Complex archaea that bridge the gap between prokaryo

Nature 521, 173-179 DOI: 10.1038/nature14447

Citation Report

#	Article	IF	CITATIONS
1	Nature and Origin of Cells. , 1920, , 97-120.		0
2	Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biology, 2015, 16, 279.	3.8	186
3	Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biology, 2015, 13, 84.	1.7	60
4	Forty Years of Clathrinâ \in coated Vesicles. Traffic, 2015, 16, 1210-1238.	1.3	278
5	真æç生物誕生ã®ã,«ã,®ã,'æ†ã,‹åŽŸæç生物ã,'発見. Nature Digest, 2015, 12, 30-31.	0.0	0
8	<scp>ESCRT</scp> s are everywhere. EMBO Journal, 2015, 34, 2398-2407.	3.5	519
9	Birth of the eukaryotes by a set of reactive innovations: New insights force us to relinquish gradual models. BioEssays, 2015, 37, 1268-1276.	1.2	37
10	Late Proterozoic Transitions in Climate, Oxygen, and Tectonics, and the Rise of Complex Life. The Paleontological Society Papers, 2015, 21, 47-82.	0.8	20
11	The universal tree of life: an update. Frontiers in Microbiology, 2015, 6, 717.	1.5	140
12	Memory Formation Shaped by Astroglia. Frontiers in Integrative Neuroscience, 2015, 9, 56.	1.0	61
13	Insights into the life of an oxygenic phototroph. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14747-14748.	3.3	1
14	A comparison of autogenous theories for the origin of eukaryotic cells. American Journal of Botany, 2015, 102, 1954-1965.	0.8	17
15	Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15777-15778.	3.3	13
16	Bohr's â€~Light and Life' revisited. Physica Scripta, 2015, 90, 118001.	1.2	0
17	Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. Journal of Molecular Evolution, 2015, 81, 34-53.	0.8	13
18	Archaeal actin from a hyperthermophile forms a single-stranded filament. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9340-9345.	3.3	22
19	In search of the primordial actin filament. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9150-9151.	3.3	7
21	Universal RNA-degrading enzymes in Archaea: Prevalence, activities and functions of Î ² -CASP	1.3	25

ITATION REDO

ARTICLE IF CITATIONS # Lokiarchaeota: eukaryote-like missing links from microbial dark matter?. Trends in Microbiology, 2015, 22 3.5 24 23, 448-450. Rap and chirp about X inactivation. Nature, 2015, 521, 170-171. 24 13.7 25 Steps on the road to eukaryotes. Nature, 2015, 521, 169-170. 13.7 39 Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philosophical 1.8 Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140328. Endosymbiosis and Eukaryotic Cell Evolution. Current Biology, 2015, 25, R911-R921. 27 1.8 426 <i>E. coli</i>MG1655 modulates its phospholipid composition through the cell cycle. FEBS Letters, 1.3 2015, 589, 2726-2730. Archaea. Current Biology, 2015, 25, R851-R855. 29 1.8 45 Open Questions on the Origin of Eukaryotes. Trends in Ecology and Evolution, 2015, 30, 697-708. 4.2 Inhibiting NAD⁺-dependent DNA ligase activity with 2-(cyclopentyloxy)-5â€²-deoxyadenosine 31 (CPOdA) offers a new tool for DNA replication and repair studies in the model archaeon <i>Haloferax 0.7 1 volcanii (/i>. FEMS Microbiology Letters, 2015, 362, fnv181. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philosophical 1.8 Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140323. Rooting the tree of life: the phylogenetic jury is still out. Philosophical Transactions of the Royal 33 77 1.8 Society B: Biological Sciences, 2015, 370, 20140329. Horizontal gene flow from Eubacteria to Archaebacteria and what it means for our understanding of eukaryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140337. 1.8 From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. 35 2.4 114 Cellular and Molecular Life Sciences, 2015, 72, 4287-4308. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?. Philosophical Transactions of the Royal Society B. Biological 1.8 118 Sciences, 2015, 370, 20140333. Changing ideas about eukaryotic origins. Philosophical Transactions of the Royal Society B: 37 1.8 21 Biological Sciences, 2015, 370, 20140318. Eukaryotes first: how could that be?. Philosophical Transactions of the Royal Society B: Biological 1.8 Sciences, 2015, 370, 20140322. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of 39 1.8 72 eukaryotes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140327. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in 200 6.5 biological conflicts, immunity and signaling. Nucleic Acids Research, 2015, 43, 10633-10654.

#	Article	IF	CITATIONS
41	Physiology, phylogeny, and LUCA. Microbial Cell, 2016, 3, 582-587.	1.4	31
42	Evolution of Eukaryotes with Respect to Atmosphere Oxygen Appearance and Rise. , 2016, , 145-159.		0
43	Recording of climate and diagenesis through sedimentary DNA and fossil pigments at Laguna Potrok Aike, Argentina. Biogeosciences, 2016, 13, 2475-2492.	1.3	30
44	Arguments Reinforcing the Three-Domain View of Diversified Cellular Life. Archaea, 2016, 2016, 1-11.	2.3	25
45	Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids. Archaea, 2016, 2016, 1-16.	2.3	13
46	Archaea in Natural and Impacted Brazilian Environments. Archaea, 2016, 2016, 1-14.	2.3	7
47	Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm. Archaea, 2016, 2016, 1-14.	2.3	10
48	Microbial Inventory of Deeply Buried Oceanic Crust from a Young Ridge Flank. Frontiers in Microbiology, 2016, 7, 820.	1.5	58
49	Wide Distribution of Genes for Tetrahydromethanopterin/Methanofuran-Linked C1 Transfer Reactions Argues for Their Presence in the Common Ancestor of Bacteria and Archaea. Frontiers in Microbiology, 2016, 7, 1425.	1.5	24
50	Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies. Frontiers in Microbiology, 2016, 7, 1971.	1.5	175
51	An Evolutionary Framework for Understanding the Origin of Eukaryotes. Biology, 2016, 5, 18.	1.3	23
52	Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225). Microorganisms, 2016, 4, 32.	1.6	22
53	Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes. BMC Evolutionary Biology, 2016, 16, 197.	3.2	40
54	Next-Generation Sequencing — An Overview of the History, Tools, and "Omic―Applications. , 0, , .		94
55	Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent Pre-transfer Editing. Journal of Biological Chemistry, 2016, 291, 8618-8631.	1.6	14
56	Energy for two: New archaeal lineages and the origin of mitochondria. BioEssays, 2016, 38, 850-856.	1.2	31
57	Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction. Biopolymers, 2016, 105, 568-579.	1.2	14
58	Variance and potential niche separation of microbial communities in subseafloor sediments off <scp>S</scp> himokita <scp>P</scp> eninsula, <scp>J</scp> apan. Environmental Microbiology, 2016, 18, 1889-1906	1.8	48

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
60	HydDB: A web tool for hydrogenase classification and analysis. Scientific Reports, 2016	, 6, 34212.	1.6	372
61	Biochemical and structural characterization of DNA ligases from bacteria and archaea. Reports, 2016, 36, 00391.	Bioscience	1.1	15
62	The unconventional kinetoplastid kinetochore: from discovery toward functional under Biochemical Society Transactions, 2016, 44, 1201-1217.	standing.	1.6	20
63	Origin and early evolution of the nuclear envelope. Biochemistry (Moscow) Supplement Membrane and Cell Biology, 2016, 10, 251-258.	: Series A:	0.3	1
64	Chapter 17 Role of Dynamic and Cooperative Conformational Changes in Actin Filamer 415-444.	ıts. , 2016, ,		0
65	From sequence reads to evolutionary inferences. , 0, , 305-335.			0
66	Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrar Trends in Microbiology, 2016, 24, 525-534.	e System.	3.5	133
67	Symbiogenesis as a model for reconstructing the early stages of genome evolution. Rus Genetics, 2016, 52, 117-124.	sian Journal of	0.2	8
68	Infection and the first eukaryotes. Science, 2016, 352, 1065-1065.		6.0	4
69	An exploration of how to define and measure the evolution of <i>behavior, learning </i> , and mind across the full phylogenetic tree of life. Communicative and Integrative Bio e1166320.	<i>memory blogy, 2016, 9,</i>	0.6	5
70	Physiology, Biochemistry, and Applications of F ₄₂₀ - and F _o -C Reactions. Microbiology and Molecular Biology Reviews, 2016, 80, 451-493.	ependent Redox	2.9	136
71	One step beyond a ribosome: The ancient anaerobic core. Biochimica Et Biophysica Act 2016, 1857, 1027-1038.	a - Bioenergetics,	0.5	51
72	cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Hu Journal of Biological Chemistry, 2016, 291, 18582-18590.	ıman Diseases.	1.6	66
73	Bipartite graph analyses reveal interdomain LGT involving ultrasmall prokaryotes and th membraneâ€related proteins. Environmental Microbiology, 2016, 18, 5072-5081.	eir divergent,	1.8	12
74	How Likely Are We? Evolution of Organismal Complexity. , 2016, , 255-272.			2
75	The changing view of eukaryogenesis $\hat{a} \in \hat{f}$ fossils, cells, lineages and how they all come to Journal of Cell Science, 2016, 129, 3695-3703.	together.	1.2	77
76	Recent Developments on Bacterial Evolution into Eukaryotic Cells. , 2016, , 187-202.			0
77	Microbial bioinformatics 2020. Microbial Biotechnology, 2016, 9, 681-686.		2.0	16

#	Article	IF	CITATIONS
78	Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO Journal, 2016, 35, 239-257.	3.5	318
79	Evolutionary consequences of polyploidy in prokaryotes and the origin of mitosis and meiosis. Biology Direct, 2016, 11, 28.	1.9	29
81	Driving Apart and Segregating Genomes in Archaea. Trends in Microbiology, 2016, 24, 957-967.	3.5	26
83	Exocytosis in nonâ€neuronal cells. Journal of Neurochemistry, 2016, 137, 849-859.	2.1	26
85	<i>Lokiarchaeota</i> Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems. Molecular Biology and Evolution, 2016, 33, 2441-2453.	3.5	39
86	The Earliest Stages of Mitochondrial Adaptation to Low Oxygen Revealed in a Novel Rhizarian. Current Biology, 2016, 26, 2729-2738.	1.8	46
87	What can we infer about the origin of sex in early eukaryotes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150530.	1.8	18
88	Programmed Cell Death in Unicellular Phytoplankton. Current Biology, 2016, 26, R594-R607.	1.8	145
89	Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150442.	1.8	117
90	Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor. Genome Biology and Evolution, 2016, 8, 1950-1970.	1.1	65
91	A hydrophobic ammoniaâ€oxidizing archaeon of the <i>Nitrosocosmicus</i> clade isolated from coal tarâ€contaminated sediment. Environmental Microbiology Reports, 2016, 8, 983-992.	1.0	89
92	Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation. Scientific Reports, 2016, 6, 36711.	1.6	10
93	Protist Diversification. , 2016, , 344-360.		13
94	Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Scientific Reports, 2016, 6, 35860.	1.6	31
95	Being right on Q: shaping eukaryotic evolution. Biochemical Journal, 2016, 473, 4103-4127.	1.7	35
96	Lokiarchaeon is hydrogen dependent. Nature Microbiology, 2016, 1, 16034.	5.9	107
97	Endosymbiotic Theory. , 2016, , 511-517.		1
98	Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans. Biologia (Poland), 2016, 71, 843-852.	0.8	0

#	Article	IF	CITATIONS
99	Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nature Microbiology, 2016, 1, 15032.	5.9	207
100	A new view of the tree of life. Nature Microbiology, 2016, 1, 16048.	5.9	1,823
101	Microbial diversity: The tree of life comes of age. Nature Microbiology, 2016, 1, 16056.	5.9	14
102	Haeckel's 1866 tree of life and the origin of eukaryotes. Nature Microbiology, 2016, 1, 16114.	5.9	21
103	The Nuclear State Splitter. , 2016, , 603-651.		0
104	The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing. MBio, 2016, 7, .	1.8	151
105	The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biology Direct, 2016, 11, 36.	1.9	46
106	How Embryogenesis Began in Evolution. , 2016, , 1-74.		0
107	Are There Rab GTPases in Archaea?. Molecular Biology and Evolution, 2016, 33, 1833-1842.	3.5	26
108	<i>toplb</i> , a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB. Nucleic Acids Research, 2016, 44, 2795-2805.	6.5	5
109	On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype. Trends in Cell Biology, 2016, 26, 476-485.	3.6	36
110	Molecular Mechanisms of Transcription Initiation—Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation. Journal of Molecular Biology, 2016, 428, 2592-2606.	2.0	35
111	The bright side of microbial dark matter: lessons learned from the uncultivated majority. Current Opinion in Microbiology, 2016, 31, 217-226.	2.3	241
112	DNA Polymerases Divide the Labor of Genome Replication. Trends in Cell Biology, 2016, 26, 640-654.	3.6	123
113	From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell. Current Opinion in Cell Biology, 2016, 41, 132-136.	2.6	36
114	Horizontal Gene Transfer and the History of Life. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018036.	2.3	79
115	Major problems in evolutionary transitions: how a metabolic perspective can enrich our understanding of macroevolution. Biology and Philosophy, 2016, 31, 159-189.	0.7	29
117	Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME Journal, 2016, 10, 1696-1705.	4.4	161

