Plant grafting

Current Biology 25, R183-R188

DOI: 10.1016/j.cub.2015.01.029

Citation Report

#	Article	IF	CITATIONS
1	A Developmental Framework for Graft Formation and Vascular Reconnection in Arabidopsis thaliana. Current Biology, 2015, 25, 1306-1318.	1.8	218
2	Exploiting mobile RNA silencing for crop improvement. American Journal of Botany, 2015, 102, 1399-1400.	0.8	10
3	Plant Cuttings. Annals of Botany, 2016, 117, iii-vi.	1.4	O
4	Grafting: A Technique to Modify Ion Accumulation in Horticultural Crops. Frontiers in Plant Science, 2016, 7, 1457.	1.7	132
5	Phytoplasma Transmission by Heterologous Grafting Influences Viability of the Scion and Results in Early Symptom Development in Periwinkle Rootstock. Journal of Phytopathology, 2016, 164, 631-640.	0.5	10
6	Plant chimeras: The good, the bad, and the â€~Bizzaria'. Developmental Biology, 2016, 419, 41-53.	0.9	81
7	The influence of grapevine rootstocks on scion growth and drought resistance. Theoretical and Experimental Plant Physiology, 2016, 28, 143-157.	1.1	85
8	Plant regeneration: cellular origins and molecular mechanisms. Development (Cambridge), 2016, 143, 1442-1451.	1.2	365
9	The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence. Nature Plants, 2016, 2, 16165.	4.7	111
10	Mobile small RNAs regulate genome-wide DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E801-10.	3.3	192
11	Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends in Plant Science, 2016, 21, 418-437.	4.3	328
12	Plant grafting: insights into tissue regeneration. Regeneration (Oxford, England), 2017, 4, 3-14.	6.3	131
13	ERAMOSA controls lateral branching in snapdragon. Scientific Reports, 2017, 7, 41319.	1.6	10
14	RNA mobility in parasitic plant – host interactions. RNA Biology, 2017, 14, 450-455.	1.5	21
15	Elevated auxin and reduced cytokinin contents in rootstocks improve their performance and grafting success. Plant Biotechnology Journal, 2017, 15, 1556-1565.	4.1	19
16	Effect of grafting and gypsum application on cucumber (Cucumis sativus L.) growth under saline water irrigation. Agricultural Water Management, 2017, 188, 79-90.	2.4	20
17	The development of cold resistance rootstock using Agrobacterium -mediated transformation of Arabidopsis CBF3/DREB1A in bottle gourd (Lageneraria siceraria Standl.). Scientia Horticulturae, 2017, 214, 141-146.	1.7	10
18	Plant grafting: how genetic exchange promotes vascular reconnection. New Phytologist, 2017, 214, 56-65.	3.5	130

