N6-methyladenosine marks primary microRNAs for pro

Nature 519, 482-485 DOI: 10.1038/nature14281

Citation Report

#	ARTICLE	IF	CITATIONS
1	N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. Journal of Controlled Release, 2015, 217, 337-344.	4.8	365
2	Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. Journal of Translational Medicine, 2015, 13, 385.	1.8	64
3	MicroRNA Processing and Human Cancer. Journal of Clinical Medicine, 2015, 4, 1651-1667.	1.0	150
4	The Non-Coding RNA Journal Club: Highlights on Recent Papers. Non-coding RNA, 2015, 1, 87-93.	1.3	3
5	Epigenetic Codes Programing Class Switch Recombination. Frontiers in Immunology, 2015, 6, 405.	2.2	14
6	RNA-Binding Proteins in the Regulation of miRNA Activity: A Focus on Neuronal Functions. Biomolecules, 2015, 5, 2363-2387.	1.8	32
7	The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. Rna, 2015, 21, 2007-2022.	1.6	248
8	A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics. Advances in Experimental Medicine and Biology, 2015, 887, 1-14.	0.8	6
9	Sketching the distribution of transcriptomic features on RNA transcripts with Travis coordinates. , 2015, , .		0
10	RNA <i>N</i> ⁶ -methyladenosine methylation in post-transcriptional gene expression regulation. Genes and Development, 2015, 29, 1343-1355.	2.7	727
11	Genome-wide detection of high abundance <i>N</i> ⁶ -methyladenosine sites by microarray. Rna, 2015, 21, 1511-1518.	1.6	12
12	Drosha cuts the tethers of myelopoiesis. Nature Immunology, 2015, 16, 1110-1112.	7.0	2
13	HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. Cell, 2015, 162, 1299-1308.	13.5	1,077
14	The Genetics of Epigenetic Inheritance: Modes, Molecules, and Mechanisms. Quarterly Review of Biology, 2015, 90, 381-415.	0.0	51
15	Guitar: An R/Bioconductor Package for Gene Annotation Guided Transcriptomic Analysis of RNA-Related Genomic Features. BioMed Research International, 2016, 2016, 1-8.	0.9	95
16	Fto-Deficiency Affects the Gene and MicroRNA Expression Involved in Brown Adipogenesis and Browning of White Adipose Tissue in Mice. International Journal of Molecular Sciences, 2016, 17, 1851.	1.8	26
17	Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. Molecular Cell, 2016, 63, 306-317.	4.5	831
18	Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature, 2016, 534, 575-578.	13.7	807

#	Article	IF	CITATIONS
19	<i>N</i> ⁶ -Methyladenosine Methyltransferases and Demethylases: New Regulators of Stem Cell Pluripotency and Differentiation. Stem Cells and Development, 2016, 25, 1050-1059.	1.1	13
20	Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cellular and Molecular Life Sciences, 2016, 73, 3075-3095.	2.4	106
21	Recent advances in dynamic m ⁶ A RNA modification. Open Biology, 2016, 6, 160003.	1.5	265
22	<i>N</i> 6â€methyladenosine modification in <scp>mRNA</scp> : machinery, function and implications for health and diseases. FEBS Journal, 2016, 283, 1607-1630.	2.2	167
23	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Trends in Genetics, 2016, 32, 320-321.	2.9	115
24	Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. Journal of Cell Biology, 2016, 213, 15-22.	2.3	115
25	The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Molecular Cell, 2016, 62, 335-345.	4.5	1,148
26	N 6-Methyladenosine (m6A) Methylation in mRNA with A Dynamic and Reversible Epigenetic Modification. Molecular Biotechnology, 2016, 58, 450-459.	1.3	101
27	Evolving insights into RNA modifications and their functional diversity in the brain. Nature Neuroscience, 2016, 19, 1292-1298.	7.1	64
28	Deciphering the epitranscriptome: A green perspective. Journal of Integrative Plant Biology, 2016, 58, 822-835.	4.1	36
29	AthMethPre: a web server for the prediction and query of mRNA m ⁶ A sites in Arabidopsis thaliana. Molecular BioSystems, 2016, 12, 3333-3337.	2.9	54
30	TargetM6A: Identifying N ⁶ -Methyladenosine Sites From RNA Sequences via Position-Specific Nucleotide Propensities and a Support Vector Machine. IEEE Transactions on Nanobioscience, 2016, 15, 674-682.	2.2	73
31	Epigenetic basis of sensitization to stress, affective episodes, and stimulants: implications for illness progression and prevention. Bipolar Disorders, 2016, 18, 315-324.	1.1	57
32	New Edges of RNA Adenosine Methylation Modifications. Genomics, Proteomics and Bioinformatics, 2016, 14, 172-175.	3.0	2
33	Inflammatory cytokine IL6 cooperates with CUDR to aggravate hepatocyte-like stem cells malignant transformation through NF-κB signaling. Scientific Reports, 2016, 6, 36843.	1.6	24
34	Update: Mechanisms Underlying N 6 -Methyladenosine Modification of Eukaryotic mRNA. Trends in Genetics, 2016, 32, 763-773.	2.9	50
35	The role of MicroRNAs in human cancer. Signal Transduction and Targeted Therapy, 2016, 1, 15004.	7.1	1,695
36	Post-transcriptional modifications in development and stem cells. Development (Cambridge), 2016, 143, 3871-3881.	1.2	66

#	Article	IF	CITATIONS
37	Increased N6-methyladenosine in Human Sperm RNA as a Risk Factor for Asthenozoospermia. Scientific Reports, 2016, 6, 24345.	1.6	64
38	Review of renal cell carcinoma and its common subtypes in radiology. World Journal of Radiology, 2016, 8, 484.	0.5	115
39	A novel algorithm for calling mRNA m 6 A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics, 2016, 32, i378-i385.	1.8	81
40	Experience-Dependent Accumulation of <i>N</i> ⁶ -Methyladenosine in the Prefrontal Cortex Is Associated with Memory Processes in Mice. Journal of Neuroscience, 2016, 36, 6771-6777.	1.7	191
41	Messenger RNA modifications: Form, distribution, and function. Science, 2016, 352, 1408-1412.	6.0	479
42	MicroRNAs in cardiovascular ageing. Journal of Physiology, 2016, 594, 2085-2094.	1.3	44
43	An epigenetic view of developmental diseases: new targets, new therapies. World Journal of Pediatrics, 2016, 12, 291-297.	0.8	20
44	Cracking the epitranscriptome. Rna, 2016, 22, 169-174.	1.6	73
45	Design of Effective Primary MicroRNA Mimics With Different Basal Stem Conformations. Molecular Therapy - Nucleic Acids, 2016, 5, e278.	2.3	6
46	The emerging epitranscriptomics of long noncoding RNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 59-70.	0.9	71
47	Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m ⁶ A-demethylation of NANOG mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2047-56.	3.3	807
48	Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Molecular Cell, 2016, 61, 507-519.	4.5	1,432
49	Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chemical Biology, 2016, 23, 74-85.	2.5	219
50	N6-methyladenosine–encoded epitranscriptomics. Nature Structural and Molecular Biology, 2016, 23, 98-102.	3.6	266
51	Understanding the genetic liability to schizophrenia through the neuroepigenome. Schizophrenia Research, 2016, 177, 115-124.	1.1	22
52	SRAMP: prediction of mammalian N ⁶ -methyladenosine (m ⁶ A) sites based on sequence-derived features. Nucleic Acids Research, 2016, 44, e91-e91.	6.5	560
53	siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 639-649.	0.9	17
54	Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina. Journal of Biological Chemistry, 2016, 291, 4698-4710.	1.6	87

#	Article	IF	CITATIONS
55	N6-Methylated Adenosine in RNA: From Bacteria to Humans. Journal of Molecular Biology, 2016, 428, 2134-2145.	2.0	25
56	RNA epigenetics — chemical messages for posttranscriptional gene regulation. Current Opinion in Chemical Biology, 2016, 30, 46-51.	2.8	119
57	N6-Methyladenosine Modification in a Long Noncoding RNA Hairpin Predisposes Its Conformation to Protein Binding. Journal of Molecular Biology, 2016, 428, 822-833.	2.0	164
58	Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells. Nucleic Acids Research, 2016, 44, e26-e26.	6.5	112
59	RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Research, 2016, 44, D259-D265.	6.5	166
60	RNA modifications and structures cooperate to guide RNA–protein interactions. Nature Reviews Molecular Cell Biology, 2017, 18, 202-210.	16.1	225
61	Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation. Genome Research, 2017, 27, 374-384.	2.4	78
62	Antibodies specific for nucleic acid modifications. RNA Biology, 2017, 14, 1089-1098.	1.5	29
63	Regulatory Role of N ⁶ -methyladenosine (m ⁶ A) Methylation in RNA Processing and Human Diseases. Journal of Cellular Biochemistry, 2017, 118, 2534-2543.	1.2	127
64	AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Scientific Reports, 2017, 7, 42271.	1.6	201
65	5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Research, 2017, 27, 606-625.	5.7	666
66	Identification of factors required for m ⁶ A mRNA methylation in <i>Arabidopsis</i> reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytologist, 2017, 215, 157-172.	3.5	301
67	m 6 A in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends in Genetics, 2017, 33, 380-390.	2.9	338
68	Identification of N 6 -methyladenosine reader proteins. Methods, 2017, 126, 105-111.	1.9	5
69	Making the Mark: The Role of Adenosine Modifications in the Life Cycle of RNA Viruses. Cell Host and Microbe, 2017, 21, 661-669.	5.1	73
70	RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature, 2017, 543, 573-576.	13.7	685
71	The Epitranscriptome of Noncoding RNAs in Cancer. Cancer Discovery, 2017, 7, 359-368.	7.7	132
72	FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell. 2017. 31. 127-141.	7.7	1,139

		CITATION R	EPORT	
#	Article		IF	CITATIONS
73	Reversible RNA modifications in meiosis and pluripotency. Nature Methods, 2017, 14,	18-22.	9.0	33
74	Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Cher 2017, 12, 316-325.	nical Biology,	1.6	134
75	The emerging biology of RNA post-transcriptional modifications. RNA Biology, 2017, 1	4, 156-163.	1.5	177
76	Microprocessor Recruitment to Elongating RNA Polymerase II Is Required for Differenti of MicroRNAs. Cell Reports, 2017, 20, 3123-3134.	al Expression	2.9	23
77	Region-specific RNA m ⁶ A methylation represents a new layer of control regulatory network in the mouse brain. Open Biology, 2017, 7, 170166.	in the gene	1.5	126
78	m6A modulates haematopoietic stem and progenitor cell specification. Nature, 2017,	549, 273-276.	13.7	436
79	m6aViewer: software for the detection, analysis, and visualization of <>N ⁶ -methyladenosine peaks from m ⁶ A-seq/ME-RIP sec 2017, 23, 1493-1501.	quencing data. Rna,	1.6	34
80	MicroRNAs and RNA binding protein regulators of microRNAs in the control of pluripot reprogramming. Current Opinion in Genetics and Development, 2017, 46, 95-103.	ency and	1.5	33
81	Rethinking m ⁶ A Readers, Writers, and Erasers. Annual Review of Cell and Biology, 2017, 33, 319-342.	Developmental	4.0	833
82	Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. 2017, 27, 1100-1114.	Cell Research,	5.7	306
83	Web-based NGS data analysis using miRMaster: a large-scale meta-analysis of human r Acids Research, 2017, 45, 8731-8744.	niRNAs. Nucleic	6.5	63
84	Literature review of baseline information to support the risk assessment of RNAiâ€bas Supporting Publications, 2017, 14, 1246E.	ed GM plants. EFSA	0.3	15
85	MiR-106a-5p inhibits the cell migration and invasion of renal cell carcinoma through ta Cell Death and Disease, 2017, 8, e3155-e3155.	rgeting PAK5.	2.7	74
86	Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation 2017, 552, 126-131.	control. Nature,	13.7	833
87	The m6A pathway facilitates sex determination in Drosophila. Nature Communications	, 2017, 8, 15737.	5.8	154
88	RNA fate determination through cotranscriptional adenosine methylation and micropr binding. Nature Structural and Molecular Biology, 2017, 24, 561-569.	ocessor	3.6	117
89	The roles of microRNAs in regulation of mammalian spermatogenesis. Journal of Anima Biotechnology, 2017, 8, 35.	l Science and	2.1	88
90	Post-transcriptional gene regulation by mRNA modifications. Nature Reviews Molecula 2017, 18, 31-42.	r Cell Biology,	16.1	1,592

#	Article	IF	CITATIONS
91	METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N 6â€methyladenosineâ€dependent primary MicroRNA processing. Hepatology, 2017, 65, 529-543.	3.6	685
92	Interplay of mitochondrial metabolism and microRNAs. Cellular and Molecular Life Sciences, 2017, 74, 631-646.	2.4	77
93	Translating the epitranscriptome. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1375.	3.2	38
94	The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. International Journal of Oncology, 2018, 52, 621-629.	1.4	231
95	Role of DNA and RNA N6-Adenine Methylation in Regulating Stem Cell Fate. Current Stem Cell Research and Therapy, 2017, 13, 31-38.	0.6	39
96	The Epigenetics of Noncoding RNA. , 2017, , 47-59.		2
97	miR-21a-5p Contributes to Porcine Hemagglutinating Encephalomyelitis Virus Proliferation via Targeting CASK-Interactive Protein1 In vivo and vitro. Frontiers in Microbiology, 2017, 8, 304.	1.5	12
98	The DEAD-Box RNA Helicase DDX3 Interacts with m ⁶ A RNA Demethylase ALKBH5. Stem Cells International, 2017, 2017, 1-11.	1.2	53
99	RNA Epigenetics (Epitranscriptomics). , 2017, , 19-35.		0
100	C. elegans SUP-46, an HNRNPM family RNA-binding protein that prevents paternally-mediated epigenetic sterility. BMC Biology, 2017, 15, 61.	1.7	6
101	Epitranscriptomic influences on development and disease. Genome Biology, 2017, 18, 197.	3.8	97
102	Neural Stem Cell Activation and the Role of Protein Synthesis. Brain Plasticity, 2017, 3, 27-41.	1.9	30
103	MicroRNA biogenesis: Epigenetic modifications as another layer of complexity to the microRNA expression regulation. Acta Biochimica Polonica, 2017, 63, 717-723.	0.3	25
104	Current Progress and Future Prospects in Nucleic Acid Based Therapeutics. , 2017, , 280-313.		4
105	Deciphering the Epitranscriptome in Cancer. Trends in Cancer, 2018, 4, 207-221.	3.8	39
106	RNA tales $\hat{a} \in $ how embryos read and discard messages from mom. Journal of Cell Science, 2018, 131, .	1.2	30
107	Plant microRNAs: Front line players against invading pathogens. Microbial Pathogenesis, 2018, 118, 9-17.	1.3	48
108	SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Research, 2018, 46, 5195-5208.	6.5	210

#	Article	IF	CITATIONS
109	N 6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Research, 2018, 46, 3906-3920.	6.5	208
110	RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Research, 2018, 28, 507-517.	5.7	586
111	Structural insights into the RNA methyltransferase domain of METTL16. Scientific Reports, 2018, 8, 5311.	1.6	80
112	MicroRNAs: crucial regulators of placental development. Reproduction, 2018, 155, R259-R271.	1.1	125
114	N6-methyladenosine links RNA metabolism to cancer progression. Cell Death and Disease, 2018, 9, 124.	2.7	381
115	Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nature Communications, 2018, 9, 420.	5.8	261
116	<i>Mettl3</i> Mutation Disrupts Gamete Maturation and Reduces Fertility in Zebrafish. Genetics, 2018, 208, 729-743.	1.2	77
117	Recent advances in extracellular vesicles enriched with non-coding RNAs related to cancers. Genes and Diseases, 2018, 5, 36-42.	1.5	20
118	RNA methylation regulates hematopoietic stem/progenitor cell specification. Science China Life Sciences, 2018, 61, 610-612.	2.3	3
119	FTO regulates the chemoâ€radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting βâ€catenin through mRNA demethylation. Molecular Carcinogenesis, 2018, 57, 590-597.	1.3	267
120	MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Research, 2018, 46, D281-D287.	6.5	115
121	Mechanism of N6-methyladenosine modification and its emerging role in cancer. , 2018, 189, 173-183.		31
122	Multiple functions of m6A RNA methylation in cancer. Journal of Hematology and Oncology, 2018, 11, 48.	6.9	255
123	Structural Insights into N 6 -methyladenosine (m 6 A) Modification in the Transcriptome. Genomics, Proteomics and Bioinformatics, 2018, 16, 85-98.	3.0	56
124	Regulation of primary micro <scp>RNA</scp> processing. FEBS Letters, 2018, 592, 1980-1996.	1.3	57
125	RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by <i>N</i> ⁶ â€methyladenosine (m ⁶ A). Reviews in Medical Virology, 2018, 28, e1983.	3.9	66
126	N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells. Toxicology Letters, 2018, 292, 1-11.	0.4	70
127	Regulatory Functions of MicroRNAs in Male Reproductive Health: A New Approach to Understanding Male Infertility. Reproductive Sciences, 2018, , 193371911876597.	1.1	11

