Frontiers in Immunology, 2017, 8, 873.	2.2	178
73	Getting "Inside―Type I IFNs: Type I IFNs in Intracellular Bacterial Infections. Journal of Immunology Research, 2017, 2017, 1-17.	0.9	27
74	Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection. PLoS Pathogens, 2017, 13, e1006383.	2.1	65

#	Article	IF	CITATIONS
75	IFN-Î ³ extends the immune functions of Guanylate Binding Proteins to inflammasome-independent antibacterial activities during Francisella novicida infection. PLoS Pathogens, 2017, 13, e1006630.	2.1	41
76	<scp>LPS</scp> targets host guanylateâ€binding proteins to the bacterial outer membrane for nonâ€canonical inflammasome activation. EMBO Journal, 2018, 37, .	3.5	184
77	Deletion of Inflammasome Components Is Not Sufficient To Prevent Fatal Inflammation in Models of Familial Hemophagocytic Lymphohistiocytosis. Journal of Immunology, 2018, 200, 3769-3776.	0.4	5
78	ASK Family Kinases Are Required for Optimal NLRP3 Inflammasome Priming. American Journal of Pathology, 2018, 188, 1021-1030.	1.9	17
79	Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nature Communications, 2018, 9, 242.	5.8	144
80	Host immune responses to <i>Toxoplasma gondii</i> . International Immunology, 2018, 30, 113-119.	1.8	158
81	Deletion of the Major Facilitator Superfamily Transporter fptB Alters Host Cell Interactions and Attenuates Virulence of Type A Francisella tularensis. Infection and Immunity, 2018, 86, .	1.0	6
82	Type I IFN operates pyroptosis and necroptosis during multidrug-resistant A. baumannii infection. Cell Death and Differentiation, 2018, 25, 1304-1318.	5.0	60
83	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
84	Function and regulation of <scp>IL</scp> â€lα in inflammatory diseases and cancer. Immunological Reviews, 2018, 281, 124-137.	2.8	201
85	The <scp>AIM</scp> 2 inflammasome: Sensor of pathogens and cellular perturbations. Immunological Reviews, 2018, 281, 99-114.	2.8	254
86	For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. Journal of Leukocyte Biology, 2018, 103, 35-51.	1.5	63
87	IRF1 Is a Transcriptional Regulator of ZBP1 Promoting NLRP3 Inflammasome Activation and Cell Death during Influenza Virus Infection. Journal of Immunology, 2018, 200, 1489-1495.	0.4	78
88	IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation. Cell, 2018, 173, 920-933.e13.	13.5	142
89	Detrimental Type I Interferon Signaling Dominates Protective AIM2 Inflammasome Responses during Francisella novicida Infection. Cell Reports, 2018, 22, 3168-3174.	2.9	32
90	Interferon regulatory factor 1–Rab27a regulated extracellular vesicles promote liver ischemia/reperfusion injury. Hepatology, 2018, 67, 1056-1070.	3.6	46
91	Protection of macrophages from intracellular pathogens by miRâ€182â€5p mimic—a gene expression metaâ€analysis approach. FEBS Journal, 2018, 285, 244-260.	2.2	8
92	New concepts in Chlamydia induced inflammasome responses. Microbes and Infection, 2018, 20, 424-431.	1.0	5

