Gene networks specific for innate immunity define post

Molecular Psychiatry 20, 1538-1545

DOI: 10.1038/mp.2015.9

Citation Report

#	Article	IF	CITATIONS
1	DICER1 and microRNA regulation in post-traumatic stress disorder with comorbid depression. Nature Communications, 2015, 6, 10106.	5.8	81
2	Risk Factors for the Development of Psychopathology Following Trauma. Current Psychiatry Reports, 2015, 17, 612.	2.1	96
3	"Soldier's Heart― A Genetic Basis for Elevated Cardiovascular Disease Risk Associated with Post-traumatic Stress Disorder. Frontiers in Molecular Neuroscience, 2016, 9, 87.	1.4	31
4	Prediction of Possible Biomarkers and Novel Pathways Conferring Risk to Post-Traumatic Stress Disorder. PLoS ONE, 2016, 11, e0168404.	1.1	12
5	Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Scientific Reports, 2016, 6, 31209.	1.6	74
6	Immunization with a heat-killed preparation of the environmental bacterium <i>Mycobacterium vaccae</i> promotes stress resilience in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3130-9.	3.3	186
7	The evolution of the molecular response to stress and its relevance to trauma and stressor-related disorders. Neuroscience and Biobehavioral Reviews, 2016, 68, 134-147.	2.9	11
8	Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report. Translational Psychiatry, 2016, 6, e802-e802.	2.4	32
9	Role of Neuro-Immunological Factors in the Pathophysiology of Mood Disorders: Implications for Novel Therapeutics for Treatment Resistant Depression. Current Topics in Behavioral Neurosciences, 2016, 31, 339-356.	0.8	42
10	Anxiety disorders, post-traumatic stress disorder, and obsessive–compulsive disorder. Medicine, 2016, 44, 664-671.	0.2	5
11	Systematic review of blood transcriptome profiling in neuropsychiatric disorders: guidelines for biomarker discovery. Human Psychopharmacology, 2016, 31, 373-381.	0.7	16
12	New translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune mediators of stress susceptibility. Experimental Neurology, 2016, 284, 133-140.	2.0	78
13	Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. Pharmacogenomics Journal, 2016, 16, 446-453.	0.9	40
14	Co-morbidity of PTSD and immune system dysfunction: opportunities for treatment. Current Opinion in Pharmacology, 2016, 29, 104-110.	1.7	82
15	Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology, 2016, 73, 99-108.	1.3	34
16	The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Current Environmental Health Reports, 2016, 3, 270-286.	3.2	150
17	Noninvasive Transcutaneous Vagus Nerve Stimulation Decreases Whole Blood Culture-Derived Cytokines and Chemokines: A Randomized, Blinded, Healthy Control Pilot Trial. Neuromodulation, 2016, 19, 283-291.	0.4	124
18	PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit. Psychoneuroendocrinology, 2016, 67, 133-141.	1.3	39

#	ARTICLE	IF	CITATIONS
19	The evolution of genomic stability to a mechanism in reproduction and psychiatry. Hormone Molecular Biology and Clinical Investigation, 2017, 29, 1-11.	0.3	O
20	Altered gene expression of the innate immune, neuroendocrine, and nuclear factor-kappa B (NF-κB) systems is associated with posttraumatic stress disorder in military personnel. Journal of Anxiety Disorders, 2016, 38, 9-20.	1.5	44
21	Role of neuro-immunological factors in the pathophysiology of mood disorders. Psychopharmacology, 2016, 233, 1623-1636.	1.5	120
22	Molecular mechanisms of D-cycloserine in facilitating fear extinction: insights from RNAseq. Metabolic Brain Disease, 2016, 31, 135-156.	1.4	7
23	Genetics of glucocorticoid regulation and posttraumatic stress disorder—What do we know?. Neuroscience and Biobehavioral Reviews, 2016, 63, 143-157.	2.9	70
24	Post-traumatic Stress Disorder After Sexual Abuse in Adolescent Girls. Journal of Pediatric and Adolescent Gynecology, 2016, 29, 531-536.	0.3	3
25	Neuroendocrine and neuroimmune markers in PTSD: pre-, peri- and post-trauma glucocorticoid and inflammatory dysregulation. Current Opinion in Psychology, 2017, 14, 132-137.	2.5	48
26	Effects of LPS-induced immune activation prior to trauma exposure on PTSD-like symptoms in mice. Behavioural Brain Research, 2017, 323, 117-123.	1.2	27
27	Immune signaling mechanisms of PTSD risk and symptom development: insights from animal models. Current Opinion in Behavioral Sciences, 2017, 14, 123-132.	2.0	41
28	PTSD in Court II: Risk factors, endophenotypes, and biological underpinnings in PTSD. International Journal of Law and Psychiatry, 2017, 51, 1-21.	0.5	16
29	The Need to Take a Staging Approach to the Biological Mechanisms of PTSD and its Treatment. Current Psychiatry Reports, 2017, 19, 10.	2.1	60
30	Neuroinflammatory genes associated with post-traumatic stress disorder. Psychiatric Genetics, 2017, 27, 1-16.	0.6	36
31	The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain, Behavior, and Immunity, 2017, 61, 184-196.	2.0	59
32	Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. Methods in Molecular Biology, 2017, 1598, 117-154.	0.4	12
33	Atomic psychiatry? An essay. Australasian Psychiatry, 2017, 25, 507-509.	0.4	2
34	Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, 2017, , .	0.8	24
35	The resilience framework as a strategy to combat stress-related disorders. Nature Human Behaviour, 2017, 1, 784-790.	6.2	420
36	Sex-specific transcriptional signatures in human depression. Nature Medicine, 2017, 23, 1102-1111.	15.2	532