	CITATION	KEPORT	
#	Article	IF	Citations
118	The Cytoskeleton and Its Regulation by Calcium and Protons. Plant Physiology, 2016, 170, 3-22.	2.3	96
119	To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2016, 59, 100-108.	0.8	70
120	Genome-Based Microbial Taxonomy Coming of Age. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018085.	2.3	69
121	Actin and Actin-Binding Proteins. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018226.	2.3	584
122	Diverged composition and regulation of theTrypanosoma bruceiorigin recognition complex that mediates DNA replication initiation. Nucleic Acids Research, 2016, 44, 4763-4784.	6.5	31
123	Unproductive exocytosis. Journal of Neurochemistry, 2016, 137, 880-889.	2.1	9
124	ESCRTâ€III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS Journal, 2016, 283, 3288-3302.	2.2	90
125	Pathogen to powerhouse. Science, 2016, 351, 659-660.	6.0	33
126	Impact of long-term cropping of glyphosate-resistant transgenic soybean [Glycine max (L.) Merr.] on soil microbiome. Transgenic Research, 2016, 25, 425-440.	1.3	44
127	Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks. Molecular Biology and Evolution, 2016, 33, 1528-1541.	3.5	77
128	Peroxisomes in parasitic protists. Molecular and Biochemical Parasitology, 2016, 209, 35-45.	0.5	47
129	Ecological and evolutionary significance of novel protist lineages. European Journal of Protistology, 2016, 55, 4-11.	0.5	25
130	Mitochondria in the second act. Nature, 2016, 531, 39-40.	13.7	33
131	Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature, 2016, 531, 101-104.	13.7	204
132	Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature Communications, 2016, 7, 10476.	5.8	189
133	Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. Journal of Experimental Botany, 2016, 67, 2963-2976.	2.4	82
134	Early Microbial Evolution: The Age of Anaerobes. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018127.	2.3	78
135	A model for genesis of transcription systems. Transcription, 2016, 7, 1-13.	1.7	18

#	Article	IF	CITATIONS
136	The Role of Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and Signaling. Physiology, 2016, 31, 60-72.	1.6	181
137	Histories of molecules: Reconciling the past. Studies in History and Philosophy of Science Part A, 2016, 55, 69-83.	0.6	15
138	Peeping at TOMs—Diverse Entry Gates to Mitochondria Provide Insights into the Evolution of Eukaryotes. Molecular Biology and Evolution, 2016, 33, 337-351.	3.5	63
139	Acoelomorpha: earliest branching bilaterians or deuterostomes?. Organisms Diversity and Evolution, 2016, 16, 391-399.	0.7	26
140	Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cellular and Molecular Life Sciences, 2017, 74, 183-212.	2.4	12
141	Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the â€ [~] lipid divide'. Environmental Microbiology, 2017, 19, 54-69.	1.8	77
142	Ancient, highly conserved proteins from a LUCA with complex cell biology provide evidence in support of the nuclear compartment commonality (NuCom) hypothesis. Research in Microbiology, 2017, 168, 395-412.	1.0	9
143	Loss of GET pathway orthologs in <i>Arabidopsis thaliana</i> causes root hair growth defects and affects SNARE abundance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1544-E1553.	3.3	56
144	Cytokinesis in Metazoa and Fungi. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022343.	2.3	63
145	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358.	13.7	882
145 146	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358. Mind the gaps in cellular evolution. Nature, 2017, 541, 297-299.	13.7 13.7	882
145 146 147	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358. Mind the gaps in cellular evolution. Nature, 2017, 541, 297-299. Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoretical Biology, 2017, 434, 2-10.	13.7 13.7 0.8	882 8 34
145 146 147 148	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358. Mind the gaps in cellular evolution. Nature, 2017, 541, 297-299. Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoretical Biology, 2017, 434, 2-10. The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist, 2017, 168, 253-269.	13.7 13.7 0.8 0.6	882 8 34 17
145 146 147 148 148	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358. Mind the gaps in cellular evolution. Nature, 2017, 541, 297-299. Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoretical Biology, 2017, 434, 2-10. The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist, 2017, 168, 253-269. Symbiosis in eukaryotic evolution. Journal of Theoretical Biology, 2017, 434, 20-33.	13.7 13.7 0.8 0.6 0.8	882 8 34 17 113
 145 146 147 148 149 150 	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358. Mind the gaps in cellular evolution. Nature, 2017, 541, 297-299. Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoretical Biology, 2017, 434, 2-10. The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist, 2017, 168, 253-269. Symbiosis in eukaryotic evolution. Journal of Theoretical Biology, 2017, 434, 20-33. Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. Science China Life Sciences, 2017, 60, 370-385.	 13.7 13.7 0.8 0.6 0.8 2.3 	 882 8 34 17 113 53
145 146 147 148 149 150	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358. Mind the gaps in cellular evolution. Nature, 2017, 541, 297-299. Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoretical Biology, 2017, 434, 2-10. The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist, 2017, 168, 253-269. Symbiosis in eukaryotic evolution. Journal of Theoretical Biology, 2017, 434, 20-33. Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. Science China Life Sciences, 2017, 60, 370-385. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biology Direct, 2017, 12, 5.	 13.7 13.7 0.8 0.6 0.8 2.3 1.9 	 882 8 34 17 113 53 90
145 146 147 148 149 150 151	Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541, 353-358. Mind the gaps in cellular evolution. Nature, 2017, 541, 297-299. Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoretical Biology, 2017, 434, 2-10. The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist, 2017, 168, 253-269. Symbiosis in eukaryotic evolution. Journal of Theoretical Biology, 2017, 434, 20-33. Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. Science China Life Sciences, 2017, 60, 370-385. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biology Direct, 2017, 12, 5. Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment. Microbiome, 2017, 5, 41.	 13.7 13.7 0.8 0.6 0.8 2.3 1.9 4.9 	 882 8 34 17 113 53 90 60

# 154	ARTICLE Prokaryotic Cytoskeletons. Sub-Cellular Biochemistry, 2017, , .	IF 1.0	CITATIONS
155	Reshaping the tree of life. Nature Reviews Microbiology, 2017, 15, 322-322.	13.6	3
156	Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environmental Microbiology, 2017, 19, 2405-2421.	1.8	35
157	Overview of the Diverse Roles of Bacterial and Archaeal Cytoskeletons. Sub-Cellular Biochemistry, 2017, 84, 1-26.	1.0	11
158	Mechanisms of gene flow in archaea. Nature Reviews Microbiology, 2017, 15, 492-501.	13.6	89
159	The Structure, Function and Roles of the Archaeal ESCRT Apparatus. Sub-Cellular Biochemistry, 2017, 84, 357-377.	1.0	23
160	Serial endosymbiosis or singular event at the origin of eukaryotes?. Journal of Theoretical Biology, 2017, 434, 58-67.	0.8	53
161	Archaeal Actin-Family Filament Systems. Sub-Cellular Biochemistry, 2017, 84, 379-392.	1.0	9
162	The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell. Annual Review of Biochemistry, 2017, 86, 637-657.	5.0	101
163	Activity-based protein profiling as a robust method for enzyme identification and screening in extremophilic Archaea. Nature Communications, 2017, 8, 15352.	5.8	45
164	Akaryotes and Eukaryotes are independent descendants of a universal common ancestor. Biochimie, 2017, 138, 168-183.	1.3	19
165	Longâ€ŧerm evolution of viruses: A Janusâ€faced balance. BioEssays, 2017, 39, 1700026.	1.2	22
166	Outerwear through the ages: evolutionary cell biology of vesicle coats. Current Opinion in Cell Biology, 2017, 47, 108-116.	2.6	56
167	The indefinable term â€~prokaryote' and the polyphyletic origin of genes. Journal of Genetics, 2017, 96, 393-397.	0.4	13
168	Marine Protists Are Not Just Big Bacteria. Current Biology, 2017, 27, R541-R549.	1.8	108
169	Ferredoxin-dependent bilin reductases in eukaryotic algae: Ubiquity and diversity. Journal of Plant Physiology, 2017, 217, 57-67.	1.6	24
170	Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4602-E4611.	3.3	232
171	RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea. MBio, 2017, 8, .	1.8	20

#	Article	IF	CITATIONS
172	Functional assignment of multiple ESCRTâ€ I II homologs in cell division and budding in <i>Sulfolobus islandicus</i> . Molecular Microbiology, 2017, 105, 540-553.	1.2	56
173	Metagenomics of microbial and viral life in terrestrial geothermal environments. Reviews in Environmental Science and Biotechnology, 2017, 16, 425-454.	3.9	29
174	The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	84
175	Overview to Algal Symbioses. , 2017, , 629-635.		0
176	Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 589-599.	1.2	22
177	Alternating terminal electronâ€acceptors at the basis of symbiogenesis: How oxygen ignited eukaryotic evolution. BioEssays, 2017, 39, 1600174.	1.2	27
178	Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis. Nature Communications, 2017, 8, 13932.	5.8	67
179	Animal Evolution and the Origins of Experience. , 2016, , 51-71.		13
182	Bioprospecting Archaea: Focus on Extreme Halophiles. Topics in Biodiversity and Conservation, 2017, , 81-112.	0.3	10
183	The trajectory of microbial single-cell sequencing. Nature Methods, 2017, 14, 1045-1054.	9.0	120
184	RNA Metabolism and Gene Expression in Archaea. Nucleic Acids and Molecular Biology, 2017, , .	0.2	6
185	Nine unanswered questions about cytokinesis. Journal of Cell Biology, 2017, 216, 3007-3016.	2.3	73
186	Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nature Communications, 2017, 8, 1114.	5.8	74
187	Functional reconstruction of a eukaryotic-like E1/E2/(RING) E3 ubiquitylation cascade from an uncultured archaeon. Nature Communications, 2017, 8, 1120.	5.8	23
188	The Rhizome of Lokiarchaeota Illustrates the Mosaicity of Archaeal Genomes. Genome Biology and Evolution, 2017, 9, 2635-2639.	1.1	21
189	Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. Environmental Microbiology Reports, 2017, 9, 528-536.	1.0	39
190	Evolutionary Lessons from Species with Unique Kinetochores. Progress in Molecular and Subcellular Biology, 2017, 56, 111-138.	0.9	43

		CITATION REPORT		
#	Article		IF	CITATIONS
192	Symbiogenesis: Beyond the endosymbiosis theory?. Journal of Theoretical Biology, 201	.7, 434, 99-103.	0.8	36
193	Witnessing Genome Evolution: Experimental Reconstruction of Endosymbiotic and Ho Transfer. Annual Review of Genetics, 2017, 51, 1-22.	rizontal Gene	3.2	69
194	Domain Cell Theory supports the independent evolution of the Eukarya, Bacteria and A Nuclear Compartment Commonality hypothesis. Open Biology, 2017, 7, 170041.	Archaea and the	1.5	17
195	Biotic interactions as drivers of algal origin and evolution. New Phytologist, 2017, 216	, 670-681.	3.5	25
196	Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the Microbiology, 2017, 2, 1533-1542.	tree of life. Nature	5.9	1,465
197	Evolution of polymer formation within the actin superfamily. Molecular Biology of the 2461-2469.	Cell, 2017, 28,	0.9	22
198	Eukaryotic origins and the Proterozoic Earth system: A link between global scale glacia eukaryogenesis?. Earth-Science Reviews, 2017, 174, 22-38.	itions and	4.0	5
200	Inference on Paleoclimate Change Using Microbial Habitat Preference in Arctic Holoce Scientific Reports, 2017, 7, 9652.	ne Sediments.	1.6	7
201	A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disse infect plasmid-free cells. Nature Microbiology, 2017, 2, 1446-1455.	minate and	5.9	108
202	Climate oscillations reflected within the microbiome of Arabian Sea sediments. Scienti 2017, 7, 6040.	fic Reports,	1.6	74
203	The [4Feâ€4S] clusters of Rpo3 are key determinants in the post Rpo3/Rpo11 heterod RNA polymerase in Methanosarcina acetivorans. MicrobiologyOpen, 2017, 6, e00399.	imer formation of	1.2	3
204	Evolution of peroxisomes illustrates symbiogenesis. BioEssays, 2017, 39, 1700050.		1.2	25
205	Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of 2017, 357, .	life. Science,	6.0	247
206	Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the Na of Sciences of the United States of America, 2017, 114, E7737-E7745.	tional Academy	3.3	244
207	The growing tree of Archaea: new perspectives on their diversity, evolution and ecolog Journal, 2017, 11, 2407-2425.	y. ISME	4.4	320
208	Archaea and the origin of eukaryotes. Nature Reviews Microbiology, 2017, 15, 711-72	3.	13.6	388
209	Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Network Review of Genetics, 2017, 51, 143-170.	works. Annual	3.2	42
210	Let There Be Light: A Contemporary Primer on Primary Plastid Endosymbiosis. Advance Research, 2017, 84, 31-56.	s in Botanical	0.5	1

