Desmoplasia in Primary Tumors and Metastatic Lesions

Clinical Cancer Research 21, 3561-3568

DOI: 10.1158/1078-0432.ccr-14-1051

Citation Report

#	Article	IF	CITATIONS
2	Circulating DNA and Micro-RNA in Patients with Pancreatic Cancer. Pancreatic Disorders & Therapy, $2015, 05, \ldots$	0.3	14
3	Breaching the Castle Walls: Hyaluronan Depletion as a Therapeutic Approach to Cancer Therapy. Frontiers in Oncology, 2015, 5, 192.	1.3	55
4	Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy. Frontiers in Oncology, 2015, 5, 214.	1.3	96
5	Stroma, Stroma Everywhere (Far More Than You Think). Clinical Cancer Research, 2015, 21, 3366-3368.	3.2	16
6	Orchestrating the Tumor Microenvironment to Improve Survival for Patients With Pancreatic Cancer. Cancer Journal (Sudbury, Mass), 2015, 21, 299-306.	1.0	70
7	Therapeutic Targeting of the Warburg Effect in Pancreatic Cancer Relies on an Absence of p53 Function. Cancer Research, 2015, 75, 3355-3364.	0.4	129
8	Pragmatic medicine in solid cancer: a translational alternative to precision medicine. OncoTargets and Therapy, 2016, 9, 1839.	1.0	6
9	CASTIN: a system for comprehensive analysis of cancer-stromal interactome. BMC Genomics, 2016, 17, 899.	1.2	10
10	Three-Dimensional Quantification of Collagen Fibers in Cancer Metastases within the Peritoneal Cavity. , $2016, , .$		0
11	Diffusion-weighted and dynamic contrast-enhanced MRI of pancreatic adenocarcinoma xenografts: associations with tumor differentiation and collagen content. Journal of Translational Medicine, 2016, 14, 161.	1.8	35
12	Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis. PLoS ONE, 2016, 11, e0160587.	1.1	49
13	Genetically Engineered Mouse Models of Pancreatic Cancer: The KPC Model (⟨i⟩LSLâ€Kras⟨sup⟩G12D/+⟨/sup⟩;LSLâ€Trp53⟨sup⟩R172H/+⟨/sup⟩;Pdxâ€Tâ€Cre⟨/i⟩), Its Variants, and Their Application in Immunoâ€oncology Drug Discovery. Current Protocols in Pharmacology, 2016, 73, 14.39.1-14.39.20.	4.0	141
14	Targeting the Physicochemical, Cellular, and Immunosuppressive Properties of the Tumor Microenvironment by Depletion of Hyaluronan to Treat Cancer. , 2016, , 249-268.		0
15	ETS-Transcription Factor ETV1 Regulates Stromal Expansion andÂMetastasis in Pancreatic Cancer. Gastroenterology, 2016, 151, 540-553.e14.	0.6	44
16	Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis. Biomaterials, 2016, 101, 108-120.	5.7	26
17	Bioinformatic analysis reveals pancreatic cancer molecular subtypes specific to the tumor and the microenvironment. Expert Review of Molecular Diagnostics, 2016, 16, 733-736.	1.5	13
18	Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a027094.	2.9	119
19	Superior therapeutic efficacy of nab-paclitaxel over cremophor-based paclitaxel in locally advanced and metastatic models of human pancreatic cancer. British Journal of Cancer, 2016, 115, 442-453.	2.9	39

#	Article	IF	Citations
20	Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 2016, 536, 479-483.	13.7	843
21	Impact by pancreatic stellate cells on epithelial-mesenchymal transition and pancreatic cancer cell invasion: Adding a third dimension in vitro. Experimental Cell Research, 2016, 346, 206-215.	1.2	32
22	Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Science Translational Medicine, 2016, 8, 360ra135.	5.8	184
23	Hypoxiaâ€inducible factorâ€targeting prodrug <scp>TOP</scp> 3 combined with gemcitabine or <scp>TS</scp> â€1 improves pancreatic cancer survival in an orthotopic model. Cancer Science, 2016, 107, 1151-1158.	1.7	17
24	Metastatic progression is associated with dynamic changes in the local microenvironment. Nature Communications, 2016, 7, 12819.	5.8	99
25	Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discovery, 2016, 6, 852-869.	7.7	318
27	Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Critical Reviews in Oncology/Hematology, 2016, 105, 127-144.	2.0	9
28	Phase Ib Study of PEGylated Recombinant Human Hyaluronidase and Gemcitabine in Patients with Advanced Pancreatic Cancer. Clinical Cancer Research, 2016, 22, 2848-2854.	3.2	272
29	Differential Regulation of ZEB1 and EMT by MAPK-Interacting Protein Kinases (MNK) and eIF4E in Pancreatic Cancer. Molecular Cancer Research, 2016, 14, 216-227.	1.5	38
30	Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight. Cancer Science, 2016, 107, 569-575.	1.7	106
31	Cellular and molecular aspects of pancreatic cancer. Acta Histochemica, 2016, 118, 305-316.	0.9	30
32	Targeting hyaluronan for the treatment of pancreatic ductal adenocarcinoma. Acta Pharmaceutica Sinica B, 2016, 6, 101-105.	5.7	49
33	Potent EMT and CSC Phenotypes Are Induced By Oncostatin-M in Pancreatic Cancer. Molecular Cancer Research, 2017, 15, 478-488.	1.5	59
34	Cancer Manipulation of Host Physiology: Lessons from Pancreatic Cancer. Trends in Molecular Medicine, 2017, 23, 465-481.	3.5	31
35	Never let it go: Stopping key mechanisms underlying metastasis to fight pancreatic cancer. Seminars in Cancer Biology, 2017, 44, 43-59.	4.3	89
36	Targeting the Tumor Stroma: the Biology and Clinical Development of Pegylated Recombinant Human Hyaluronidase (PEGPH20). Current Oncology Reports, 2017, 19, 47.	1.8	100
37	The pancreatic cancer microenvironment: A true double agent. Journal of Surgical Oncology, 2017, 116, 7-15.	0.8	57
38	Key biological processes driving metastatic spread of pancreatic cancer as identified by multi-omics studies. Seminars in Cancer Biology, 2017, 44, 153-169.	4.3	68

#	ARTICLE	IF	Citations
39	Circulating pancreatic stellate (stromal) cells in pancreatic cancerâ€"a fertile area for novel research. Carcinogenesis, 2017, 38, 588-591.	1.3	19
40	Stratification of Pancreatic Ductal Adenocarcinoma: Combinatorial Genetic, Stromal, and Immunologic Markers. Clinical Cancer Research, 2017, 23, 4429-4440.	3.2	142
41	Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nature Medicine, 2017, 23, 235-241.	15.2	263
42	KIAA1199/CEMIP/HYBID overexpression predicts poor prognosis in pancreatic ductal adenocarcinoma. Pancreatology, 2017, 17, 115-122.	0.5	50
43	Automated quantification of three-dimensional organization of fiber-like structures in biological tissues. Biomaterials, 2017, 116, 34-47.	5.7	55
44	Integrated expression profiling of potassium channels identifys KCNN4 as a prognostic biomarker of pancreatic cancer. Biochemical and Biophysical Research Communications, 2017, 494, 113-119.	1.0	38
45	Recent advances in proteomic profiling of pancreatic ductal adenocarcinoma and the road ahead. Expert Review of Proteomics, 2017, 14, 963-971.	1.3	5
46	Degree of desmoplasia in metastatic lymph node lesions is associated with lesion size and poor prognosis in pancreatic cancer patients. Oncology Letters, 2017, 14, 3141-3147.	0.8	7
47	A mechanopharmacology approach to overcome chemoresistance in pancreatic cancer. Drug Resistance Updates, 2017, 31, 43-51.	6.5	43
48	Tumor Reduction in Primary and Metastatic Pancreatic Cancer Lesions With nab-Paclitaxel and Gemcitabine. Pancreas, 2017, 46, 203-208.	0.5	24
49	Understanding Disease Biology and Informing the Management of Pancreas Cancer With Preclinical Model Systems. Cancer Journal (Sudbury, Mass), 2017, 23, 326-332.	1.0	4
50	Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis, 2017, 6, e352-e352.	2.1	358
51	Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nature Communications, 2017, 8, 16031.	5.8	299
52	Vascular enhancement pattern of mass in computed tomography may predict chemo-responsiveness in advanced pancreatic cancer. Pancreatology, 2017, 17, 103-108.	0.5	12
53	Hedgehog inhibition enhances efficacy of radiation and cisplatin in orthotopic cervical cancer xenografts. British Journal of Cancer, 2017, 116, 50-57.	2.9	22
54	Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. International Journal of Molecular Sciences, 2017, 18, 779.	1.8	63
55	Is hyaluronan deposition in the stroma of pancreatic ductal adenocarcinoma of prognostic significance?. PLoS ONE, 2017, 12, e0178703.	1.1	13
56	3D collagen fibrillar microstructure guides pancreatic cancer cell phenotype and serves as a critical design parameter for phenotypic models of EMT. PLoS ONE, 2017, 12, e0188870.	1.1	59