#	ARTICLE	IF	Citations
37	Decreased AGO2 and DCR1 in PBMCs from War Veterans with PTSD leads to diminished miRNA resulting in elevated inflammation. Translational Psychiatry, 2017, 7, e1222-e1222.	2.4	18
38	Traumatic Stress and Accelerated Cellular Aging: From Epigenetics to Cardiometabolic Disease. Current Psychiatry Reports, 2017, 19, 75.	2.1	51
39	Whole-genome DNA methylation status associated with clinical PTSD measures of OIF/OEF veterans. Translational Psychiatry, 2017, 7, e1169-e1169.	2.4	45
40	Deconvolution of Transcriptional Networks in Post-Traumatic Stress Disorder Uncovers Master Regulators Driving Innate Immune System Function. Scientific Reports, 2017, 7, 14486.	1.6	12
41	Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology, 2017, 42, 254-270.	2.8	451
42	Gene expression associated with PTSD in World Trade Center responders: An RNA sequencing study. Translational Psychiatry, 2017, 7, 1297.	2.4	61
43	DFG-Sonderforschungsbereich SFB1193 "Neurobiologie der Resilienz gegenüber stressinduzierter psychischer Dysfunktion: Mechanismen verstehen und Präention fördern". E-Neuroforum, 2017, 23, 124-129.	0.2	0
44	Posttraumatic Stress Disorder: An Immunological Disorder?. Frontiers in Psychiatry, 2017, 8, 222.	1.3	58
45	Recent Genetics and Epigenetics Approaches to PTSD. Current Psychiatry Reports, 2018, 20, 30.	2.1	89
46	Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biological Psychiatry, 2018, 83, 831-839.	0.7	47
47	Epigenetic Effects of PTSD Remediation in Veterans Using Clinical Emotional Freedom Techniques: A Randomized Controlled Pilot Study. American Journal of Health Promotion, 2018, 32, 112-122.	0.9	33
48	Genome-wide analysis of blood gene expression in migraine implicates immune-inflammatory pathways. Cephalalgia, 2018, 38, 292-303.	1.8	34
49	Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology, 2018, 43, 80-102.	2.8	170
50	Integrating biological treatment mechanisms into randomized clinical trials: Design of PROGrESS (PROlonGed ExpoSure and Sertraline Trial). Contemporary Clinical Trials, 2018, 64, 128-138.	0.8	25
51	Transcriptome Alterations in Posttraumatic Stress Disorder. Biological Psychiatry, 2018, 83, 840-848.	0.7	36
52	Oxidative Stress, Inflammation, and Neuroprogression in Chronic PTSD. Harvard Review of Psychiatry, 2018, 26, 57-69.	0.9	156
53	CRP polymorphisms and DNA methylation of the AIM2 gene influence associations between trauma exposure, PTSD, and C-reactive protein. Brain, Behavior, and Immunity, 2018, 67, 194-202.	2.0	65
54	PTSD Blood Transcriptome Mega-Analysis: Shared Inflammatory Pathways across Biological Sex and Modes of Trauma. Neuropsychopharmacology, 2018, 43, 469-481.	2.8	92