#	Article	IF	Citations
211	Some Liked It Hot: A Hypothesis Regarding Establishment of the Proto-Mitochondrial Endosymbiont During Eukaryogenesis. Journal of Molecular Evolution, 2017, 85, 99-106.	0.8	15
212	An Overview of Ribonuclease Repertoire and RNA Processing Pathways in Archaea. Nucleic Acids and Molecular Biology, 2017, , 89-114.	0.2	1
213	Life and Death of Ribosomes in Archaea. Nucleic Acids and Molecular Biology, 2017, , 129-158.	0.2	15
214	The Origin and Diversification of Mitochondria. Current Biology, 2017, 27, R1177-R1192.	1.8	681
217	AgIH, a thermophilic UDP-N-acetylglucosamine-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase initiating protein N-glycosylation pathway in Sulfolobus acidocaldarius, is capable of complementing the eukaryal Alg7. Extremophiles, 2017, 21, 121-134.	0.9	10
218	The Role of Oceans in the Origin of Life and in Biological Evolution. , 2017, , 209-256.		2
219	Plant Cell Enlargement. , 2017, , 107-204.		0
220	Evolution of Cilia. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028290.	2.3	69
221	Dissecting genome reduction and trait loss in insect endosymbionts. Annals of the New York Academy of Sciences, 2017, 1389, 52-75.	1.8	87
222	From climate models to planetary habitability: temperature constraints for complex life. International Journal of Astrobiology, 2017, 16, 244-265.	0.9	17
223	Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases. Journal of Molecular Evolution, 2017, 84, 51-66.	0.8	21
224	Marine genomics: News and views. Marine Genomics, 2017, 31, 1-8.	0.4	12
227	Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum. Cell Reports, 2017, 21, 3708-3716.	2.9	107
228	The Phylogeny of Myxomycetes. , 2017, , 83-106.		6
229	Cooperation, Evolution of â~ț. , 2017, , .		0
230	Archaebiotics: Archaea as Pharmabiotics for Treating Chronic Disease in Humans?. , 0, , .		5
231	Introductory Chapter: A Brief Overview of Archaeal Applications. , 0, , .		1
232	Functional Mitochondria in Health and Disease. Frontiers in Endocrinology, 2017, 8, 296.	1.5	219

		CITATION REPORT	
#	Article	IF	CITATIONS
233	Do Viruses Exchange Genes across Superkingdoms of Life?. Frontiers in Microbiology, 2017, 8, 21	.0. 1.5	23
234	Ecogenomics and Taxonomy of Cyanobacteria Phylum. Frontiers in Microbiology, 2017, 8, 2132.	1.5	99
235	Prokaryotic Community Composition in Arctic Kongsfjorden and Sub-Arctic Northern Bering Sea Sediments As Revealed by 454 Pyrosequencing. Frontiers in Microbiology, 2017, 8, 2498.	1.5	22
236	Archaeal S-Layers: Overview and Current State of the Art. Frontiers in Microbiology, 2017, 8, 2597	. 1.5	78
237	Psychrophiles and Psychrotrophs. , 2017, , .		12
238	Endosymbiotic Theory: Models and Challenges â~†. , 2017, , .		1
239	Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genetics, 2017, 13, e1006810.	1.5	136
240	In defence of the three-domains of life paradigm. BMC Evolutionary Biology, 2017, 17, 218.	3.2	13
241	Domestication of self-splicing introns during eukaryogenesis: the rise of the complex spliceosomal machinery. Biology Direct, 2017, 12, 30.	1.9	37
242	Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biology Direct, 202 12, 19.	.7, 1.9	42
243	Evolution of Life on Earth. , 2017, , 15-26.		0
244	Current Trends in Methylotrophy. Trends in Microbiology, 2018, 26, 703-714.	3.5	119
245	On Earth, there would be a number of fundamental kinds of primary cells – cellular domains – greater than or equal to four. Journal of Theoretical Biology, 2018, 443, 10-17.	0.8	13
246	Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Cell, 2018, 172, 1181-1197.	13.5	498
247	Towards physical principles of biological evolution. Physica Scripta, 2018, 93, 043001.	1.2	26
248	Symbiosis in the microbial world: from ecology to genome evolution. Biology Open, 2018, 7, .	0.6	34
249	Two or three domains: a new view of tree of life in the genomics era. Applied Microbiology and Biotechnology, 2018, 102, 3049-3058.	1.7	19
250	Symbiotic Origin of Eukaryotic Nucleus: From Cell Body to Neo-Energide. Plant Cell Monographs, 2 , 39-66.	018, 0.4	23

#	Article	IF	Citations
251	SNARE-mediated vesicle navigation, vesicle anatomy and exocytotic fusion pore. Cell Calcium, 2018, 73, 53-54.	1.1	6
252	Mitochondria and endomembrane origins. Current Biology, 2018, 28, R367-R372.	1.8	11
253	Selenoprotein synthesis and regulation in Archaea. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2451-2462.	1.1	26
254	River Flow Impacts Bacterial and Archaeal Community Structure in Surface Sediments in the Northern Gulf of Mexico. Microbial Ecology, 2018, 76, 941-953.	1.4	4
255	The evolution of individuality revisited. Biological Reviews, 2018, 93, 1620-1633.	4.7	23
256	Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environmental Microbiology, 2018, 20, 2112-2124.	1.8	92
257	Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution. Progress in Biophysics and Molecular Biology, 2018, 140, 49-73.	1.4	33
258	Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.	0.6	194
259	Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nature Ecology and Evolution, 2018, 2, 697-704.	3.4	59
260	Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME Journal, 2018, 12, 1021-1031.	4.4	86
261	Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1504-E1510.	3.3	29
262	The Effect of Nonreversibility on Inferring Rooted Phylogenies. Molecular Biology and Evolution, 2018, 35, 984-1002.	3.5	12
263	Other Books and Studies. , 2018, , 177-184.		0
264	EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Research, 2018, 46, D726-D735.	6.5	175
265	Prokaryotic cytoskeletons: protein filaments organizing small cells. Nature Reviews Microbiology, 2018, 16, 187-201.	13.6	104
266	Structure and function of the archaeal response regulator CheY. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1259-E1268.	3.3	43
267	The evolutionary biology of dyneins. , 2018, , 100-138.		5
268	The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 2018, 46, D624-D632.	6.5	1,234

#	Article	IF	CITATIONS
269	Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virology Journal, 2018, 15, 67.	1.4	65
270	Deciphering viral presences: two novel partial giant viruses detected in marine metagenome and in a mine drainage metagenome. Virology Journal, 2018, 15, 66.	1.4	19
271	Formation of chimeric genes with essential functions at the origin of eukaryotes. BMC Biology, 2018, 16, 30.	1.7	19
272	Comparative analyses of whole-genome protein sequences from multiple organisms. Scientific Reports, 2018, 8, 6800.	1.6	18
273	When Mechanisms Are Not Enough: The Origin of Eukaryotes and Scientific Explanation. European Studies in Philosophy of Science, 2018, , 95-115.	0.4	5
274	Insights into the evolutionary conserved regulation of Rio ATPase activity. Nucleic Acids Research, 2018, 46, 1441-1456.	6.5	51
276	Oxidative phosphorylation supercomplexes and respirasome reconstitution of the colorless alga Polytomella sp Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 434-444.	0.5	13
277	Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. Journal of Eukaryotic Microbiology, 2018, 65, 255-289.	0.8	4
278	Astroglial vesicular network: evolutionary trends, physiology and pathophysiology. Acta Physiologica, 2018, 222, e12915.	1.8	27
279	Tide as Steering Factor in Structuring Archaeal and Bacterial Ammonia-Oxidizing Communities in Mangrove Forest Soils Dominated by Avicennia germinans and Rhizophora mangle. Microbial Ecology, 2018, 75, 997-1008.	1.4	18
280	Diel Rhythm Does Not Shape the Vertical Distribution of Bacterial and Archaeal 16S rRNA Transcript Diversity in Intertidal Sediments: a Mesocosm Study. Microbial Ecology, 2018, 75, 364-374.	1.4	6
281	Biological information systems: Evolution as cognition-based information management. Progress in Biophysics and Molecular Biology, 2018, 134, 1-26.	1.4	53
282	Symbiosis: Why Was the Transition from Microbial Prokaryotes to Eukaryotic Organisms a Cosmic Gigayear Event?. , 2018, , 355-405.		5
283	Functional horizontal gene transfer from bacteria to eukaryotes. Nature Reviews Microbiology, 2018, 16, 67-79.	13.6	354
284	Mitochondrial transfer between cells: Methodological constraints in cell culture and animal models. Analytical Biochemistry, 2018, 552, 75-80.	1.1	25
285	Archaea Are Interactive Components of Complex Microbiomes. Trends in Microbiology, 2018, 26, 70-85.	3.5	203
286	The Synechocystis sp. PCC 6803 Genome Encodes Up to Four 2-Phosphoglycolate Phosphatases. Frontiers in Plant Science, 2018, 9, 1718.	1.7	7
287	RNA is taking its Toll: Impact of RNAâ€specific Tollâ€like receptors on health and disease. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 223-235.	2.7	22

#	Article	IF	Citations
288	The essential genome of the crenarchaeal model Sulfolobus islandicus. Nature Communications, 2018, 9, 4908.	5.8	83
289	Genome size evolution in the Archaea. Emerging Topics in Life Sciences, 2018, 2, 595-605.	1.1	23
290	Nonmutational mechanism of inheritance in the Archaeon Sulfolobus solfataricus. Proceedings of the United States of America, 2018, 115, 12271-12276.	3.3	8
291	Characterization of mitochondrial proteomes of nonbilaterian animals. IUBMB Life, 2018, 70, 1289-1301.	1.5	9
292	Rooting Phylogenies and the Tree of Life While Minimizing Ad Hoc and Auxiliary Assumptions. Evolutionary Bioinformatics, 2018, 14, 117693431880510.	0.6	40
293	Phylogeny and Biodiversity of Prokaryotes. , 2018, , 23-55.		0
294	Prokaryote/Eukaryote Dichotomy and Bacteria/Archaea/Eukarya Domains: Two Inseparable Concepts. , 2018, , 1-21.		0
295	Archaea, from obscurity to superhero microbes: 40 years of surprises and critical biological insights. Emerging Topics in Life Sciences, 2018, 2, 453-458.	1.1	4
296	The human archaeome: methodological pitfalls and knowledge gaps. Emerging Topics in Life Sciences, 2018, 2, 469-482.	1.1	31
297	The archaeal RecJ-like proteins: nucleases and ex-nucleases with diverse roles in replication and repair. Emerging Topics in Life Sciences, 2018, 2, 493-501.	1.1	3
298	The cutting edge of archaeal transcription. Emerging Topics in Life Sciences, 2018, 2, 517-533.	1.1	31
299	The Role of the Mitochondria in the Evolution of Stem Cells, Including MUSE Stem Cells and Their Biology. Advances in Experimental Medicine and Biology, 2018, 1103, 131-152.	0.8	3
300	ProteomeGenerator: A Framework for Comprehensive Proteomics Based on de Novo Transcriptome Assembly and High-Accuracy Peptide Mass Spectral Matching. Journal of Proteome Research, 2018, 17, 3681-3692.	1.8	24
301	The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochemical Journal, 2018, 475, 3009-3034.	1.7	36
302	Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes. Microbiome, 2018, 6, 173.	4.9	86
303	The eukaryotic ancestor shapes up. Nature, 2018, 562, 352-353.	13.7	22
304	Genomes of Asgard archaea encode profilins that regulate actin. Nature, 2018, 562, 439-443.	13.7	98
305	Diversity-Function Relationships in Natural, Applied, and Engineered Microbial Ecosystems. Advances in Applied Microbiology, 2018, 105, 131-189.	1.3	13