#	Article	IF	CITATIONS
128	Role of N6-methyladenosine modification in cancer. Current Opinion in Genetics and Development, 2018, 48, 1-7.	1.5	178
129	The emerging role of mRNA methylation in normal and pathological behavior. Genes, Brain and Behavior, 2018, 17, e12428.	1.1	65
130	Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene, 2018, 37, 522-533.	2.6	486
131	RNA N6â€methyladenosine methyltransferaseâ€like 3 promotes liver cancer progression through YTHDF2â€dependent posttranscriptional silencing of SOCS2. Hepatology, 2018, 67, 2254-2270.	3.6	980
132	Emerging roles of DROSHA beyond primary microRNA processing. RNA Biology, 2018, 15, 186-193.	1.5	40
133	Potential link between m 6 A modification and systemic lupus erythematosus. Molecular Immunology, 2018, 93, 55-63.	1.0	68
134	Aberrant expression of enzymes regulating m ⁶ A mRNA methylation: implication in cancer. Cancer Biology and Medicine, 2018, 15, 323.	1.4	86
136	N6-Methyladenosine in RNA and DNA: An Epitranscriptomic and Epigenetic Player Implicated in Determination of Stem Cell Fate. Stem Cells International, 2018, 2018, 1-18.	1.2	52
137	M6AMRFS: Robust Prediction of N6-Methyladenosine Sites With Sequence-Based Features in Multiple Species, Frontiers in Genetics, 2018, 9, 495.	1.1	90
138	RNome and Chromatin Dynamics. , 2018, , 79-112.		0
138 139	RNome and Chromatin Dynamics. , 2018, , 79-112. N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596.	1.0	0 30
138 139 140	RNome and Chromatin Dynamics. , 2018, , 79-112. N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596. Orchestrated Role of microRNAs in Skin Development and Regeneration. Contributions To Management Science, 2018, , 175-196.	1.0	0 30 0
138 139 140 141	RNome and Chromatin Dynamics. , 2018, , 79-112. N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596. Orchestrated Role of microRNAs in Skin Development and Regeneration. Contributions To Management Science, 2018, , 175-196. Identification of epistatic interactions between the human RNA demethylases FTO and ALKBH5 with gene set enrichment analysis informed by differential methylation. BMC Proceedings, 2018, 12, 59.	1.0 0.4 1.8	0 30 0 7
138 139 140 141	RNome and Chromatin Dynamics., 2018, , 79-112. N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596. Orchestrated Role of microRNAs in Skin Development and Regeneration. Contributions To Management Science, 2018, 175-196. Identification of epistatic interactions between the human RNA demethylases FTO and ALKBH5 with gene set enrichment analysis informed by differential methylation. BMC Proceedings, 2018, 12, 59. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death and Disease, 2018, 9, 1091.	1.0 0.4 1.8 2.7	0 30 0 7 182
 138 139 140 141 142 143 	RNome and Chromatin Dynamics. , 2018, , 79-112. N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596. Orchestrated Role of microRNAs in Skin Development and Regeneration. Contributions To Management Science, 2018, , 175-196. Identification of epistatic interactions between the human RNA demethylases FTO and ALKBH5 with gene set enrichment analysis informed by differential methylation. BMC Proceedings, 2018, 12, 59. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death and Disease, 2018, 9, 1091. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biology, 2018, 16, e2006092.	1.0 0.4 1.8 2.7 2.6	0 30 0 7 182 112
 138 139 140 141 142 143 144 	RNome and Chromatin Dynamics., 2018, 79-112. N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596. Orchestrated Role of microRNAs in Skin Development and Regeneration. Contributions To Management Science, 2018, , 175-196. Identification of epistatic interactions between the human RNA demethylases FTO and ALKBH5 with gene set enrichment analysis informed by differential methylation. BMC Proceedings, 2018, 12, 59. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death and Disease, 2018, 9, 1091. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biology, 2018, 16, e2006092. Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018,	1.0 0.4 1.8 2.7 2.6 0.1	0 30 0 7 182 112
 138 139 140 141 142 143 144 145 	RNome and Chromatin Dynamics. , 2018, , 79-112. N6-methyladenosine (m6A): Revisiting the Old with Focus on New, an Arabidopsis thaliana Centered Review. Genes, 2018, 9, 596. Orchestrated Role of microRNAs in Skin Development and Regeneration. Contributions To Management Science, 2018, 175-196. Identification of epistatic interactions between the human RNA demethylases FTO and ALKBH5 with gene set enrichment analysis informed by differential methylation. BMC Proceedings, 2018, 12, 59. circRNA_104075 stimulates YAP-dependent tumorigenesis through the regulation of HNF4a and may serve as a diagnostic marker in hepatocellular carcinoma. Cell Death and Disease, 2018, 9, 1091. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biology, 2018, 16, e2006092. Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, ,. Chemical Modifications in the Life of an mRNA Transcript. Annual Review of Genetics, 2018, 52, 349-372.	1.0 0.4 1.8 2.7 2.6 0.1 3.2	0 30 0 7 182 112 0 147

#	Article	IF	CITATIONS
147	Adenosine methylation as a molecular imprint defining the fate of <scp>RNA</scp> . FEBS Letters, 2018, 592, 2845-2859.	1.3	41
148	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	5.7	1,045
149	m 6 A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochemical and Biophysical Research Communications, 2018, 502, 456-464.	1.0	200
150	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	5.7	203
151	Identification of Natural Compound Radicicol as a Potent FTO Inhibitor. Molecular Pharmaceutics, 2018, 15, 4092-4098.	2.3	59
152	RNA Methylation in ncRNA: Classes, Detection, and Molecular Associations. Frontiers in Genetics, 2018, 9, 243.	1.1	40
153	Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Frontiers in Neuroscience, 2018, 12, 85.	1.4	27
154	Epigenetics and MicroRNAs in Cancer. International Journal of Molecular Sciences, 2018, 19, 459.	1.8	135
155	Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain. Non-coding RNA, 2018, 4, 15.	1.3	15
156	Topological Characterization of Human and Mouse m ⁵ C Epitranscriptome Revealed by Bisulfite Sequencing. International Journal of Genomics, 2018, 2018, 1-19.	0.8	17
157	Enhancing Epitranscriptome Module Detection from m6A-Seq Data Using Threshold-Based Measurement Weighting Strategy. BioMed Research International, 2018, 2018, 1-15.	0.9	10
158	Comparative Analysis of Human Genes Frequently and Occasionally Regulated by m 6 A Modification. Genomics, Proteomics and Bioinformatics, 2018, 16, 127-135.	3.0	3
159	N6-Methyladenosine Role in Acute Myeloid Leukaemia. International Journal of Molecular Sciences, 2018, 19, 2345.	1.8	34
160	Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Human Molecular Genetics, 2018, 27, 3936-3950.	1.4	129
161	Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 2018, 9, 402.	1.5	2,975
162	The m6Aâ€epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. Journal of Neurochemistry, 2018, 147, 137-152.	2.1	120
163	RNA methylation in nuclear preâ€mRNA processing. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1489.	3.2	37
164	Integration of deep feature representations and handcrafted features to improve the prediction of N6-methyladenosine sites. Neurocomputing, 2019, 324, 3-9.	3.5	130

ARTICLE IF CITATIONS # FTO is a transcriptional repressor to auto-regulate its own gene and potentially associated with 1.5 18 165 homeostasis of body weight. Journal of Molecular Cell Biology, 2019, 11, 118-132. The Role of Dynamic m⁶A <scp>RNA</scp> Methylation in Photobiology. Photochemistry 1.3 and Photobiology, 2019, 95, 95-104. Epigenetics in Neurodevelopment: Emerging Role of Circular RNA. Frontiers in Cellular Neuroscience, 167 1.8 60 2019, 13, 327. <i>N</i>⁶-methyl adenosine in siRNA evades immune response without reducing RNAi 168 activity. Nucleosides, Nucleotides and Nucleic Acids, 2019, 38, 972-979. Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay. Molecular Cell, 2019, 75, 169 4.5 54 967-981.e9. Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine and Biology, 170 0.8 2019,,. Marking RNA: m6A writers, readers, and functions in Arabidopsis. Journal of Molecular Cell Biology, 171 1.5 73 2019, 11, 899-910. Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential. International Journal of 1.8 19 Molecular Sciences, 2019, 20, 3643. iN6-Methyl (5-step): Identifying RNA N6-methyladenosine sites using deep learning mode via Chou's 173 5-step rules and Chou's general PseKNC. Chemometrics and Intelligent Laboratory Systems, 2019, 193, 1.8 83 103811. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA 174 1.6 transcriptome when overexpressed in MCF-7 cells. Scientific Reports, 2019, 9, 9430. N6-methyladenosine mRNA marking promotes selective translation of regulons required for human 175 5.8 42 erythropoiesis. Nature Communications, 2019, 10, 4596. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition 389 and metastasis of gastric cancer. Molecular Cancer, 2019, 18, 142. Quantitative assessment of the ecological effects of land use/cover change in the arid region of 177 1.3 11 Northwest China. Environmental Monitoring and Assessment, 2019, 191, 704. Flexible Binding of m⁶A Reader Protein YTHDC1 to Its Preferred RNA Motif. Journal of Chemical Theory and Computation, 2019, 15, 7004-7014. 178 2.3 Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling 179 249 3.5pathway. Journal of Experimental and Clinical Cancer Research, 2019, 38, 393. Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 16.1 1,403 608-624. Readers of the m6A epitranscriptomic code. Biochimica Et Biophysica Acta - Gene Regulatory 181 0.9 40 Mechanisms, 2019, 1862, 329-342. Identifying N6-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer. Journal of Theoretical Biology, 2019, 467, 39-47.

#	Article	IF	CITATIONS
183	The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene, 2019, 38, 3667-3680.	2.6	290
184	Interplay Between N6-Methyladenosine (m6A) and Non-coding RNAs in Cell Development and Cancer. Frontiers in Cell and Developmental Biology, 2019, 7, 116.	1.8	97
185	METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Molecular Cancer, 2019, 18, 110.	7.9	475
186	m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nature Communications, 2019, 10, 2782.	5.8	468
187	The Fat Mass and Obesity-Associated Protein (FTO) Regulates Locomotor Responses to Novelty via D2R Medium Spiny Neurons. Cell Reports, 2019, 27, 3182-3198.e9.	2.9	19
188	mRNA methylation in cell senescence. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1547.	3.2	35
189	The role of m6A RNA methylation in human cancer. Molecular Cancer, 2019, 18, 103.	7.9	714
190	METTL3/m6A/miRNA-873-5p Attenuated Oxidative Stress and Apoptosis in Colistin-Induced Kidney Injury by Modulating Keap1/Nrf2 Pathway. Frontiers in Pharmacology, 2019, 10, 517.	1.6	106
191	Non-coding RNA regulation in reproduction: Their potential use as biomarkers. Non-coding RNA Research, 2019, 4, 54-62.	2.4	42
192	Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019, 74, 640-650.	4.5	1,096
193	A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Frontiers in Immunology, 2019, 10, 922.	2.2	209
194	Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nature Communications, 2019, 10, 1858.	5.8	242
195	Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell, 2019, 35, 677-691.e10.	7.7	516
196	RNA modifications regulating cell fate in cancer. Nature Cell Biology, 2019, 21, 552-559.	4.6	257
197	The RNA N6-methyladenosine modification landscape of human fetal tissues. Nature Cell Biology, 2019, 21, 651-661.	4.6	124
198	The interactome of a family of potential methyltransferases in HeLa cells. Scientific Reports, 2019, 9, 6584.	1.6	52
199	Chemical RNA Modifications: The Plant Epitranscriptome. , 2019, , 291-310.		1
200	Nucleotide resolution sequencing of N4-acetylcytidine in RNA. Methods in Enzymology, 2019, 621, 31-51.	0.4	25

	CITATION	Report	
# 201	ARTICLE METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation. Molecular Cell, 2019, 74, 1278-1290.e9.	IF 4.5	Citations 288
202	RNA structure maps across mammalian cellular compartments. Nature Structural and Molecular Biology, 2019, 26, 322-330.	3.6	183
203	The Critical Role of RNA m6A Methylation in Cancer. Cancer Research, 2019, 79, 1285-1292.	0.4	505
204	N6-Methyladenosine and Viral Infection. Frontiers in Microbiology, 2019, 10, 417.	1.5	55
205	Functions of RNA N6-methyladenosine modification in cancer progression. Molecular Biology Reports, 2019, 46, 2567-2575.	1.0	32
206	Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Reports, 2019, 26, 3762-3771.e5.	2.9	121
207	Transcriptomeâ€wide analysis of N6â€methyladenosine uncovers its regulatory role in gene expression in the lepidopteran <i>Bombyx mori</i> . Insect Molecular Biology, 2019, 28, 703-715.	1.0	38
208	Regulation of Gene Expression by N-methyladenosine in Cancer. Trends in Cell Biology, 2019, 29, 487-499.	3.6	159
209	Tracking RNA structures as RNAs transit through the cell. Nature Structural and Molecular Biology, 2019, 26, 256-257.	3.6	3
210	The circ <scp>RNA</scp> –micro <scp>RNA</scp> code: emerging implications for cancer diagnosis and treatment. Molecular Oncology, 2019, 13, 669-680.	2.1	300
211	Colocalization of m ⁶ A and G-Quadruplex-Forming Sequences in Viral RNA (HIV, Zika,) Tj ETQq0 C ACS Central Science, 2019, 5, 218-228.	0 rgBT /Ove 5.3	rlock 10 Tf 50 39
212	The roles of microRNAs in epigenetic regulation. Current Opinion in Chemical Biology, 2019, 51, 11-17.	2.8	305
213	N6-Methyladenosine Landscape of Glioma Stem-Like Cells: METTL3 Is Essential for the Expression of Actively Transcribed Genes and Sustenance of the Oncogenic Signaling. Genes, 2019, 10, 141.	1.0	82
214	Functions of RNA N6-methyladenosine modification in cancer progression. Molecular Biology Reports, 2019, 46, 1383-1391.	1.0	18
215	WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach. Nucleic Acids Research, 2019, 47, e41-e41.	6.5	177
216	Antibody-Free Assay for RNA Methyltransferase Activity Analysis. Journal of Visualized Experiments, 2019, , .	0.2	0
217	The interplay between m6A RNA methylation and noncoding RNA in cancer. Journal of Hematology and Oncology, 2019, 12, 121.	6.9	367
218	N6-Methyladenosine: A Novel RNA Imprint in Human Cancer. Frontiers in Oncology, 2019, 9, 1407.	1.3	22