#	Article	IF	CITATIONS
55	Genetics of Post-traumatic Stress Disorder and Sleep Disturbance. , 2018, , 89-110.		0
56	Could a blood test for PTSD and depression be on the horizon?. Expert Review of Proteomics, 2018, 15, 983-1006.	1.3	20
57	Resilience Against Traumatic Stress: Current Developments and Future Directions. Frontiers in Psychiatry, 2018, 9, 676.	1.3	25
58	Transcriptome analysis reveals novel genes and immune networks dysregulated in veterans with PTSD. Brain, Behavior, and Immunity, 2018, 74, 133-142.	2.0	26
59	Advanced Metrics for Assessing Holistic Care: The "Epidaurus 2―Project. Global Advances in Health and Medicine, 2018, 7, 2164957X1875598.	0.7	0
60	Gene expression in cord blood links genetic risk for neurodevelopmental disorders with maternal psychological distress and adverse childhood outcomes. Brain, Behavior, and Immunity, 2018, 73, 320-330.	2.0	26
62	Collective interaction effects associated with mammalian behavioral traits reveal genetic factors connecting fear and hemostasis. BMC Psychiatry, 2018, 18, 175.	1.1	0
63	A peripheral immune response to remembering trauma contributes to the maintenance of fear memory in mice. Psychoneuroendocrinology, 2018, 94, 143-151.	1.3	38
64	Posttraumatic psychopathology and the pace of the epigenetic clock: a longitudinal investigation. Psychological Medicine, 2019, 49, 791-800.	2.7	57
65	Deconstructing and Reconstructing Resilience: A Dynamic Network Approach. Perspectives on Psychological Science, 2019, 14, 765-777.	5.2	145
66	A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression. PLoS Genetics, 2019, 15, e1008245.	1.5	74
67	Genetic and Environmental Predictors of Adolescent PTSD Symptom Trajectories Following a Natural Disaster. Brain Sciences, 2019, 9, 146.	1.1	7
68	Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. International Journal of Molecular Sciences, 2019, 20, 3537.	1.8	58
69	Differential transcriptional response following glucocorticoid activation in cultured blood immune cells: a novel approach to PTSD biomarker development. Translational Psychiatry, 2019, 9, 201.	2.4	27
70	Cell type-specific gene expression patterns associated with posttraumatic stress disorder in World Trade Center responders. Translational Psychiatry, 2019, 9, 1.	2.4	383
71	Characteristics of pro- and anti-inflammatory cytokines alteration in PTSD patients exposed to a deadly earthquake. Journal of Affective Disorders, 2019, 248, 52-58.	2.0	34
72	The Impact of Environmental Chronic and Toxic Stress on Asthma. Clinical Reviews in Allergy and Immunology, 2019, 57, 427-438.	2.9	65
73	Towards precision medicine for pain: diagnostic biomarkers and repurposed drugs. Molecular Psychiatry, 2019, 24, 501-522.	4.1	61

#	Article	IF	CITATIONS
74	Sleep disturbance at pre-deployment is a significant predictor of post-deployment re-experiencing symptoms. Högre Utbildning, 2019, 10, 1679964.	1.4	17
75	Relationships of blood proinflammatory markers with psychological resilience and quality of life in civilian women with posttraumatic stress disorder. Scientific Reports, 2019, 9, 17905.	1.6	14
76	Ensemble and Greedy Approach for the Reconstruction of Large Gene Co-Expression Networks. Entropy, 2019, 21, 1139.	1.1	2
77	Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology, 2019, 100, 237-245.	1.3	24
78	Neuroimmune signaling in alcohol use disorder. Pharmacology Biochemistry and Behavior, 2019, 177, 34-60.	1.3	145
79	Using Next-Generation Sequencing Transcriptomics To Determine Markers of Post-traumatic Symptoms: Preliminary Findings from a Post-deployment Cohort of Soldiers. G3: Genes, Genomes, Genetics, 2019, 9, 463-471.	0.8	7
80	Inflammation and postâ€traumatic stress disorder. Psychiatry and Clinical Neurosciences, 2019, 73, 143-153.	1.0	206
82	Somatic Health Issues in Trauma-Related Disorders: Effects on Psychobiological Axes Affecting Mental and Physical Health. Integrating Psychiatry and Primary Care, 2019, , 177-216.	0.3	2
83	DNA methylation correlates of PTSD: Recent findings and technical challenges. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 90, 223-234.	2.5	28
84	Proinflammatory status-stratified blood transcriptome profiling of civilian women with PTSD. Psychoneuroendocrinology, 2020, 111, 104491.	1.3	12
85	Posttraumatic Stress Disorder and Inflammation: Untangling Issues of Bidirectionality. Biological Psychiatry, 2020, 87, 885-897.	0.7	70
86	Literature review and methodological considerations for understanding circulating risk biomarkers following trauma exposure. Molecular Psychiatry, 2020, 25, 1986-1999.	4.1	7
87	Molecular linkage between post-traumatic stress disorder and cognitive impairment: a targeted proteomics study of World Trade Center responders. Translational Psychiatry, 2020, 10, 269.	2.4	19
88	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. Cell Reports, 2020, 31, 107716.	2.9	44
89	Câ€Reactive Protein: Marker of risk for postâ€traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. European Journal of Neuroscience, 2022, 55, 2297-2310.	1.2	20
90	Correlation between monoamine neurotransmitter and cytokine levels and the occurrence of post-traumatic stress disorder among operating room nurses. Annals of Palliative Medicine, 2020, 9, 3947-3956.	0.5	4
91	Genetic influences on PTSD., 2020,, 211-249.		0
92	Sex-specific and shared expression profiles of vulnerability and resilience to trauma in brain and blood. Biology of Sex Differences, 2020, 11, 13.	1.8	11