~		~	
(11		REPO	דסר
\sim	IAL	IL PU	ואכ

#	ARTICLE	IF	CITATIONS
93	<i>Brucella abortus</i> Triggers a cGAS-Independent STING Pathway To Induce Host Protection That Involves Guanylate-Binding Proteins and Inflammasome Activation. Journal of Immunology, 2018, 200, 607-622.	0.4	84
94	Recent advances in inflammasome biology. Current Opinion in Immunology, 2018, 50, 32-38.	2.4	270
95	Sensing Self and Non-Self DNA by Innate Immune Receptors and Their Signaling Pathways. Critical Reviews in Immunology, 2018, 38, 279-301.	1.0	11
96	Gasdermin D Promotes AIM2 Inflammasome Activation and Is Required for Host Protection against <i>Francisella novicida</i> . Journal of Immunology, 2018, 201, 3662-3668.	0.4	48
97	Mitochondrial DNA synthesis fuels NLRP3 inflammasome. Cell Research, 2018, 28, 1046-1047.	5.7	20
98	Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	124
99	Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annual Review of Microbiology, 2018, 72, 447-478.	2.9	336
100	Constitutive Interferon Maintains GBP Expression Required for Release of Bacterial Components Upstream of Pyroptosis and Anti-DNA Responses. Cell Reports, 2018, 24, 155-168.e5.	2.9	77
101	Guanylate binding proteins facilitate caspase-11-dependent pyroptosis in response to type 3 secretion system-negative Pseudomonas aeruginosa. Cell Death Discovery, 2018, 4, 3.	2.0	51
102	Vaccine-Mediated Mechanisms Controlling Replication of Francisella tularensis in Human Peripheral Blood Mononuclear Cells Using a Co-culture System. Frontiers in Cellular and Infection Microbiology, 2018, 8, 27.	1.8	16
103	The Francisella Type VI Secretion System. Frontiers in Cellular and Infection Microbiology, 2018, 8, 121.	1.8	45
104	Analysis of Mouse Brain Transcriptome After Experimental Duvenhage Virus Infection Shows Activation of Innate Immune Response and Pyroptotic Cell Death Pathway. Frontiers in Microbiology, 2018, 9, 397.	1.5	10
105	Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Current Opinion in Immunology, 2018, 54, 93-101.	2.4	29
106	Host-Intrinsic Interferon Status in Infection and Immunity. Trends in Molecular Medicine, 2018, 24, 658-668.	3.5	16
107	Sensing of invading pathogens by GBPs: At the crossroads between cell-autonomous and innate immunity. Journal of Leukocyte Biology, 2018, 104, 729-735.	1.5	62
108	Role of Inflammasome in Chronic Kidney Disease. Advances in Experimental Medicine and Biology, 2019, 1165, 407-421.	0.8	33
109	Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. European Journal of Immunology, 2019, 49, 1998-2011.	1.6	162
110	The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 2019, 20, 3328.	1.8	1,900

#	Article	IF	CITATIONS
111	Innate Immune Recognition: An Issue More Complex Than Expected. Frontiers in Cellular and Infection Microbiology, 2019, 9, 241.	1.8	46
112	Caspases in Cell Death, Inflammation, and Disease. Immunity, 2019, 50, 1352-1364.	6.6	718
113	Emerging Activators and Regulators ofÂInflammasomes and Pyroptosis. Trends in Immunology, 2019, 40, 1035-1052.	2.9	340
114	Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends in Immunology, 2019, 40, 1120-1133.	2.9	76
115	Assessment of inflammasome and type I IFN responses to DNA viruses and DNA PAMPS. Methods in Enzymology, 2019, 625, 269-285.	0.4	0
116	Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense. Trends in Immunology, 2019, 40, 939-951.	2.9	13
117	Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation. Journal of Leukocyte Biology, 2019, 105, 377-399.	1.5	75
118	Interferon regulatory factor 1 eliminates mycobacteria by suppressing p70 S6 kinase via mechanistic target of rapamycin signaling. Journal of Infection, 2019, 79, 262-276.	1.7	8
119	Inflammasome as a promising therapeutic target for cancer. Life Sciences, 2019, 231, 116593.	2.0	55
120	Cell-autonomous immunity by IFN-induced GBPs in animals and plants. Current Opinion in Immunology, 2019, 60, 71-80.	2.4	31
121	Human <scp>GBP</scp> 1 is a microbeâ€specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO Journal, 2019, 38, e100926.	3.5	170
122	Host inflammasome defense mechanisms and bacterial pathogen evasion strategies. Current Opinion in Immunology, 2019, 60, 63-70.	2.4	36
123	Cell death–mediated cytokine release and its therapeutic implications. Journal of Experimental Medicine, 2019, 216, 1474-1486.	4.2	63
124	The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology, 2019, 19, 477-489.	10.6	2,601
125	Ubiquitination-Mediated Inflammasome Activation during Bacterial Infection. International Journal of Molecular Sciences, 2019, 20, 2110.	1.8	8
126	Guanylate-binding proteins at the crossroad of noncanonical inflammasome activation during bacterial infections. Journal of Leukocyte Biology, 2019, 106, 553-562.	1.5	31
127	Nonreceptor Tyrosine Kinase c-Abl– and Arg-Mediated IRF3 Phosphorylation Regulates Innate Immune Responses by Promoting Type I IFN Production. Journal of Immunology, 2019, 202, 2254-2265.	0.4	9
128	Metabolic regulation of inflammasomes in inflammation. Immunology, 2019, 157, 95-109.	2.0	41