#	Article	IF	CITATIONS
219	Hematopoietic stem cells: self-renewal and expansion. Current Opinion in Hematology, 2019, 26, 258-265.	1.2	13
220	Atlas of quantitativeÂsingle-base-resolution N6-methyl-adenine methylomes. Nature Communications, 2019, 10, 5636.	5.8	145
221	The m6A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell Cancer Cell International, 2019, 19, 321.	1.8	113
223	Multiple Functions and Mechanisms Underlying the Role of METTL3 in Human Cancers. Frontiers in Oncology, 2019, 9, 1403.	1.3	62
224	FTO Knockout Causes Chromosome Instability and G2/M Arrest in Mouse GC-1 Cells. Frontiers in Genetics, 2018, 9, 732.	1.1	28
225	The m ⁶ A Writer: Rise of a Machine for Growing Tasks. Biochemistry, 2019, 58, 363-378.	1.2	117
226	The role of RNA adenosine demethylases in the control of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 343-355.	0.9	26
227	m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 310-318.	0.9	132
228	Modulation of Bacterial sRNAs Activity by Epigenetic Modifications: Inputs from the Eukaryotic miRNAs. Genes, 2019, 10, 22.	1.0	10
229	The Biology of m6A RNA Methylation in Normal and Malignant Hematopoiesis. Cancer Discovery, 2019, 9, 25-33.	7.7	122
230	Novel positioning from obesity to cancer: FTO, an m6A RNA demethylase, regulates tumour progression. Journal of Cancer Research and Clinical Oncology, 2019, 145, 19-29.	1.2	101
231	N6â€methyladenosine demethylase <scp>FTO</scp> suppresses clear cell renal cell carcinoma through a novel <scp>FTO</scp> â€ <scp>PGC</scp> â€Iα signalling axis. Journal of Cellular and Molecular Medicine, 2019, 23, 2163-2173.	1.6	110
232	Epitranscriptomics: Correlation of N6-methyladenosine RNA methylation and pathway dysregulation in the hippocampus of HIV transgenic rats. PLoS ONE, 2019, 14, e0203566.	1.1	9
233	Epigenetics in Hyperphagia. , 2019, , 603-621.		0
234	A dynamic reversible RNA N ⁶ â€methyladenosine modification: current status and perspectives. Journal of Cellular Physiology, 2019, 234, 7948-7956.	2.0	101
235	Post-transcriptional control of miRNA biogenesis. Rna, 2019, 25, 1-16.	1.6	390
236	RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry, 2019, 58, 312-329.	1.2	41
237	N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nature Chemical Biology, 2019, 15, 88-94.	3.9	258

#	Article	IF	CITATIONS
238	The m6A‑methylase complex and mRNA export. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 319-328.	0.9	40
239	Dynamic and reversible RNA <i>N</i> ⁶ â€methyladenosine methylation. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1507.	3.2	31
240	In silico genomeâ€wide identification of m6Aâ€associated SNPs as potential functional variants for periodontitis. Journal of Cellular Physiology, 2020, 235, 900-908.	2.0	32
241	Reading Chemical Modifications in the Transcriptome. Journal of Molecular Biology, 2020, 432, 1824-1839.	2.0	18
242	Emerging role of m ⁶ A RNA methylation in nutritional physiology and metabolism. Obesity Reviews, 2020, 21, e12942.	3.1	71
243	TNF-α suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m6A-demethylation of Nanog mRNA. Science China Life Sciences, 2020, 63, 80-91.	2.3	22
244	Noncoding RNA in Liver Regeneration—From Molecular Mechanisms to Clinical Implications. Seminars in Liver Disease, 2020, 40, 070-083.	1.8	8
245	N ⁶ -methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats. Nanotoxicology, 2020, 14, 1-20.	1.6	56
246	Emerging Roles of MicroRNAs and Long Noncoding RNAs in Cadmium Toxicity. Biological Trace Element Research, 2020, 195, 481-490.	1.9	22
247	Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. Briefings in Bioinformatics, 2020, 21, 1676-1696.	3.2	98
248	New sights in cancer: Component and function of N6-methyladenosine modification. Biomedicine and Pharmacotherapy, 2020, 122, 109694.	2.5	20
249	A role for m6A RNA methylation in heart failure development?. European Journal of Heart Failure, 2020, 22, 67-69.	2.9	8
250	N6-Methyladenosine: A Potential Breakthrough for Human Cancer. Molecular Therapy - Nucleic Acids, 2020, 19, 804-813.	2.3	36
251	Computational screening of potential regulators for mRNA-protein expression level discrepancy. Biochemical and Biophysical Research Communications, 2020, 523, 196-201.	1.0	11
252	Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nature Chemical Biology, 2020, 16, 160-169.	3.9	68
254	METTL3 regulates inflammatory pain by modulating m ⁶ Aâ€dependent priâ€miRâ€365â€3p proces FASEB Journal, 2020, 34, 122-132.	sing 0.2	36
255	m ⁶ A RNA modification modulates gene expression and cancer-related pathways in clear cell renal cell carcinoma. Epigenomics, 2020, 12, 87-99.	1.0	44
256	An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells, 2020, 9, 61.	1.8	31

#	Article	IF	CITATIONS
257	Systems and Synthetic microRNA Biology: From Biogenesis to Disease Pathogenesis. International Journal of Molecular Sciences, 2020, 21, 132.	1.8	157
258	N6-Adenosine Methylation of miRNA-200b-3p Influences Its Functionality and Is a Theranostic Tool. Molecular Therapy - Nucleic Acids, 2020, 22, 72-83.	2.3	8
259	Circulating Exosomes Control CD4+ T Cell Immunometabolic Functions via the Transfer of miR-142 as a Novel Mediator in Myocarditis. Molecular Therapy, 2020, 28, 2605-2620.	3.7	18
260	Fusarium infection alters the m6A-modified transcript landscape in the cornea. Experimental Eye Research, 2020, 200, 108216.	1.2	13
261	Determination of primary microRNA processing in clinical samples by targeted pri-miR-sequencing. Rna, 2020, 26, 1726-1730.	1.6	5
262	New Insights on the Role of N6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Frontiers in Molecular Biosciences, 2020, 7, 555372.	1.6	19
263	METTL3 promotes ILâ€1β–induced degeneration of endplate chondrocytes by driving m6Aâ€dependent maturation of miRâ€126â€5p. Journal of Cellular and Molecular Medicine, 2020, 24, 14013-14025.	1.6	21
264	RNA N6-Methyladenosine and the Regulation of RNA Localization and Function in the Brain. Trends in Neurosciences, 2020, 43, 1011-1023.	4.2	36
265	microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF1 to inhibit p65 mRNA translation. International Immunopharmacology, 2020, 88, 106937.	1.7	65
266	N6-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer. Cell Death and Disease, 2020, 11, 836.	2.7	50
267	Novel insights into the roles of RNA N-methyladenosine modification in regulating gene expression during environmental exposures. Chemosphere, 2020, 261, 127757.	4.2	13
268	A CNN-Based RNA N6-Methyladenosine Site Predictor for Multiple Species Using Heterogeneous Features Representation. IEEE Access, 2020, 8, 138203-138209.	2.6	49
269	Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes and Diseases, 2020, 7, 585-597.	1.5	23
270	Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Computational and Structural Biotechnology Journal, 2020, 18, 1587-1604.	1.9	38
271	N6-methyladenosine as a Novel Regulator of Brain Physiology and Diseases. Current Medical Science, 2020, 40, 401-406.	0.7	3
272	N6-methyladenine modification in noncoding RNAs and its function in cancer. Biomarker Research, 2020, 8, 61.	2.8	28
273	N-methyladenosine methyltransferase plays a role in hypoxic preconditioning partially through the interaction with IncRNA H19. Acta Biochimica Et Biophysica Sinica, 2020, 52, 1306-1315.	0.9	14
274	RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut, 2021, 70, 1698-1712.	6.1	63

#	Article	IF	CITATIONS
275	Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 584283.	1.8	36
277	Emerging roles of N6-methyladenosine (m6A) modification in breast cancer. Cell and Bioscience, 2020, 10, 136.	2.1	20
278	Advances in the profiling of N6-methyladenosine (m6A) modifications. Biotechnology Advances, 2020, 45, 107656.	6.0	55
279	Crosstalk between RNA m6A Modification and Non-coding RNA Contributes to Cancer Growth and Progression. Molecular Therapy - Nucleic Acids, 2020, 22, 62-71.	2.3	59
280	Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Molecular Cancer, 2020, 19, 121.	7.9	148
281	Methylation of N6-adenosine (m6A) modification in miRNAs and its implications in immunity. Epigenomics, 2020, 12, 1083-1085.	1.0	7
282	METTL3 Induces AAA Development and Progression by Modulating N6-Methyladenosine-Dependent Primary miR34a Processing. Molecular Therapy - Nucleic Acids, 2020, 21, 394-411.	2.3	34
283	Reshaping the role of m6A modification in cancer transcriptome: a review. Cancer Cell International, 2020, 20, 353.	1.8	37
284	Recent trends in targeting miRNAs for cancer therapy. Journal of Pharmacy and Pharmacology, 2020, 72, 1732-1749.	1.2	62
285	Sex-Dependent RNA Editing and N6-adenosine RNA Methylation Profiling in the Gonads of a Fish, the Olive Flounder (Paralichthys olivaceus). Frontiers in Cell and Developmental Biology, 2020, 8, 751.	1.8	13
286	Chidamide increases the sensitivity of Non-small Cell Lung Cancer to Crizotinib by decreasing c- <i>MET</i> mRNA methylation. International Journal of Biological Sciences, 2020, 16, 2595-2611.	2.6	31
287	Roles of N6-Methyladenosine (m6A) in Stem Cell Fate Decisions and Early Embryonic Development in Mammals. Frontiers in Cell and Developmental Biology, 2020, 8, 782.	1.8	57
288	mRNA adenosine methylase (MTA) deposits m ⁶ A on pri-miRNAs to modulate miRNA biogenesis in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21785-21795.	3.3	83
289	Insight into m ⁶ A methylation from occurrence to functions. Open Biology, 2020, 10, 200091.	1.5	24
290	Roles of N ⁶ â€methyladenosine (m ⁶ A) RNA modifications in urological cancers. Journal of Cellular and Molecular Medicine, 2020, 24, 10302-10310.	1.6	10
291	Epitranscriptomic regulation by m ⁶ A RNA methylation in brain development and diseases. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2331-2349.	2.4	46
292	ASIC1a regulates miRâ€350/SPRY2 by N ⁶ â€methyladenosine to promote liver fibrosis. FASEB Journal, 2020, 34, 14371-14388.	0.2	32
293	The Role of RNA Epigenetic Modification in Normal and Malignant Hematopoiesis. Current Stem Cell Reports, 2020, 6, 144-155.	0.7	12

#	Article	IF	CITATIONS
294	YTHDF2, a protein repressed by miR-145, regulates proliferation, apoptosis, and migration in ovarian cancer cells. Journal of Ovarian Research, 2020, 13, 111.	1.3	53
295	m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Molecular Biotechnology, 2020, 62, 467-484.	1.3	40
296	METTL6 is a tRNA m ³ C methyltransferase that regulates pluripotency and tumor cell growth. Science Advances, 2020, 6, eaaz4551.	4.7	51
297	m6A Reader: Epitranscriptome Target Prediction and Functional Characterization of N6-Methyladenosine (m6A) Readers. Frontiers in Cell and Developmental Biology, 2020, 8, 741.	1.8	31
298	TRADES: Targeted RNA Demethylation by SunTag System. Advanced Science, 2020, 7, 2001402.	5.6	27
299	Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Communication and Signaling, 2020, 18, 149.	2.7	98
300	Epitranscriptomics in the Heart: a Focus on m6A. Current Heart Failure Reports, 2020, 17, 205-212.	1.3	14
301	Propofol-induced MiR-20b expression initiates endogenous cellular signal changes mitigating hypoxia/re-oxygenation-induced endothelial autophagy in vitro. Cell Death and Disease, 2020, 11, 681.	2.7	16
302	m6A Regulates Liver Metabolic Disorders and Hepatogenous Diabetes. Genomics, Proteomics and Bioinformatics, 2020, 18, 371-383.	3.0	49
303	Succinate Dehydrogenase and Ribonucleic Acid Networks in Cancer and Other Diseases. Cancers, 2020, 12, 3237.	1.7	27
304	Molecular characterization, biological function, tumor microenvironment association and clinical significance of m6A regulators in lung adenocarcinoma. Briefings in Bioinformatics, 2021, 22, .	3.2	100
305	Functional Implications of Active N6-Methyladenosine in Plants. Frontiers in Cell and Developmental Biology, 2020, 8, 291.	1.8	30
306	Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations. Cancers, 2020, 12, 1245.	1.7	95
307	YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene, 2020, 39, 4507-4518.	2.6	218
308	Identification of a m6A RNA methylation regulators-based signature for predicting the prognosis of clear cell renal carcinoma. Cancer Cell International, 2020, 20, 157.	1.8	38
309	The potential role of RNA N6-methyladenosine in Cancer progression. Molecular Cancer, 2020, 19, 88.	7.9	516
310	SAFB2 Enables the Processing of Suboptimal Stem-Loop Structures in Clustered Primary miRNA Transcripts. Molecular Cell, 2020, 78, 876-889.e6.	4.5	43
311	iMethyl-Deep: N6 Methyladenosine Identification of Yeast Genome with Automatic Feature Extraction Technique by Using Deep Learning Algorithm. Genes, 2020, 11, 529.	1.0	23

#	Article	IF	CITATIONS
312	RNA N-6-methyladenosine enzymes and resistance of cancer cells to chemotherapy and radiotherapy. Epigenomics, 2020, 12, 801-809.	1.0	32
313	MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nature Reviews Neurology, 2020, 16, 506-519.	4.9	92
314	Methyltransferase 3 Mediated miRNA m6A Methylation Promotes Stress Granule Formation in the Early Stage of Acute Ischemic Stroke. Frontiers in Molecular Neuroscience, 2020, 13, 103.	1.4	70
315	Regulation of breast cancer metastasis signaling by miRNAs. Cancer and Metastasis Reviews, 2020, 39, 837-886.	2.7	87
316	Deoxycholic acid modulates the progression of gallbladder cancer through N6-methyladenosine-dependent microRNA maturation. Oncogene, 2020, 39, 4983-5000.	2.6	48
317	LITHOPHONE: Improving IncRNA Methylation Site Prediction Using an Ensemble Predictor. Frontiers in Genetics, 2020, 11, 545.	1.1	16
318	FTO regulates ocular angiogenesis via m6A-YTHDF2-dependent mechanism. Experimental Eye Research, 2020, 197, 108107.	1.2	27
319	Integration Analysis of m6A-SNPs and eQTLs Associated With Sepsis Reveals Platelet Degranulation and Staphylococcus aureus Infection are Mediated by m6A mRNA Methylation. Frontiers in Genetics, 2020, 11, 7.	1.1	24
320	Smallâ€Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer. ChemMedChem, 2020, 15, 744-748.	1.6	106
321	m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37, 270-288.	7.7	688
322	Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Molecular Cancer, 2020, 19, 64.	7.9	69
323	Expression Status And Prognostic Value Of M6A-associated Genes in Gastric Cancer. Journal of Cancer, 2020, 11, 3027-3040.	1.2	67
324	m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer. Molecular Cancer, 2020, 19, 53.	7.9	704
325	Multiple m6A RNA methylation modulators promote the malignant progression of hepatocellular carcinoma and affect its clinical prognosis. BMC Cancer, 2020, 20, 165.	1.1	51
326	Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Molecular Cancer, 2020, 19, 47.	7.9	150
327	The epitranscriptome landscape of small noncoding RNAs in stem cells. Stem Cells, 2020, 38, 1216-1228.	1.4	12
328	Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nature Biotechnology, 2020, 38, 1431-1440.	9.4	173
329	Association between <i>METTL3</i> gene polymorphisms and neuroblastoma susceptibility: A nineâ€centre caseâ€control study. Journal of Cellular and Molecular Medicine, 2020, 24, 9280-9286.	1.6	20