#	ARTICLE	IF	CITATIONS
57	Reprogramming of stromal fibroblasts by SNAI2 contributes to tumor desmoplasia and ovarian cancer progression. Molecular Cancer, 2017, 16, 163.	7.9	47
58	Reorganized Collagen in the Tumor Microenvironment of Gastric Cancer and Its Association with Prognosis. Journal of Cancer, 2017, 8, 1466-1476.	1.2	109
59	Elucidating the link between collagen and pancreatic cancer: what's next?. Expert Review of Gastroenterology and Hepatology, 2018, 12, 315-317.	1.4	12
60	Extracellular matrix composition modulates <scp>PDAC</scp> parenchymal and stem cell plasticity and behavior through the secretome. FEBS Journal, 2018, 285, 2104-2124.	2.2	36
62	Fountain of youth of pancreatic cancer cells: the extracellular matrix. Cell Death Discovery, 2018, 4, 1.	2.0	17
64	Evaluation of Macrophage Polarization in Pancreatic Cancer Microenvironment Under Hypoxia. Methods in Molecular Biology, 2018, 1742, 265-276.	0.4	19
65	Hypoxia-Induced Metabolomic Alterations in Pancreatic Cancer Cells. Methods in Molecular Biology, 2018, 1742, 95-105.	0.4	12
66	Phase 1 trials of PEGylated recombinant human hyaluronidase PH20 in patients with advanced solid tumours. British Journal of Cancer, 2018, 118, 153-161.	2.9	51
67	Animal models for studying tumor microenvironment (TME) and resistance to lymphocytic infiltration. Cancer Biology and Therapy, 2018, 19, 745-754.	1.5	22
68	The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Molecular Cancer, 2018, 17, 62.	7.9	99
69	Indometacin inhibits the proliferation and activation of human pancreatic stellate cells through the downregulation of COX-2. Oncology Reports, 2018, 39, 2243-2251.	1.2	17
70	Method Optimization for Extracting High-Quality RNA From the Human Pancreas Tissue. Translational Oncology, 2018, 11, 800-807.	1.7	27
71	Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut, 2018, 67, 497-507.	6.1	151
72	HALO-109–301: a Phase III trial of PEGPH20 (with gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage IV pancreatic cancer. Future Oncology, 2018, 14, 13-22.	1.1	115
73	Quantification of altered tissue turnover in a liquid biopsy: a proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunology, Immunotherapy, 2018, 67, 1-12.	2.0	40
74	An overview of polyamine metabolism in pancreatic ductal adenocarcinoma. International Journal of Cancer, 2018, 142, 1968-1976.	2.3	24
75	Stressing for sugar: a new role of serotonin for glycolysis in pancreatic cancer cells. Annals of Pancreatic Cancer, 2018, 1, 29-29.	1.2	0
76	Crosstalk between the Tumor Microenvironment and Immune System in Pancreatic Ductal Adenocarcinoma: Potential Targets for New Therapeutic Approaches. Gastroenterology Research and Practice, 2018, 2018, 1-15.	0.7	28

#	Article	IF	Citations
77	Altering the response to radiation: radiosensitizers and targeted therapies in pancreatic ductal adenocarcinoma: preclinical and emerging clinical evidence. Annals of Pancreatic Cancer, 2018, 1 , 26-26.	1.2	3
78	Recent advances in radiation therapy of pancreatic cancer. F1000Research, 2018, 7, 1931.	0.8	12
79	KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism. Cancer Cell, 2018, 34, 807-822.e7.	7.7	112
80	The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics, 2018, 8, 5072-5087.	4.6	139
81	Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking <i>In Vitro</i> Models in Anti-Cancer Drug Development. Theranostics, 2018, 8, 5259-5275.	4.6	138
82	Immunotherapy and pancreatic cancer: unique challenges and potential opportunities. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591881628.	1.4	56
83	Pancreatic cancer chemo-resistance is driven by tumor phenotype rather than tumor genotype. Heliyon, 2018, 4, e01055.	1.4	43
84	Tumor–Stroma Cross-Talk in Human Pancreatic Ductal Adenocarcinoma: A Focus on the Effect of the Extracellular Matrix on Tumor Cell Phenotype and Invasive Potential. Cells, 2018, 7, 158.	1.8	43
85	<scp>CAR</scp> â€T cell therapy in melanoma: A future success story?. Experimental Dermatology, 2018, 27, 1315-1321.	1.4	55
86	Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. International Journal of Molecular Sciences, 2018, 19, 3331.	1.8	38
87	Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. International Journal of Nanomedicine, 2018, Volume 13, 6207-6221.	3.3	51
88	HALO 202: Randomized Phase II Study of PEGPH20 Plus Nab-Paclitaxel/Gemcitabine Versus Nab-Paclitaxel/Gemcitabine in Patients With Untreated, Metastatic Pancreatic Ductal Adenocarcinoma. Journal of Clinical Oncology, 2018, 36, 359-366.	0.8	350
89	The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship. Cancers, 2018, 10, 316.	1.7	208
90	Development of a Novel 3D Tumor-tissue Invasion Model for High-throughput, High-content Phenotypic Drug Screening. Scientific Reports, 2018, 8, 13039.	1.6	56
91	Stromal heterogeneity in pancreatic cancer and chronic pancreatitis. Pancreatology, 2018, 18, 536-549.	0.5	32
92	DCE-MRI of Sunitinib-Induced Changes in Tumor Microvasculature and Hypoxia: A Study of Pancreatic Ductal Adenocarcinoma Xenografts. Neoplasia, 2018, 20, 734-744.	2.3	18
93	Soluble stromaâ€related biomarkers of pancreaticÂcancer. EMBO Molecular Medicine, 2018, 10, .	3.3	56
94	Vascularized microfluidic platforms to mimic the tumor microenvironment. Biotechnology and Bioengineering, 2018, 115, 2793-2806.	1.7	49