#	ARTICLE	IF	CITATIONS
93	Shared genetic etiology underlying lateâ€onset Alzheimer's disease and posttraumatic stress syndrome. Alzheimer's and Dementia, 2020, 16, 1280-1292.	0.4	15
94	Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. International Journal of Molecular Sciences, 2020, 21, 1115.	1.8	70
95	Stress genomics revisited: gene co-expression analysis identifies molecular signatures associated with childhood adversity. Translational Psychiatry, 2020, 10, 34.	2.4	21
96	Longitudinal epigenome-wide association studies of three male military cohorts reveal multiple CpG sites associated with post-traumatic stress disorder. Clinical Epigenetics, 2020, 12, 11.	1.8	45
97	A Systematic Review of DNA Methylation and Gene Expression Studies in Posttraumatic Stress Disorder, Posttraumatic Growth, and Resilience. Journal of Traumatic Stress, 2020, 33, 171-180.	1.0	34
98	Inflammation and Trauma-Related Psychopathology in Syrian and Iraqi Refugees. Behavioral Sciences (Basel, Switzerland), 2020, 10, 75.	1.0	8
99	Dream: powerful differential expression analysis for repeated measures designs. Bioinformatics, 2021, 37, 192-201.	1.8	138
100	Putative Blood Somatic Mutations in Post-Traumatic Stress Disorder-Symptomatic Soldiers: High Impact of Cytoskeletal and Inflammatory Proteins. Journal of Alzheimer's Disease, 2021, 79, 1723-1734.	1.2	8
101	Harnessing the Neurobiology of Resilience to Protect the Mental Well-Being of Healthcare Workers During the COVID-19 Pandemic. Frontiers in Psychology, 2021, 12, 621853.	1.1	7
102	Gene Expression Differences Between Young Adults Based on Trauma History and Post-traumatic Stress Disorder. Frontiers in Psychiatry, 2021, 12, 581093.	1.3	0
103	Rewired Pathways and Disrupted Pathway Crosstalk in Schizophrenia Transcriptomes by Multiple Differential Coexpression Methods. Genes, 2021, 12, 665.	1.0	7
104	Mapping the transcriptomics landscape of post-traumatic stress disorder symptom dimensions in World Trade Center responders. Translational Psychiatry, 2021, 11, 310.	2.4	3
105	Genomic factors underlying sex differences in trauma-related disorders. Neurobiology of Stress, 2021, 14, 100330.	1.9	5
106	Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development. Neuropsychopharmacology, 2021, 46, 1811-1820.	2.8	15
107	Unveiling the Pathogenesis of Psychiatric Disorders Using Network Models. Genes, 2021, 12, 1101.	1.0	10
109	The Immune System and Anxiety Disorders. , 2021, , 233-257.		0
110	Asthma and posttraumatic stress disorder (PTSD): Emerging links, potential models and mechanisms. Brain, Behavior, and Immunity, 2021, 97, 275-285.	2.0	16
111	Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiology of Stress, 2021, 15, 100366.	1.9	10