#	ARTICLE	IF	Citations
306	Relative timing of mitochondrial endosymbiosis and the "preâ€mitochondrial symbioses―hypothesis. IUBMB Life, 2018, 70, 1188-1196.	1.5	36
307	Evolution and Structural Characteristics of Plant Voltage-Gated K ⁺ Channels. Plant Cell, 2018, 30, 2898-2909.	3.1	51
308	The Tree of Life. Grand Challenges in Biology and Biotechnology, 2018, , 55-99.	2.4	8
309	Manifold Routes to a Nucleus. Frontiers in Microbiology, 2018, 9, 2604.	1.5	9
310	Universal common ancestry, LUCA, and the Tree of Life: three distinct hypotheses about the evolution of life. Biology and Philosophy, 2018, 33, 1.	0.7	32
311	Unique Archaeal Small RNAs. Annual Review of Genetics, 2018, 52, 465-487.	3.2	11
312	Structure and function of archaeal histones. PLoS Genetics, 2018, 14, e1007582.	1.5	74
313	Environmental microbiology and metagenomics: the Brave New World is here, what's next?. Environmental Microbiology, 2018, 20, 4210-4212.	1.8	5
314	Symbiogenesis as Evolution of Open Genetic Systems. Russian Journal of Genetics, 2018, 54, 888-896.	0.2	4
315	Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nature Microbiology, 2018, 3, 732-740.	5.9	53
316	Merkwürdige Membranen. Nachrichten Aus Der Chemie, 2018, 66, 722-724.	0.0	1
317	Overview of the Cytoskeleton from an Evolutionary Perspective. Cold Spring Harbor Perspectives in Biology, 2018, 10, a030288.	2.3	71
318	Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins. International Journal of Genomics, 2018, 2018, 1-12.	0.8	3
319	Analysis of Microbial Diversity: Regarding the (Paradoxical) Difficulty of Seeing Big in Metagenomics. , 2018, , 63-87.		0
320	Archaeaâ€First and the Coâ€Evolutionary Diversification of Domains of Life. BioEssays, 2018, 40, e1800036.	1.2	15
321	Lost in the Light: Plastid Genome Evolution in Nonphotosynthetic Algae. Advances in Botanical Research, 2018, 85, 29-53.	0.5	2
322	When Less is More: Red Algae as Models for Studying Gene Loss and Genome Evolution in Eukaryotes. Critical Reviews in Plant Sciences, 2018, 37, 81-99.	2.7	30
323	Evolutionary origins and specialisation of membrane transport. Current Opinion in Cell Biology, 2018, 53, 70-76.	2.6	47

#	Article	IF	CITATIONS
324	Mapping the resilience of chemosynthetic communities in hydrothermal vent fields. Scientific Reports, 2018, 8, 9364.	1.6	28
325	Archaeal imaging: leading the hunt for new discoveries. Molecular Biology of the Cell, 2018, 29, 1675-1681.	0.9	32
326	Complex Evolutionary History of Translation Elongation Factor 2 and Diphthamide Biosynthesis in Archaea and Parabasalids. Genome Biology and Evolution, 2018, 10, 2380-2393.	1.1	37
327	A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree. Frontiers in Microbiology, 2018, 9, 1896.	1.5	25
328	Evolutionary Biology: A New Home for the Powerhouse?. Current Biology, 2018, 28, R798-R800.	1.8	5
329	Physiology of Astroglia. Physiological Reviews, 2018, 98, 239-389.	13.1	1,044
330	Reactive Oxygen Defense Against Cellular Endoparasites and the Origin ofÂEukaryotes. , 2018, , 439-460.		6
331	Cell polarity: having and making sense of direction—on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biology, 2018, 8, .	1.5	23
332	Orpheovirus IHUMI-LCC2: A New Virus among the Giant Viruses. Frontiers in Microbiology, 2017, 8, 2643.	1.5	70
333	Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery. Frontiers in Microbiology, 2018, 9, 174.	1.5	56
334	Distinct Microbial Assemblage Structure and Archaeal Diversity in Sediments of Arctic Thermokarst Lakes Differing in Methane Sources. Frontiers in Microbiology, 2018, 9, 1192.	1.5	25
335	Archaeal Viruses from High-Temperature Environments. Genes, 2018, 9, 128.	1.0	54
336	Pseudomonas PB1-Like Phages: Whole Genomes from Metagenomes Offer Insight into an Abundant Group of Bacteriophages. Viruses, 2018, 10, 331.	1.5	23
337	Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle. ISME Journal, 2018, 12, 2655-2667.	4.4	26
338	Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nature Communications, 2018, 9, 2832.	5.8	108
339	Eukaryote specific folds: Part of the whole. Proteins: Structure, Function and Bioinformatics, 2018, 86, 868-881.	1.5	7
340	Origin and evolution of fungal HECT ubiquitin ligases. Scientific Reports, 2018, 8, 6419.	1.6	12
341	The last universal common ancestor between ancient Earth chemistry and the onset of genetics. PLoS Genetics, 2018, 14, e1007518.	1.5	120

#	Article	IF	CITATIONS
342	Bacterial and archaeal profiling of hypersaline microbial mats and endoevaporites, under natural conditions and methanogenic microcosm experiments. Extremophiles, 2018, 22, 903-916.	0.9	16
343	Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin. Nature Ecology and Evolution, 2018, 2, 1556-1562.	3.4	274
344	Metagenomic Approaches for Understanding New Concepts in Microbial Science. International Journal of Genomics, 2018, 2018, 1-15.	0.8	100
345	History of Life from the Hydrocarbon Fossil Record. , 2018, , 1-35.		1
346	Influence of commercial DNA extraction kit choice on prokaryotic community metrics in marine sediment. Limnology and Oceanography: Methods, 2018, 16, 525-536.	1.0	13
347	Geological and Geochemical Constraints on the Origin and Evolution of Life. Astrobiology, 2018, 18, 1199-1219.	1.5	64
348	Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genetics, 2018, 14, e1007215.	1.5	80
349	Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environmental Microbiology Reports, 2019, 11, 487-494.	1.0	91
350	Evolution and Design of Invertebrate Circadian Clocks. , 0, , 595-614.		5
351	Horizontal Gene Transfer in Metazoa: Examples and Methods. , 2019, , 203-226.		5
352	Adaptivity of Archaeal and Bacterial Extremophiles. Microbiology, 2019, 88, 379-401.	0.5	8
353	Scientists glimpse oddball microbe that could help explain rise of complex life. Nature, 2019, 572, 294-294.	13.7	4
354	Origins of peptidases. Biochimie, 2019, 166, 4-18.	1.3	30
355	MetaTOR: A Computational Pipeline to Recover High-Quality Metagenomic Bins From Mammalian Gut Proximity-Ligation (meta3C) Libraries. Frontiers in Genetics, 2019, 10, 753.	1.1	22
356	Biophysical and biochemical characterization of a thermostable archaeal cyclophilin from Methanobrevibacter ruminantium. International Journal of Biological Macromolecules, 2019, 139, 139-152.	3.6	6
357	MOTS : A Mitochondrialâ€Encoded Regulator of the Nucleus. BioEssays, 2019, 41, e1900046.	1.2	19
359	The Methodology Behind Network Thinking: Graphs to Analyze Microbial Complexity and Evolution. Methods in Molecular Biology, 2019, 1910, 271-308.	0.4	4
360	Small Genomes and Big Data: Adaptation of Plastid Genomics to the High-Throughput Era. Biomolecules, 2019, 9, 299.	1.8	2

#	Article	IF	CITATIONS
361	A Suggestion of Converting Protein Intrinsic Disorder to Structural Entropy Using Shannon's Information Theory. Entropy, 2019, 21, 591.	1.1	2
362	Hydrothermal vent protistan distribution along the Mariana arc suggests vent endemics may be rare and novel. Environmental Microbiology, 2019, 21, 3796-3815.	1.8	23
363	Microbial assembly, interaction, functioning, activity and diversification: a review derived from community compositional data. Marine Life Science and Technology, 2019, 1, 112-128.	1.8	104
364	On the Origin of Iron/Sulfur Cluster Biosynthesis in Eukaryotes. Frontiers in Microbiology, 2019, 10, 2478.	1.5	38
365	Single cell ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190076.	1.8	11
366	Distinct responses from bacterial, archaeal and fungal streambed communities to severe hydrological disturbances. Scientific Reports, 2019, 9, 13506.	1.6	19
367	Microbial diversity and long-term geochemical trends in the euxinic zone of a marine, meromictic lake. Systematic and Applied Microbiology, 2019, 42, 126016.	1.2	12
368	Evolutionary transitions revisited: Holobiont evoâ€devo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2019, 332, 307-314.	0.6	17
369	Origin and evolution of eukaryotic transcription factors. Current Opinion in Genetics and Development, 2019, 58-59, 25-32.	1.5	29
370	Expansion of <i>Thaumarchaeota</i> habitat range is correlated with horizontal transfer of ATPase operons. ISME Journal, 2019, 13, 3067-3079.	4.4	59
371	Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biology, 2019, 17, 69.	1.7	70
372	Comparative evaluation of three archaeal primer pairs for exploring archaeal communities in deep-sea sediments and permafrost soils. Extremophiles, 2019, 23, 747-757.	0.9	12
374	The trickster microbes that are shaking up the tree of life. Nature, 2019, 569, 322-324.	13.7	14
375	Metagenomes from Coastal Marine Sediments Give Insights into the Ecological Role and Cellular Features of <i>Loki</i> - and <i>Thorarchaeota</i> . MBio, 2019, 10, .	1.8	16
376	Phylogenetic Diversity of Archaea in Shallow Hydrothermal Vents of Eolian Islands, Italy. Diversity, 2019, 11, 156.	0.7	18
377	Diversity and evolution of actin-dependent phenotypes. Current Opinion in Genetics and Development, 2019, 58-59, 40-48.	1.5	27
378	The Evolution of Reverse Gyrase Suggests a Nonhyperthermophilic Last Universal Common Ancestor. Molecular Biology and Evolution, 2019, 36, 2737-2747.	3.5	29
379	The fate of obligate endosymbionts: reduction, integration, or extinction. Current Opinion in Genetics and Development, 2019, 58-59, 1-8.	1.5	38

#	Article	IF	CITATIONS
380	History of the Hadean "Living Microfossil―OD1 and Ultra-reducing Environments. Journal of Geography (Chigaku Zasshi), 2019, 128, 571-596.	0.1	13
381	Geology around Natural Reactors and Birthplace of Eukaryotes. Journal of Geography (Chigaku) Tj ETQq1 1 0.784	4314.rgBT 0.1	/Overlock 1
382	The Genetics, Biochemistry, and Biophysics of Carbon Cycling by Deep Life. , 2019, , 556-584.		1
383	Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. Journal of Molecular Biology, 2019, 431, 4147-4166.	2.0	10
384	Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radical Biology and Medicine, 2019, 140, 74-83.	1.3	65
385	New Microbial Lineages Capable of Carbon Fixation and Nutrient Cycling in Deep-Sea Sediments of the Northern South China Sea. Applied and Environmental Microbiology, 2019, 85, .	1.4	36
386	Paint particles are a distinct and variable substrate for marine bacteria. Marine Pollution Bulletin, 2019, 146, 117-124.	2.3	24
387	Archaeal Cell Walls. Sub-Cellular Biochemistry, 2019, 92, 471-493.	1.0	13
388	Eukaryogenesis, a syntrophy affair. Nature Microbiology, 2019, 4, 1068-1070.	5.9	17
389	Eukaryotes. , 2019, , 155-231.		0
390	Mosaic origin of the eukaryotic kinetochore. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12873-12882.	3.3	76
391	Isolation and characterization of a thermophilic sulfur- and iron-reducing thaumarchaeote from a terrestrial acidic hot spring. ISME Journal, 2019, 13, 2465-2474.	4.4	26
392	Finding Common Ground. Cell, 2019, 177, 1361-1363.	13.5	0
393	ARF GTPases and their GEFs and GAPs: concepts and challenges. Molecular Biology of the Cell, 2019, 30, 1249-1271.	0.9	188
394	Archaeal Histone Contributions to the Origin of Eukaryotes. Trends in Microbiology, 2019, 27, 703-714.	3.5	38
395	Asgard archaea capable of anaerobic hydrocarbon cycling. Nature Communications, 2019, 10, 1822.	5.8	165
396	Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16Sâ€ITSâ€23S rRNA operon. Environmental Microbiology, 2019, 21, 2485-2498.	1.8	46
397	Plasmid detection and assembly in genomic and metagenomic data sets. Genome Research, 2019, 29, 961-968.	2.4	108