#	Article	IF	CITATIONS
129	Recognition of Intracellular Bacteria by Inflammasomes. Microbiology Spectrum, 2019, 7, .	1.2	29
130	The emerging role of STING-dependent signaling on cell death. Immunologic Research, 2019, 67, 290-296.	1.3	17
131	Global Transcriptomic Profiling of Pulmonary Gene Expression in an Experimental Murine Model of Rickettsia conorii Infection. Genes, 2019, 10, 204.	1.0	4
132	Innate immunity to intracellular LPS. Nature Immunology, 2019, 20, 527-533.	7.0	342
133	The absent in melanoma 2 (AIM2) inflammasome in microbial infection. Clinica Chimica Acta, 2019, 495, 100-108.	0.5	11
134	Cytosolic Nucleic Acid Sensors in Inflammatory and Autoimmune Disorders. International Review of Cell and Molecular Biology, 2019, 344, 215-253.	1.6	23
135	Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. Journal of Experimental Medicine, 2019, 216, 482-500.	4.2	184
136	A genomeâ€wide screen identifies IRF2 as a key regulator of caspaseâ€4 in human cells. EMBO Reports, 2019, 20, e48235.	2.0	58
137	Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection. Experimental and Molecular Medicine, 2019, 51, 1-10.	3.2	72
138	Common Differences: The Ability of Inflammasomes to Distinguish Between Self and Pathogen Nucleic Acids During Infection. International Review of Cell and Molecular Biology, 2019, 344, 139-172.	1.6	8
139	A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nature Microbiology, 2019, 4, 362-374.	5.9	78
140	Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection. Nature Microbiology, 2019, 4, 316-327.	5.9	53
141	AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion, pyroptosis and resistance to bacterial infection in mice. Microbes and Infection, 2019, 21, 85-93.	1.0	31
142	The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. International Review of Cell and Molecular Biology, 2019, 345, 35-136.	1.6	26
143	The emerging role of stimulator of interferons genes signaling in sepsis: Inflammation, autophagy, and cell death. Acta Physiologica, 2019, 225, e13194.	1.8	34
144	Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036459.	2.3	30
145	Inflammasomes and the fine line between defense and disease. Current Opinion in Immunology, 2020, 62, 39-44.	2.4	84
146	Nucleic Acid Sensors and Programmed Cell Death. Journal of Molecular Biology, 2020, 432, 552-568.	2.0	57

#	ARTICLE Captain GBP1: inflammasomes assemble, pyroptotic endgame. Nature Immunology, 2020, 21, 829-830.	IF 7.0	CITATIONS 8
148	The microbiome and cytosolic innate immune receptors. Immunological Reviews, 2020, 297, 207-224.	2.8	32
149	Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO Journal, 2020, 39, e104926.	3.5	103
150	Immunobiology and structural biology of AIM2 inflammasome. Molecular Aspects of Medicine, 2020, 76, 100869.	2.7	48
151	Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Frontiers in Immunology, 2020, 11, 585146.	2.2	94
152	Irgm2 and Gateâ€16 cooperatively dampen Gramâ€negative bacteriaâ€induced caspaseâ€11 response. EMBO Reports, 2020, 21, e50829.	2.0	45
153	Therapeutic modulation of inflammasome pathways. Immunological Reviews, 2020, 297, 123-138.	2.8	135
154	Guanylate Binding Proteins Restrict Leishmania donovani Growth in Nonphagocytic Cells Independent of Parasitophorous Vacuolar Targeting. MBio, 2020, 11, .	1.8	12
155	The regulation of the ZBP1â€NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunological Reviews, 2020, 297, 26-38.	2.8	208
156	AIM2 in health and disease: Inflammasome and beyond. Immunological Reviews, 2020, 297, 83-95.	2.8	107
157	AIM2 Inflammasome's First Decade of Discovery: Focus on Oral Diseases. Frontiers in Immunology, 2020, 11, 1487.	2.2	18
158	Human GBP1 Differentially Targets Salmonella and Toxoplasma to License Recognition of Microbial Ligands and Caspase-Mediated Death. Cell Reports, 2020, 32, 108008.	2.9	58
159	Canonical and Non-canonical Inflammasome Activation by Outer Membrane Vesicles Derived From Bordetella pertussis. Frontiers in Immunology, 2020, 11, 1879.	2.2	31
160	Intracellular innate immune receptors: Life inside the cell. Immunological Reviews, 2020, 297, 5-12.	2.8	54
161	A comprehensive guide to studying inflammasome activation and cell death. Nature Protocols, 2020, 15, 3284-3333.	5.5	32
162	Guanylate-Binding Proteins Are Critical for Effective Control of Francisella tularensis Strains in a Mouse Co-Culture System of Adaptive Immunity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 594063.	1.8	5
163	Transcriptional Regulation of Inflammasomes. International Journal of Molecular Sciences, 2020, 21, 8087.	1.8	43
164	The involvement of regulated cell death forms in modulating the bacterial and viral pathogenesis. International Review of Cell and Molecular Biology, 2020, 353, 211-253.	1.6	17