#	Article	IF	CITATIONS
112	Traumatic events and mental health: The amplifying effects of pre-trauma systemic inflammation. Brain, Behavior, and Immunity, 2021, 98, 173-184.	2.0	10
113	Genetics and neuropsychology: A merger whose time has come Neuropsychology, 2016, 30, 1-5.	1.0	10
114	The role of microRNAs in the therapeutic action of D-cycloserine in a post-traumatic stress disorder animal model. Psychiatric Genetics, 2017, 27, 139-151.	0.6	6
119	Molecular mechanisms of neuroinflammation initiation and development in a model of post-traumatic stress disorder. Genes and Cells, 2018, 13, 47-55.	0.2	3
120	Interactions between posttraumatic stress disorder and alopecia areata in child with trauma exposure: Two case reports. International Journal of Trichology, 2018, 10, 131.	0.1	7
121	Gene Expression Analysis in Three Posttraumatic Stress Disorder Cohorts Implicates Inflammation and Innate Immunity Pathways and Uncovers Shared Genetic Risk With Major Depressive Disorder. Frontiers in Neuroscience, 2021, 15, 678548.	1.4	12
122	Psychische Traumatisierung und Autoimmunerkrankungen. Trauma Und Gewalt, 2017, 11, 122-128.	0.1	0
124	Analysis of Genetically Regulated Gene Expression Identifies a Trauma Type Specific PTSD Gene, SNRNP35. SSRN Electronic Journal, 0, , .	0.4	0
127	MicroRNAs as biomarker and novel therapeutic target for posttraumatic stress disorder in Veterans. Psychiatry Research, 2021, 305, 114252.	1.7	9
128	Proteomic and metabolomic profiling of acute and chronic stress events associated with military exercises. Molecular Omics, 2022, 18, 279-295.	1.4	4
129	<i>LRcell</i> : detecting the source of differential expression at the sub–cell-type level from bulk RNA-seq data. Briefings in Bioinformatics, 2022, 23, .	3.2	4
131	Natural disaster and immunological aging in a nonhuman primate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	24
132	How stress affects gene expression through epigenetic modifications. , 2022, , 99-118.		0
133	PTSD and physiology: The long-term effects of PTSD and relation to epigenetics, physical health, and chronic diseases., 2022,, 137-162.		0
134	Altered gene expression and PTSD symptom dimensions in World Trade Center responders. Molecular Psychiatry, 2022, 27, 2225-2246.	4.1	9
135	Integrated Metabolomics and Proteomics Analysis of Urine in a Mouse Model of Posttraumatic Stress Disorder. Frontiers in Neuroscience, 2022, 16, 828382.	1.4	1
136	Integrated Analysis of miRNA and mRNA Expression Profiles Reveals the Molecular Mechanism of Posttraumatic Stress Disorder and Therapeutic Drugs. International Journal of General Medicine, 2022, Volume 15, 2669-2680.	0.8	1
137	Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron, 2022, 110, 1754-1776.	3.8	33

#	Article	IF	CITATIONS
138	Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiology of Stress, 2022, 18, 100455.	1.9	24
139	Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines, 2022, 10, 1107.	1.4	4
140	Sex-Specific Brain Transcriptional Signatures in Human MDD and Their Correlates in Mouse Models of Depression. Frontiers in Behavioral Neuroscience, 2022, 16, 845491.	1.0	6
142	The role of the immune system in posttraumatic stress disorder. Translational Psychiatry, 2022, 12, .	2.4	33
143	Increased immuno-inflammatory mediators in women with post-traumatic stress disorder after sexual assault: 1-Year follow-up. Journal of Psychiatric Research, 2022, 155, 241-251.	1.5	4
144	Changes in Alcohol Consumption following Direct-Acting Antiviral Treatment for Hepatitis C in VA Patients with Comorbid Alcohol Use Disorder and PTSD. Journal of Dual Diagnosis, 2022, 18, 185-198.	0.7	2
145	Blood transcriptome analysis: Ferroptosis and potential inflammatory pathways in post-traumatic stress disorder. Frontiers in Psychiatry, 0, 13 , .	1.3	2
146	Modeling gene $\tilde{A}-$ environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nature Neuroscience, 2022, 25, 1434-1445.	7.1	19
148	A Nile rat transcriptomic landscape across 22 organs by ultra-deep sequencing and comparative RNA-seq pipeline (CRSP). Computational Biology and Chemistry, 2023, 102, 107795.	1.1	1
149	Dynamic Modelling of Mental Resilience in Young Adults: Protocol for a Longitudinal Observational Study (DynaM-OBS). JMIR Research Protocols, 0, 12, e39817.	0.5	3
150	Single Prolonged Stress Decreases the Level of Adult Hippocampal Neurogenesis in C57BL/6, but Not in House Mice. Current Issues in Molecular Biology, 2023, 45, 524-537.	1.0	2
151	Early life stress, depression and epigenetics. Vitamins and Hormones, 2023, , .	0.7	0
152	Peripheral inflammation over the course of a cognitive behavioral intervention in PTSD. Brain, Behavior, & Immunity - Health, 2023, 30, 100620.	1.3	0
153	Application of Drug Efficiency Index Metric for Analysis of Post-Traumatic Stress Disorder and Treatment Resistant Depression Gene Expression Profiles. , 2023, 2, 92-112.		0
154	Genetic Associations Between Stress-Related Disorders and Autoimmune Disease. American Journal of Psychiatry, 2023, 180, 294-304.	4.0	3