#	Article	IF	CITATIONS
19	Differential expression analysis of genes related to graft union healing in Pyrus ussuriensis Maxim by cDNA-AFLP. Scientia Horticulturae, 2017, 225, 700-706.	1.7	6
20	Etiolated Stem Branching Is a Result of Systemic Signaling Associated with Sucrose Level. Plant Physiology, 2017, 175, 734-745.	2.3	24
21	Transcriptome changes between compatible and incompatible graft combination of Litchi chinensis by digital gene expression profile. Scientific Reports, 2017, 7, 3954.	1.6	46
22	Connecting the plant vasculature to friend or foe. New Phytologist, 2017, 213, 1611-1617.	3.5	33
23	New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species. Frontiers in Plant Science, 2017, 8, 1418.	1.7	102
24	Bamboo <i>NiR</i> gene is associated with regeneration capacity. Journal of Horticultural Science and Biotechnology, 2018, 93, 142-149.	0.9	1
25	Long-Distance Signaling: What Grafting has Revealed?. Journal of Plant Growth Regulation, 2018, 37, 694-704.	2.8	18
26	Cell wall traits that influence plant development, immunity, and bioconversion. Plant Journal, 2019, 97, 134-147.	2.8	106
27	Vascular Cambium. , 2018, , 479-507.		0
28	Intercellular and systemic trafficking of RNAs in plants. Nature Plants, 2018, 4, 869-878.	4.7	110
28	Intercellular and systemic trafficking of RNAs in plants. Nature Plants, 2018, 4, 869-878. Abscysic acid and compatibility of atemoya (Annona x atemoya Mabb.) grafted onto native species. Revista Brasileira De Fruticultura, 2018, 40, .	4.7 0.2	110
	Abscysic acid and compatibility of atemoya (Annona x atemoya Mabb.) grafted onto native species.		
29	Abscysic acid and compatibility of atemoya (Annona x atemoya Mabb.) grafted onto native species. Revista Brasileira De Fruticultura, 2018, 40, . Can early peroxidase quantification detect graft-compatible in anonaceous rootstocks?. African	0.2	3
29 30	Abscysic acid and compatibility of atemoya (Annona x atemoya Mabb.) grafted onto native species. Revista Brasileira De Fruticultura, 2018, 40,. Can early peroxidase quantification detect graft-compatible in anonaceous rootstocks?. African Journal of Agricultural Research Vol Pp, 2018, 13, 1136-1139. Rootâ€expressed phytochromes ⟨scp⟩B⟨/scp⟩1 and ⟨scp⟩B⟨/scp⟩2, but not ⟨scp⟩P⟨/scp⟩hy⟨scp⟩A⟨/scp⟩ and ⟨scp⟩C⟨/scp⟩ry2, regulate shoot growth in nature. Plant, Cell and Environment, 2018, 41,	0.2	3
29 30 31	Abscysic acid and compatibility of atemoya (Annona x atemoya Mabb.) grafted onto native species. Revista Brasileira De Fruticultura, 2018, 40, . Can early peroxidase quantification detect graft-compatible in anonaceous rootstocks?. African Journal of Agricultural Research Vol Pp, 2018, 13, 1136-1139. Rootâ€expressed phytochromes ⟨scp⟩B⟨/scp⟩1 and ⟨scp⟩B⟨/scp⟩2, but not ⟨scp⟩P⟨/scp⟩hy⟨scp⟩A⟨/scp⟩ and ⟨scp⟩C⟨/scp⟩ry2, regulate shoot growth in nature. Plant, Cell and Environment, 2018, 41, 2577-2588.	0.2	3 0 12
29 30 31 32	Abscysic acid and compatibility of atemoya (Annona x atemoya Mabb.) grafted onto native species. Revista Brasileira De Fruticultura, 2018, 40, . Can early peroxidase quantification detect graft-compatible in anonaceous rootstocks? African Journal of Agricultural Research Vol Pp, 2018, 13, 1136-1139. Rootâ€expressed phytochromes ⟨scp⟩B⟨/scp⟩1 and ⟨scp⟩B⟨/scp⟩2, but not ⟨scp⟩P⟨/scp⟩hy⟨scp⟩A⟨/scp⟩ and ⟨scp⟩C⟨/scp⟩ry2, regulate shoot growth in nature. Plant, Cell and Environment, 2018, 41, 2577-2588. Developing a thief: Haustoria formation in parasitic plants. Developmental Biology, 2018, 442, 53-59. Plasma membrane H⟨sup⟩+⟨/sup⟩â€⟨scp⟩ATP⟨/scp⟩ase activity and graft success of breadfruit (⟨i⟩Artocarpus altilis⟨/i⟩) onto interspecific rootstocks of marang (⟨i⟩A. odoratissimus⟨/i⟩) and	0.2 0.2 2.8	3 0 12 56
29 30 31 32 33	Abscysic acid and compatibility of atemoya (Annona x atemoya Mabb.) grafted onto native species. Revista Brasileira De Fruticultura, 2018, 40, . Can early peroxidase quantification detect graft-compatible in anonaceous rootstocks?. African Journal of Agricultural Research Vol Pp, 2018, 13, 1136-1139. Rootâ€expressed phytochromes ⟨scp⟩B⟨ scp⟩1 and ⟨scp⟩B⟨ scp⟩2, but not ⟨scp⟩P⟨ scp⟩hy⟨scp⟩hy⟨scp⟩A⟨ scp⟩ and ⟨scp⟩C⟨ scp⟩ry2, regulate shoot growth in nature. Plant, Cell and Environment, 2018, 41, 2577-2588. Developing a thief: Haustoria formation in parasitic plants. Developmental Biology, 2018, 442, 53-59. Plasma membrane H⟨sup⟩+⟨ sup⟩â€⟨scp⟩ATP⟨ scp⟩ase activity and graft success of breadfruit (⟨i⟩Artocarpus altilis⟨ i⟩) onto interspecific rootstocks of marang (⟨i⟩A. odoratissimus⟨ i⟩) and pedalai (⟨i⟩A. sericicarpus⟨ i⟩). Plant Biology, 2018, 20, 978-985.	0.2 0.2 2.8	3 0 12 56 6