#	Article	IF	CITATIONS
95	Parallel Accumulation of Tumor Hyaluronan, Collagen, and Other Drivers of Tumor Progression. Clinical Cancer Research, 2018, 24, 4798-4807.	3.2	65
96	Tumor microenvironment participates in metastasis of pancreatic cancer. Molecular Cancer, 2018, 17, 108.	7.9	361
97	A Rising Star in Pancreatic Diseases: Pancreatic Stellate Cells. Frontiers in Physiology, 2018, 9, 754.	1.3	83
98	Influence of the Tumor Microenvironment on Cancer Cells Metabolic Reprogramming. Frontiers in Oncology, 2018, 8, 117.	1.3	114
99	Targeting Pancreatic Cancer Cell Plasticity: The Latest in Therapeutics. Cancers, 2018, 10, 14.	1.7	26
100	Cancer initiation and progression within the cancer microenvironment. Clinical and Experimental Metastasis, 2018, 35, 361-367.	1.7	30
101	Gemcitabine treatment promotes immunosuppressive microenvironment in pancreatic tumors by supporting the infiltration, growth, and polarization of macrophages. Scientific Reports, 2018, 8, 12000.	1.6	49
102	Targeting S1PR1/STAT3 loop abrogates desmoplasia and chemosensitizes pancreatic cancer to gemcitabine. Theranostics, 2018, 8, 3824-3840.	4.6	68
103	Nutrient scavenging in cancer. Nature Reviews Cancer, 2018, 18, 619-633.	12.8	164
104	A 3D bioinspired highly porous polymeric scaffolding system for (i>in vitro (i) simulation of pancreatic ductal adenocarcinoma. RSC Advances, 2018, 8, 20928-20940.	1.7	31
105	EMT and Stemnessâ€"Key Players in Pancreatic Cancer Stem Cells. Cancers, 2019, 11, 1136.	1.7	88
106	Nicotinamide N-Methyltransferase Expression in Cervical Adenocarcinoma and Its Clinical Significance. Indian Journal of Gynecologic Oncology, 2019, 17, 1.	0.1	O
107	Comparison of tissue and molecular yield between fine-needle biopsy (FNB) and fine-needle aspiration (FNA): a randomized study. Endoscopy International Open, 2019, 07, E955-E963.	0.9	75
108	Epigenetic Mechanisms of Pancreatobiliary Fibrosis. Current Treatment Options in Gastroenterology, 2019, 17, 342-356.	0.3	2
109	Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nature Communications, 2019, 10, 2993.	5.8	90
110	Connections between the cell cycle, cell adhesion and the cytoskeleton. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180227.	1.8	102
111	Lung-Seeking Metastases. Cancers, 2019, 11, 1010.	1.7	57
112	YAP1-mediated pancreatic stellate cell activation inhibits pancreatic cancer cell proliferation. Cancer Letters, 2019, 462, 51-60.	3.2	38

#	Article	IF	Citations
113	Remodeling the Tumor Microenvironment Sensitizes Breast Tumors to Anti-Programmed Death-Ligand 1 Immunotherapy. Cancer Research, 2019, 79, 4149-4159.	0.4	44
114	Nicotinamide N-Methyltransferase Expression in High-Grade Serous Carcinoma and Its Association with Survival. Indian Journal of Gynecologic Oncology, 2019, 17, 1.	0.1	1
115	Up-to-Date Tailored Systemic Treatment in Pancreatic Ductal Adenocarcinoma. Gastroenterology Research and Practice, 2019, 2019, 1-17.	0.7	8
116	Nicotinamide N-methyltransferase expression and its association with phospho-Akt, p53 expression, and survival in high-grade endometrial cancer. Turkish Journal of Medical Sciences, 2019, 49, 1547-1554.	0.4	13
117	Update on current pancreatic treatments: from molecular pathways to treatment. Journal of Cancer, 2019, 10, 5162-5172.	1.2	3
118	Investigating the Contribution of Collagen to the Tumor Biomechanical Phenotype with Noninvasive Magnetic Resonance Elastography. Cancer Research, 2019, 79, 5874-5883.	0.4	35
119	Desmoplasia and oncogene driven acinar-to-ductal metaplasia are concurrent events during acinar cell-derived pancreatic cancer initiation in young adult mice. PLoS ONE, 2019, 14, e0221810.	1.1	18
120	Biodegradable, pH-Sensitive Hollow Mesoporous Organosilica Nanoparticle (HMON) with Controlled Release of Pirfenidone and Ultrasound-Target-Microbubble-Destruction (UTMD) for Pancreatic Cancer Treatment. Theranostics, 2019, 9, 6002-6018.	4.6	61
121	The role of collagen in cancer: from bench to bedside. Journal of Translational Medicine, 2019, 17, 309.	1.8	436
122	The YAP1–NMU Axis Is Associated with Pancreatic Cancer Progression and Poor Outcome: Identification of a Novel Diagnostic Biomarker and Therapeutic Target. Cancers, 2019, 11, 1477.	1.7	22
123	Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4558-4566.	3.3	274
124	Inhibition of ERK1/2 in cancer-associated pancreatic stellate cells suppresses cancer–stromal interaction and metastasis. Journal of Experimental and Clinical Cancer Research, 2019, 38, 221.	3.5	61
125	Pancreatic cancer microenvironment: a current dilemma. Clinical and Translational Medicine, 2019, 8, 2.	1.7	72
126	The roles of collagens in cancer. , 2019, , 341-352.		1
127	Dissecting the Stromal Signaling and Regulation of Myeloid Cells and Memory Effector T Cells in Pancreatic Cancer. Clinical Cancer Research, 2019, 25, 5351-5363.	3.2	57
128	Loss of the transcriptional repressor TGIF1 results in enhanced Kras-driven development of pancreatic cancer. Molecular Cancer, 2019, 18, 96.	7.9	22
129	Stromal hyaluronan accumulation is associated with low tumor grade and nodal metastases in pancreatic ductal adenocarcinoma. Human Pathology, 2019, 90, 37-44.	1.1	7
130	Role of c-MET Inhibitors in Overcoming Drug Resistance in Spheroid Models of Primary Human Pancreatic Cancer and Stellate Cells. Cancers, 2019, 11, 638.	1.7	57

#	ARTICLE	IF	CITATIONS
131	Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Biomaterials, 2019, 213, 119202.	5.7	43
132	Clinical Trials Targeting the Stroma in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers, 2019, 11, 588.	1.7	42
133	Angiogenesis in Pancreatic Cancer: Pre-Clinical and Clinical Studies. Cancers, 2019, 11, 381.	1.7	66
134	Low P4HA2 and high PRTN3 expression predicts poor survival in patients with pancreatic cancer. Scandinavian Journal of Gastroenterology, 2019, 54, 246-251.	0.6	22
135	Host tissue determinants of tumour immunity. Nature Reviews Cancer, 2019, 19, 215-227.	12.8	150
136	Computer-aided assessment of the extra-cellular matrix during pancreatic carcinogenesis: a pilot study. Journal of Translational Medicine, 2019, 17, 61.	1.8	13
137	miR‑212 regulated by HIF‑1α promotes the progression of pancreatic cancer. Experimental and Therapeutic Medicine, 2019, 17, 2359-2365.	0.8	17
138	Fibroblasts in Pancreatic Ductal Adenocarcinoma: Biological Mechanisms and Therapeutic Targets. Gastroenterology, 2019, 156, 2085-2096.	0.6	93
139	Phase IB/II Randomized Study of FOLFIRINOX Plus Pegylated Recombinant Human Hyaluronidase Versus FOLFIRINOX Alone in Patients With Metastatic Pancreatic Adenocarcinoma: SWOG S1313. Journal of Clinical Oncology, 2019, 37, 1062-1069.	0.8	212
140	Pancreatic Cancer Organotypic Models. Current Topics in Microbiology and Immunology, 2019, 430, 183-198.	0.7	5
141	Soluble TRAIL Armed Human MSC As Gene Therapy For Pancreatic Cancer. Scientific Reports, 2019, 9, 1788.	1.6	57
142	Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annual Review of Physiology, 2019, 81, 505-534.	5.6	303
143	Contrast-enhanced ultrasound imaging of acute changes in pancreatic cancer following targeted hyaluronan treatment. , $2019, \ldots$		4
144	Computational STAT3 activity inference reveals its roles in the pancreatic tumor microenvironment. Scientific Reports, 2019, 9, 18257.	1.6	7
145	Collagen fragments quantified in serum as measures of desmoplasia associate with survival outcome in patients with advanced pancreatic cancer. Scientific Reports, 2019, 9, 19761.	1.6	41
146	Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments. Cancers, 2019, 11, 1920.	1.7	56
147	Recent advances in molecular diagnostics and therapeutic targets for pancreatic cancer. , 2019, , 325-367.		2
148	Desmoplasia in Lymph Node Metastasis of Pancreatic Adenocarcinoma Reveals Activation of Cancer-Associated Fibroblasts Pattern and T-helper 2 Immune Cell Infiltration. Pancreas, 2019, 48, 367-373.	0.5	16