ARTICLE IF CITATIONS # SON DNAâ€binding protein mediates macrophage autophagy and responses to intracellular infection. 1.3 1 165 FEBS Letters, 2020, 594, 2782-2799. Recognition of Intracellular Bacteria by Inflammasomes., 0,, 287-297. A Rapidly Evolving Polybasic Motif Modulates Bacterial Detection by Guanylate Binding Proteins. MBio, 167 1.8 18 2020, 11, . Vaccine-Mediated Mechanisms Controlling Francisella tularensis SCHU S4 Growth in a Rat Co-Culture 1.2 System. Pathogens, 2020, 9, 338. Inflammasomes. Current Biology, 2020, 30, R689-R694. 169 1.8 18 Essential Role of mGBP7 for Survival of Toxoplasma gondii Infection. MBio, 2020, 11, . 1.8 Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell 171 3.1 475 Discovery, 2020, 6, 36. Interferon inducible GBPs restrict Burkholderia thailandensisÂmotility induced cell-cell fusion. PLoS 2.1 Pathogens, 2020, 16, e1008364. Toward targeting inflammasomes: insights into their regulation and activation. Cell Research, 2020, 173 5.7 171 30, 315-327. IRF8 Regulates Gram-Negative Bacteria–Mediated NLRP3 Inflammasome Activation and Cell Death. 174 0.4 Journal of Immunology, 2020, 204, 2514-2522. DNA Sensing in the Innate Immune Response. Physiology, 2020, 35, 112-124. 175 1.6 91 Effect and Regulation of the NLRP3 Inflammasome During Renal Fibrosis. Frontiers in Cell and 1.8 Developmental Biology, 2019, 7, 379. Inflammasome-mediated antagonism of type I interferon enhances Rickettsia pathogenesis. Nature 177 5.9 59 Microbiology, 2020, 5, 688-696. Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense. Cell, 2020, 178 13.5 181, 674-687.e13. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in 179 13.5 923 SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 2021, 184, 149-168.e17. Inflammasome activation in acute lung injury. American Journal of Physiology - Lung Cellular and 44 Molecular Physiology, 2021, 320, L165-L178. Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS Journal, 2021, 288, 181 2.242 5826-5849. STING, a promising target for small molecular immune modulator: A review. European Journal of Medicinal Chemistry, 2021, 211, 113113.

#	Article	IF	CITATIONS
183	The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulmonary Circulation, 2021, 11, 1-16.	0.8	3
184	Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses. PLoS Pathogens, 2021, 17, e1009220.	2.1	131
185	Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nature Communications, 2021, 12, 496.	5.8	51
186	Genetic disruption of zebrafish mab2111 reveals a conserved role in eye development and affected pathways. Developmental Dynamics, 2021, 250, 1056-1073.	0.8	8
187	A study of innate immune kinetics reveals a role for a chloride transporter in a virulent Francisella tularensis type B strain. MicrobiologyOpen, 2021, 10, e1170.	1.2	1
188	Interferons: Tug of War Between Bacteria and Their Host. Frontiers in Cellular and Infection Microbiology, 2021, 11, 624094.	1.8	23
189	Tolerogenic and immunogenic states of Langerhans cells are orchestrated by epidermal signals acting on a core maturation gene module. BioEssays, 2021, 43, e2000182.	1.2	9
190	Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathogens, 2021, 17, e1009358.	2.1	34
191	Interferon-induced GTPases orchestrate host cell-autonomous defence against bacterial pathogens. Biochemical Society Transactions, 2021, 49, 1287-1297.	1.6	15
192	The complex role of AIM2 in autoimmune diseases and cancers. Immunity, Inflammation and Disease, 2021, 9, 649-665.	1.3	31
194	Human Metapneumovirus Induces IRF1 via TANK-Binding Kinase 1 and Type I IFN. Frontiers in Immunology, 2021, 12, 563336.	2.2	4
195	Cell biology of inflammasome activation. Trends in Cell Biology, 2021, 31, 924-939.	3.6	92
197	AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature, 2021, 597, 415-419.	13.7	221
199	Signaling Through Nucleic Acid Sensors and Their Roles in Inflammatory Diseases. Frontiers in Immunology, 2020, 11, 625833.	2.2	58
200	hGBP1 Coordinates Chlamydia Restriction and Inflammasome Activation through Sequential GTP Hydrolysis. Cell Reports, 2020, 31, 107667.	2.9	27
206	Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight, 2020, 5,	2.3	125
207	HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. Journal of Clinical Investigation, 2018, 128, 4148-4162.	3.9	44
208	TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy. Journal of Clinical Investigation, 2018, 129, 150-162.	3.9	34