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
330	Dynamic N6-methyladenosine RNA methylation in brain and diseases. Epigenomics, 2020, 12, 371-380.	1.0	17
331	Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Molecular Cancer, 2020, 19, 36.	7.9	60
332	The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. Advances in Protein Chemistry and Structural Biology, 2020, 120, 237-312.	1.0	26
333	GR-mediated FTO transactivation induces lipid accumulation in hepatocytes via demethylation of m ⁶ A on lipogenic mRNAs. RNA Biology, 2020, 17, 930-942.	1.5	50
334	Two genomes, one cell: Mitochondrial-nuclear coordination via epigenetic pathways. Molecular Metabolism, 2020, 38, 100942.	3.0	55
335	Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population. Carcinogenesis, 2020, 41, 761-768.	1.3	35
336	Deep analysis of RNA N6-adenosine methylation (m6A) patterns in human cells. NAR Genomics and Bioinformatics, 2020, 2, Iqaa007.	1.5	17
337	METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Molecular Cancer, 2020, 19, 46.	7.9	336
338	Direct microRNA Sequencing Using Nanopore-Induced Phase-Shift Sequencing. IScience, 2020, 23, 100916.	1.9	26
339	Methyltransferase like 3 promotes colorectal cancer proliferation by stabilizing CCNE1 mRNA in an m6Aâ€dependent manner. Journal of Cellular and Molecular Medicine, 2020, 24, 3521-3533.	1.6	69
340	Cross talk between RNA N6â€methyladenosine methyltransferaseâ€like 3 and miRâ€186 regulates hepatoblastoma progression through Wnt/βâ€catenin signalling pathway. Cell Proliferation, 2020, 53, e12768.	2.4	91
341	The chromosome 19 microRNA cluster, regulated by promoter hypomethylation, is associated with tumour burden and poor prognosis in patients with hepatocellular carcinoma. Journal of Cellular Physiology, 2020, 235, 6103-6112.	2.0	11
342	miR-26a is Involved in Glycometabolism and Affects Boar Sperm Viability by Targeting PDHX. Cells, 2020 9, 146.), 1.8	11
343	RNA N6-methyladenosine modification in solid tumors: new therapeutic frontiers. Cancer Gene Therapy, 2020, 27, 625-633.	2.2	22
344	MicroRNA-486-5p and microRNA-486-3p: Multifaceted pleiotropic mediators in oncological and non-oncological conditions. Non-coding RNA Research, 2020, 5, 11-21.	2.4	58
345	Circular RNAs—The Road Less Traveled. Frontiers in Molecular Biosciences, 2019, 6, 146.	1.6	57
346	Metabolic choreography of gene expression: nutrient transactions with the epigenome. Journal of Biosciences, 2020, 45, 1.	0.5	2
347	Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell, 2020, 26, 138-159.	5.2	54

#	Article	IF	CITATIONS
348	Serum microRNA-30c-5p and microRNA-373 expressions as potential biomarkers for Parkinson's disease. International Journal of Transgender Health, 2020, 13, 194-200.	1.1	10
349	m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35.	6.9	174
350	METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice. Nature Communications, 2020, 11, 1648.	5.8	72
351	The rRNA m ⁶ A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes and Development, 2020, 34, 715-729.	2.7	93
352	Natural Variation in RNA m ⁶ A Methylation and Its Relationship with Translational Status. Plant Physiology, 2020, 182, 332-344.	2.3	73
353	Insights into the N ⁶ -methyladenosine mechanism and its functionality: progress and questions. Critical Reviews in Biotechnology, 2020, 40, 639-652.	5.1	15
354	Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. Journal of Hepatology, 2020, 73, 664-679.	1.8	92
355	m6A RNA methylation regulators correlate with malignant progression and have potential predictive values in clear cell renal cell carcinoma. Experimental Cell Research, 2020, 392, 112015.	1.2	26
356	Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Molecular Cancer, 2020, 19, 79.	7.9	255
357	The role of miRNA biogenesis and DDX17 in tumorigenesis and cancer stemness. Biomedical Journal, 2020, 43, 107-114.	1.4	54
358	Role of RNA modifications in cancer. Nature Reviews Cancer, 2020, 20, 303-322.	12.8	621
359	Occurrence and Functions of m ⁶ A and Other Covalent Modifications in Plant mRNA. Plant Physiology, 2020, 182, 79-96.	2.3	80
360	Non-Coding RNAs in Lung Tumor Initiation and Progression. International Journal of Molecular Sciences, 2020, 21, 2774.	1.8	27
361	Naturally occurring modified ribonucleosides. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1595.	3.2	108
362	The emerging molecular mechanism of m6A modulators in tumorigenesis and cancer progression. Biomedicine and Pharmacotherapy, 2020, 127, 110098.	2.5	67
363	Methyltransferaseâ€like 3â€mediated N6â€methyladenosine modification of miRâ€7212â€5p drives osteoblast differentiation and fracture healing. Journal of Cellular and Molecular Medicine, 2020, 24, 6385-6396.	1.6	38
364	Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Molecular Cancer, 2020, 19, 78.	7.9	129
365	MTA, an RNA m6A Methyltransferase, Enhances Drought Tolerance by Regulating the Development of Trichomes and Roots in Poplar. International Journal of Molecular Sciences, 2020, 21, 2462.	1.8	33

#	Article	IF	Citations
366	Emerging translation strategies during virus–host interaction. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1619.	3.2	17
367	A birds'â€eye view of the activity and specificity of the <scp>mRNA m⁶A</scp> methyltransferase complex. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1618.	3.2	34
368	Mechanisms of epitranscriptomic gene regulation. Biopolymers, 2021, 112, e23403.	1.2	16
369	Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells and Development, 2021, 30, 17-28.	1.1	21
370	The cardiac methylome: A hidden layer of RNA modifications to regulate gene expression. Journal of Molecular and Cellular Cardiology, 2021, 152, 40-51.	0.9	3
371	TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nature Structural and Molecular Biology, 2021, 28, 62-70.	3.6	42
372	Leishmania regulates host macrophage miRNAs expression by engaging transcription factor câ€Myc. Journal of Leukocyte Biology, 2021, 109, 999-1007.	1.5	3
373	Messenger RNA 5′ NAD+ Capping Is a Dynamic Regulatory Epitranscriptome Mark That Is Required for Proper Response to Abscisic Acid in Arabidopsis. Developmental Cell, 2021, 56, 125-140.e6.	3.1	40
374	MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Archives of Biochemistry and Biophysics, 2021, 698, 108725.	1.4	29
375	RNA Modifications in the Central Nervous System. , 0, , 153-192.		1
376	METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Therapy, 2021, 28, 335-349.	2.2	101
377	Epigenetic loss of m1A RNA demethylase ALKBH3 in Hodgkin lymphoma targets collagen, conferring poor clinical outcome. Blood, 2021, 137, 994-999.	0.6	30
378	piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL. Blood, 2021, 137, 1603-1614.	0.6	95
379	Regulation of RNA N ⁶ -methyladenosine modification and its emerging roles in skeletal muscle development. International Journal of Biological Sciences, 2021, 17, 1682-1692.	2.6	25
380	A pan-cancer atlas of somatic mutations in miRNA biogenesis genes. Nucleic Acids Research, 2021, 49, 601-620.	6.5	26
381	The Impacts of Non-coding RNAs and N6-Methyladenosine on Cancer: Past, Present, and Future. Current Cancer Drug Targets, 2021, 21, 375-385.	0.8	4
383	The crosstalk between m ⁶ A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics, 2021, 11, 4549-4566.	4.6	57
384	Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance. International Journal of Molecular Sciences, 2021, 22, 581.	1.8	31

#	Article	IF	CITATIONS
385	The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. International Journal of Biological Sciences, 2021, 17, 2718-2736.	2.6	22
386	IL-37 Confers Anti-Tumor Activity by Regulation of m6A Methylation. Frontiers in Oncology, 2020, 10, 526866.	1.3	14
387	Role of N6-methyl-adenosine modification in mammalian embryonic development. Genetics and Molecular Biology, 2021, 44, e20200253.	0.6	9
388	Regulation of Gene Expression Associated With the N6-Methyladenosine (m6A) Enzyme System and Its Significance in Cancer. Frontiers in Oncology, 2020, 10, 623634.	1.3	27
389	WHISTLE: A Functionally Annotated High-Accuracy Map of Human m6A Epitranscriptome. Methods in Molecular Biology, 2021, 2284, 519-529.	0.4	9
390	Construction and validation of an N6‑methyladenosine‑associated prognostic signature in hepatocellular carcinoma. Oncology Letters, 2021, 21, 221.	0.8	2
391	DGCR8-dependent efficient pri-miRNA processing of human pri-miR-9-2. Journal of Biological Chemistry, 2021, 296, 100409.	1.6	14
392	Roles of m6A RNA Modification in Normal Development and Disease. RNA Technologies, 2021, , 267-308.	0.2	2
393	Experimental Approaches and Computational Workflows for Systematic Mapping and Functional Interpretation of RNA Modifications. RNA Technologies, 2021, , 197-216.	0.2	1
394	N ⁶ -methyladenosine as a biological and clinical determinant in colorectal cancer: progression and future direction. Theranostics, 2021, 11, 2581-2593.	4.6	28
395	Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics, 2021, 11, 8771-8796.	4.6	50
396	Identification and Characterization of Alcohol-related Hepatocellular Carcinoma Prognostic Subtypes based on an Integrative N6-methyladenosine methylation Model. International Journal of Biological Sciences, 2021, 17, 3554-3572.	2.6	12
397	MiRâ€103â€3p targets the m ⁶ A methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell, 2021, 20, e13298.	3.0	47
398	Xeno nucleic acid probes mediated methylation-specific PCR for single-base resolution analysis of N ⁶ -methyladenosine in RNAs. Analyst, The, 2021, 146, 6306-6314.	1.7	2
399	The role of m6A, m5C and \hat{I}^{\cdot} RNA modifications in cancer: Novel therapeutic opportunities. Molecular Cancer, 2021, 20, 18.	7.9	245
400	ZayyuNet – A Unified Deep Learning Model for the Identification of Epigenetic Modifications Using Raw Genomic Sequences. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2533-2544.	1.9	13
401	MicroRNA and ER stress in cancer. Seminars in Cancer Biology, 2021, 75, 3-14.	4.3	36
402	Research advances on epigenetics and cancer metabolism. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2021, 50, 1-16.	0.1	4

#	Article	IF	CITATIONS
404	Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation. Current Pharmaceutical Design, 2021, 27, 159-176.	0.9	17
405	N6-Adenosine Methylation (m6A) RNA Modification: an Emerging Role in Cardiovascular Diseases. Journal of Cardiovascular Translational Research, 2021, 14, 857-872.	1.1	25
406	Context-Dependent Roles of RNA Modifications in Stress Responses and Diseases. International Journal of Molecular Sciences, 2021, 22, 1949.	1.8	35
407	SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Research, 2021, 49, 2859-2877.	6.5	81
408	The Potential Regulatory Roles of Circular RNAs in Tumor Immunology and Immunotherapy. Frontiers in Immunology, 2020, 11, 617583.	2.2	20
409	The Impact of m6A RNA Modification in Therapy Resistance of Cancer: Implication in Chemotherapy, Radiotherapy, and Immunotherapy. Frontiers in Oncology, 2020, 10, 612337.	1.3	40
410	The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics?. Genes, 2021, 12, 345.	1.0	29
411	The non-coding epitranscriptome in cancer. Briefings in Functional Genomics, 2021, 20, 94-105.	1.3	11
412	Circ_0088194 Promotes the Invasion and Migration of Rheumatoid Arthritis Fibroblast-Like Synoviocytes via the miR-766-3p/MMP2 Axis. Frontiers in Immunology, 2021, 12, 628654.	2.2	35
413	Identification of a Two-m6A RNA Methylation Regulator Risk Signature as an Independent Prognostic Biomarker in Papillary Renal Cell Carcinoma by Bioinformatic Analysis. BioMed Research International, 2021, 2021, 1-10.	0.9	5
414	The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 74.	7.1	718
415	Identification of a New Prognostic Risk Signature of Clear Cell Renal Cell Carcinoma Based on N6-Methyladenosine RNA Methylation Regulators. Journal of Immunology Research, 2021, 2021, 1-23.	0.9	7
416	Methyladenosine Modification in RNAs: Classification and Roles in Gastrointestinal Cancers. Frontiers in Oncology, 2020, 10, 586789.	1.3	14
418	METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function. International Journal of Molecular Sciences, 2021, 22, 2176.	1.8	46
419	RNA N6-Methyladenosine Regulator-Mediated Methylation Modifications Pattern and Immune Infiltration Features in Glioblastoma. Frontiers in Oncology, 2021, 11, 632934.	1.3	22
420	The Important Role of N6-methyladenosine RNA Modification in Non-Small Cell Lung Cancer. Genes, 2021, 12, 440.	1.0	14
421	Decreased miR-214–3p activates NF-κB pathway and aggravates osteoarthritis progression. EBioMedicine, 2021, 65, 103283.	2.7	65
422	RNA methylation in hematological malignancies and its interactions with other epigenetic modifications. Leukemia, 2021, 35, 1243-1257.	3.3	19

#	Article	IF	CITATIONS
423	The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. Journal of Molecular Neuroscience, 2021, 71, 1338-1355.	1.1	7
424	Analysis of m6A-Related Signatures in the Tumor Immune Microenvironment and Identification of Clinical Prognostic Regulators in Adrenocortical Carcinoma. Frontiers in Immunology, 2021, 12, 637933.	2.2	54
425	Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 628415.	1.8	76
426	Roles of RNA Methylation on Tumor Immunity and Clinical Implications. Frontiers in Immunology, 2021, 12, 641507.	2.2	83
427	Emerging Perspectives of RNA N6-methyladenosine (m6A) Modification on Immunity and Autoimmune Diseases. Frontiers in Immunology, 2021, 12, 630358.	2.2	18
428	Role of m6A methyltransferase component VIRMA in multiple human cancers (Review). Cancer Cell International, 2021, 21, 172.	1.8	36
429	Modeling multi-species RNA modification through multi-task curriculum learning. Nucleic Acids Research, 2021, 49, 3719-3734.	6.5	23
430	The aberrant cross-talk of epithelium–macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema. Cell Biology and Toxicology, 2022, 38, 167-183.	2.4	26
431	MicroRNAs Involved in Inflammatory Breast Cancer: Oncogene and Tumor Suppressors with Possible Targets. DNA and Cell Biology, 2021, 40, 499-512.	0.9	6
432	Identifying RNA N6-Methyladenine Sites in Three Species Based on a Markov Model. Frontiers in Genetics, 2021, 12, 650803.	1.1	6
433	Regulation of translation by methylation multiplicity of 18S rRNA. Cell Reports, 2021, 34, 108825.	2.9	16
434	METTL3-mediated m6A methylation of SPHK2 promotes gastric cancer progression by targeting KLF2. Oncogene, 2021, 40, 2968-2981.	2.6	56
435	A five-m6A regulatory gene signature is a prognostic biomarker in lung adenocarcinoma patients. Aging, 2021, 13, 10034-10057.	1.4	12
436	Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond. Cellular and Molecular Life Sciences, 2021, 78, 4893-4905.	2.4	31
437	Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers. Frontiers in Oncology, 2021, 11, 635329.	1.3	35
438	Novel circGFRα1 Promotes Self-Renewal of Female Germline Stem Cells Mediated by m6A Writer METTL14. Frontiers in Cell and Developmental Biology, 2021, 9, 640402.	1.8	19
439	N6-Methyladenosine, DNA Repair, and Genome Stability. Frontiers in Molecular Biosciences, 2021, 8, 645823.	1.6	16
440	MicroRNAs in childhood nephrotic syndrome. Journal of Cellular Physiology, 2021, 236, 7186-7210.	2.0	2