#	Article	IF	CITATIONS
149	Adipose tissueâ€derived stromal cells are sources of cancerâ€associated fibroblasts and enhance tumor progression by dense collagen matrix. International Journal of Cancer, 2019, 144, 1401-1413.	2.3	23
150	Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis, 2019, 22, 15-36.	3.7	194
151	Stromal biology and therapy in pancreatic cancer: ready for clinical translation?. Gut, 2019, 68, 159-171.	6.1	246
152	The Paradoxical Web of Pancreatic Cancer Tumor Microenvironment. American Journal of Pathology, 2019, 189, 44-57.	1.9	56
153	Systemic treatment of pancreatic cancer revisited. Seminars in Oncology, 2019, 46, 28-38.	0.8	81
154	Antifibrotic Therapy Disrupts Stromal Barriers and Modulates the Immune Landscape in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2019, 79, 372-386.	0.4	110
155	Novel prognostic markers within the CD44â€stromal ligand network in pancreatic cancer. Journal of Pathology: Clinical Research, 2019, 5, 130-141.	1.3	13
156	Tumor Microenvironment., 2020, , 108-126.e7.		3
157	Clinical value of serum hyaluronan and propeptide of type III collagen in patients with pancreatic cancer. International Journal of Cancer, 2020, 146, 2913-2922.	2.3	41
158	Metabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2020, 4, 17-40.	2.3	61
159	Relaxin-FOLFOX-IL-12 triple combination therapy engages memory response and achieves long-term survival in colorectal cancer liver metastasis. Journal of Controlled Release, 2020, 319, 213-221.	4.8	19
160	Main Pancreatic Duct to Parenchymal Thickness Ratio at Preoperative Imaging is Associated with Overall Survival in Upfront Resected Pancreatic Cancer. Annals of Surgical Oncology, 2020, 27, 1606-1612.	0.7	6
161	Pegvorhyaluronidase alfa. , 2020, , 175-204.		3
162	Stromal Collagen Content in Breast Tumors Correlates With In Vivo Diffusionâ€Weighted Imaging: A Comparison of Multi ⟨i⟩b⟨ i⟩â€Value DWI With Histologic Specimen From Benign and Malignant Breast Lesions. Journal of Magnetic Resonance Imaging, 2020, 51, 1868-1878.	1.9	16
163	Modulation of Extracellular Matrix Rigidity Via Riboflavinâ€mediated Photocrosslinking Regulates Invasive Motility and Treatment Response in a 3D Pancreatic Tumor Model. Photochemistry and Photobiology, 2020, 96, 365-372.	1.3	15
164	Stromal Features of the Primary Tumor Are Not Prognostic in Genetically Engineered Mice of Pancreatic Cancer. Cells, 2020, 9, 58.	1.8	11
165	Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188418.	3.3	21
166	Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 2020, $11,5120$.	5.8	1,004

#	Article	IF	CITATIONS
167	The identification of candidate effective combination regimens for pancreatic cancer using the histoculture drug response assay. Scientific Reports, 2020, 10, 12004.	1.6	6
168	The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers, 2020, 12, 1849.	1.7	20
169	Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. International Journal of Molecular Sciences, 2020, 21, 8823.	1.8	12
170	Randomized Phase III Trial of Pegvorhyaluronidase Alfa With Nab-Paclitaxel Plus Gemcitabine for Patients With Hyaluronan-High Metastatic Pancreatic Adenocarcinoma. Journal of Clinical Oncology, 2020, 38, 3185-3194.	0.8	233
171	Creatine supplementation does not promote tumor growth or enhance tumor aggressiveness in Walker-256 tumor-bearing rats. Nutrition, 2020, 79-80, 110958.	1.1	1
172	Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduction and Targeted Therapy, 2020, 5, 249.	7.1	88
173	Pros and Cons: High Proportion of Stromal Component Indicates Better Prognosis in Patients With Pancreatic Ductal Adenocarcinoma—A Research Based on the Evaluation of Whole-Mount Histological Slides. Frontiers in Oncology, 2020, 10, 1472.	1.3	18
174	Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. Annals of Pancreatic Cancer, 2020, 3, 7-7.	1.2	17
175	Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Science Immunology, 2020, 5, .	5.6	69
176	Impact of crosslink heterogeneity on extracellular matrix mechanics and remodeling. Computational and Structural Biotechnology Journal, 2020, 18, 3969-3976.	1.9	15
177	The present and future of systemic and microenvironment-targeted therapy for pancreatic adenocarcinoma. Annals of Pancreatic Cancer, 2020, 3, 3-3.	1.2	2
178	Circulating levels of hydroxylated bradykinin function as an indicator of tissue HIF-1α expression. Science Bulletin, 2020, 65, 1570-1579.	4.3	3
179	Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 487-505.	8.2	458
180	The tumour microenvironment in pancreatic cancer — clinical challenges and opportunities. Nature Reviews Clinical Oncology, 2020, 17, 527-540.	12.5	590
181	Enhancing the Efficacy of CAR T Cells in the Tumor Microenvironment of Pancreatic Cancer. Cancers, 2020, 12, 1389.	1.7	25
182	Desmoplasia and Biophysics in Pancreatic Ductal Adenocarcinoma. Pancreas, 2020, 49, 313-325.	0.5	18
183	Targeting the CBP/ \hat{l}^2 -Catenin Interaction to Suppress Activation of Cancer-Promoting Pancreatic Stellate Cells. Cancers, 2020, 12, 1476.	1.7	12
184	Engineered tumor models for cancer biology and treatment. , 2020, , 423-443.		4

#	Article	IF	CITATIONS
185	The "histological replacement growth pattern―represents aggressive invasive behavior in liver metastasis from pancreatic cancer. Cancer Medicine, 2020, 9, 3130-3141.	1.3	11
186	Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Scientific Reports, 2020, 10, 5420.	1.6	60
187	Pseudopterosin and O-Methyltylophorinidine Suppress Cell Growth in a 3D Spheroid Co-Culture Model of Pancreatic Ductal Adenocarcinoma. Bioengineering, 2020, 7, 57.	1.6	2
188	CYR61/CCN1 expression in resected pancreatic ductal adenocarcinoma: A retrospective pilot study of the interaction between the tumors and their surrounding microenvironment. Heliyon, 2020, 6, e03842.	1.4	4
189	Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours. Cell Proliferation, 2020, 53, e12865.	2.4	43
190	<p>Targeting Pancreatic Cancer Cells and Stellate Cells Using Designer Nanotherapeutics in vitro</p> . International Journal of Nanomedicine, 2020, Volume 15, 991-1003.	3.3	18
191	Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts. Scientific Reports, 2020, 10, 2309.	1.6	19
192	Hyaluronidase-Expressing <i>Salmonella</i> Effectively Targets Tumor-Associated Hyaluronic Acid in Pancreatic Ductal Adenocarcinoma. Molecular Cancer Therapeutics, 2020, 19, 706-716.	1.9	26
193	Framing cancer progression: influence of the organ―and tumourâ€specific matrisome. FEBS Journal, 2020, 287, 1454-1477.	2.2	27
194	Signaling in the Physiology and Pathophysiology of Pancreatic Stellate Cells – a Brief Review of Recent Advances. Frontiers in Physiology, 2020, 11, 78.	1.3	18
195	Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treatment Reviews, 2020, 86, 102016.	3.4	276
196	Noninvasive Young's modulus visualization of fibrosis progression and delineation of pancreatic ductal adenocarcinoma (PDAC) tumors using Harmonic Motion Elastography (HME) <i>in vivo</i> Theranostics, 2020, 10, 4614-4626.	4.6	33
197	Altered organization of collagen fibers in the uninvolved human colon mucosa 10 cm and 20 cm away from the malignant tumor. Scientific Reports, 2020, 10, 6359.	1.6	24
198	3D approaches to model the tumor microenvironment of pancreatic cancer. Theranostics, 2020, 10, 5074-5089.	4.6	74
199	Nicotinamide N-methyltransferase overexpression may be associated with poor prognosis in ovarian cancer. Journal of Obstetrics and Gynaecology, 2021, 41, 248-253.	0.4	14
200	Diversity and Biology of Cancer-Associated Fibroblasts. Physiological Reviews, 2021, 101, 147-176.	13.1	521
201	Predicting Gemcitabine Delivery by ¹⁸ F-FAC PET in Murine Models of Pancreatic Cancer. Journal of Nuclear Medicine, 2021, 62, 195-200.	2.8	6
202	Normalizing the Microenvironment Overcomes Vessel Compression and Resistance to Nanoâ€immunotherapy in Breast Cancer Lung Metastasis. Advanced Science, 2021, 8, 2001917.	5.6	52