#	Article	IF	CITATIONS
398	Marine Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in Aarhus Bay. Frontiers in Microbiology, 2019, 10, 758.	1.5	54
399	Inferring the Evolutionary History of Your Favorite Protein: A Guide for Molecular Biologists. BioEssays, 2019, 41, 1900006.	1.2	14
400	Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support Independent Origins of Viral Gigantism. MBio, 2019, 10, .	1.8	85
401	Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nature Microbiology, 2019, 4, 614-622.	5.9	91
402	Eukaryotes Appearing. , 2019, , 105-121.		0
403	Role of stellar physics in regulating the critical steps for life. International Journal of Astrobiology, 2019, 18, 527-546.	0.9	16
404	Amino acid based <i>de Bruijn</i> graph algorithm for identifying complete coding genes from metagenomic and metatranscriptomic short reads. Nucleic Acids Research, 2019, 47, e30-e30.	6.5	7
405	The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nature Reviews Microbiology, 2019, 17, 271-283.	13.6	206
406	Investigating the Origins of Membrane Phospholipid Biosynthesis Genes Using Outgroup-Free Rooting. Genome Biology and Evolution, 2019, 11, 883-898.	1.1	34
407	Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Scientific Reports, 2019, 9, 5953.	1.6	55
408	Why the Lipid Divide? Membrane Proteins as Drivers of the Split between the Lipids of the Three Domains of Life. BioEssays, 2019, 41, e1800251.	1.2	25
409	Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nature Microbiology, 2019, 4, 1129-1137.	5.9	96
410	Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology, 2019, 4, 1138-1148.	5.9	143
411	Neofunctionalization of Mitochondrial Proteins and Incorporation into Signaling Networks in Plants. Molecular Biology and Evolution, 2019, 36, 974-989.	3.5	17
412	A revised biosynthetic pathway for the cofactor F420 in prokaryotes. Nature Communications, 2019, 10, 1558.	5.8	55
413	Archaea, the tree of life, and cellular evolution in eukaryotes. Science China Earth Sciences, 2019, 62, 489-506.	2.3	5
414	Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal biosphere. ISME Journal, 2019, 13, 1457-1468.	4.4	31
415	Arteria: An automation system for a sequencing core facility. GigaScience, 2019, 8, .	3.3	1

#	Article	IF	CITATIONS
416	ITPK1 mediates the lipid-independent synthesis of inositol phosphates controlled by metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24551-24561.	3.3	61
418	PhySpeTree: an automated pipeline for reconstructing phylogenetic species trees. BMC Evolutionary Biology, 2019, 19, 219.	3.2	3
419	Response: Commentary: Manifold Routes to a Nucleus. Frontiers in Microbiology, 2019, 10, 2585.	1.5	2
420	The Emergence of Life. Space Science Reviews, 2019, 215, 1.	3.7	53
421	Phagocytosis-like cell engulfment by a planctomycete bacterium. Nature Communications, 2019, 10, 5529.	5.8	62
422	A new symbiotic nanoarchaeote (Candidatus Nanoclepta minutus) and its host (Zestosphaera) Tj ETQq1 1 0.7843 2019, 42, 94-106.	314 rgBT / 1.2	Overlock 1 <mark>0</mark> 76
423	Histones predate the split between bacteria and archaea. Bioinformatics, 2019, 35, 2349-2353.	1.8	17
424	Towards a systematic understanding of differences between archaeal and bacterial diversity. Environmental Microbiology Reports, 2019, 11, 9-12.	1.0	3
425	Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiology Reviews, 2019, 43, 273-303.	3.9	289
426	Was the Mitochondrion Necessary to Start Eukaryogenesis?. Trends in Microbiology, 2019, 27, 96-104.	3.5	42
427	Coevolution of the coagulation and immune systems. Inflammation Research, 2019, 68, 117-123.	1.6	20
428	Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiology Letters, 2019, 366, .	0.7	167
429	OrthoInspector 3.0: open portal for comparative genomics. Nucleic Acids Research, 2019, 47, D411-D418.	6.5	46
430	Catalytic linkage between caspase activity and proteostasis in <i>Archaea</i> . Environmental Microbiology, 2019, 21, 286-298.	1.8	4
431	A combined lipidomic and 16S <scp>rRNA</scp> gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column. Geobiology, 2019, 17, 91-109.	1.1	58
432	Archaeal SF1 and SF2 Helicases. , 2019, , 1-18.		0
433	Perspectives on Cultivation Strategies of Archaea. Microbial Ecology, 2020, 79, 770-784.	1.4	34
434	The origin of chromosomal histones in a 30S ribosomal protein. Gene, 2020, 726, 144155.	1.0	1

#	Article	IF	CITATIONS
435	Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nature Microbiology, 2020, 5, 248-255.	5.9	48
436	Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnology and Oceanography, 2020, 65, S2.	1.6	82
437	Bacterial diversity and functional metagenomics expounding the diversity of xenobiotics, stress, defense and CRISPR gene ontology providing eco-efficiency to Himalayan Hot Springs. Functional and Integrative Genomics, 2020, 20, 479-496.	1.4	17
438	A versatile cis-acting element reporter system to study the function, maturation and stability of ribosomal RNA mutants in archaea. Nucleic Acids Research, 2020, 48, 2073-2090.	6.5	19
439	Evolutionary relationships between Archaea and eukaryotes. Nature Ecology and Evolution, 2020, 4, 20-21.	3.4	11
440	Phylogenomics provides robust support for a two-domains tree of life. Nature Ecology and Evolution, 2020, 4, 138-147.	3.4	159
441	Common ancestry of eukaryotes and Asgardarchaeota: Three, two or more cellular domains of life?. Journal of Theoretical Biology, 2020, 486, 110083.	0.8	10
442	The planktonic protist interactome: where do we stand after a century of research?. ISME Journal, 2020, 14, 544-559.	4.4	111
443	Evidence supporting a viral origin of the eukaryotic nucleus. Virus Research, 2020, 289, 198168.	1.1	32
444	LUCA as well as the ancestors of archaea, bacteria and eukaryotes were progenotes: Inference from the distribution and diversity of the reading mechanism of the AUA and AUG codons in the domains of life. BioSystems, 2020, 198, 104239.	0.9	12
445	Evolutionary considerations of the oligosaccharyltransferase AglB and other aspects of N-glycosylation across Archaea. Molecular Phylogenetics and Evolution, 2020, 153, 106951.	1.2	13
446	Evolution of Regulated Transcription. Cells, 2020, 9, 1675.	1.8	19
447	Thermotogales origin scenario of eukaryogenesis. Journal of Theoretical Biology, 2020, 492, 110192.	0.8	2
448	Human trans-editing enzyme displays tRNA acceptor-stem specificity and relaxed amino acid selectivity. Journal of Biological Chemistry, 2020, 295, 16180-16190.	1.6	8
451	DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Research, 2020, 48, 8883-8900.	6.5	410
452	Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nature Communications, 2020, 11, 3939.	5.8	102
453	Benthic Communities on the Mohn's Treasure Mound: Implications for Management of Seabed Mining in the Arctic Mid-Ocean Ridge. Frontiers in Marine Science, 2020, 7, .	1.2	13
454	Visualization of Lokiarchaeia and Heimdallarchaeia (Asgardarchaeota) by Fluorescence <i>In Situ</i> Hybridization and Catalyzed Reporter Deposition (CARD-FISH). MSphere, 2020, 5, .	1.3	6

#	Article	IF	CITATIONS
455	Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19904-19913.	3.3	38
456	Deciphering the archaeal communities in tree rhizosphere of the Qinghai-Tibetan plateau. BMC Microbiology, 2020, 20, 235.	1.3	14
457	The origin and evolution of viruses inferred from fold family structure. Archives of Virology, 2020, 165, 2177-2191.	0.9	20
458	The Ancient History of Peptidyl Transferase Center Formation as Told by Conservation and Information Analyses. Life, 2020, 10, 134.	1.1	17
459	Supersized Ribosomal RNA Expansion Segments in Asgard Archaea. Genome Biology and Evolution, 2020, 12, 1694-1710.	1.1	24
460	Atribacteria Reproducing over Millions of Years in the Atlantic Abyssal Subseafloor. MBio, 2020, 11, .	1.8	23
461	Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Frontiers in Cell and Developmental Biology, 2020, 8, 587685.	1.8	18
462	Evolutionary Biology—A Transdisciplinary Approach. , 2020, , .		5
463	NMR resonance assignment and dynamics of profilin from Heimdallarchaeota. Scientific Reports, 2020, 10, 15867.	1.6	3
464	The aerobic mitochondrial ATP synthesis from a comprehensive point of view. Open Biology, 2020, 10, 200224.	1.5	17
465	History of Life from the Hydrocarbon Fossil Record. , 2020, , 409-443.		0
466	Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity. Life, 2020, 10, 173.	1.1	8
467	Symmetry Breaking of Phospholipids. Symmetry, 2020, 12, 1488.	1.1	9
468	Pre-Darwinian Evolution Before LUCA. Biological Theory, 2020, 15, 175-179.	0.8	0
469	Community, Distribution, and Ecological Roles of Estuarine Archaea. Frontiers in Microbiology, 2020, 11, 2060.	1.5	24
470	Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Science Advances, 2020, 6, eabb7258.	4.7	18
471	The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3′-end cleavage mode. Nucleic Acids Research, 2020, 48, 9589-9605.	6.5	31
472	Microbial dark matter filling the niche in hypersaline microbial mats. Microbiome, 2020, 8, 135.	4.9	35

ARTICLE IF CITATIONS # Microbiomes in a manganese oxide producing ecosystem in the Ytterby mine, Sweden: impact on metal 473 1.3 14 mobility. FEMS Microbiology Ecology, 2020, 96, . Insights into eukaryogenesis from the fossil record. Interface Focus, 2020, 10, 20190105. 474 1.5 49 475 Biomass-degrading glycoside hydrolases of archaeal origin. Biotechnology for Biofuels, 2020, 13, 153. 6.2 24 Diversity, ecology and evolution of Archaea. Nature Microbiology, 2020, 5, 887-900. 5.9 Comparing Early Eukaryotic Integration of Mitochondria and Chloroplasts in the Light of Internal 477 1.8 18 ROS Challenges: Timing is of the Essence. MBio, 2020, 11, . Whole-proteome tree of life suggests a deep burst of organism diversity. Proceedings of the National 478 3.3 Academy of Sciences of the United States of America, 2020, 117, 3678-3686. 479 Coevolution of Eukaryote-like Vps4 and ESCRT-III Subunits in the Asgard Archaea. MBio, 2020, 11, . 1.8 23 An evolutionary path to altered cofactor specificity in a metalloenzyme. Nature Communications, 480 5.8 2020, 11, 2738 The Archaeal Roots of the Eukaryotic Dynamic Actin Cytoskeleton. Current Biology, 2020, 30, 481 1.8 31 R521-R526. Microbial Evolution: Chlamydial Creatures fromÂthe Deep. Current Biology, 2020, 30, R267-R269. 1.8 The phylogenetic distribution of the glutaminyl-tRNA synthetase and Glu-tRNAGIn amidotransferase in 483 the fundamental lineages would imply that the ancestor of archaea, that of eukaryotes and LUCA were 0.9 11 progenotes. BioSystems, 2020, 196, 104174. The implication of an advanced bioprocess for the acquisition of valuable microbial resources toward a sustainable and low-environmental burden society. Clean Technologies and Environmental 2.1 Policy, 2020, 22, 993-994. The origin of phagocytosis in Earth history. Interface Focus, 2020, 10, 20200019. 485 1.5 33 Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. 1.4 CRİSPR Journal, 2020, 3, 156-163. Heterotrophic Thaumarchaea with Small Genomes Are Widespread in the Dark Ocean. MSystems, 2020, 487 50 1.7 5,. Bubble biofilm: Bacterial colonization of air-air interface. Biofilm, 2020, 2, 100030. 488 489 Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994. 5.9115 Phytomicrobiome Coordination Signals Hold Potential for Climate Change-Resilient Agriculture. 490 Frontiers in Plant Science, 2020, 11, 634.