#	Article	IF	CITATIONS
441	The Putative Role of m6A-RNA Methylation in Memory Consolidation. Neurochemical Journal, 2021, 15, 103-113.	0.2	0
442	Advances in epigenetic therapeutics with focus on solid tumors. Clinical Epigenetics, 2021, 13, 83.	1.8	53
443	Novel insights into the m6A-RNA methyltransferase METTL3 in cancer. Biomarker Research, 2021, 9, 27.	2.8	23
444	Transcriptome-wide study revealed m6A regulation of embryonic muscle development in Dingan goose (Anser cygnoides orientalis). BMC Genomics, 2021, 22, 270.	1.2	23
445	RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes, 2021, 12, 627.	1.0	12
446	The emerging role of non-coding RNAs in the epigenetic regulation of pediatric cancers. Seminars in Cancer Biology, 2021, , .	4.3	11
447	The crucial roles of N6-methyladenosine (m6A) modification in the carcinogenesis and progression of colorectal cancer. Cell and Bioscience, 2021, 11, 72.	2.1	27
448	Role of N6-Methyladenosine RNA Modification in Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 659628.	1.1	4
449	MicroRNAs in Metastasis and the Tumour Microenvironment. International Journal of Molecular Sciences, 2021, 22, 4859.	1.8	10
450	Potential Impact of ALKBH5 and YTHDF1 on Tumor Immunity in Colon Adenocarcinoma. Frontiers in Oncology, 2021, 11, 670490.	1.3	20
451	The Biological Function, Mechanism, and Clinical Significance of m6A RNA Modifications in Head and Neck Carcinoma: A Systematic Review. Frontiers in Cell and Developmental Biology, 2021, 9, 683254.	1.8	15
452	mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovascular Research, 2022, 118, 1680-1692.	1.8	66
453	<i>N</i> ⁶ â€Methyladenosine mRNA methylation is important for salt stress tolerance in <i>Arabidopsis</i> . Plant Journal, 2021, 106, 1759-1775.	2.8	101
454	Regulatory Mechanisms of the RNA Modification m6A and Significance in Brain Function in Health and Disease. Frontiers in Cellular Neuroscience, 2021, 15, 671932.	1.8	29
455	A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Research, 2021, 49, 7239-7255.	6.5	190
456	YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death and Differentiation, 2021, 28, 3105-3124.	5.0	84
458	The mechanisms and functions of microRNAs in mediating the fate determinations of human spermatogonial stem cells and Sertoli cells. Seminars in Cell and Developmental Biology, 2022, 121, 32-39.	2.3	7
460	mTORC1 stimulates cell growth through SAM synthesis and m6A mRNA-dependent control of protein synthesis. Molecular Cell, 2021, 81, 2076-2093.e9.	4.5	77

#	Article	IF	CITATIONS
461	METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels. Biochemical and Biophysical Research Communications, 2021, 552, 52-58.	1.0	19
462	MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. Environmental Science and Pollution Research, 2021, 28, 36984-37000.	2.7	20
463	The m6A epitranscriptome on neural development and degeneration. Journal of Biomedical Science, 2021, 28, 40.	2.6	43
464	Emerging Roles of Wild-type and Mutant IDH1 in Growth, Metabolism and Therapeutics of Glioma. , 0, , 61-78.		5
465	Interaction between Metformin, Folate and Vitamin B12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. International Journal of Molecular Sciences, 2021, 22, 5759.	1.8	28
466	Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric <scp>RNA</scp> methyltransferases?. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1673.	3.2	5
467	The m6A-epitranscriptome in brain plasticity, learning and memory. Seminars in Cell and Developmental Biology, 2022, 125, 110-121.	2.3	15
468	Epigenetic Regulation of Autophagy in Cardiovascular Pathobiology. International Journal of Molecular Sciences, 2021, 22, 6544.	1.8	8
469	Multifaceted Regulation of MicroRNA Biogenesis: Essential Roles and Functional Integration in Neuronal and Glial Development. International Journal of Molecular Sciences, 2021, 22, 6765.	1.8	14
470	G3BPs in Plant Stress. Frontiers in Plant Science, 2021, 12, 680710.	1.7	6
471	Arginine methylation of METTL14 promotes RNA N6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells. Nature Communications, 2021, 12, 3780.	5.8	34
472	An m6A-Related Prognostic Biomarker Associated With the Hepatocellular Carcinoma Immune Microenvironment. Frontiers in Pharmacology, 2021, 12, 707930.	1.6	12
473	Potential roles of N6-methyladenosine (m6A) in immune cells. Journal of Translational Medicine, 2021, 19, 251.	1.8	36
474	Cancer-secreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1. Cell Death and Disease, 2021, 12, 576.	2.7	71
475	Acute depletion of METTL3 implicates <i>N</i> ⁶ -methyladenosine in alternative intron/exon inclusion in the nascent transcriptome. Genome Research, 2021, 31, 1395-1408.	2.4	37
476	Epitranscriptomics of Ischemic Heart Disease—The IHD-EPITRAN Study Design and Objectives. International Journal of Molecular Sciences, 2021, 22, 6630.	1.8	10
477	Targeting the m ⁶ A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication. Genes and Development, 2021, 35, 1005-1019.	2.7	70
478	METTL3 Regulates Angiogenesis by Modulating let-7e-5p and miRNA-18a-5p Expression in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e325-e337.	1.1	29

	CHAHON	KLPOKI	1
#	Article	IF	Citations
479	PBRM1 Cooperates with YTHDF2 to Control HIF-1 $\hat{1}$ + Protein Translation. Cells, 2021, 10, 1425.	1.8	13
480	N6-Methyladenosine Associated Silencing of miR-193b Promotes Cervical Cancer Aggressiveness by Targeting CCND1. Frontiers in Oncology, 2021, 11, 666597.	1.3	13
481	Mapping of m6A and Its Regulatory Targets in Prostate Cancer Reveals a METTL3-Low Induction of Therapy Resistance. Molecular Cancer Research, 2021, 19, 1398-1411.	1.5	20
482	MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. Biology, 2021, 10, 534.	1.3	4
483	The MicroRNA Family Gets Wider: The IsomiRs Classification and Role. Frontiers in Cell and Developmental Biology, 2021, 9, 668648.	1.8	52
484	Interactions between m6A modification and miRNAs in malignant tumors. Cell Death and Disease, 2021, 12, 598.	2.7	52
485	Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation. Cell Death and Disease, 2021, 12, 628.	2.7	59
486	Role of m6A in osteoporosis, arthritis and osteosarcoma (Review). Experimental and Therapeutic Medicine, 2021, 22, 926.	0.8	16
487	m6A RNA methylation and beyond – The epigenetic machinery and potential treatment options. Drug Discovery Today, 2021, 26, 2559-2574.	3.2	50
488	Regulatory roles of RNA modifications in breast cancer. NAR Cancer, 2021, 3, zcab036.	1.6	14
489	Epitranscriptomics: A New Layer of microRNA Regulation in Cancer. Cancers, 2021, 13, 3372.	1.7	16
490	bCNN-Methylpred: Feature-Based Prediction of RNA Sequence Modification Using Branch Convolutional Neural Network. Genes, 2021, 12, 1155.	1.0	4
491	N6-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression. Oncogene, 2021, 40, 5600-5612.	2.6	32
492	The Emerging Clinical Application of m6A RNA Modification in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. Journal of Inflammation Research, 2021, Volume 14, 3289-3306.	1.6	21
493	Role of m6A methylation in occurrence and progression of digestive system malignancies. World Chinese Journal of Digestology, 2021, 29, 747-757.	0.0	0
494	Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nature Biotechnology, 2021, 39, 1394-1402.	9.4	131
495	The potential role of m6A RNA methylation in diabetic retinopathy. Experimental Eye Research, 2021, 208, 108616.	1.2	27
496	Programmable System of Cas13-Mediated RNA Modification and Its Biological and Biomedical Applications. Frontiers in Cell and Developmental Biology, 2021, 9, 677587.	1.8	22

#	Article	IF	CITATIONS
497	MicroRNA-1205 Regulation of FRYL in Prostate Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 647485.	1.8	6
498	N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. Journal of Hematology and Oncology, 2021, 14, 117.	6.9	105
499	The potential roles of m6A modification in regulating the inflammatory response in microglia. Journal of Neuroinflammation, 2021, 18, 149.	3.1	26
500	Active genic machinery for epigenetic <scp>RNA</scp> modifications in bees. Insect Molecular Biology, 2021, 30, 566-579.	1.0	14
501	Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. International Journal of Molecular Sciences, 2021, 22, 7350.	1.8	38
502	Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy. Frontiers in Cell and Developmental Biology, 2021, 9, 702579.	1.8	26
503	m6A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics, 2021, 113, 2860-2869.	1.3	19
504	An N6-Methyladenosine-Related Gene Set Variation Score as a Prognostic Tool for Lung Adenocarcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 651575.	1.8	8
505	Towards a druggable epitranscriptome: Compounds that target RNA modifications in cancer. British Journal of Pharmacology, 2022, 179, 2868-2889.	2.7	19
506	METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61
507	Cross-Talk between Oxidative Stress and m6A RNA Methylation in Cancer. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-26.	1.9	26
508	RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sciences, 2021, 278, 119565.	2.0	37
509	Gene Model Related to m6A Predicts the Prognostic Effect of Immune Infiltration on Head and Neck Squamous Cell Carcinoma. Journal of Oncology, 2021, 2021, 1-11.	0.6	1
510	Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie, 2021, 187, 83-93.	1.3	16
511	Inhibition of METTL3/m6A/ <i>miR126</i> promotes the migration and invasion of endometrial stromal cells in endometriosis. Biology of Reproduction, 2021, 105, 1221-1233.	1.2	30
512	The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cellular and Molecular Neurobiology, 2021, , 1.	1.7	3
513	N6-Methyladenosine in Cancer Immunotherapy: An Undervalued Therapeutic Target. Frontiers in Immunology, 2021, 12, 697026.	2.2	14
514	N6-methyladenosine (m6A) modification and its clinical relevance in cognitive dysfunctions. Aging, 2021, 13, 20716-20737.	1.4	17

#	Article	IF	CITATIONS
515	m6A demethylase ALKBH5 suppresses proliferation and migration of enteric neural crest cells by regulating TAGLN in Hirschsprung's disease. Life Sciences, 2021, 278, 119577.	2.0	9
516	A quantitative map of human primary microRNA processing sites. Molecular Cell, 2021, 81, 3422-3439.e11.	4.5	42
517	MiREDiBase, a manually curated database of validated and putative editing events in microRNAs. Scientific Data, 2021, 8, 199.	2.4	18
518	RNA m6A methyltransferase METTL3 promotes colorectal cancer cell proliferation and invasion by regulating Snail expression. Oncology Letters, 2021, 22, 711.	0.8	3
519	KIAA1429 and ALKBH5 Oppositely Influence Aortic Dissection Progression via Regulating the Maturation of Pri-miR-143-3p in an m6A-Dependent Manner. Frontiers in Cell and Developmental Biology, 2021, 9, 668377.	1.8	10
520	m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in hepatocellular carcinoma. Aging, 2021, 13, 20698-20715.	1.4	15
521	Loss of m6A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacological Research, 2021, 174, 105845.	3.1	44
522	Alphaâ€ketoglutarateâ€dependent dioxygenase homolog 10B, an N ⁶ â€methyladenosine mRNA demethylase, plays a role in salt stress and abscisic acid responses in <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2021, 173, 1078-1089.	2.6	28
523	Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions. Molecular Cancer, 2021, 20, 121.	7.9	52
525	METTL3-mediated mature miR-497-5p/195-5p inhibits trophoblast migration and invasion by targeting WWP1 in preeclampsia. Cell Cycle, 2021, , 1-16.	1.3	7
526	Characterization of m6A-Related Genes Landscape in Skin Cutaneous Melanoma to Aid Immunotherapy and Assess Prognosis. International Journal of General Medicine, 2021, Volume 14, 5345-5361.	0.8	7
527	Non-Coding RNAs in Preeclampsia—Molecular Mechanisms and Diagnostic Potential. International Journal of Molecular Sciences, 2021, 22, 10652.	1.8	24
528	Mutations in cis that affect mRNA synthesis, processing and translation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166166.	1.8	15
529	Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines, 2021, 9, 1268.	1.4	8
530	Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. Molecular Therapy - Oncolytics, 2021, 23, 163-180.	2.0	32
531	Small Non-coding RNA Expression Following Respiratory Syncytial Virus or Measles Virus Infection of Neuronal Cells. Frontiers in Microbiology, 2021, 12, 671852.	1.5	0
532	Novel Associations Between METTL3 Gene Polymorphisms and Pediatric Acute Lymphoblastic Leukemia: A Five-Center Case-Control Study. Frontiers in Oncology, 2021, 11, 635251.	1.3	7
533	A methyltransferaseâ€like 14/miRâ€99aâ€5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2â€mediated epigenetic modulation in esophageal squamous cell carcinoma. Clinical and Translational Medicine, 2021, 11, e545.	1.7	30

#	ARTICLE	IF	CITATIONS
534	Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 711815.	1.8	8
535	METTL3 promotes the initiation and metastasis of ovarian cancer by inhibiting CCNG2 expression via promoting the maturation of pri-microRNA-1246. Cell Death Discovery, 2021, 7, 237.	2.0	31
536	N6-Methyladenosine and Rheumatoid Arthritis: A Comprehensive Review. Frontiers in Immunology, 2021, 12, 731842.	2.2	18
537	METTL3-Induced miR-222-3p Upregulation Inhibits STK4 and Promotes the Malignant Behaviors of Thyroid Carcinoma Cells. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 474-490.	1.8	11
538	Correlation of m6A methylation with immune infiltrates and poor prognosis in non-small cell lung cancer via a comprehensive analysis of RNA expression profiles. Annals of Translational Medicine, 2021, 9, 1465-1465.	0.7	4
539	Gamma-irradiation fluctuates the mRNA N6-methyladenosine (m6A) spectrum of bone marrow in hematopoietic injury. Environmental Pollution, 2021, 285, 117509.	3.7	3
540	Reactive Oxygen Species-Mediated Diabetic Heart Disease: Mechanisms and Therapies. Antioxidants and Redox Signaling, 2022, 36, 608-630.	2.5	5
541	Dynamic m6A mRNA Methylation Reveals the Role of METTL3/14-m6A-MNK2-ERK Signaling Axis in Skeletal Muscle Differentiation and Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 744171.	1.8	15
542	m6A-seq analysis of microRNAs reveals that the N6-methyladenosine modification of miR-21–5p affects its target expression. Archives of Biochemistry and Biophysics, 2021, 711, 109023.	1.4	11
543	METTL3-mediated M6A methylation modification is involved in colistin-induced nephrotoxicity through apoptosis mediated by Keap1/Nrf2 signaling pathway. Toxicology, 2021, 462, 152961.	2.0	13
544	Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2021, 160, 56-70.	0.9	9
545	MicroRNA-211 attenuates cell proliferation in T-cell lymphoblastic lymphoma through targeting TCF12. Leukemia Research, 2021, 110, 106653.	0.4	5
546	ALKBH5-mediated m6A mRNA methylation governs human embryonic stem cell cardiac commitment. Molecular Therapy - Nucleic Acids, 2021, 26, 22-33.	2.3	17
547	Essential role of ALKBH5-mediated RNA demethylation modification in bile acid-induced gastric intestinal metaplasia. Molecular Therapy - Nucleic Acids, 2021, 26, 458-472.	2.3	17
548	Prognostic Roles of N6-Methyladenosine METTL3 in Different Cancers: A System Review and Meta-Analysis. Cancer Control, 2021, 28, 107327482199745.	0.7	7
550	Epitranscriptomics and Diseases. RNA Technologies, 2021, , 121-140.	0.2	0
552	Expression and prognostic characteristics of m ⁵ C regulators in lowâ€grade glioma. Journal of Cellular and Molecular Medicine, 2021, 25, 1383-1393.	1.6	21
553	m ⁶ A RNA methylation: from mechanisms to therapeutic potential. EMBO Journal, 2021, 40, e105977.	3.5	316

#	Article	IF	CITATIONS
554	mRNA Traffic Control Reviewed: N6â€Methyladenosine (m ⁶ A) Takes the Driver's Seat. BioEssays, 2018, 40, 1700093.	1.2	62
555	RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2019, 1143, 75-93.	0.8	35
556	MicroRNAs in Cancer: From Diagnosis to Therapeutics. , 2020, , 199-236.		2
557	Non-coding RNAs: ever-expanding diversity of types and functions. , 2020, , 5-57.		12
558	Reading the Epitranscriptome. The Enzymes, 2017, 41, 269-298.	0.7	19
559	Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomedicine and Pharmacotherapy, 2020, 125, 109964.	2.5	46
560	N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural and Molecular Biology, 2017, 24, 870-878.	3.6	432
568	Role of identified noncoding RNA in erectile dysfunction. Andrologia, 2020, 52, e13596.	1.0	7
569	Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer. Molecular Cancer, 2020, 19, 94.	7.9	168
570	Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway. PLoS Genetics, 2016, 12, e1006139.	1.5	29
571	RNAMethPre: A Web Server for the Prediction and Query of mRNA m6A Sites. PLoS ONE, 2016, 11, e0162707.	1.1	55
572	Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging, 2020, 12, 8137-8150.	1.4	83
573	Comprehensive analysis of m6A regulators prognostic value in prostate cancer. Aging, 2020, 12, 14863-14884.	1.4	45
574	WITMSC: Large-scale Prediction of Human Intronic m6A RNA Methylation Sites from Sequence and Genomic Features. Current Genomics, 2020, 21, 67-76.	0.7	21
575	Dynamic m ⁶ A methylation facilitates mRNA triaging to stress granules. Life Science Alliance, 2018, 1, e201800113.	1.3	136
576	m ⁶ A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Science Alliance, 2019, 2, e201800233.	1.3	109
577	Role of m6A RNA methylation in cardiovascular disease (Review). International Journal of Molecular Medicine, 2020, 46, 1958-1972.	1.8	154
578	N6‑methyladenine RNA modification and cancer (Review). Oncology Letters, 2020, 20, 1504-1512.	0.8	25