#	Article	IF	CITATIONS
203	Blood-based extracellular matrix biomarkers as predictors of survival in patients with metastatic pancreatic ductal adenocarcinoma receiving pegvorhyaluronidase alfa. Journal of Translational Medicine, 2021, 19, 39.	1.8	13
204	Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer. Theranostics, 2021, 11, 2182-2200.	4.6	17
205	Tissue Imaging and Quantification Relying on Endogenous Contrast. Advances in Experimental Medicine and Biology, 2021, 3233, 257-288.	0.8	1
206	Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers, 2021, 13, 146.	1.7	18
207	Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers, 2021, 13, 895.	1.7	14
208	Pancreatic Tumorigenesis: Oncogenic KRAS and the Vulnerability of the Pancreas to Obesity. Cancers, 2021, 13, 778.	1.7	9
209	Cancer-Associated Fibroblasts as a Common Orchestrator of Therapy Resistance in Lung and Pancreatic Cancer. Cancers, 2021, 13, 987.	1.7	38
210	Management of Non-Colorectal Digestive Cancers with Microsatellite Instability. Cancers, 2021, 13, 651.	1.7	7
211	Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals, 2021, 14, 280.	1.7	11
212	Tumor-penetrating therapy for \hat{l}^2 5 integrin-rich pancreas cancer. Nature Communications, 2021, 12, 1541.	5.8	37
213	Immunotherapy for pancreatic cancer: chasing the light at the end of the tunnel. Cellular Oncology (Dordrecht), 2021, 44, 261-278.	2.1	16
214	Key drug-targeting genes in pancreatic ductal adenocarcinoma. Genes and Cancer, 2021, 12, 12-24.	0.6	4
215	High expression of MMP28 indicates unfavorable prognosis in pancreatic cancer. Medicine (United) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
216	A comparison between 25-gauge and 22-gauge Franseen needles for endoscopic ultrasound-guided sampling of pancreatic and peripancreatic masses: a randomized non-inferiority study. Endoscopy, 2021, 53, 1122-1129.	1.0	14
217	Hydrogel Models with Stiffness Gradients for Interrogating Pancreatic Cancer Cell Fate. Bioengineering, 2021, 8, 37.	1.6	11
218	Regulation of tumor microenvironment for pancreatic cancer therapy. Biomaterials, 2021, 270, 120680.	5 . 7	31
219	The Dynamic Interaction between Extracellular Matrix Remodeling and Breast Tumor Progression. Cells, 2021, 10, 1046.	1.8	16
220	An Organotypic Mammary Duct Model Capturing Matrix Mechanics-Dependent Ductal Carcinoma <i>In Situ</i> i> Progression. Tissue Engineering - Part A, 2021, 27, 454-466.	1.6	3

#	ARTICLE	IF	CITATIONS
221	The liver metastatic niche: modelling the extracellular matrix in metastasis. DMM Disease Models and Mechanisms, $2021,14,.$	1.2	9
222	Humanized anti-DEspR IgG4S228P antibody increases overall survival in a pancreatic cancer stem cell-xenograft peritoneal carcinomatosis ratnu/nu model. BMC Cancer, 2021, 21, 407.	1.1	6
223	Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduction and Targeted Therapy, 2021, 6, 153.	7.1	251
224	Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells. Nature Communications, 2021, 12, 2328.	5.8	45
225	Stroma Involvement in Pancreatic Ductal Adenocarcinoma: An Overview Focusing on Extracellular Matrix Proteins. Frontiers in Immunology, 2021, 12, 612271.	2.2	40
227	Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Advanced Drug Delivery Reviews, 2021, 172, 37-51.	6.6	31
228	Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nature Communications, 2021, 12, 3414.	5.8	65
229	Pancreatic Ductal Adenocarcinoma: Relating Biomechanics and Prognosis. Journal of Clinical Medicine, 2021, 10, 2711.	1.0	16
230	Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules, 2021, 11, 901.	1.8	20
231	Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Therapeutic Opportunities and Clinical Challenges. Cancers, 2021, 13, 2860.	1.7	39
232	Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. Journal of Clinical Investigation, 2021, 131, .	3.9	144
233	Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer. Scientific Reports, 2021, 11, 12216.	1.6	26
234	Collagenase-Expressing Salmonella Targets Major Collagens in Pancreatic Cancer Leading to Reductions in Immunosuppressive Subsets and Tumor Growth. Cancers, 2021, 13, 3565.	1.7	10
235	CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. Frontiers in Oncology, 2021, 11, 668349.	1.3	79
236	Construction and Validation of an Immune-Based Prognostic Model for Pancreatic Adenocarcinoma Based on Public Databases. Frontiers in Genetics, 2021, 12, 702102.	1.1	3
237	Cancer-Associated Fibroblast (CAF) Heterogeneity and Targeting Therapy of CAFs in Pancreatic Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 655152.	1.8	85
238	Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy?. Cancers, 2021, 13, 3466.	1.7	55
239	HGF/MET Axis Induces Tumor Secretion of Tenascin-C and Promotes Stromal Rewiring in Pancreatic Cancer. Cancers, 2021, 13, 3519.	1.7	8

#	Article	IF	CITATIONS
240	Rectal Tumor Stiffness Quantified by In Vivo Tomoelastography and Collagen Content Estimated by Histopathology Predict Tumor Aggressiveness. Frontiers in Oncology, 2021, 11, 701336.	1.3	8
241	Spontaneous hydrolysis and spurious metabolic properties of \hat{l}_{\pm} -ketoglutarate esters. Nature Communications, 2021, 12, 4905.	5.8	17
242	Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers, 2021, 13, 4138.	1.7	49
243	Adjuvant Treatment in Pancreatic Cancer: Shaping the Future of the Curative Setting. Frontiers in Oncology, 2021, 11, 695627.	1.3	10
244	Challenges and Future Perspectives of Immunotherapy in Pancreatic Cancer. Cancers, 2021, 13, 4235.	1.7	16
245	Extracellular Matrix Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 9185.	1.8	22
246	Regulation of Extracellular Matrix Production in Activated Fibroblasts: Roles of Amino Acid Metabolism in Collagen Synthesis. Frontiers in Oncology, 2021, 11, 719922.	1.3	27
247	Slit2 Inhibits Breast Cancer Metastasis by Activating M1-Like Phagocytic and Antifibrotic Macrophages. Cancer Research, 2021, 81, 5255-5267.	0.4	33
248	Anticancer Effects of I-BET151, an Inhibitor of Bromodomain and Extra-Terminal Domain Proteins. Frontiers in Oncology, 2021, 11, 716830.	1.3	5
249	The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers, 2021, 13, 4442.	1.7	37
250	The past, present, and future of enzyme-based therapies. Drug Discovery Today, 2022, 27, 117-133.	3.2	12
251	Nanomedicine Strategies to Enhance Tumor Drug Penetration in Pancreatic Cancer. International Journal of Nanomedicine, 2021, Volume 16, 6313-6328.	3.3	12
252	Next-generation immunotherapy for pancreatic ductal adenocarcinoma: navigating pathways of immune resistance. Cancer and Metastasis Reviews, 2021, 40, 837-862.	2.7	8
253	Hypoxia increases KIAA1199/CEMIP expression and enhances cell migration in pancreatic cancer. Scientific Reports, 2021, 11, 18193.	1.6	10
254	In silico investigations of intratumoral heterogeneous interstitial fluid pressure. Journal of Theoretical Biology, 2021, 526, 110787.	0.8	4
255	lodine concentration and tissue attenuation in dual-energy contrast-enhanced CT as a potential quantitative parameter in early detection of local pancreatic carcinoma recurrence after surgical resection. European Journal of Radiology, 2021, 143, 109944.	1.2	8
256	The Role of Stellate Cells in Pancreatic Ductal Adenocarcinoma: Targeting Perspectives. Frontiers in Oncology, 2020, 10, 621937.	1.3	35
257	Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer and Metastasis Reviews, 2020, 39, 603-623.	2.7	50