#	Article	IF	CITATIONS
209	HUWE1 mediates inflammasome activation and promotes host defense against bacterial infection. Journal of Clinical Investigation, 2020, 130, 6301-6316.	3.9	38
210	C57BL/6 and 129 inbred mouse strains differ in Gbp2 and Gbp2b expression in response to inflammatory stimuli in vivo. Wellcome Open Research, 2019, 4, 124.	0.9	6
211	Persistent mycobacteria evade an antibacterial program mediated by phagolysosomal TLR7/8/MyD88 in human primary macrophages. PLoS Pathogens, 2017, 13, e1006551.	2.1	26
212	Dynaminâ€related Irgm proteins modulate LPSâ€induced caspaseâ€11 activation and septic shock. EMBO Reports, 2020, 21, e50830.	2.0	41
213	AIM2 inhibits autophagy and IFN-β production during <i>M. bovis</i> infection. Oncotarget, 2016, 7, 46972-46987.	0.8	21
214	Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway. Oncotarget, 2020, 11, 1799-1815.	0.8	22
215	Inflammasome Signaling and Other Factors Implicated in Atherosclerosis Development and Progression. Current Pharmaceutical Design, 2020, 26, 2583-2590.	0.9	6
216	Type I Interferon Increases Inflammasomes Associated Pyroptosis in the Salivary Glands of Patients with Primary Sjögren's Syndrome. Immune Network, 2020, 20, e39.	1.6	22
217	Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes. ELife, 2016, 5, .	2.8	114
218	The IFNâ€inducible GTPase IRGB10 regulates viral replication and inflammasome activation during influenza A virus infection in mice. European Journal of Immunology, 2022, 52, 285-296.	1.6	1
219	The Tumor Necrosis Factor Alpha and Interleukin 6 Auto-paracrine Signaling Loop Controls Mycobacterium avium Infection via Induction of IRF1/IRG1 in Human Primary Macrophages. MBio, 2021, 12, e0212121.	1.8	20
220	Pattern Recognition Molecules. , 2020, , 13-65.		0
223	Cytosolic detection of phagosomal bacteria—Mechanisms underlying PAMP exodus from the phagosome into the cytosol. Molecular Microbiology, 2021, 116, 1420-1432.	1.2	14
224	A Newly Defined Pyroptosis-Related Gene Signature for the Prognosis of Bladder Cancer. International Journal of General Medicine, 2021, Volume 14, 8109-8120.	0.8	10
225	Francisella novicida Mutant XWK4 Triggers Robust Inflammasome Activation Favoring Infection. Frontiers in Cell and Developmental Biology, 2021, 9, 743335.	1.8	0
226	Activation and Immune Regulation Mechanisms of PYHIN Family During Microbial Infection. Frontiers in Microbiology, 2021, 12, 809412.	1.5	6
227	Regulation and function of the cGAS-MITA/STING axis in health and disease. , 2022, 1, 100001.		15
228	Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection. Annual Review of Immunology, 2022, 40, 469-498.	9.5	51