#	ARTICLE	IF	CITATIONS
37	Leaf gas exchanges responses of atemoya scion grafted onto Annona rootstocks. Theoretical and Experimental Plant Physiology, 2018, 30, 203-213.	1.1	2
38	An overview of grafting re-establishment in woody fruit species. Scientia Horticulturae, 2019, 243, 84-91.	1.7	67
39	Living with Two Genomes: Grafting and Its Implications for Plant Genome-to-Genome Interactions, Phenotypic Variation, and Evolution. Annual Review of Genetics, 2019, 53, 195-215.	3.2	46
40	Grafting induces flowering time and tuber formation changes in <i>Brassica</i> species involving <i>FT</i> signalling. Plant Biology, 2019, 21, 1031-1038.	1.8	5
41	Development of Parasitic Organs of a Stem Holoparasitic Plant in Genus Cuscuta. Frontiers in Plant Science, 2019, 10, 1435.	1.7	33
42	Non-targeted Metabolomic Analysis Based on Ultra-High-Performance Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry Reveals the Effects of Grafting on Non-volatile Metabolites in Fresh Tea Leaves (<i>Camellia sinensis</i> L.). Journal of Agricultural and Food Chemistry, 2019, 67, 6672-6682.	2.4	17
43	Transcriptome analysis reveals the effects of grafting on sweetpotato scions during the full blooming stages. Genes and Genomics, 2019, 41, 895-907.	0.5	6
44	The Dynamics of Cambial Stem Cell Activity. Annual Review of Plant Biology, 2019, 70, 293-319.	8.6	122
45	Connecting the pieces: uncovering the molecular basis for longâ€distance communication through plant grafting. New Phytologist, 2019, 223, 582-589.	3 . 5	46
46	Dynamic regulation of plasmodesmatal permeability and its application to horticultural research. Horticulture Research, 2019, 6, 47.	2.9	22
47	Molecular Mechanisms of Plant Regeneration. Annual Review of Plant Biology, 2019, 70, 377-406.	8.6	268
48	Auxin transport and stem vascular reconnection – has our thinking become canalized?. Annals of Botany, 2019, 123, 429-439.	1.4	16
49	Effect of grafting methods on physiological change of graft union formation in cucumber grafted onto bottle gourd rootstock. Scientia Horticulturae, 2019, 244, 249-256.	1.7	21
50	Avocado rootstock influences scion leaf mineral content. Archives of Agronomy and Soil Science, 2020, 66, 1399-1409.	1.3	16
51	<i>SUPPRESSOR OF MAX2 1‣IKE 5</i> promotes secondary phloem formation during radial stem growth. Plant Journal, 2020, 102, 903-915.	2.8	19
52	The molecular regulation of cell pluripotency in plants. ABIOTECH, 2020, 1, 169-177.	1.8	10
53	Insights Into Plant Surgery: An Overview of the Multiple Grafting Techniques for Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 613442.	1.7	31
54	Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Frontiers in Plant Science, 2020, 11, 590847.	1.7	73