#	Article	IF	CITATIONS
258	Sauchinone inhibits hypoxia-induced epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma cells through the Wnt/ \hat{l}^2 -catenin pathway. Anti-Cancer Drugs, 2020, 31, 918-924.	0.7	3
259	BET inhibitors block pancreatic stellate cell collagen I production and attenuate fibrosis in vivo. JCI Insight, 2017, 2, e88032.	2.3	50
260	Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma. JCI Insight, 2017, 2, .	2.3	102
261	Molecular imaging of fibrosis: recent advances and future directions. Journal of Clinical Investigation, 2019, 129, 24-33.	3.9	86
262	Disrupting a converging metabolic target turns up the immunologic-heat in pancreatic tumors. Journal of Clinical Investigation, 2019, 130, 71-73.	3.9	7
263	Epithelial to Stromal Re-Distribution of Primary Cilia during Pancreatic Carcinogenesis. PLoS ONE, 2016, 11, e0164231.	1.1	24
264	The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma. PLoS ONE, 2017, 12, e0180181.	1.1	68
265	Inhibition of ROCK1 kinase modulates both tumor cells and stromal fibroblasts in pancreatic cancer. PLoS ONE, 2017, 12, e0183871.	1.1	65
266	Parental obesity programs pancreatic cancer development in offspring. Endocrine-Related Cancer, 2019, 26, 511-523.	1.6	13
267	More than a Gel & December 2015 Acid, a Central Component in the Microenvironment of Pancreatic Cancer. European Oncology and Haematology, 2018, 14, 40.	0.0	11
268	Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes and Cancer, 2018, 9, 78-86.	0.6	75
269	Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7, 69489-69506.	0.8	35
270	Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget, 2016, 7, 76197-76213.	0.8	163
271	Lymph node metastasis and the physicochemical micro-environment of pancreatic ductal adenocarcinoma xenografts. Oncotarget, 2017, 8, 48060-48074.	0.8	10
272	Limited fibrosis accompanies triple-negative breast cancer metastasis in multiple model systems and is not a preventive target. Oncotarget, 2018, 9, 23462-23481.	0.8	9
273	Hyaluronan activated-metabolism phenotype (HAMP) in pancreatic ductal adenocarcinoma. Oncotarget, 2019, 10, 5592-5604.	0.8	6
274	The growth of a xenograft breast cancer tumor model with engineered hyaluronan-accumulating stroma is dependent on hyaluronan and independent of CD44. Oncotarget, 2019, 10, 6561-6576.	0.8	6
275	Characterization and use of HapT1-derived homologous tumors as a preclinical model to evaluate therapeutic efficacy of drugs against pancreatic tumor desmoplasia. Oncotarget, 0, 7, 41825-41842.	0.8	27

#	Article	IF	CITATIONS
276	Neoadjuvant Chemotherapy with Gemcitabine Plus Nab-paclitaxel Reduces the Number of Cancer-associated Fibroblasts Through Depletion of Pancreatic Stroma. Anticancer Research, 2018, 38, 337-343.	0.5	33
277	Cancerâ€'associated adipocytes exhibit distinct phenotypes and facilitate tumor progression in pancreatic cancer. Oncology Reports, 2019, 42, 2537-2549.	1.2	31
278	Prognostic significance of abnormal matrix collagen remodeling in colorectal cancer based on histologic and bioinformatics analysis. Oncology Reports, 2020, 44, 1671-1685.	1.2	25
279	Shattering the castle walls: Anti-stromal therapy for pancreatic cancer. World Journal of Gastrointestinal Oncology, 2018, 10, 202-210.	0.8	25
280	Modified methods for isolation of pancreatic stellate cellsfrom human and rodent pancreas. Journal of Biomedical Research, 2016, 30, 510-516.	0.7	5
281	Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology. Nature Communications, 2021, 12, 5623.	5.8	53
282	The PDAC Extracellular Matrix: A Review of the ECM Protein Composition, Tumor Cell Interaction, and Therapeutic Strategies. Frontiers in Oncology, 2021, 11, 751311.	1.3	48
283	Hyaluronan heterogeneity in pancreatic ductal adenocarcinoma: Primary tumors compared to sites of metastasis. Pancreatology, 2022, 22, 92-97.	0.5	4
284	Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers, 2021, 13, 5028.	1.7	27
285	Heterogeneity in Pancreatic Cancer Fibroblasts—TGFβ as a Master Regulator?. Cancers, 2021, 13, 4984.	1.7	9
286	Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 326.	3.5	19
287	Understanding the immune response and the current landscape of immunotherapy in pancreatic cancer. World Journal of Gastroenterology, 2021, 27, 6775-6793.	1.4	12
288	Using Organotypic Tissue Slices to Investigate the Microenvironment of Pancreatic Cancer: Pharmacotyping and Beyond. Cancers, 2021, 13, 4991.	1.7	10
289	Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials, 2021, 278, 121176.	5.7	14
290	Targeting hyaluronan for the treatment of pancreatic cancer. Suizo, 2016, 31, 128-134.	0.1	0
291	Targeting the Tumor Microenvironment. , 2018, , 235-256.		0
292	Current Challenges and Applications of Oncolytic Viruses in Overcoming the Development of Resistance to Therapies in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 63-96.	0.1	0
293	Novel Strategies on the Horizon for Metastatic Pancreatic Cancer Management. Oncology & Hematology Review, 2019, 15, 27.	0.2	2

#	ARTICLE	IF	Citations
295	Oncogenic KRAS-Induced Feedback Inflammatory Signaling in Pancreatic Cancer: An Overview and New Therapeutic Opportunities. Cancers, 2021, 13, 5481.	1.7	11
296	Pancreatic Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1296, 243-257.	0.8	8
298	Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers, 2021, 13, 5510.	1.7	28
299	Immunotherapy in Pancreatic Cancer. Digestive Disease Interventions, 2020, 04, 351-357.	0.3	1
301	Dendritic cell immunotherapy induces anti-tumor effect in a transgenic mouse model of pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 2019, 9, 2456-2468.	1.4	5
302	Recombined human endostatin (Endostar) enhances cisplatin delivery and potentiates chemotherapy by decompressing colorectal cancer vessels. International Journal of Clinical and Experimental Pathology, 2017, 10, 10792-10801.	0.5	1
303	TRAIL receptors are expressed in both malignant and stromal cells in pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 2021, 11, 4500-4514.	1.4	0
304	Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Frontiers in Cell and Developmental Biology, 2021, 9, 787485.	1.8	25
305	Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy. Journal of Nanobiotechnology, 2021, 19, 384.	4.2	27
306	Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment. Nature Metabolism, 2021, 3, 1484-1499.	5.1	28
308	Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets. Cancer and Metastasis Reviews, 2021, 40, 1093-1114.	2.7	10
309	CCL28 Downregulation Attenuates Pancreatic Cancer Progression Through Tumor Cell-Intrinsic and -Extrinsic Mechanisms. Technology in Cancer Research and Treatment, 2021, 20, 153303382110689.	0.8	6
310	Protective Desmoplasia in Pancreatic Adenocarcinoma: High Vitamin D Receptor Expression and Collagen Content. Anticancer Research, 2020, 40, 6457-6464.	0.5	2
311	Emerging Role of Epigenetic Alterations as Biomarkers and Novel Targets for Treatments in Pancreatic Ductal Adenocarcinoma. Cancers, 2022, 14, 546.	1.7	5
312	Contrast-enhanced ultrasound for evaluating response to pulsed-wave high-intensity focused ultrasound therapy in advanced pancreatic cancer. Clinical Hemorheology and Microcirculation, 2022, 81, 57-67.	0.9	5
313	Polarization enhanced laparoscope for improved visualization of tissue structural changes associated with peritoneal cancer metastasis. Biomedical Optics Express, 2022, 13, 571.	1.5	7
314	Novel systemic treatment approaches for metastatic pancreatic cancer. Expert Opinion on Investigational Drugs, 2022, 31, 249-262.	1.9	12
315	A DNA-Methylation-Driven Genes Based Prognostic Signature Reveals Immune Microenvironment in Pancreatic Cancer. Frontiers in Immunology, 2022, 13, 803962.	2.2	13