#	Article	IF	CITATIONS
491	Chloroplast history clarified by the criterion of light-harvesting complex. BioSystems, 2020, 196, 104173.	0.9	3
492	The ambiguity of the basic terms related to eukaryotes and the more consistent etymology based on eukaryotic signatures in Asgard archaea. BioSystems, 2020, 197, 104178.	0.9	1
493	New bacterial and archaeal lineages discovered in organic rich sediments of a large tropical Bay. Marine Genomics, 2020, 54, 100789.	0.4	22
494	Debating Eukaryogenesis—Part 2: How Anachronistic Reasoning Can Lure Us into Inventing Intermediates. BioEssays, 2020, 42, 1900153.	1.2	4
495	Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Science China Life Sciences, 2020, 63, 886-897.	2.3	61
496	Marine Sediments Illuminate Chlamydiae Diversity and Evolution. Current Biology, 2020, 30, 1032-1048.e7.	1.8	52
497	Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME Journal, 2020, 14, 1463-1478.	4.4	153
498	The rise of diversity in metabolic platforms across the Candidate Phyla Radiation. BMC Biology, 2020, 18, 69.	1.7	54
499	Eukaryotes Are a Holophyletic Group of Polyphyletic Origin. Frontiers in Microbiology, 2020, 11, 1380.	1.5	1
500	Nâ€glycosylation in Archaea—New roles for an ancient posttranslational modification. Molecular Microbiology, 2020, 114, 735-741.	1.2	19
501	Are Reactive Sulfur Species the New Reactive Oxygen Species?. Antioxidants and Redox Signaling, 2020, 33, 1125-1142.	2.5	32
502	Descent of Bacteria and Eukarya From an Archaeal Root of Life. Evolutionary Bioinformatics, 2020, 16, 117693432090826.	0.6	9
503	The merger that made us. BMC Biology, 2020, 18, 72.	1.7	9
504	Variable Microbial Communities in the Non-Hydrothermal Sediments of the Mid-Okinawa Trough. Geomicrobiology Journal, 2020, 37, 774-782.	1.0	1
505	Design of targeted primers based on 16S rRNA sequences in meta-transcriptomic datasets and identification of a novel taxonomic group in the Asgard archaea. BMC Microbiology, 2020, 20, 25.	1.3	13
506	Marine Hydrocarbon Seeps. Springer Oceanography, 2020, , .	0.2	5
507	The fate of organic carbon in marine sediments - New insights from recent data and analysis. Earth-Science Reviews, 2020, 204, 103146.	4.0	118
508	Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME Journal, 2020, 14, 1345-1358.	4.4	38

#	Article	IF	CITATIONS
509	The Plant Mitochondrial TAT Pathway Is Essential for Complex III Biogenesis. Current Biology, 2020, 30, 840-853.e5.	1.8	19
510	Evolution: Two Domains of Life or Three?. Current Biology, 2020, 30, R177-R179.	1.8	17
511	Debating Eukaryogenesis—Part 1: Does Eukaryogenesis Presuppose Symbiosis Before Uptake?. BioEssays, 2020, 42, 1900157.	1.2	5
512	Bacterial Origin and Reductive Evolution of the CPR Group. Genome Biology and Evolution, 2020, 12, 103-121.	1.1	11
513	Meet the relatives of our cellular ancestor. Nature, 2020, 577, 478-479.	13.7	8
514	Isolation of an archaeon at the prokaryote–eukaryote interface. Nature, 2020, 577, 519-525.	13.7	449
515	Tree of motility – A proposed history of motility systems in the tree of life. Genes To Cells, 2020, 25, 6-21.	0.5	108
516	Division of labour in a matrix, rather than phagocytosis or endosymbiosis, as a route for the origin of eukaryotic cells. Biology Direct, 2020, 15, 8.	1.9	3
518	Schizorhodopsins: A family of rhodopsins from Asgard archaea that function as light-driven inward H ⁺ pumps. Science Advances, 2020, 6, eaaz2441.	4.7	65
519	The Syntrophy hypothesis for the origin of eukaryotes revisited. Nature Microbiology, 2020, 5, 655-667.	5.9	104
520	Cultured Asgard Archaea Shed Light on Eukaryogenesis. Cell, 2020, 181, 232-235.	13.5	22
521	Myristoylation, an Ancient Protein Modification Mirroring Eukaryogenesis and Evolution. Trends in Biochemical Sciences, 2020, 45, 619-632.	3.7	66
522	New Microbial Biodiversity in Marine Sediments. Annual Review of Marine Science, 2021, 13, 161-175.	5.1	49
523	The Theory of Chemical Symbiosis: A Margulian View for the Emergence of Biological Systems (Origin) Tj ETQq1 1	0,784314 0.7	rgBT /Overl
524	Innovations to culturing the uncultured microbial majority. Nature Reviews Microbiology, 2021, 19, 225-240.	13.6	254
525	Mythical origins of the actin cytoskeleton. Current Opinion in Cell Biology, 2021, 68, 55-63.	2.6	27
526	Concerning P450 Evolution: Structural Analyses Support Bacterial Origin of Sterol 14α-Demethylases. Molecular Biology and Evolution, 2021, 38, 952-967.	3.5	19
527	Ecological features and global distribution of Asgard archaea. Science of the Total Environment, 2021, 758, 143581.	3.9	12

CITATION REPORT ARTICLE IF CITATIONS Subgroup level differences of physiological activities in marine Lokiarchaeota. ISME Journal, 2021, 15, 4.4 23 848-861. Physical connections: prokaryotes parasitizing their kin. Environmental Microbiology Reports, 2021, 1.0 9 13, 54-61. Anomalous Phylogenetic Behavior of Ribosomal Proteins in Metagenome-Assembled Asgard Archaea. 1.1 18 Genome Biology and Evolution, 2021, 13, . Diversity, metabolism and cultivation of archaea in mangrove ecosystems. Marine Life Science and 1.8 Technology, 2021, 3, 252-262. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nature Ecology and 3.4 61 Evolution, 2021, 5, 92-100. Eco-evolutionary feedbacks mediated by bacterial membrane vesicles. FEMS Microbiology Reviews, 2021, Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to 4.4 62 synthesize archaeal ether lipids. ISME Journal, 2021, 15, 168-182. Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Proteins: Structure, Function and Bioinformatics, 2021, 89, 232-241. 1.5 Darwin's Science's Impact on the Evolution of the Microbiological Sciences. Advances in 0.1 0 Environmental Microbiology, 2021, , 19-56. Source and composition of organic matter and its role in designing sediment microbial communities. 2021, , 1-45. Archaea as components of forest microbiome., 2021, , 357-370. 0 Prokaryotic Basis of Eukaryotic Eco-Evo Development., 2021, , 313-330. Mitochondrial redox systems as central hubs in plant metabolism and signaling. Plant Physiology, 2.3 56 2021, 186, 36-52. Evolutionary Cell Biology (ECB): Lessons, challenges, and opportunities for the integrative study of cell evolution. Journal of Biosciences, 2021, 46, 1 Metagenomic tools in microbial ecology research. Current Opinion in Biotechnology, 2021, 67, 184-191. 3.3 77 Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its 54 Implications. Biomedicines, 2021, 9, 293.

553Inferring the Deep Past from Molecular Data. Genome Biology and Evolution, 2021, 13, .1.119553Comparative population genomic analyses of transporters within the Asgard archaeal superphylum.1.15555PLoS ONE, 2021, 16, e0247806.1.15

#

528

529

530

532

534

538

539

540

543

547

~		<u> </u>	
(15	ГАТІ	NEDC	DT
	IAL	NLPC	ואר

#	Article	IF	CITATIONS
557	Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. Genome Biology and Evolution, 2021, 13, .	1.1	24
559	Filling the Gaps in the Cyanobacterial Tree of Life—Metagenome Analysis of Stigonema ocellatum DSM 106950, Chlorogloea purpurea SAG 13.99 and Gomphosphaeria aponina DSM 107014. Genes, 2021, 12, 389.	1.0	5
562	The soil microbial food web revisited: Predatory myxobacteria as keystone taxa?. ISME Journal, 2021, 15, 2665-2675.	4.4	73
563	Unraveling the Metabolic Potential of Asgardarchaeota in a Sediment from the Mediterranean Hydrocarbon-Contaminated Water Basin Mar Piccolo (Taranto, Italy). Microorganisms, 2021, 9, 859.	1.6	5
564	Asgard archaea in the haima cold seep: Spatial distribution and genomic insights. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 170, 103489.	0.6	11
565	Were eukaryotes made by sex?. BioEssays, 2021, 43, 2000256.	1.2	1
566	The Asgard Archaeal-Unique Contribution to Protein Families of the Eukaryotic Common Ancestor Was 0.3%. Genome Biology and Evolution, 2021, 13, .	1.1	6
567	The tree of life describes a tripartite cellular world. BioEssays, 2021, 43, 2000343.	1.2	8
569	Categorisation of culturable bioaerosols in a fruit juice manufacturing facility. PLoS ONE, 2021, 16, e0242969.	1.1	1
570	Eukaryotic RNA Polymerases: The Many Ways to Transcribe a Gene. Frontiers in Molecular Biosciences, 2021, 8, 663209.	1.6	19
571	Is it possible that cells have had more than one origin?. BioSystems, 2021, 202, 104371.	0.9	9
573	Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature, 2021, 593, 553-557.	13.7	161
574	" <i>Sifarchaeota</i> ,―a Novel Asgard Phylum from Costa Rican Sediment Capable of Polysaccharide Degradation and Anaerobic Methylotrophy. Applied and Environmental Microbiology, 2021, 87, .	1.4	24
575	Evidence for a Syncytial Origin of Eukaryotes from Ancestral State Reconstruction. Genome Biology and Evolution, 2021, 13, .	1.1	15
576	Phylogenomic Subsampling and the Search for Phylogenetically Reliable Loci. Molecular Biology and Evolution, 2021, 38, 4025-4038.	3.5	58
577	Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases. Journal of Agricultural and Food Chemistry, 2021, 69, 6119-6144.	2.4	16
578	ProteoVision: web server for advanced visualization of ribosomal proteins. Nucleic Acids Research, 2021, 49, W578-W588.	6.5	10
579	Design principles of the ESCRT-III Vps24-Vps2 module. ELife, 2021, 10, .	2.8	21

	CHAIL	IN REPORT	
#	Article	IF	Citations
580	Archaea: A Gold Mine for Topoisomerase Diversity. Frontiers in Microbiology, 2021, 12, 661411.	1.5	10
581	Functional trait relationships demonstrate life strategies in terrestrial prokaryotes. FEMS Microbiology Ecology, 2021, 97, .	1.3	12
582	Bacterial Evolutionary Precursors of Eukaryotic Copper–Zinc Superoxide Dismutases. Molecular Biology and Evolution, 2021, 38, 3789-3803.	3.5	5
584	Archaeal Origins of Eukaryotic Cell and Nucleus. BioSystems, 2021, 203, 104375.	0.9	13
585	The mysterious microbes that gave rise to complex life. Nature, 2021, 593, 328-330.	13.7	7
586	On the Evolution of the Biological Framework for Insight. Philosophies, 2021, 6, 43.	0.4	Ο
587	Prokaryotic diversity and biogeochemical characteristics of field living and laboratory cultured stromatolites from the hypersaline Laguna Interna, Salar de Atacama (Chile). Extremophiles, 2021, 25, 327-342.	0.9	3
588	Agnostic Framework for the Classification/Identification of Organisms Based on RNA Post-Transcriptional Modifications. Analytical Chemistry, 2021, 93, 7860-7869.	3.2	1
589	Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Communications, 2021, 1, .	1.7	228
590	Programmed Deviations of Ribosomes From Standard Decoding in Archaea. Frontiers in Microbiology, 2021, 12, 688061.	1.5	1
591	Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells, 2021, 10, 1592.	1.8	11
592	A standardized archaeal taxonomy for the Genome Taxonomy Database. Nature Microbiology, 2021, 6, 946-959.	5.9	198
593	The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA. Journal of Molecular Evolution, 2021, 89, 427-447.	0.8	1
594	Prokaryotic symbiotic consortia and the origin of nucleated cells: A critical review of Lynn Margulis hypothesis. BioSystems, 2021, 204, 104408.	0.9	11
595	Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME Communications, 2021, 1, .	1.7	23
597	Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin. ISME Communications, 2021, 1, .	1.7	16
598	Mitochondrial function in development and disease. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	48
599	Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Molecular Biology and Evolution, 2021, 38, 3531-3542.	3.5	15