#	Article	IF	CITATIONS
579	METTL14 promotes the migration and invasion of breast cancer cells by modulating N6‑methyladenosine and hsa‑miR‑146a‑5p expression. Oncology Reports, 2020, 43, 1375-1386.	1.2	65
580	MicroRNA sequences modulating inflammation and lipid accumulation in macrophage "foam―cells: Implications for atherosclerosis. World Journal of Cardiology, 2020, 12, 303-333.	0.5	10
581	Epigenetics of T lymphocytes in health and disease. Swiss Medical Weekly, 2015, 145, w14191.	0.8	13
582	Epitranscriptomics of cancer. World Journal of Clinical Oncology, 2018, 9, 42-55.	0.9	23
583	Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain. BMB Reports, 2020, 53, 551-564.	1.1	7
584	Structural insights into the molecular mechanism of the m6A writer complex. ELife, 2016, 5, .	2.8	386
585	The Tudor SND1 protein is an m6A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus. ELife, 2019, 8, .	2.8	107
586	Role of methyltransferase-like enzyme 3 and methyltransferase-like enzyme 14 in urological cancers. PeerJ, 2020, 8, e9589.	0.9	17
587	Mechanism of methyltransferase like 3 in epithelial-mesenchymal transition process, invasion, and metastasis in esophageal cancer. Bioengineered, 2021, 12, 10023-10036.	1.4	16
588	Mycotoxins exacerbate HIV infection: the potential of N ⁶ -methyladenosine RNA methylation. Epigenomics, 2021, 13, 1905-1908.	1.0	0
589	The epitranscriptome of small non-coding RNAs. Non-coding RNA Research, 2021, 6, 167-173.	2.4	13
590	N6-methyladenosine RNA modification and its interaction with regulatory non-coding RNAs in colorectal cancer. RNA Biology, 2021, 18, 551-561.	1.5	7
591	RNA methylation and cancer treatment. Pharmacological Research, 2021, 174, 105937.	3.1	89
592	Characterization of Long Non-coding RNAs Modified by m6A RNA Methylation in Skeletal Myogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 762669.	1.8	9
593	MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. Journal of Oncology, 2021, 2021, 1-25.	0.6	13
594	METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner. Cell Death Discovery, 2021, 7, 291.	2.0	15
595	N6-Methyladenosine-Sculpted Regulatory Landscape of Noncoding RNA. Frontiers in Oncology, 2021, 11, 743990.	1.3	6
596	Epigenetics in Hyperphagia. , 2017, , 1-19.		Ο

		CITATION RE	PORT	
#	Article		IF	CITATIONS
601	The Role of mRNA m6A in Regulation of Gene Expression. RNA Technologies, 2019, , 35	3-376.	0.2	0
602	m6A mRNA Methylation in the Mammalian Brain: Distribution, Function and Implication Functions. RNA Technologies, 2019, , 377-398.	s for Brain	0.2	0
605	RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Internat of Molecular Sciences, 2021, 22, 11870.	ional Journal	1.8	26
606	FTO promotes tumour proliferation in bladder cancer via the FTO/miR-576/CDK6 axis in m6A-dependent manner. Cell Death Discovery, 2021, 7, 329.	an	2.0	26
608	Alteration in the expression of microRNA-21 regulated target genes: Role in breast canc 2022, 46, 309-324.	er. Biocell,	0.4	3
609	Regulation of Plant microRNA Biogenesis. Concepts and Strategies in Plant Sciences, 20	020, , 3-24.	0.6	3
612	m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Frontiers in 11, 746789.	Oncology, 2021,	1.3	10
613	Non-Coding RNAs in Glioma Microenvironment and Angiogenesis. Frontiers in Molecula Neuroscience, 2021, 14, 763610.	r	1.4	12
614	Genome-Wide Scanning of Potential Hotspots for Adenosine Methylation: A Potential P Neuronal Development. Life, 2021, 11, 1185.	ath to	1.1	2
618	N6-methyladenosine methyltransferase METTL3 promotes colorectal cancer cell prolifer through enhancing MYC expression. American Journal of Translational Research (discon 12, 1789-1806.	ation tinued), 2020,	0.0	9
619	Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver. Environmental Epigenetics, 2021, 7, dvab00)8.	0.9	1
620	MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathology Research and 229, 153701.	Practice, 2022,	1.0	10
621	Integrating m6A Regulators-Mediated Methylation Modification Models and Tumor Imn Microenvironment Characterization in Caucasian and Chinese Low-Grade Gliomas. Fron and Developmental Biology, 2021, 9, 725764.	านทe tiers in Cell	1.8	6
622	RNA m6A methylation regulators in ovarian cancer. Cancer Cell International, 2021, 21,	609.	1.8	27
623	MicroRNA-1915-3p inhibits cell migration and invasion by targeting SET in non-small-cel BMC Cancer, 2021, 21, 1218.	l lung cancer.	1.1	11
624	Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs International Journal of Oncology, 2021, 59, .	(Review).	1.4	7
625	Dynamic m6A-ncRNAs association and their impact on cancer pathogenesis, immune re therapeutic response. Genes and Diseases, 2023, 10, 135-150.	gulation and	1.5	5
626	Herpesviridae and microRNAs. , 0, , .			0

#	Article	IF	CITATIONS
627	The Emerging Role of m6A Modification in Regulating the Immune System and Autoimmune Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 755691.	1.8	32
628	<scp>RNA</scp> modifications as emerging therapeutic targets. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1702.	3.2	10
629	Up–to–date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation?. RNA Biology, 2021, , 1-14.	1.5	3
630	Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m6A consensus sequences. Heliyon, 2021, 7, e08519.	1.4	7
631	Mettl14-Dependent M ⁶ A Modification Controls iNKT Cell Development and Function. SSRN Electronic Journal, 0, , .	0.4	0
632	Biogenesis and mechanisms of microRNAâ€mediated gene regulation. Biotechnology and Bioengineering, 2022, 119, 685-692.	1.7	49
633	An intramolecular DNAzyme-based amplification for miRNA analysis with improving reaction kinetics and high sensitivity. Talanta, 2022, 239, 123137.	2.9	3
634	Insights into N6-methyladenosine and programmed cell death in cancer. Molecular Cancer, 2022, 21, 32.	7.9	81
635	N6‑methyladenosine upregulates miR‑181d‑5p in exosomes derived from cancer‑associated fibroblasts to inhibit 5‑FU sensitivity by targeting NCALD in colorectal cancer. International Journal of Oncology, 2022, 60, .) 1.4	35
636	Characterization of m6A regulatorâ€mediated methylation modification patterns and tumor microenvironment infiltration in acute myeloid leukemia. Cancer Medicine, 2022, , .	1.3	5
637	A Comprehensive Study of miRNAs in Parkinson's Disease: Diagnostics and Therapeutic Approaches. CNS and Neurological Disorders - Drug Targets, 2022, 21, .	0.8	2
638	Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. Soft Matter, 2022, 18, 1112-1148.	1.2	11
639	Construction of a risk prediction model using m6A RNA methylation regulators in prostate cancer: comprehensive bioinformatic analysis and histological validation. Cancer Cell International, 2022, 22, 33.	1.8	12
640	Mechanism of METTL3-Mediated m6A Modification in Depression-Induced Cognitive Deficits. SSRN Electronic Journal, 0, , .	0.4	0
641	Emerging role of m6A modification in osteogenesis of stem cells. Journal of Bone and Mineral Metabolism, 2022, 40, 177-188.	1.3	6
642	Methylation Pattern Mediated by m6A Regulator and Tumor Microenvironment Invasion in Lung Adenocarcinoma. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	25
643	Prognostic Potential of METTL7B in Glioma. NeuroImmunoModulation, 2022, 29, 186-201.	0.9	5
644	Mechanism of METTL3-Mediated m6A Modification in Cardiomyocyte Pyroptosis and Myocardial Ischemia–Reperfusion Injury. Cardiovascular Drugs and Therapy, 2023, 37, 435-448.	1.3	19

#	Article	IF	CITATIONS
645	β-Elemene Restrains PTEN mRNA Degradation to Restrain the Growth of Lung Cancer Cells via METTL3-Mediated N6 Methyladenosine Modification. Journal of Oncology, 2022, 2022, 1-11.	0.6	7
646	N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4. International Journal of Molecular Sciences, 2022, 23, 1057.	1.8	14
647	RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. Journal of Hematology and Oncology, 2022, 15, 8.	6.9	62
648	RNA binding to human METTL3-METTL14 restricts N6-deoxyadenosine methylation of DNA in vitro. ELife, 2022, 11, .	2.8	11
649	<i>N</i> 6-methyladenosine enhances post-transcriptional gene regulation by microRNAs. Bioinformatics Advances, 2022, 2, vbab046.	0.9	2
651	METTL3 facilitates multiple myeloma tumorigenesis by enhancing YY1 stability and pri-microRNA-27 maturation in m6A-dependent manner. Cell Biology and Toxicology, 2023, 39, 2033-2050.	2.4	11
652	The prognostic value of m6A-related LncRNAs in patients with HNSCC: bioinformatics analysis of TCGA database. Scientific Reports, 2022, 12, 579.	1.6	12
653	The role of m6A RNA methylation in cancer metabolism. Molecular Cancer, 2022, 21, 14.	7.9	194
654	Emerging Roles of m6A RNA Methylation Regulators in Gynecological Cancer. Frontiers in Oncology, 2022, 12, 827956.	1.3	16
655	Emerging role of m ⁶ A modification in cardiovascular diseases. Cell Biology International, 2022, 46, 711-722.	1.4	10
656	Analysis of m6A Methylation Modification Patterns and Tumor Immune Microenvironment in Breast Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 785058.	1.8	9
657	Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. European Journal of Medicinal Chemistry, 2022, 230, 114118.	2.6	31
658	Potential applications of <scp> <i>N</i> ⁶â€methyladenosine</scp> modification in the prognosis and treatment of cancers via modulating apoptosis, autophagy, and ferroptosis. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1719.	3.2	11
659	m6A demethylation of cytidine deaminase APOBEC3B mRNA orchestrates arsenic-induced mutagenesis. Journal of Biological Chemistry, 2022, 298, 101563.	1.6	10
660	m6A-related IncRNAs predict prognosis and indicate immune microenvironment in acute myeloid leukemia. Scientific Reports, 2022, 12, 1759.	1.6	13
661	SPI1-inducedÂdownregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner. Molecular Therapy - Nucleic Acids, 2022, 27, 699-717.	2.3	23
662	Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. Journal of Hematology and Oncology, 2022, 15, 13.	6.9	34
663	m6A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Cell-Infiltration Characterization in Head and Neck Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 803141.	1.8	4

#	Article	IF	CITATIONS
664	Comprehensive analysis of N6-methyladenosine regulators with the tumor immune landscape and correlation between the insulin-like growth factor 2 mRNA-binding protein 3 and programmed death ligand 1 in bladder cancer. Cancer Cell International, 2022, 22, 72.	1.8	8
665	The Reversible Methylation of m6A Is Involved in Plant Virus Infection. Biology, 2022, 11, 271.	1.3	14
666	Adenosine-to-Inosine RNA Editing and <i>N</i> ⁶ -Methyladenosine Modification Modulating Expression of Drug Metabolizing Enzymes. Drug Metabolism and Disposition, 2022, 50, 624-633.	1.7	5
667	m6A-Finder: Detecting m6A methylation sites from RNA transcriptomes using physical and statistical properties based features. Computational Biology and Chemistry, 2022, 97, 107640.	1.1	5
668	Metabolic choreography of gene expression: nutrient transactions with the epigenome. Journal of Biosciences, 2020, 45, .	0.5	1
669	Role of succinate dehydrogenase in hepatocellular carcinoma. , 2022, , 167-180.		0
670	ALKBH5 Promotes Multiple Myeloma Tumorigenicity through inducing m ⁶ A-demethylation of SAV1 mRNA and Myeloma Stem Cell Phenotype. International Journal of Biological Sciences, 2022, 18, 2235-2248.	2.6	10
671	The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m ⁶ A readers in cancer. International Journal of Biological Sciences, 2022, 18, 2744-2758.	2.6	30
672	Control of animal virus replication by RNA adenosine methylation. Advances in Virus Research, 2022, , .	0.9	0
674	The m6A(m)-independent role of FTO in regulating WNT signaling pathways. Life Science Alliance, 2022, 5, e202101250.	1.3	9
675	Modulation of miRISC-Mediated Gene Silencing in Eukaryotes. Frontiers in Molecular Biosciences, 2022, 9, 832916.	1.6	7
676	Establishment and Validation of a 5 m6A RNA Methylation Regulatory Gene Prognostic Model in Low-Grade Glioma. Frontiers in Genetics, 2022, 13, 655169.	1.1	6
677	METTL3 suppresses neuropathic pain via modulating N6-methyladenosine-dependent primary miR-150 processing. Cell Death Discovery, 2022, 8, 80.	2.0	16
678	Transcriptome-wide analysis of glioma stem cell specific m6A modifications in long-non-coding RNAs. Scientific Reports, 2022, 12, 5431.	1.6	6
679	ALKBH5 promotes lung fibroblast activation and silica-induced pulmonary fibrosis through miR-320a-3p and FOXM1. Cellular and Molecular Biology Letters, 2022, 27, 26.	2.7	29
680	METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. British Journal of Cancer, 2022, 127, 30-42.	2.9	18
681	METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression. Experimental Hematology and Oncology, 2022, 11, 14.	2.0	14
682	Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development. Frontiers in Cell and Developmental Biology, 2022, 10, 819044.	1.8	10

#	Article	IF	CITATIONS
683	The regulatory role of <scp>N⁶</scp> â€methyladenosine modification in the interaction between host and microbes. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1725.	3.2	8
684	METTL3â€mediated maturation of miRâ€589â€5p promotes the malignant development of liver cancer. Journal of Cellular and Molecular Medicine, 2022, 26, 2505-2519.	1.6	9
685	Fat mass and obesityâ€associated protein regulates arecolineâ€exposed oral cancer immune response through programmed cell deathâ€igand 1. Cancer Science, 2022, 113, 2962-2973.	1.7	15
686	Regulation of human UDP-glycosyltransferase (<i>UGT</i>) genes by miRNAs. Drug Metabolism Reviews, 2022, 54, 120-140.	1.5	10
687	Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nature Reviews Cardiology, 2022, 19, 620-638.	6.1	40
688	m6A Regulator-Mediated Methylation Modification Patterns and Characterisation of Tumour Microenvironment Infiltration in Non-Small Cell Lung Cancer. Journal of Inflammation Research, 2022, Volume 15, 1969-1989.	1.6	14
689	Epigenomic alterations in cancer: mechanisms and therapeutic potential. Clinical Science, 2022, 136, 473-492.	1.8	4
690	Cadmium disrupts mouse embryonic stem cell differentiation into ovarian granulosa cells through epigenetic mechanisms. Ecotoxicology and Environmental Safety, 2022, 235, 113431.	2.9	5
691	Therapeutic targeting m6A-guided miR-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer. Cancer Letters, 2022, 534, 215615.	3.2	29
692	The molecular characteristics in different procedures of spermatogenesis. Gene, 2022, 826, 146405.	1.0	5
693	RNA N6â€methyladenosine in nonocular and ocular disease. Journal of Cellular Physiology, 2022, 237, 1686-1710.	2.0	4
694	Non-Coding RNA m6A Modification in Cancer: Mechanisms and Therapeutic Targets. Frontiers in Cell and Developmental Biology, 2021, 9, 778582.	1.8	25
695	m6A target microRNAs in serum for cancer detection. Molecular Cancer, 2021, 20, 170.	7.9	27
696	N6-methyladenosine Regulator-Mediated Immune Genes Identify Breast Cancer Immune Subtypes and Predict Immunotherapy Efficacy. Frontiers in Genetics, 2021, 12, 790888.	1.1	6
697	Regulation of Methylase METTL3 on Fat Deposition. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 4843-4852.	1.1	3
698	METTL3 inhibition ameliorates liver damage in mouse with hepatitis B virus-associated acute-on-chronic liver failure by regulating miR-146a-5p maturation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194782.	0.9	7
699	miRNAs in the Regulation of Cancer Immune Response: Effect of miRNAs on Cancer Immunotherapy. Cancers, 2021, 13, 6145.	1.7	4
700	Identification and Validation of a Prognostic Prediction Model of m6A Regulator-Related LncRNAs in Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 784553.	1.6	10