#	Article	IF	CITATIONS
316	Crosstalk of tumor stromal cells orchestrates invasion and spreading of gastric cancer. Pathology International, 2022, 72, 219-233.	0.6	5
317	Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers, 2021, 13, 6188.	1.7	12
318	Prognostic biomarkers related to tumoral microenvironment in pancreatic ductal adenocarcinoma: a systematic review. Romanian Journal of Morphology and Embryology, 2021, 62, 671-678.	0.4	1
319	Intraoperative Cytologic Sampling for Resected Pancreatic and Periampullary Adenocarcinoma with Implications for Locoregional Recurrence-Free Survival. Journal of the American College of Surgeons, 2022, 234, 48-53.	0.2	1
320	Stroma-Targeted Nanoparticles Remodel Stromal Alignment to Enhance Drug Delivery and Improve Anti-Tumor Efficacy of Nab-Paclitaxel in Pancreatic Ductal Adenocarcinoma. SSRN Electronic Journal, 0, , .	0.4	0
321	Predictive value of collagen in cancer. Advances in Cancer Research, 2022, 154, 15-45.	1.9	11
322	Chemically and mechanically defined hyaluronan hydrogels emulate the extracellular matrix for unbiased in vivo and in vitro organoid formation and drug testing in cancer. Materials Today, 2022, 56, 96-113.	8.3	9
323	The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers, 2022, 14, 995.	1.7	28
324	Application of Proteomics in Pancreatic Ductal Adenocarcinoma Biomarker Investigations: A Review. International Journal of Molecular Sciences, 2022, 23, 2093.	1.8	2
325	CAF-Associated Paracrine Signaling Worsens Outcome and Potentially Contributes to Chemoresistance in Epithelial Ovarian Cancer. Frontiers in Oncology, 2022, 12, 798680.	1.3	10
326	COL11A1-Driven Epithelial–Mesenchymal Transition and Stemness of Pancreatic Cancer Cells Induce Cell Migration and Invasion by Modulating the AKT/GSK-3β/Snail Pathway. Biomolecules, 2022, 12, 391.	1.8	12
327	Systematic Characterization of the Clinical Relevance of KPNA4 in Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2022, 12, 834728.	1.3	O
328	Analysis of capecitabine metabolites in conjunction with digital autoradiography in a murine model of pancreatic cancer suggests extensive drug penetration through the tumor. Pharmacology Research and Perspectives, 2022, 10, e00898.	1.1	0
329	Cancer Metabolism: The Role of Immune Cells Epigenetic Alteration in Tumorigenesis, Progression, and Metastasis of Glioma. Frontiers in Immunology, 2022, 13, 831636.	2.2	10
330	The biology of pancreatic cancer morphology. Pathology, 2022, 54, 236-247.	0.3	5
331	3D microgels to quantify tumor cell properties and therapy response dynamics. Biomaterials, 2022, 283, 121417.	5.7	11
333	Inclusion of cancer-associated fibroblasts in drug screening assays to evaluate pancreatic cancer resistance to therapeutic drugs. Journal of Physiology and Biochemistry, 2021, , 1.	1.3	3
334	Pancreatic Cancer and Cellular Senescence: Tumor Microenvironment under the Spotlight. International Journal of Molecular Sciences, 2022, 23, 254.	1.8	33

#	Article	IF	Citations
335	Reversal of pancreatic desmoplasia by a tumour stroma-targeted nitric oxide nanogel overcomes TRAIL resistance in pancreatic tumours. Gut, 2022, 71, 1843-1855.	6.1	21
336	Heterogeneous Pancreatic Stellate Cells Are Powerful Contributors to the Malignant Progression of Pancreatic Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 783617.	1.8	10
337	When healing turns into killing $\hat{a} \in \text{``the pathophysiology of pancreatic and hepatic fibrosis. Journal of Physiology, 2022, 600, 2579-2612.}$	1.3	9
338	Programmable Living Units for Emulating Pancreatic Tumorâ€Stroma Interplay. Advanced Healthcare Materials, 2022, 11, e2102574.	3.9	9
340	Decellularization of tumours: A new frontier in tissue engineering. Journal of Tissue Engineering, 2022, 13, 204173142210916.	2.3	13
341	Recent advances in understanding pancreatic cancer. Faculty Reviews, 2022, 11, 9.	1.7	8
343	PEGPH20, a PEGylated human hyaluronidase, induces radiosensitization by reoxygenation in pancreatic cancer xenografts. A molecular imaging study. Neoplasia, 2022, 30, 100793.	2.3	6
344	Heterogeneous cancerâ€associated fibroblasts: A new perspective for understanding immunosuppression in pancreatic cancer. Immunology, 2022, 167, 1-14.	2.0	10
345	Photoimmunotherapy Retains Its Anti-Tumor Efficacy with Increasing Stromal Content in Heterotypic Pancreatic Cancer Spheroids. Molecular Pharmaceutics, 2022, 19, 2549-2563.	2.3	7
346	Resistance Mechanisms of the Metastatic Tumor Microenvironment to Anti-Angiogenic Therapy. Frontiers in Oncology, 0, 12 , .	1.3	4
347	Activated Stromal Cells in the Development of Pancreatic Ductal Adenocarcinoma and Therapeutic Approaches to Stroma Remodeling. Cell and Tissue Biology, 2022, 16, 193-202.	0.2	0
348	Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers, 2022, 14, 2486.	1.7	29
350	Tumor-Stroma Interaction in PDAC as a New Approach for Liquid Biopsy and its Potential Clinical Implications. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
351	Endothelin-axis antagonism enhances tumor perfusion in pancreatic cancer. Cancer Letters, 2022, 544, 215801.	3.2	3
352	Risk Prediction of Pancreatic Cancer in Patients With Abnormal Morphologic Findings Related to Chronic Pancreatitis: A Machine Learning Approach., 2022, 1, 1014-1026.		4
353	Machine learning-enabled cancer diagnostics with widefield polarimetric second-harmonic generation microscopy. Scientific Reports, 2022, 12, .	1.6	13
354	Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nature Cancer, 2022, 3, 852-865.	5.7	37
355	Molecular Interaction Analysis of SPARC–Collagen with Human Serum Albumin. Journal of Computational Biophysics and Chemistry, 2022, 21, 927-939.	1.0	1