#	Article	IF	CITATIONS
600	The evolution of autophagy proteins $\hat{a} \in $ diversification in eukaryotes and potential ancestors in prokaryotes. Journal of Cell Science, 2021, 134, .	1.2	29
601	Ribosome Biogenesis in Archaea. Frontiers in Microbiology, 2021, 12, 686977.	1.5	22
602	Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Cell, 2021, 184, 3660-3673.e18.	13.5	58
603	The origin and radiation of the phosphoprotein phosphatase (PPP) enzymes of Eukaryotes. Scientific Reports, 2021, 11, 13681.	1.6	2
607	The Compressed Vocabulary of Microbial Life. Frontiers in Microbiology, 2021, 12, 655990.	1.5	8
609	Phylogeny of the Varidnaviria Morphogenesis Module: Congruence and Incongruence With the Tree of Life and Viral Taxonomy. Frontiers in Microbiology, 2021, 12, 704052.	1.5	18
611	Evolution of Microbial Genomics: Conceptual Shifts over a Quarter Century. Trends in Microbiology, 2021, 29, 582-592.	3.5	33
612	LUCA to LECA, the Lucacene: A model for the gigayear delay from the first prokaryote to eukaryogenesis. BioSystems, 2021, 205, 104415.	0.9	9
613	Spatial separation of ribosomes and DNA in Asgard archaeal cells. ISME Journal, 2022, 16, 606-610.	4.4	17
614	Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Science China Life Sciences, 2022, 65, 818-829.	2.3	18
615	Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea. Molecular Biology and Evolution, 2021, 38, 5514-5527.	3.5	42
617	Communication is key: extracellular vesicles as mediators of infection and defence during host–microbe interactions in animals and plants. FEMS Microbiology Reviews, 2022, 46, .	3.9	33
618	Errors of the ancestral translation, LUCA, and nature of its direct descendants. BioSystems, 2021, 206, 104433.	0.9	5
619	Origin and Early Evolution of the Eukaryotic Cell. Annual Review of Microbiology, 2021, 75, 631-647.	2.9	28
620	Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biology, 2021, 19, 167.	1.7	8
621	Expanding Archaeal Diversity and Phylogeny: Past, Present, and Future. Annual Review of Microbiology, 2021, 75, 359-381.	2.9	34
622	New approaches for archaeal genome-guided cultivation. Science China Earth Sciences, 2021, 64, 1658-1673.	2.3	7
624	MetaPlatanus: a metagenome assembler that combines long-range sequence links and species-specific features. Nucleic Acids Research, 2021, 49, e130-e130.	6.5	6

#	Article	IF	CITATIONS
625	Planktonic microbial responses to perfluorinated compound (PFC) pollution: Integrating PFC distributions with community coalescence and metabolism. Science of the Total Environment, 2021, 788, 147743.	3.9	21
626	The phylogeny and phylogenetically based classification of myxomycetes. , 2022, , 97-124.		3
627	Symbiotic Models for Reconstruction of Organellogenesis. Russian Journal of Genetics, 2021, 57, 10-22.	0.2	0
629	Extracellular membrane vesicles and nanotubes in Archaea. MicroLife, 2021, 2, .	1.0	11
631	Was LUCA a Hyperthermophilic Prokaryote? The Impact-Bottleneck Hypothesis Revisited. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2020, , 75-88.	0.4	1
632	The Tubulin Superfamily in Archaea. Sub-Cellular Biochemistry, 2017, 84, 393-417.	1.0	22
633	Towards a Microbial Conservation Perspective in High Mountain Lakes. Advances in Global Change Research, 2017, , 157-180.	1.6	10
634	Riboswitches: Regulatory ncRNAs in Archaea. , 2017, , 277-303.		2
635	Mitonuclear genomics and aging. Human Genetics, 2020, 139, 381-399.	1.8	33
636	Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes. Current Biology, 2020, 30, 2468-2480.e5.	1.8	24
638	Conserved actin machinery drives microtubule-independent motility and phagocytosis in <i>Naegleria</i> . Journal of Cell Biology, 2020, 219, .	2.3	25
639	Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Research, 2020, 48, 5201-5216.	6.5	57
640	<i>Haloferax volcanii</i> —a model archaeon for studying DNA replication and repair. Open Biology, 2020, 10, 200293.	1.5	16
641	Modest proposals to expand the type material for naming of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2108-2112.	0.8	84
642	Paraphyly and (yeast) classification. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4924-4929.	0.8	20
643	Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3084-3095.	0.8	46
644	Lists of names of prokaryotic Candidatus taxa. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3956-4042.	0.8	798
682	Recapitulating phylogenies using k-mers: from trees to networks. F1000Research, 2016, 5, 2789.	0.8	22

		CITATION RE	PORT	
#	ARTICLE		IF	CITATIONS
683	The deep(er) roots of Eukaryotes and Akaryotes. F1000Research, 2020, 9, 112.		0.8	2
684	Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genetics, 2018, 14	, e1007080.	1.5	114
685	Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors. PLoS ONE, 2016, 1	1, e0151934.	1.1	84
686	Multispecies reconstructions uncover widespread conservation, and lineage-specific elabora eukaryotic mRNA metabolism. PLoS ONE, 2018, 13, e0192633.	tions in	1.1	20
687	Genome-scale reconstructions to assess metabolic phylogeny and organism clustering. PLoS 2020, 15, e0240953.	S ONE,	1.1	7
688	The study of metagenomes of oceanic microbiota. , 0, , .			1
689	The role of archaea in the origin of eukaryotes. Ecological Genetics, 2017, 15, 52-59.		0.1	2
690	Microbial community assembly in marine sediments. Aquatic Microbial Ecology, 2017, 79, 1	77-195.	0.9	124
691	Acetate-utilizing microbial communities revealed by stable-isotope probing in sediment unde upwelling system of the Ulleung Basin, East Sea. Marine Ecology - Progress Series, 2020, 63	erlying the 4, 45-61.	0.9	4
692	Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes Microbiology, 2019, 5, 48-61.	. AIMS	1.0	65
693	Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Surveys. Journal of Microbiology and Biotechnology, 2016, 26, 883-890.	Sequencing	0.9	42
694	A True Symbiosis for the Mitochondria Evolution. Bioenergetics: Open Access, 2016, 05, .		0.1	2
695	Time-lapse characterization of hydrothermal seawater and microbial interactions with basalt tephra at Surtsey Volcano. Scientific Drilling, 0, 20, 51-58.	ic	1.0	14
696	Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. 4, .	ELife, 2015,	2.8	127
697	Crenactin forms actin-like double helical filaments regulated by arcadin-2. ELife, 2016, 5, .		2.8	39
698	Molecular function limits divergent protein evolution on planetary timescales. ELife, 2019, 8), •	2.8	25
699	Single-amino acid variants reveal evolutionary processes that shape the biogeography of a g SAR11 subclade. ELife, 2019, 8, .	lobal	2.8	89
700	What is an archaeon and are the Archaea really unique?. PeerJ, 2018, 6, e5770.		0.9	8

	CITATION RE	PORT	
#	Article	IF	CITATIONS
701	Optimizing <i>de novo</i> genome assembly from PCR-amplified metagenomes. PeerJ, 2019, 7, e6902.	0.9	28
703	Microbe-Mediated Mn Oxidation—A Proposed Model of Mineral Formation. Minerals (Basel,) Tj ETQq1 1 0.7843	14 rgBT 0.8	Overlock 10
705	Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats. Biogeosciences, 2021, 18, 5491-5511.	1.3	3
715	Evolutionary Origins of Stemness. , 2016, , 177-209.		1
716	Evolution of Mitochondria in Eukaryotes versus Mitochondria "Maturing―from the Stage of Stem Cells to Committed Progenitors and Mature Cells. , 2016, , 161-175.		0
717	The Archaea. , 2016, , 203-215.		0
721	Recapitulating phylogenies using k-mers: from trees to networks. F1000Research, 2016, 5, 2789.	0.8	13
722	Double-Membrane-Bounded Organelles: Recent Findings Regarding Division, Inheritance, Structure, and Evolution of the Nucleus, Mitochondria, and Chloroplasts. , 2017, , 205-233.		Ο
723	Evolutionary Interaction Between Archaeal-Eukaryal Cell Lineages and Viruses. , 2017, , 241-264.		0
724	Genomes. , 2017, , 1-20.		Ο
725	Archaeal Surface Structures and Their Role in Communication with the Extracellular Environment. , 2017, , 67-84.		0
737	The Origin and Early Evolution of Life. , 2019, , 219-253.		0
738	Re-examination of the"Endosymbiotic Event― , 2019, , 147-168.		0
740	Asgardarchaeota – A Novel Prokaryotic Group Discovered in Aquatic Sediments that Might Shed Light on the Origin and Early Evolution of Eukaryotes , 2019, , .		1
756	真æ,ç"Ÿç‰©ã«æœ€ã,,è¿ʿã,,原æ,生物ã,¢ã,¹ã,¬ãƒ«ãƒ‰ã,¢ãƒ¼ã,ã,¢. Kagaku To Seibutsu, 2020, 58, 494	4060	0
757	Genome-centric metagenomics reveals insights into the evolution and metabolism of a new free-living group in Rhizobiales. BMC Microbiology, 2021, 21, 294.	1.3	5
758	Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells, 2021, 10, 2898.	1.8	75
759	Importance of Prokaryotes for the Origin of Eukaryotes and the Global Environment at 2.4-2.0 Ga. Journal of Geography (Chigaku Zasshi), 2020, 129, 899-912.	0.1	2

#	Article	IF	CITATIONS
760	Orthology: Promises and Challenges. , 2020, , 203-228.		10
761	Guaymas Basin, a Hydrothermal Hydrocarbon Seep Ecosystem. Springer Oceanography, 2020, , 43-68.	0.2	4
762	Biology of Wood Deteriogens. , 2020, , 99-176.		0
764	Secretory Astrocytes. Masterclass in Neuroendocrinology, 2020, , 127-160.	0.1	0
766	The deep(er) roots of Eukaryotes and Akaryotes. F1000Research, 2020, 9, 112.	0.8	0
771	Microbial diversity in extreme environments. Nature Reviews Microbiology, 2022, 20, 219-235.	13.6	153
772	Chromosome segregation in Archaea: SegA–Âand SegB–DNA complex structures provide insights into segrosome assembly. Nucleic Acids Research, 2021, , .	6.5	5
774	Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. Science of the Total Environment, 2022, 818, 151783.	3.9	62
775	The darkest microbiome—a postâ€human biosphere. Microbial Biotechnology, 2022, 15, 176-185.	2.0	14
776	A primer and discussion on DNA-based microbiome data and related bioinformatics analyses. , 0, 1, .		6
779	Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life?. Trends in Microbiology, 2021, , .	3.5	6
781	Origin and Early Evolution of the Eukaryotes: Perspectives from the Fossil Record. Advances in Astrobiology and Biogeophysics, 2021, , 255-289.	0.6	5
782	A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the Archaea. Bmc Ecology and Evolution, 2022, 22, 1.	0.7	32
783	SpeciesRax: A Tool for Maximum Likelihood Species Tree Inference from Gene Family Trees under Duplication, Transfer, and Loss. Molecular Biology and Evolution, 2022, 39, .	3.5	29
784	High molecular weight DNA extraction strategies for longâ€read sequencing of complex metagenomes. Molecular Ecology Resources, 2022, 22, 1786-1802.	2.2	24
785	Archaeal Communities: The Microbial Phylogenomic Frontier. Frontiers in Genetics, 2021, 12, 693193.	1.1	6
786	Determination of the Amino Acid Recruitment Order in Early Life by Genome-Wide Analysis of Amino Acid Usage Bias. Biomolecules, 2022, 12, 171.	1.8	4
787	Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	20