#	Article	IF	Citations
55	Histological Changes Associated with the Graft Union Development in Tomato. Plants, 2020, 9, 1479.	1.6	7
56	Short De-Etiolation Increases the Rooting of VC801 Avocado Rootstock. Plants, 2020, 9, 1481.	1.6	7
57	Grafting improves drought stress memory by increasing the P5CS1 gene expression in Brassica rapa. Plant and Soil, 2020, 452, 61-72.	1.8	9
58	Using decellularized grafted leaves as tissue engineering scaffolds for mammalian cells. In Vitro Cellular and Developmental Biology - Plant, 2020, 56, 765-774.	0.9	16
59	What drives interspecies graft union success? Exploring the role of phylogenetic relatedness and stem anatomy. Physiologia Plantarum, 2020, 170, 132-147.	2.6	30
60	Tomato grafting onto Torubamu (Solanum melongena): miR166a and miR395b reduce scion Cd accumulation by regulating sulfur transport. Plant and Soil, 2020, 452, 267-279.	1.8	18
61	Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. Plants, 2020, 9, 702.	1.6	112
62	Cut and paste: temperature-enhanced cotyledon micrografting for Arabidopsis thaliana seedlings. Plant Methods, 2020, 16, 12.	1.9	11
63	Enhancing root regeneration and nutrient absorption in double-rootcutting grafted seedlings by regulating light intensity and photoperiod. Scientia Horticulturae, 2020, 264, 109192.	1.7	12
64	Regrowing the damaged or lost body parts. Current Opinion in Plant Biology, 2020, 53, 117-127.	3.5	9
65	From lost identity to identity grafting: The second generation migrant workers in Beijing. Journal of Educational Change, 2021, 22, 191-220.	2.5	7
66	Vascular Regeneration and Grafting. , 2021, , 185-198.		0
67	Epigenetic Changes and Transcriptional Reprogramming Upon Woody Plant Grafting for Crop Sustainability in a Changing Environment. Frontiers in Plant Science, 2020, 11, 613004.	1.7	28
68	Thermal treatment using microwave irradiation for the phytosanitation of Xylella fastidiosa in pecan graftwood. PLoS ONE, 2021, 16, e0244758.	1.1	4
69	Compatibility of Rimau Gerga Lebong (RGL) mandarin grafted onto three genotypes of citrus rootstock. IOP Conference Series: Earth and Environmental Science, 2021, 662, 012023.	0.2	1
70	Main drivers of broomrape regulation. A review. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	13
71	Biochemical Characterization and Differential Expression of PAL Genes Associated With "Translocated―Peach/Plum Graft-Incompatibility. Frontiers in Plant Science, 2021, 12, 622578.	1.7	16
73	Genome of a citrus rootstock and global DNA demethylation caused by heterografting. Horticulture Research, 2021, 8, 69.	2.9	45

#	Article	IF	CITATIONS
74	In-vitro grafting – Current applications and future prospects. Scientia Horticulturae, 2021, 280, 109899.	1.7	17
75	The Impact of Metabolic Scion–Rootstock Interactions in Different Grapevine Tissues and Phloem Exudates. Metabolites, 2021, 11, 349.	1.3	10
76	Population genomics of apricots unravels domestication history and adaptive events. Nature Communications, 2021, 12, 3956.	5.8	45
77	Tomato Graft Union Failure Is Associated with Alterations in Tissue Development and the Onset of Cell Wall Defense Responses. Agronomy, 2021, 11, 1197.	1.3	10
78	Localized graft incompatibility in kiwifruit: Analysis of homografts and heterografts with different rootstock & mp; scion combinations. Scientia Horticulturae, 2021, 283, 110080.	1.7	5
79	Evaluation of manihot glaziovii scion-cassava understock grafting for cassava growth and root yield during rainy and dry seasons. Journal of Crop Improvement, 0, , 1-14.	0.9	0
80	The Orphan Crop Crassocephalum crepidioides Accumulates the Pyrrolizidine Alkaloid Jacobine in Response to Nitrogen Starvation. Frontiers in Plant Science, 2021, 12, 702985.	1.7	4
81	Analysis of Plant Growth and Yield in Varieties of Tomato (Solanum lycopersicum L.) Grafted onto Different Eggplant Rootstocks. International Journal of Agronomy, 2021, 2021, 1-11.	0.5	6
82	Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Horticulture Research, 2021, 8, 146.	2.9	20
83	Horizontal Gene Transfers in Plants. Life, 2021, 11, 857.	1.1	18
85	Micrografting Provides Evidence for Systemic Regulation of Sulfur Metabolism between Shoot and Root. Plants, 2021, 10, 1729.	1.6	1
86	Green light promotes healing and root regeneration in double-root-cutting grafted tomato seedlings. Scientia Horticulturae, 2021, 289, 110503.	1.7	10
87	Split-root, grafting and girdling as experimental tools to study root-to shoot-to root signaling. Environmental and Experimental Botany, 2021, 191, 104631.	2.0	6
88	Effect of grafting on the growth and flowering of sprays chrysanthemums. Scientia Horticulturae, 2022, 291, 110607.	1.7	4
89	Identification of miRNAs mediating shoot growth of grafted sweet cherry through small RNA and degradome sequencing. Scientia Horticulturae, 2022, 291, 110557.	1.7	3
90	Horizontal genome transfer by cell-to-cell travel of whole organelles. Science Advances, 2021, 7, .	4.7	42
91	Effect of Transgenic Rootstock Grafting on the Omics Profiles in Tomato. Food Safety (Tokyo, Japan), 2021, 9, 32-47.	1.0	10
92	Photosynthesis-assisted remodeling of three-dimensional printed structures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20