#	Article	IF	CITATIONS
356	Ecoevolutionary biology of pancreatic ductal adenocarcinoma. Pancreatology, 2022, , .	0.5	2
357	Tumor microenvironmental <scp>15â€PGDH</scp> depletion promotes fibrotic tumor formation and angiogenesis in pancreatic cancer. Cancer Science, 2022, 113, 3579-3592.	1.7	5
358	Multimodal Therapies against Pancreatic Ductal Adenocarcinoma: A Review on Synergistic Approaches toward Ultimate Nanomedicine Treatments. Advanced Therapeutics, 2022, 5, .	1.6	8
359	Tumor microenvironment in pancreatic ductal adenocarcinoma: Implications in immunotherapy. World Journal of Gastroenterology, 2022, 28, 3297-3313.	1.4	8
360	Stroma-targeted nanoparticles that remodel stromal alignment to enhance drug delivery and improve the antitumor efficacy of Nab-paclitaxel in pancreatic ductal adenocarcinoma models. Nano Today, 2022, 45, 101533.	6.2	10
362	Extracellular vesicles in pancreatic cancer immune escape: Emerging roles and mechanisms. Pharmacological Research, 2022, 183, 106364.	3.1	18
363	Cancer Associated Fibroblast (CAF) Regulation of PDAC Parenchymal (CPC) and CSC Phenotypes Is Modulated by ECM Composition. Cancers, 2022, 14, 3737.	1.7	7
364	The intriguing role of collagen on the rheology of cancer cell spheroids. Journal of Biomechanics, 2022, 141, 111229.	0.9	8
365	The application of FAPI-targeted theranostics in pancreatic cancer: a narrative review. Journal of Pancreatology, 0, Publish Ahead of Print, .	0.3	0
366	Identification of stromal microenvironment characteristics and key molecular mining in pancreatic cancer. Discover Oncology, 2022, 13, .	0.8	1
368	Prediction the clinical EPR effect of nanoparticles in patient-derived xenograft models. Journal of Controlled Release, 2022, 351, 37-49.	4.8	12
369	Management of Advanced Pancreatic Cancer through Stromal Depletion and Immune Modulation. Medicina (Lithuania), 2022, 58, 1298.	0.8	0
370	Stromal Reprogramming by FAK Inhibition Overcomes Radiation Resistance to Allow for Immune Priming and Response to Checkpoint Blockade. Cancer Discovery, 2022, 12, 2774-2799.	7.7	22
371	Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 123-148.	9.6	63
372	Collagen Remodeling along Cancer Progression Providing a Novel Opportunity for Cancer Diagnosis and Treatment. International Journal of Molecular Sciences, 2022, 23, 10509.	1.8	19
373	Establishment of a human 3D pancreatic adenocarcinoma model based on a patient-derived extracellular matrix scaffold. Translational Research, 2023, 253, 57-67.	2.2	8
374	Liver Metastases: Correlation between Imaging Features and Pathomolecular Environments. Radiographics, 2022, 42, 1994-2013.	1.4	12
375	A novel angiogenesis-based molecular signature related to prognosis and tumor immune interactions of pancreatic cancer. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	3

#	Article	IF	CITATIONS
376	Tumour inhibitory activity on pancreatic cancer by bispecific nanobody targeting PD-L1 and CXCR4. BMC Cancer, 2022, 22, .	1.1	9
377	Fluid-sensitive migration mechanisms predict association between metastasis and high interstitial fluid pressure in pancreatic cancer. Journal of Biomechanics, 2022, , 111362.	0.9	3
378	Fabrication of high aspect ratio microfluidic devices for long term in vitro culture of 3D tumor models. Microelectronic Engineering, 2023, 267-268, 111898.	1.1	4
379	Association between decreased ipsilateral renal function and aggressive behavior in renal cell carcinoma. BMC Cancer, 2022, 22, .	1.1	0
380	Hypoxia-induced circRNF13 promotes the progression and glycolysis of pancreatic cancer. Experimental and Molecular Medicine, 2022, 54, 1940-1954.	3.2	9
381	Hypoxia-Induced miR-210 Promotes Endothelial Cell Permeability and Angiogenesis via Exosomes in Pancreatic Ductal Adenocarcinoma. Biochemistry Research International, 2022, 2022, 1-13.	1.5	3
382	Phase Ib Study of Ulixertinib Plus Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Adenocarcinoma. Oncologist, 2023, 28, e115-e123.	1.9	8
383	Challenges in precision medicine in pancreatic cancer: A focus in cancer stem cells and microbiota. Frontiers in Oncology, $0,12,.$	1.3	3
384	Barriers and opportunities for gemcitabine in pancreatic cancer therapy. American Journal of Physiology - Cell Physiology, 2023, 324, C540-C552.	2.1	16
385	Unsupervised determination of lung tumor margin with widefield polarimetric second-harmonic generation microscopy. Scientific Reports, 2022, 12, .	1.6	4
386	A Tumor Microenvironment Model of Pancreatic Cancer to Elucidate Responses toward Immunotherapy. Advanced Healthcare Materials, 2023, 12, .	3.9	3
387	Spatial genomics reveals a high number and specific location of B cells in the pancreatic ductal adenocarcinoma microenvironment of long-term survivors. Frontiers in Immunology, 0, 13, .	2.2	3
388	Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Frontiers in Cell and Developmental Biology, $0,11,$	1.8	21
389	Prognostic Significance of Integrin Subunit Alpha 2 (ITGA2) and Role of Mechanical Cues in Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma (PDAC). Cancers, 2023, 15, 628.	1.7	6
390	Sustained Intratumoral Administration of Agonist CD40 Antibody Overcomes Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Advanced Science, 2023, 10, .	5.6	10
391	Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy?. Cancers, 2023, 15, 768.	1.7	2
392	Immune and genomic biomarkers of immunotherapy response in cancer of unknown primary. , 2023, 11 , e005809.		4
394	Tumor Stroma Area and Other Prognostic Factors in Pancreatic Ductal Adenocarcinoma Patients Submitted to Surgery. Diagnostics, 2023, 13, 655.	1.3	0

#	Article	IF	CITATIONS
395	Use of timeâ€'density curves of dynamic contrastâ€'enhanced computed tomography for determination of the histological therapeutic effects of neoadjuvant chemotherapy for pancreatic ductal adenocarcinoma. Oncology Reports, 2023, 49, .	1.2	0
396	Endogenous Extracellular Matrix Regulates the Response of Osteosarcoma 3D Spheroids to Doxorubicin. Cancers, 2023, 15, 1221.	1.7	4
397	Micro-mechanical fingerprints of the rat bladder change in actinic cystitis and tumor presence. Communications Biology, 2023, 6, .	2.0	6
398	FES null mice demonstrate a reduction in neutrophil dependent pancreatic cancer metastatic burden. Frontiers in Oncology, 0, 13, .	1.3	0
399	HMGA1 induces FGF19 to drive pancreatic carcinogenesis and stroma formation. Journal of Clinical Investigation, 2023, 133, .	3.9	9
400	Surface physical cues mediate the uptake of foreign particles by cancer cells. APL Bioengineering, 2023, 7, .	3.3	1
401	Atezolizumab Plus PEGPH20 Versus Chemotherapy in Advanced Pancreatic Ductal Adenocarcinoma and Gastric Cancer: MORPHEUS Phase Ib/II Umbrella Randomized Study Platform. Oncologist, 2023, 28, 553-e472.	1.9	5
402	Systematic pan-cancer analysis of the potential tumor diagnosis and prognosis biomarker P4HA3. Frontiers in Genetics, 0, 14, .	1.1	2
404	New Treatment Options in Metastatic Pancreatic Cancer. Cancers, 2023, 15, 2327.	1.7	4
405	Tumor-associated fibrosis impairs the response to immunotherapy. Matrix Biology, 2023, 119, 125-140.	1.5	4
406	Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers, 2023, 15, 2354.	1.7	2
407	Clinically Relevant Biology of Hyaluronic Acid in the Desmoplastic Stroma of Pancreatic Ductal Adenocarcinoma. Pancreas, 2022, 51, 1092-1104.	0.5	0
437	Immunotherapy in Pancreatic Cancer., 2023,, 97-146.		0
447	The roles of collagens and fibroblasts in cancer. , 2024, , 419-434.		O