#	Article	IF	CITATIONS
229	Cell-Autonomous Defenses Against Intracellular Bacteria and Protozoa. , 2022, , .		0
231	Inhibition of the NLRP3 Inflammasome Activation by Manoalide Ameliorates Experimental Autoimmune Encephalomyelitis Pathogenesis. Frontiers in Cell and Developmental Biology, 2022, 10, 822236.	1.8	8
232	Programmed cell death: the pathways to severe COVID-19?. Biochemical Journal, 2022, 479, 609-628.	1.7	30
233	Dual roles of the caspase-11 non-canonical inflammasome in inflammatory bowel disease. International Immunopharmacology, 2022, 108, 108739.	1.7	9
234	<i>Toxoplasma</i> -proximal and distal control by GBPs in human macrophages. Pathogens and Disease, 2022, 79, .	0.8	11
235	Macrophages Demonstrate Guanylate-Binding Protein-Dependent and Bacterial Strain-Dependent Responses to Francisella tularensis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 784101.	1.8	3
236	Functional cross-species conservation of guanylate-binding proteins in innate immunity. Medical Microbiology and Immunology, 2023, 212, 141-152.	2.6	13
244	It's All in the PAN: Crosstalk, Plasticity, Redundancies, Switches, and Interconnectedness Encompassed by PANoptosis Underlying the Totality of Cell Death-Associated Biological Effects. Cells, 2022, 11, 1495.	1.8	37
245	Detecting DNA: An Overview of DNA Recognition by Inflammasomes and Protection against Bacterial Respiratory Infections. Cells, 2022, 11, 1681.	1.8	3
246	Pyroptosis and Its Role in Autoimmune Disease: A Potential Therapeutic Target. Frontiers in Immunology, 0, 13, .	2.2	33
247	A Bibliometric Analysis of the Innate Immune DNA Sensing cGAS-STING Pathway from 2013 to 2021. Frontiers in Immunology, 2022, 13, .	2.2	12
249	Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nature Communications, 2022, 13, .	5.8	18
250	Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation, 2023, 46, 56-87.	1.7	15
251	Klebsiella pneumoniae hijacks the Toll-IL-1R protein SARM1 in a type I IFN-dependent manner to antagonize host immunity. Cell Reports, 2022, 40, 111167.	2.9	8
252	Lipopolysaccharide-induced interferon response networks at birth are predictive of severe viral lower respiratory infections in the first year of life. Frontiers in Immunology, 0, 13, .	2.2	4
253	Interferon regulatory factor 1â€triggered free ubiquitin protects the intestines against radiationâ€induced injury via CXCR4/FGF2 signaling. MedComm, 2022, 3, .	3.1	3
254	Identification of pyrC gene as an immunosuppressive factor in Francisella novicida infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	0
255	PANoptosis: A Unique Innate Immune Inflammatory Cell Death Modality. Journal of Immunology, 2022, 209, 1625-1633.	0.4	51

#	Article	IF	Citations
256	Inflammasome Activation Dampens Type I IFN Signaling to Strengthen Anti- <i>Toxoplasma</i> Immunity. MBio, 2022, 13, .	1.8	7
257	Non-canonical NF-κB contributes to endothelial pyroptosis and atherogenesis dependent on IRF-1. Translational Research, 2023, 255, 1-13.	2.2	4
258	Cellular signaling, molecular activation, and regulation of the AIM2 inflammasome. , 2023, , 93-108.		2
259	Inflammasome formation and triggers. , 2023, , 17-32.		0
260	Peptidoglycan enzymes of Francisella: Roles in cell morphology and pathogenesis, and potential as therapeutic targets. Frontiers in Microbiology, 0, 13, .	1.5	0
261	Integrating Transcriptomic and ChIP-Seq Reveals Important Regulatory Regions Modulating Gene Expression in Myometrium during Implantation in Pigs. Biomolecules, 2023, 13, 45.	1.8	1
262	Intravesical BCG in patients with non-muscle invasive bladder cancer induces trained immunity and decreases respiratory infections. , 2023, 11, e005518.		14
263	Human IRF1 governs macrophagic IFN-Î ³ immunity to mycobacteria. Cell, 2023, 186, 621-645.e33.	13.5	25
264	Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment. Frontiers in Immunology, 0, 14, .	2.2	18
265	Immunity against <i>Moraxella catarrhalis</i> requires guanylateâ€binding proteins and caspaseâ€11â€ <scp>NLRP3</scp> inflammasomes. EMBO Journal, 2023, 42, .	3.5	11
266	Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. European Journal of Immunology, 2023, 53, .	1.6	19
267	Comparative study of GBP recruitment on two cytosol-dwelling pathogens, <i>Francisella novicida</i> and <i>Shigella flexneri</i> highlights differences in GBP repertoire and in GBP1 motif requirements. Pathogens and Disease, 2023, 81, .	0.8	2
268	A lncRNA from an inflammatory bowel disease risk locus maintains intestinal host-commensal homeostasis. Cell Research, 2023, 33, 372-388.	5.7	4
269	<i>Clostridium perfringens</i> virulence factors are nonredundant activators of the <scp>NLRP3</scp> inflammasome. EMBO Reports, 0, , .	2.0	1
277	Novel Therapeutic Avenues for Hypertrophic Cardiomyopathy. American Journal of Cardiovascular Drugs, 0, , .	1.0	0
285	Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death and Disease, 2023, 14, .	2.7	1