#	Article	IF	CITATIONS
93	Grafting with Arabidopsis thaliana. Methods in Molecular Biology, 2017, 1497, 9-18.	0.4	28
94	Compatibility Evaluation and Anatomical Observation of Melon Grafted Onto Eight Cucurbitaceae Species. Frontiers in Plant Science, 2021, 12, 762889.	1.7	6
98	Comparative Transcriptome Analysis in Homo- and Hetero-Grafted Cucurbit Seedlings. Frontiers in Plant Science, 2021, 12, 691069.	1.7	3
99	Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiology, 2022, 188, 425-441.	2.3	44
100	Non-sterile Grafting Methods for Arabidopsis. Methods in Molecular Biology, 2021, 2200, 113-119.	0.4	1
101	Plant grafting relieves asymmetry of jasmonic acid response induced by wounding between scion and rootstock in tomato hypocotyl. PLoS ONE, 2020, 15, e0241317.	1.1	4
102	Grafting in cotton: A mechanistic approach for stress tolerance and sustainable development. Industrial Crops and Products, 2022, 175, 114227.	2.5	3
103	An insight into dwarfing mechanism: contribution of scion-rootstock interactions toward fruit crop improvement. Fruit Research, 2021, 1, 1-11.	0.9	26
104	Comparative transcriptomic analysis on compatible/incompatible grafts in $\mbox{\ensuremath{\mbox{\scriptsize i}}}\mbox{\ensuremath{\mbox{\scriptsize Citrus}}\mbox{\ensuremath{\mbox{\scriptsize /i}}}\mbox{\ensuremath{\mbox{\scriptsize .}}}$ Horticulture Research, 2022, 9, .	2.9	12
105	Use of to Study the Role Played by Peptide Signals in ABA Biosynthesis. Methods in Molecular Biology, 2022, 2462, 101-109.	0.4	0
106	Lighting Up Electrochemiluminescence-Inactive Dyes via Grafting Enabled by Intramolecular Resonance Energy Transfer. Analytical Chemistry, 2022, 94, 3296-3302.	3.2	14
107	Monocotyledonous plants graft at the embryonic root–shoot interface. Nature, 2022, 602, 280-286.	13.7	32
108	Omics Profiles of Non-transgenic Scion Grafted on Transgenic RdDM Rootstock. Food Safety (Tokyo,) Tj ETQq0 0	0 rgBT /C	verlock 10 Tf
109	Physiological, biochemical, and molecular aspects of grafting in fruit trees. Horticulture Research, 2022, 9, .	2.9	37
110	Comparisons of Anatomical Characteristics and Transcriptomic Differences between Heterografts and Homografts in Pyrus L Plants, 2022, 11, 580.	1.6	4
111	High temperature perception in leaves promotes vascular regeneration and graft formation in distant tissues. Development (Cambridge), 2022, 149, .	1.2	18
112	Mix-and-match: an improved, fast and accessible protocol for hypocotyl micrografting of Arabidopsis seedlings with systemic ACC responses as a case study. Plant Methods, 2022, 18, 24.	1.9	2
113	Long-distance transport RNAs between rootstocks and scions and graft hybridization. Planta, 2022, 255, 96.	1.6	5