		CITATION R	EPORT	
#	Article		IF	CITATIONS
701	Small Noncoding RNAs in Reproduction and Infertility. Biomedicines, 2021, 9, 1884.		1.4	14
702	METTL3 promotes prostate cancer progression by regulating miRâ€182 maturation in manner. Andrologia, 2022, 54, 1581-1591.	m6Aâ€dependent	1.0	10
703	The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Frontiers in Genetics, 2022, 13, 869950.	l Diseases.	1.1	19
704	Molecular Characteristics of m6A Regulators and Tumor Microenvironment Infiltration Tissue Sarcoma: A Gene-Based Study. Frontiers in Bioengineering and Biotechnology, 2	in Soft 2022, 10, 846812.	2.0	2
725	Extracellular vesicleâ€packaged mitochondrial disturbing miRNA exacerbates cardiac in acute myocardial infarction. Clinical and Translational Medicine, 2022, 12, e779.	ıjury during	1.7	14
728	JNK Signaling Promotes Bladder Cancer Immune Escape by Regulating METTL3-Mediat Modification of PD-L1 mRNA. Cancer Research, 2022, 82, 1789-1802.	ed m6A	0.4	66
729	Epitranscriptomic dynamics in brain development and disease. Molecular Psychiatry, 2	022, 27, 3633-3646.	4.1	10
730	Multiple Phosphorylations of SR Protein SRSF3 and Its Binding to m6A Reader YTHDC Cells, 2022, 11, 1461.	. in Human Cells.	1.8	0
731	Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and Signal Transduction and Targeted Therapy, 2022, 7, 142.	pseudouridine.	7.1	62
732	m6A Reader Igf2bp1 Regulates the Inflammatory Responses of Microglia by Stabilizing mRNAs. Frontiers in Immunology, 2022, 13, 872252.	Gbp11 and Cp	2.2	13
733	The emerging roles of N6-methyladenosine (m6A)-modified long non-coding RNAs in h Cell Death Discovery, 2022, 8, 255.	uman cancers.	2.0	5
734	Maternal Oxidized Soybean Oil Administration in Rats during Pregnancy and Lactation Intestinal DNA Methylation in Offspring. Journal of Agricultural and Food Chemistry, 20 6224-6238.	Alters the D22, 70,	2.4	6
735	ALKBH5 regulates somatic cell reprogramming in a phase-specific manner. Journal of C 135, .	ell Science, 2022,	1.2	3
736	Nanopore-Based Detection of Viral RNA Modifications. MBio, 2022, 13, e0370221.		1.8	12
737	Mechanism of <scp>METTL3</scp> â€mediated <scp>m6A</scp> modification in depr cognitive deficits. American Journal of Medical Genetics Part B: Neuropsychiatric Gene 86-99.	essionâ€induced tics, 2022, 189,	1.1	8
738	Neutrophil extracellular traps mediate m ⁶ A modification and regulates se acute lung injury by activating ferroptosis in alveolar epithelial cells. International Journ Biological Sciences, 2022, 18, 3337-3357.	psis-associated hal of	2.6	72
739	MiR-29a-3p Improves Acute Lung Injury by Reducing Alveolar Epithelial Cell PANoptosi	s. , 2022, 13, 899.		50
740	Small ORFs as New Regulators of Pri-miRNAs and miRNAs Expression in Human and Dr International Journal of Molecular Sciences, 2022, 23, 5764.	osophila.	1.8	5

#	Article	IF	CITATIONS
741	How microRNAs Regulate Abiotic Stress Tolerance in Wheat? A Snapshot. , 2022, , 447-464.		3
742	N6-Methyladenosine-Related IncRNAs Are Anticipated Biomarkers for Sarcoma Patients. Journal of Oncology, 2022, 2022, 1-10.	0.6	2
743	The Interaction Between Epigenetic Changes, EMT, and Exosomes in Predicting Metastasis of Colorectal Cancers (CRC). Frontiers in Oncology, 0, 12, .	1.3	6
744	The Potential Value of m6A RNA Methylation in the Development of Cancers Focus on Malignant Glioma. Frontiers in Immunology, 2022, 13, .	2.2	6
745	Abnormal Expression of N6-Methyladenosine RNA Methylation Regulator IGF2BP3 in Colon Cancer Predicts a Poor Prognosis. Disease Markers, 2022, 2022, 1-27.	0.6	3
746	FTO Prevents Thyroid Cancer Progression by SLC7A11 m6A Methylation in a Ferroptosis-Dependent Manner. Frontiers in Endocrinology, 2022, 13, .	1.5	31
747	Construction of m6A-Related IncRNA Prognostic Signature Model and Immunomodulatory Effect in Glioblastoma Multiforme. Frontiers in Oncology, 0, 12, .	1.3	8
749	ALKBH5 inhibits TNF-α-induced apoptosis of HUVECs through Bcl-2 pathway. Open Medicine (Poland), 2022, 17, 1092-1099.	0.6	9
750	Integrated Analyses Reveal Potential Functional N6-Methyladenosine-Related Long Noncoding RNAs in Adrenocortical Adenocarcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
751	Prevalence of Kudoa thyrsites (Myxozoa, Multivalvulida) in Atlantic Mackerel, Scomber scombrus L., in the Vicinity of the Faroe Islands. Frontiers in Marine Science, 0, 9, .	1.2	3
752	The role of m6A in osteoporosis and in the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. Current Stem Cell Research and Therapy, 2022, 17, .	0.6	3
753	miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncology Reports, 2022, 48, .	1.2	5
755	HIF-1α Regulated WTAP Overexpression Promoting the Warburg Effect of Ovarian Cancer by m6A-Dependent Manner. Journal of Immunology Research, 2022, 2022, 1-21.	0.9	13
756	Novel insights into the interaction between <scp>N6â€methyladenosine</scp> methylation and noncoding <scp>RNAs</scp> in musculoskeletal disorders. Cell Proliferation, 2022, 55, .	2.4	20
757	hnRNPC induces isoform shifts in miR-21-5p leading to cancer development. Experimental and Molecular Medicine, 2022, 54, 812-824.	3.2	8
758	MSC Promotes the Secretion of Exosomal miR-34a-5p and Improve Intestinal Barrier Function Through METTL3-Mediated Pre-miR-34A m6A Modification. Molecular Neurobiology, 2022, 59, 5222-5235.	1.9	13
760	Novel insights into m ⁶ A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. International Journal of Biological Sciences, 2022, 18, 4432-4451.	2.6	13
761	m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Frontiers in Genetics, 0, 13, .	1.1	11

#	Article	IF	CITATIONS
762	A Novel YTHDF3-Based Model to Predict Prognosis and Therapeutic Response in Breast Cancer. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
763	Novel insights into roles of N6-methyladenosine reader YTHDF2 in cancer progression. Journal of Cancer Research and Clinical Oncology, 2022, 148, 2215-2230.	1.2	4
764	Correlative Study on the Relationship between the Expression of m6a-Related Genes and the Prognosis and Immunotherapy of Soft Tissue Sarcoma. BioMed Research International, 2022, 2022, 1-35.	0.9	1
765	METTL3 mediates Ang-II-induced cardiac hypertrophy through accelerating pri-miR-221/222 maturation in an m6A-dependent manner. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	26
766	The role of N6-methyladenosine-modified non-coding RNAs in the pathological process of human cancer. Cell Death Discovery, 2022, 8, .	2.0	9
767	Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Molecular Cancer, 2022, 21, .	7.9	29
768	Comprehensive Analysis of Regulatory Networks of m6A Regulators and Reveals Prognosis Biomarkers in Sarcoma. Frontiers in Oncology, 0, 12, .	1.3	0
769	Regulation of N6-Methyladenosine after Myocardial Infarction. Cells, 2022, 11, 2271.	1.8	6
770	The Epitranscriptome in miRNAs: Crosstalk, Detection, and Function in Cancer. Genes, 2022, 13, 1289.	1.0	2
771	RNA m6A modification orchestrates the rhythm of immune cell development from hematopoietic stem cells to T and B cells. Frontiers in Immunology, 0, 13, .	2.2	2
772	The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Frontiers in Oncology, 0, 12, .	1.3	2
773	Mutual regulation of noncoding RNAs and RNA modifications in psychopathology: Potential therapeutic targets for psychiatric disorders?. , 2022, 237, 108254.		1
774	RNA m6A modification and microRNAs. , 2022, , 169-180.		0
775	Epigenetic regulation and microRNA expression. , 2022, , 153-167.		0
776	The Translational Role of miRNA in Polycystic Ovary Syndrome: From Bench to Bedside—A Systematic Literature Review. Biomedicines, 2022, 10, 1816.	1.4	17
777	Transcriptome-wide study revealed m6A and miRNA regulation of embryonic breast muscle development in Wenchang chickens. Frontiers in Veterinary Science, 0, 9, .	0.9	5
778	Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	7
779	Multifaceted Roles of the N6-Methyladenosine RNA Methyltransferase METTL3 in Cancer and Immune Microenvironment. Biomolecules, 2022, 12, 1042.	1.8	5

#	Article		CITATIONS
780	METTL14-dependent m6A modification controls iNKT cell development and function. Cell Reports, 2022, 40, 111156.	2.9	10
781	Comprehensive analysis of the m6A-related molecular patterns and diagnostic biomarkers in osteoporosis. Frontiers in Endocrinology, 0, 13, .	1.5	7
783	The m6A methyltransferase Mettl3 deficiency attenuates hepatic stellate cell activation and liver fibrosis. Molecular Therapy, 2022, 30, 3714-3728.	3.7	15
784	The role of N6-methyladenosine methylation in environmental exposure-induced health damage. Environmental Science and Pollution Research, 2022, 29, 69153-69175.	2.7	5
785	Transcriptome-wide analyses of RNA m6A methylation in hexaploid wheat reveal its roles in mRNA translation regulation. Frontiers in Plant Science, 0, 13, .	1.7	2
786	Identification and Validation of an m6A-Related LncRNA Signature to Predict Progression-Free Survival in Colorectal Cancer. Pathology and Oncology Research, 0, 28, .	0.9	2
787	Research progress of m6A regulation during animal growth and development. Molecular and Cellular Probes, 2022, 65, 101851.	0.9	1
788	Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
789	Comprehensive analysis of molecular features, prognostic values, and immune landscape association of m6A-regulated immune-related IncRNAs in smoking-associated lung squamous cell carcinoma. Frontiers in Genetics, 0, 13, .	1.1	3
790	Physio-pathological effects of N6-methyladenosine and its therapeutic implications in leukemia. Biomarker Research, 2022, 10, .	2.8	3
791	<i>Fusobacterium nucleatum</i> induces excess methyltransferaseâ€like 3â€mediated microRNAâ€4717â€3p maturation to promote colorectal cancer cell proliferation. Cancer Science, 2022, 113, 3787-3800.	1.7	12
792	N6-methyladenosine (m6A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nature Metabolism, 2022, 4, 1041-1054.	5.1	39
793	N6-Methyladenosine-induced miR-143-3p promotes intervertebral disc degeneration by regulating SOX5. Bone, 2022, 163, 116503.	1.4	5
794	METTL3 contributes to slow transit constipation by regulating miRâ€30bâ€5p/PIK3R2/Akt/mTOR signaling cascade through DGCR8. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 2229-2242.	1.4	5
795	Functional Characterization of Two RNA Methyltransferase Genes METTL3 and METTL14 Uncovers the Roles of m6A in Mediating Adaptation of Plutella xylostella to Host Plants. International Journal of Molecular Sciences, 2022, 23, 10013.	1.8	2
796	Role of <scp>m6A</scp> RNA methylation in the development of hepatitis B virusâ€associated hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 2039-2050.	1.4	3
797	The Epigenetics of Noncoding RNA. , 2023, , 55-71.		0
798	m6A RNA Methylation Decreases Atherosclerotic Vulnerable Plaque Through Inducing T Cells. Brazilian Journal of Cardiovascular Surgery, 0, , .	0.2	0

#	Article		CITATIONS
799	Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy. Computational and Structural Biotechnology Journal, 2022, 20, 5150-5161.	1.9	5
800	Role of MicroRNA in ROS Modulation and Its Implication in Lung Cancer and Therapeutics. , 2022, , 1811-1834.		0
801	Circulating microRNAs as potential novel biomarkers in cardiovascular diseases: Emerging role, biogenesis, current knowledge, therapeutics and the road ahead. International Journal of the Cardiovascular Academy, 2022, 8, 31.	0.1	1
802	Transcriptional expression of m6A and m5C RNA methyltransferase genes in the brain and fat body of honey bee adult workers. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
803	Methyltransferase-like 3 (METTL3) mediated N6-methyladenosine (m6A) modifications facilitate mir-25-3p maturation to promote gastrointestinal stromal tumors (GISTs) progression. Genes and Genomics, 2022, 44, 1519-1530.	0.5	4
805	Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. Journal of Biosciences, 2022, 47, .	0.5	2
806	Exploration of N6-Methyladenosine Profiles of mRNAs and the Function of METTL3 in Atherosclerosis. Cells, 2022, 11, 2980.	1.8	5
807	Pathological and Therapeutic Advances in Parkinson's Disease: Mitochondria in the Interplay. Journal of Alzheimer's Disease, 2023, 94, S399-S428.	1.2	15
808	Recent developments in the significant effect of mRNA modification (M6A) in glioblastoma and esophageal cancer. Scientific African, 2022, 17, e01347.	0.7	0
809	miR-140-5p and miR-140-3p: Key Actors in Aging-Related Diseases?. International Journal of Molecular Sciences, 2022, 23, 11439.	1.8	6
811	RNA modifications: importance in immune cell biology and related diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	74
812	ALKBH9C, a potential RNA m ⁶ A demethylase, regulates the response of <i>Arabidopsis</i> to abiotic stresses and abscisic acid. Plant, Cell and Environment, 2022, 45, 3566-3581.	2.8	14
813	Analysis of the role of m6A and IncRNAs in prognosis and immunotherapy of hepatocellular carcinoma. Heliyon, 2022, 8, e10612.	1.4	3
814	The role of RNA modification in hepatocellular carcinoma. Frontiers in Pharmacology, 0, 13, .	1.6	6
815	Mechanisms Controlling MicroRNA Expression in Tumor. Cells, 2022, 11, 2852.	1.8	10
816	Effects of writers, erasers and readers within miRNAâ€related m6A modification in cancers. Cell Proliferation, 2023, 56, .	2.4	15
817	m6A RNA methylation regulator-related signatures exhibit good prognosis prediction ability for head and neck squamous cell carcinoma. Scientific Reports, 2022, 12, .	1.6	2
818	Formation and removal of 1, <i>N</i> 6-dimethyladenosine in mammalian transfer RNA. Nucleic Acids Research, 2022, 50, 9858-9872.	6.5	15