#	Article	IF	CITATIONS
114	Heterografted chrysanthemums enhance salt stress tolerance by integrating reactive oxygen species, soluble sugar, and proline. Horticulture Research, 2022, 9, .	2.9	21
115	A One-Step Grafting Methodology Can Adjust Stem Morphology and Increase THCA Yield in Medicinal Cannabis. Agronomy, 2022, 12, 852.	1.3	3
116	The hidden value of trees: Quantifying the ecosystem services of tree lineages and their major threats across the contiguous US., 2022, 1, e0000010.		14
117	Plant grafting and graft incompatibility: A review from the grapevine perspective. Scientia Horticulturae, 2022, 299, 111019.	1.7	16
118	Transcriptomic analysis of melon/squash graft junction reveals molecular mechanisms potentially underlying the graft union development. PeerJ, 2021, 9, e12569.	0.9	8
119	Rapid and Efficient Regeneration of Populus ussuriensis Kom. from Root Explants through Direct De Novo Shoot Organogenesis. Forests, 2022, 13, 806.	0.9	2
120	<i>MAX2</i> -dependent competence for callus formation and shoot regeneration from <i>Arabidopsis thaliana</i> root explants. Journal of Experimental Botany, 2022, 73, 6272-6291.	2.4	4
121	Invited Mini-Review Research Topic: Utilization of Protoplasts to Facilitate Gene Editing in Plants: Schemes for In Vitro Shoot Regeneration From Tissues and Protoplasts of Potato and Rapeseed: Implications of Bioengineering Such as Gene Editing of Broad-Leaved Plants. Frontiers in Genome Editing, O. 4.	2.7	4
122	Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. Plant Journal, 2022, 111, 1354-1367.	2.8	8
123	Systematic Analysis of the Grafting-Related Glucanase-Encoding GH9 Family Genes in Pepper, Tomato and Tobacco. Plants, 2022, 11, 2092.	1.6	1
124	The emergence of spiraling tracheary element bundles in incompatible grafts. PeerJ, 0, 10, e14020.	0.9	0
125	Grafting enhances plants drought resistance: Current understanding, mechanisms, and future perspectives. Frontiers in Plant Science, 0, 13, .	1.7	8
126	Modeling of the Device Operating Principle for Electrical Stimulation of Grafting Establishment of Woody Plants. Lecture Notes in Networks and Systems, 2023, , 667-673.	0.5	7
127	Auxin-Induced WUSCHEL-RELATED HOMEOBOX13 Mediates Asymmetric Activity of Callus Formation upon Cutting. Plant and Cell Physiology, 2023, 64, 305-316.	1.5	6
129	Comparing adventitious root-formation and graft-unification abilities in clones of Argania spinosa. Frontiers in Plant Science, $0,13,.$	1.7	2
130	Genetic Relationship, SPAD Reading, and Soluble Sugar Content as Indices for Evaluating the Graft Compatibility of Citrus Interstocks. Biology, 2022, 11, 1639.	1.3	1
131	Identity Grafting for Marginal Citizens: A Case Study of the Second Generation Migrant Workers in Beijing., 2022,, 1-23.		0
132	Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. Plant Communications, 2023, 4, 100497.	3.6	13

#	ARTICLE	IF	CITATIONS
133	Regenerative ability and micropropagation of <l>Petunia hybrid</l> in vitro. OvoÅi Rossii, 2022, , 24-28.	0.1	0
134	The mechanisms underpinning lateral gene transfer between grasses. Plants People Planet, 2023, 5, 672-682.	1.6	3
135	Grafting Technology with Locally Selected Eggplant Rootstocks for Improvement in Tomato Performance. Sustainability, 2023, 15, 855.	1.6	0
137	History, Phylogeny, Biodiversity, and New Computer-Based Tools for Efficient Micropropagation and Conservation of Pistachio (Pistacia spp.) Germplasm. Plants, 2023, 12, 323.	1.6	2
138	Effects of Plasma-Activated Water on Leaf and Fruit Biochemical Composition and Scion Growth in Apple. Plants, 2023, 12, 385.	1.6	7
139	Omics Profiles of Non-GM Tubers from Transgrafted Potato with a GM Scion. Food Safety (Tokyo,) Tj ETQq1 1 0.7	84314 rg	BT ₂ /Overlock
140	Diversity in anatomical features of rose rootstock root necks: Rosa canina †Inermis', †Pfäder', †Schmid's Ideal', Rosa laxa Retz. and Rosa multiflora Thunb Scientia Horticulturae, 2023, 316, 112004.	1.7	0
141	Advancing approach and toolbox in optimization of chloroplast genetic transformation technology. Journal of Integrative Agriculture, 2023, 22, 1951-1966.	1.7	1
143	The mRNA mobileome: challenges and opportunities for deciphering signals from the noise. Plant Cell, 2023, 35, 1817-1833.	3.1	4
144	A preliminary study on the root-knot nematode resistance of a cherry plum cultivar Mirabolano 29C. Czech Journal of Genetics and Plant Breeding, 2023, 59, 133-140.	0.4	1
145	Comparative physiological and biochemical mechanisms in diploid, triploid, and tetraploid watermelon (Citrullus lanatus L.) grafted by branches. Scientific Reports, 2023, 13, .	1.6	3
146	Transgene-Free Genome Editing for Biotic and Abiotic Stress Resistance in Sugarcane: Prospects and Challenges. Agronomy, 2023, 13, 1000.	1.3	3
159	Identity Grafting for Marginal Citizens: A Case Study of the Second-Generation Migrant Workers in Beijing., 2023,, 275-296.		0
166	LAW-Diffusion: Complex Scene Generation by Diffusion with Layouts., 2023,,.		0