	Сіта	tion Report	
#	Article	IF	CITATIONS
819	An RNA link for METTL16 and DNA repair in PDAC. Nature Cancer, 2022, 3, 1018-1020.	5.7	4
820	Epigenetic Dysregulations in Arsenic-Induced Carcinogenesis. Cancers, 2022, 14, 4502.	1.7	10
821	Exercise training ameliorates myocardial phenotypes in heart failure with preserved ejection fraction by changing N6-methyladenosine modification in mice model. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
822	Targeting RNA N6-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Molecular Cancer, 2022, 21, .	7.9	15
823	RNA modifications in aging-associated cardiovascular diseases. Aging, 2022, 14, 8110-8136.	1.4	2
824	N6-methyladenosine-related microRNAs risk model trumps the isocitrate dehydrogenase mutation status as a predictive biomarker for the prognosis and immunotherapy in lower grade gliomas. Exploration of Targeted Anti-tumor Therapy, 0, , 553-569.	0.5	1
825	MiR-654-3p, reduced by the excessive ALKBH5, Alleviated the Inflammation in OA by targeting TNFRSF9, the trigger of the NF-ήB pathway. Biochemical and Biophysical Research Communications, 2022, 634, 30-39.	1.0	2
826	Analysis of LINC01314 and miR-96 Expression in Colorectal Cancer Patients via Tissue Microarray-Based Fluorescence In Situ Hybridization. Disease Markers, 2022, 2022, 1-10.	0.6	2
827	RNA N ⁶ â€methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. British Journal of Pharmacology, 2023, 180, 5-24.	2.7	6
828	Upregulated YTHDF1 associates with tumor immune microenvironment in head and neck squamous cell carcinomas. Translational Cancer Research, 2022, 11, 3986-3999.	0.4	2
829	Metabolism-epigenetic interactions on. Reproduction, Fertility and Development, 2022, 35, 84-97.	0.1	3
830	Biological roles of adenine methylation in RNA. Nature Reviews Genetics, 2023, 24, 143-160.	7.7	73
832	Emerging role of N6-methyladenosine RNA methylation in lung diseases. Experimental Biology and Medicine, 2022, 247, 1862-1872.	1.1	4
833	The Role of m6A Modification and m6A Regulators in Esophageal Cancer. Cancers, 2022, 14, 5139.	1.7	2
834	The Role of N6-Methyladenosine Modification in Microvascular Dysfunction. Cells, 2022, 11, 3193.	1.8	1
835	Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. Journal of Cellular Physiology, 2023, 238, 5-31.	2.0	5
836	Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. International Journal of Biological Macromolecules, 2023, 224, 1541-1565.	3.6	37
837	Gene regulation in animal miRNA biogenesis. Epigenomics, 2022, 14, 1197-1212.	1.0	0

#	Article		CITATIONS
838	Roles of m ⁶ A modification in oral cancer (Review). International Journal of Oncology, 2022, 62, .	1.4	2
839	METTL3 promotes colorectal cancer metastasis by promoting the maturation of pri-microRNA-196b. Journal of Cancer Research and Clinical Oncology, 2023, 149, 5095-5108.	1.2	5
840	Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	0
841	Research progress on N ⁶ -adenosylate methylation RNA modification in heart failure remodeling. Journal of Translational Internal Medicine, 2023, 10, 340-348.	1.0	10
842	MicroRNAs as early diagnostic biomarkers for non‑small cell lung cancer (Review). Oncology Reports, 2022, 49, .	1.2	2
843	METTL1 drives tumor progression of bladder cancer via degrading ATF3 mRNA in an m7G-modified miR-760-dependent manner. Cell Death Discovery, 2022, 8, .	2.0	9
844	N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats. Animal Bioscience, 2023, 36, 555-569.	0.8	2
845	Methyltransferaseâ€like 3 promotes cervical cancer metastasis by enhancing cathepsin L <scp>mRNA</scp> stability in an <scp>m6A</scp> â€dependent manner. Cancer Science, 0, , .	1.7	4
847	m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. Journal of Molecular Endocrinology, 2023, 70, .	1.1	13
848	RNA methyltransferase NSun2 deficiency promotes neurodegeneration through epitranscriptomic regulation of tau phosphorylation. Acta Neuropathologica, 2023, 145, 29-48.	3.9	4
849	Non-coding RNA and n6-methyladenosine modification play crucial roles in neuropathic pain. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	3
850	Overexpression of FTO alleviates osteoarthritis by regulating the processing of miR-515-5p and the TLR4/MyD88/NF-l®B axis. International Immunopharmacology, 2023, 114, 109524.	1.7	15
851	miR-96 and its versatile role in cancer. Advances in Cancer Biology Metastasis, 2023, 7, 100082.	1.1	0
852	The Role of Epitranscriptomic Modifications in the Regulation of RNA–Protein Interactions. Biochem, 2022, 2, 241-259.	0.5	1
853	N6-methyladenosine Modification of Noncoding RNAs: Mechanisms and Clinical Applications in Cancer. Diagnostics, 2022, 12, 2996.	1.3	1
854	MicroRNA Biomarkers in Primary Brain Malignancies. , 0, , .		Ο
855	m6A-SAC-seq for quantitative whole transcriptome m6A profiling. Nature Protocols, 2023, 18, 626-657.	5.5	11
856	Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. International Journal of Molecular Sciences, 2022, 23, 15076.	1.8	3

#	Article	IF	CITATIONS
857	Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation. PLoS Pathogens, 2022, 18, e1010972.	2.1	6
858	The Role of microRNAs in Inflammation. International Journal of Molecular Sciences, 2022, 23, 15479.	1.8	23
859	The Role of the m6A RNA Methyltransferase METTL16 in Gene Expression and SAM Homeostasis. Genes, 2022, 13, 2312.	1.0	0
861	The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Frontiers in Oncology, 0, 12, .	1.3	2
862	Fear stress promotes glioma progression through inhibition of ferroptosis by enhancing FSP1 stability. Clinical and Translational Oncology, 2023, 25, 1378-1388.	1.2	7
863	RNA modifications in cardiovascular health and disease. Nature Reviews Cardiology, 2023, 20, 325-346.	6.1	11
864	Role of m6A modification and novel circ_0066715/ miR-486-5p/ ETS1 axis in rheumatoid arthritis macrophage polarization progression. Aging, 2022, 14, 10009-10026.	1.4	7
865	Interplay between <scp>m⁶A</scp> epitranscriptome and epigenome in cancer: current knowledge and therapeutic perspectives. International Journal of Cancer, 2023, 153, 464-475.	2.3	6
866	Transcriptome-wide profiling of mRNA N6-methyladenosine modification in rice panicles and flag leaves. Genomics, 2023, 115, 110542.	1.3	1
867	The regulation of <scp>N6</scp> â€methyladenosine modification in <scp>PDâ€L1</scp> â€induced antiâ€tumo immunity. Immunology and Cell Biology, 0, , .	or 1.0	2
868	RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle, 2023, 22, 870-905.	1.3	7
869	Emerging Mutual Regulatory Roles between m6A Modification and microRNAs. International Journal of Molecular Sciences, 2023, 24, 773.	1.8	4
870	N6-methyladenosine in macrophage function: a novel target for metabolic diseases. Trends in Endocrinology and Metabolism, 2023, 34, 66-84.	3.1	11
871	METTL3 alleviates D-gal-induced renal tubular epithelial cellular senescence via promoting miR-181a maturation. Mechanisms of Ageing and Development, 2023, 210, 111774.	2.2	2
872	mRNA m ⁶ A methylation in wood frog brain is maintained during freezing and anoxia. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 0, , .	0.9	1
873	Erianin Induces Ferroptosis of Renal Cancer Stem Cells <i>via</i> Promoting <i>ALOX12</i> / <i>P53</i> mRNA N6-methyladenosine Modification. Journal of Cancer, 2023, 14, 367-378.	1.2	12
874	Role of METTL3 in Aerobic Glycolysis of Glioma by Regulating m6A/miR-27b-3p/PDK1. Journal of Environmental Pathology, Toxicology and Oncology, 2023, 42, 31-45.	0.6	1
875	RNA N6-methyladenosine methylation and skin diseases. Autoimmunity, 2023, 56, .	1.2	3

#	Article		CITATIONS
876	METTL3 from Target Validation to the First Small-Molecule Inhibitors: A Medicinal Chemistry Journey. Journal of Medicinal Chemistry, 2023, 66, 1654-1677.	2.9	14
877	Current Insights into m6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. Plants, 2023, 12, 624.	1.6	1
878	Novel insights into the interplay between m6A modification and programmed cell death in cancer. International Journal of Biological Sciences, 2023, 19, 1748-1763.	2.6	4
879	FTO-mediated m6A demethylation of pri-miR-3591 alleviates osteoarthritis progression. Arthritis Research and Therapy, 2023, 25, .	1.6	3
880	Aberrant RNA m6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death and Disease, 2023, 14, .	2.7	3
881	An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes, 2023, 14, 873.	1.0	18
882	miRNAs as potential game-changers in head and neck cancer: Future clinical and medicinal uses. Pathology Research and Practice, 2023, 245, 154457.	1.0	42
883	The emerging importance role of m6A modification in liver disease. Biomedicine and Pharmacotherapy, 2023, 162, 114669.	2.5	8
884	Role of miR-300-3p in Leydig cell function and differentiation: A therapeutic target for obesity-related testosterone deficiency. Molecular Therapy - Nucleic Acids, 2023, 32, 879-895.	2.3	2
887	Enhancing recombinant protein and viral vector production in mammalian cells by targeting the YTHDF readers of <i>N</i> ⁶ â€methyladenosine in mRNA. Biotechnology Journal, 2023, 18, .	1.8	1
888	Determinants of Functional MicroRNA Targeting. Molecules and Cells, 2023, 46, 21-32.	1.0	4
889	RNA-binding proteins in degenerative joint diseases: A systematic review. Ageing Research Reviews, 2023, 86, 101870.	5.0	3
890	Upregulation of miRNA-10a-5p promotes tumor progression in cervical cancer by suppressing UBE2I signaling. Journal of Obstetrics and Gynaecology, 2023, 43, .	0.4	4
891	Current and potential roles of RNA modification-mediated autophagy dysregulation in cancer. Archives of Biochemistry and Biophysics, 2023, 736, 109542.	1.4	1
892	The Emerging Role of m6A Modification in Endocrine Cancer. Cancers, 2023, 15, 1033.	1.7	0
893	RBM15 Promates the Proliferation, Migration and Invasion of Pancreatic Cancer Cell Lines. Cancers, 2023, 15, 1084.	1.7	6
894	Integrated analysis of RNA methylation regulators crosstalk and immune infiltration for predictive and personalized therapy of diabetic nephropathy. Human Genomics, 2023, 17, .	1.4	2
895	Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers, 2023, 15, 1232.	1.7	2

#	Article		CITATIONS
896	Splice site m ⁶ A methylation prevents binding of DGCR8 to suppress KRT4 pre-mRNA splicing in oral squamous cell carcinoma. PeerJ, 0, 11, e14824.	0.9	4
897	<scp>METTL14</scp> modulates glycolysis to inhibit colorectal tumorigenesis in p53â€wildâ€ŧype cells. EMBO Reports, 2023, 24, .	2.0	7
898	A novel RNA modification prognostic signature for predicting the characteristics of the tumor microenvironment in gastric cancer. Frontiers in Oncology, 0, 13, .	1.3	1
899	Overview of m6A and circRNAs in human cancers. Journal of Cancer Research and Clinical Oncology, 2023, 149, 6769-6784.	1.2	3
900	RBM15 suppresses hepatic insulin sensitivity of offspring of gestational diabetes mellitus mice via m6A-mediated regulation of CLDN4. Molecular Medicine, 2023, 29, .	1.9	7
901	A Split CRISPR/Cas13b System for Conditional RNA Regulation and Editing. Journal of the American Chemical Society, 2023, 145, 5561-5569.	6.6	5
902	Conserved reduction of m ⁶ A RNA modifications during aging and neurodegeneration is linked to changes in synaptic transcripts. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	20
903	Regulation of SUMOylation on RNA metabolism in cancers. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
904	Molecular phenotypic linkage between N6-methyladenosine methylation and tumor immune microenvironment in hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	0
905	The Role of m6A Modifications in B-Cell Development and B-Cell-Related Diseases. International Journal of Molecular Sciences, 2023, 24, 4721.	1.8	Ο
906	Roles and therapeutic implications of m6A modification in cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	6
907	Epitranscriptional Regulation: From the Perspectives of Cardiovascular Bioengineering. Annual Review of Biomedical Engineering, 2023, 25, .	5.7	0
908	The nuclear isoforms of the Fragile X mental retardation RNA-binding protein associate with genomic DNA bridges. Molecular Biology of the Cell, 2023, 34, .	0.9	2
909	miRNAs as Predictors of Barrier Integrity. Biosensors, 2023, 13, 422.	2.3	2
910	RNA m6A reader YTHDF2 facilitates precursor miR-126 maturation to promote acute myeloid leukemia progression. Genes and Diseases, 2024, 11, 382-396.	1.5	4
911	Bta-miR-206 and a Novel IncRNA-IncA2B1 Promote Myogenesis of Skeletal Muscle Satellite Cells via Common Binding Protein HNRNPA2B1. Cells, 2023, 12, 1028.	1.8	1
913	WTAP-Mediated m6A RNA Methylation Regulates the Differentiation of Bone Marrow Mesenchymal Stem Cells via the miR-29b-3p/HDAC4 Axis. Stem Cells Translational Medicine, 2023, 12, 307-321.	1.6	3
914	Epitranscriptomics: new players in an old game. Biochemical Society Transactions, 2023, 51, 783-796.	1.6	1

		CITATION REPORT		
#	Article	IF	-	Citations
915	Small RNAs: An expanding world with therapeutic promises. Fundamental Research, 2023, 3, 6	576-682. 1	.6	0
916	Epigenetic Modifications in Prostate Cancer Metastasis and Microenvironment. Cancers, 2023	8, 15, 2243. 1	.7	5
917	Potential genetic therapies based on m6A methylation for skin regeneration: Wound healing a scars/keloids. Frontiers in Bioengineering and Biotechnology, 0, 11, .	and 2	.0	0
918	Decoding m6A mRNA methylation by reader proteins in liver diseases. Genes and Diseases, 20 711-726.	24, 11, 1	.5	1
920	The expanding role of RNA modifications in plant RNA polymerase II transcripts: highlights and perspectives. Journal of Experimental Botany, 2023, 74, 3975-3986.	2	.4	2
928	MicroRNA Bioinformatics. , 2023, , 791-815.			0
937	Regulation of non-coding RNAs. , 2023, , 209-271.			0
945	Regulatory Roles of MicroRNAs in the Pathogenesis of Metabolic Syndrome. Molecular Biotechnology, 0, , .	1	.3	0
953	Role of miRNa in glioma pathogenesis, diagnosis and therapeutic outcomes , 0, , .			0
973	RNA modifications in physiology and disease: towards clinical applications. Nature Reviews Ge 2024, 25, 104-122.	netics, 7	.7	9
983	Crosstalk Between m6A RNA Methylation and miRNA Biogenesis in Cancer: An Unholy Nexus. Biotechnology, 0, , .	Molecular 1	.3	0
998	RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	7	.1	ο
999	Targeting microRNAs as a promising anti-cancer therapeutic strategy against traffic-related air pollution-mediated lung cancer. Cancer and Metastasis Reviews, 0, , .	. 2	.7	0
1000	Prospects of microRNAs as therapeutic biomarkers in non-small cell lung cancer. , 2023, 40, .			2
1001	The roles of m6A methylation in cervical cancer: functions, molecular mechanisms, and clinica applications. Cell Death and Disease, 2023, 14, .	2	.7	1
1015	The role of RNA modification in urological cancers: mechanisms and clinical potential. Discove Oncology, 2023, 14, .	r o	9.8	0
1030	N6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2023, , 105-123.	0	9.8	0
1032	MicroRNA modulation in metabolic syndrome: A novel insight into cardiometabolic diseases. , 555-574.	2024, ,		0

#	Article	IF	CITATIONS
1035	The Role of MicroRNAs in Mature B-Cell Neoplasias Drug Resistance. , 2024, , .		0
1036	Critical Roles of Micro-RNAs in the Pathogenesis and Immunoregulation of Leishmania Infection. , 2023, , 183-212.		0
1037	MicroRNAs-mediated regulation of immune responses in parasitic infection. , 2024, , 239-263.		0
1041	Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Therapy, 0, , .	2.2	0