#	Article	IF	CITATIONS
788	Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. Nature Microbiology, 2022, 7, 200-212.	5.9	29
789	tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Molecular Cell, 2022, 82, 891-906.	4.5	44
790	Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nature Ecology and Evolution, 2022, 6, 253-262.	3.4	48
791	Physical mechanisms of ESCRT-III–driven cell division. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
792	Origin of eukaryotes: What can be learned from the first successfully isolated Asgard archaeon. Faculty Reviews, 2022, 11, 3.	1.7	2
793	Host Adaptation in <i>Legionellales</i> Is 1.9 Ga, Coincident with Eukaryogenesis. Molecular Biology and Evolution, 2022, 39, .	3.5	15
794	Cooperation, Evolution of. , 2024, , 94-106.		0
796	Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	7
798	The Microbiome of Coastal Sediments. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 479-534.	0.2	5
799	Marine Protists: A Hitchhiker's Guide to their Role in the Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 159-241.	0.2	3
800	Catabolic protein degradation in marine sediments confined to distinct archaea. ISME Journal, 2022, 16, 1617-1626.	4.4	12
801	Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biology and Evolution, 2022, 14, .	1.1	13
803	An estimate of the deepest branches of the tree of life from ancient vertically evolving genes. ELife, 2022, 11, .	2.8	43
804	Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis. Molecular Biology and Evolution, 2022, 39, .	3.5	11
806	Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution. Science Advances, 2022, 8, eabm2225.	4.7	13
807	The expanding AsgardÂarchaea and their elusive relationships with Eukarya. , 2022, 1, 3-12.		7
808	Spotlight on FtsZ-based cell division in Archaea. Trends in Microbiology, 2022, 30, 665-678.	3.5	22
809	Diverse Bathyarchaeotal Lineages Dominate Archaeal Communities in the Acidic Dajiuhu Peatland, Central China. Microbial Ecology, 2023, 85, 557-571.	1.4	4

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
810	Unifying the known and unknown microbial coding sequence space. ELife, 2022, 11, .		2.8	41
811	Adapting Macroecology to Microbiology: Using Occupancy Modeling To Assess Function across Metagenomes. MSystems, 2021, 6, e0079021.	onal Profiles	1.7	1
812	Comparative Metagenomic and Metabolomic Profiling of Rhizospheres of Panax notog under Forest and Field Conditions. Agronomy, 2021, 11, 2488.	inseng Grown	1.3	14
814	Evolutionary diversification of the autophagy-related ubiquitin-like conjugation systems 2022, 18, 2969-2984.	s. Autophagy,	4.3	8
829	Eukaryogenesis and oxygen in Earth history. Nature Ecology and Evolution, 2022, 6, 52	20-532.	3.4	48
830	Use of 6 Nucleotide Length Words to Study the Complexity of Gene Sequences from D Organisms. Entropy, 2022, 24, 632.	ifferent	1.1	2
831	Eukaryogenesis: The Rise of an Emergent Superorganism. Frontiers in Microbiology, 20	22, 13, .	1.5	5
833	Discovering Biological Conflict Systems Through Genome Analysis: Evolutionary Princip Biochemical Novelty. Annual Review of Biomedical Data Science, 2022, 5, 367-391.	les and	2.8	15
834	Viral histones: pickpocket's prize or primordial progenitor?. Epigenetics and Chrom	atin, 2022, 15, .	1.8	15
835	Ancestral State Reconstructions Trace Mitochondria But Not Phagocytosis to the Last Common Ancestor. Genome Biology and Evolution, 2022, 14, .	Eukaryotic	1.1	10
836	A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Natur Evolution, 2022, 6, 1007-1023.	e Ecology and	3.4	26
837	Diving into the Evolutionary History of HSC70-Linked Selective Autophagy Pathways: E Microautophagy and Chaperone-Mediated Autophagy. Cells, 2022, 11, 1945.	ndosomal	1.8	11
838	Horizontal Gene Transfer in Archaea—From Mechanisms to Genome Evolution. Annua Microbiology, 2022, 76, 481-502.	al Review of	2.9	15
839	Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCR ⁻ Nature Communications, 2022, 13, .	r machinery.	5.8	27
840	A trove of Asgard archaeal viruses. Nature Microbiology, 2022, 7, 931-932.		5.9	1
841	A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nat Microbiology, 2022, 7, 948-952.	ure	5.9	18
842	Fine-tuning cell organelle dynamics during mitosis by small GTPases. Frontiers of Medic	ine, 0, , .	1.5	0
843	Three families of Asgard archaeal viruses identified in metagenome-assembled genome Microbiology, 2022, 7, 962-973.	s. Nature	5.9	21

#	Article	IF	CITATIONS
844	Asgard archaea in saline environments. Extremophiles, 2022, 26, .	0.9	2
845	Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nature Microbiology, 2022, 7, 953-961.	5.9	17
846	CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO ₂ -Fixing Methanogenic Archaeon. Microbiology Spectrum, 2022, 10, .	1.2	9
847	Reactive Oxygen Species Signaling Pathways: Arbiters of Evolutionary Conflict?. Oxygen, 2022, 2, 269-285.	1.6	1
848	Conserved and lineage-specific hypothetical proteins may have played a central role in the rise and diversification of major archaeal groups. BMC Biology, 2022, 20, .	1.7	4
849	Development of the SeqCode: A proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. Systematic and Applied Microbiology, 2022, 45, 126305.	1.2	30
853	Origin of rickettsial host dependency unravelled. Nature Microbiology, 2022, 7, 1110-1111.	5.9	6
854	Biomarkers in the Atacama Desert along the moisture gradient and the depth in the hyperarid zone: Phosphatase activity as trace of microbial activity. International Journal of Astrobiology, 0, , 1-23.	0.9	3
855	A Practical Guide to Design and Assess a Phylogenomic Study. Genome Biology and Evolution, 2022, 14, .	1.1	16
856	The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles, 2022, 26, .	0.9	5
858	Progress and Challenges in Studying the Ecophysiology of Archaea. Methods in Molecular Biology, 2022, , 469-486.	0.4	0
859	Chemiosmosis and the Origin of Eukaryotes. , 2022, , 53-62.		0
860	Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. Current Research in Microbial Sciences, 2022, 3, 100159.	1.4	2
861	Structural and biochemical evidence for the emergence of a calcium-regulated actin cytoskeleton prior to eukaryogenesis. Communications Biology, 2022, 5, .	2.0	4
862	A bipartite, low-affinity roadblock domain-containing GAP complex regulates bacterial front-rear polarity. PLoS Genetics, 2022, 18, e1010384.	1.5	10
864	The dark side of the ribosome life cycle. RNA Biology, 2022, 19, 1045-1049.	1.5	2
865	Cultivation of previously uncultured microorganisms with a continuous-flow down-flow hanging sponge (DHS) bioreactor, using a syntrophic archaeon culture obtained from deep marine sediment as a case study. Nature Protocols, 2022, 17, 2784-2814.	5.5	6
867	A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Methods in Molecular Biology, 2022, , 3-22.	0.4	6

#	Article	IF	CITATIONS
868	Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genetics and Molecular Biology, 2022, 45, .	0.6	0
869	Widespread microbial utilization of ribosomal β-amino acid-containing peptides and proteins. CheM, 2022, 8, 2659-2677.	5.8	12
870	Functional differentiation determines the molecular basis of the symbiotic lifestyle of Ca. Nanohaloarchaeota. Microbiome, 2022, 10, .	4.9	8
871	Comparative Genomic Insights into Chemoreceptor Diversity and Habitat Adaptation of Archaea. Applied and Environmental Microbiology, 0, , .	1.4	0
872	Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	11
873	Evolution and diversity of the TopoVI and TopoVI-like subunits with extensive divergence of the TOPOVIBL subunit. Molecular Biology and Evolution, 0, , .	3.5	7
874	The cell biology of archaea. Nature Microbiology, 2022, 7, 1744-1755.	5.9	28
875	VEBA: a modular end-to-end suite for in silico recovery, clustering, and analysis of prokaryotic, microeukaryotic, and viral genomes from metagenomes. BMC Bioinformatics, 2022, 23, .	1.2	7
876	Asgard ESCRT-III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. ISME Journal, 2023, 17, 117-129.	4.4	2
877	Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges. Nature Reviews Earth & Environment, 2022, 3, 852-871.	12.2	8
878	Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases. Science Advances, 2022, 8, .	4.7	5
879	Renewing <scp>L</scp> innaean taxonomy: a proposal to restructure the highest levels of the <scp>N</scp> atural <scp>S</scp> ystem. Biological Reviews, 2023, 98, 584-602.	4.7	3
880	Acid digestion and symbiont: Proton sharing at the origin of mitochondriogenesis?. BioEssays, 2023, 45, .	1.2	3
881	Metagenome-assembled genome extraction and analysis from microbiomes using KBase. Nature Protocols, 2023, 18, 208-238.	5.5	7
882	First description of archaeal communities in carbonate-rich seafloor and subseafloor sediments from the Southwestern Atlantic slope. Ocean and Coastal Research, 2022, 70, .	0.3	2
885	Is an archaeon the ancestor of eukaryotes?. Environmental Microbiology, 2023, 25, 775-779.	1.8	2
886	Mysterious Asgard archaea microbes reveal their inner secrets. Nature, 0, , .	13.7	1
888	The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis. , 2022, 1, 374-381.		4

	СПАПО	CITATION REPORT	
#	Article	IF	CITATIONS
890	Adaptive genetic traits in pelagic freshwater microbes. Environmental Microbiology, 2023, 25, 606-641.	1.8	12
891	Microbial biosignatures in ancient deepâ€sea hydrothermal sulfides. Geobiology, 2023, 21, 355-377.	1.1	1
892	Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature, 2023, 613, 332-339.	13.7	55
893	Carl Woese: Still ahead of our time. , 2022, 1, 359-367.		3
894	AlphaFold2: A versatile tool to predict the appearance of functional adaptations in evolution. BioEssays, 2023, 45, .	1.2	2
895	Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria. Science Advances, 2022, 8, .	4.7	6
896	Microbial diversity gradients in the geothermal mud volcano underlying the hypersaline Urania Basin. Frontiers in Microbiology, 0, 13, .	1.5	2
897	The archaeal Cdv cell division system. Trends in Microbiology, 2023, 31, 601-615.	3.5	5
898	Long-read metagenomics paves the way toward a complete microbial tree of life. Nature Methods, 2023, 20, 30-31.	9.0	11
900	Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Computational and Structural Biotechnology Journal, 2023, 21, 1249-1261.	1.9	10
901	Updated Virophage Taxonomy and Distinction from Polinton-like Viruses. Biomolecules, 2023, 13, 204.	1.8	11
902	Structural insights into the evolution of late steps of translation initiation in the three domains of life. Biochimie, 2024, 217, 31-41.	1.3	1
904	Evolution: â€~Millefoglie' origin of mitochondrial cristae. Current Biology, 2023, 33, R219-R221.	1.8	0
905	A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Frontiers in Microbiology, 0, 14, .	1.5	2
906	Ultrastructural and proteomic evidence for the presence of a putative nucleolus in an Archaeon. Frontiers in Microbiology, 0, 14, .	1.5	4
908	Bacterial origins of thymidylate metabolism in Asgard archaea and Eukarya. Nature Communications, 2023, 14, .	5.8	1
909	The Mba1 homologue of <i>Trypanosoma brucei</i> is involved in the biogenesis of oxidative phosphorylation complexes. Molecular Microbiology, 2023, 119, 537-550.	1.2	3
910	Protein dynamics: The future is bright and complicated!. Structural Dynamics, 2023, 10, 014301.	0.9	7

		CITATION REPORT		
#	Article		IF	CITATIONS
911	Metabolic networks during dark anoxia. , 2023, , 317-341.			0
915	Revisiting Microbial Diversity in Hypersaline Microbial Mats from Guerrero Negro for a Understanding of Methanogenic Archaeal Communities. Microorganisms, 2023, 11, 8	Better 12.	1.6	2
916	A social niche breadth score reveals niche range strategies of generalists and specialist Ecology and Evolution, 2023, 7, 768-781.	s. Nature	3.4	15
917	Adaptation and evolution. , 2023, , 85-139.			0
918	Origin of Mitochondria. , 2024, , 25-39.			0
920	Conserved intramolecular networks in GDAP1 are closely connected to CMT-linked mu protein stability. PLoS ONE, 2023, 18, e0284532.	tations and	1.1	2
921	Rational ignorance in the search for extra-terrestrial life. New Astronomy Reviews, 202	3, 96, 101675.	5.2	0
923	Origin of life: Drawing the big picture. Progress in Biophysics and Molecular Biology, 20 28-36.	023, 180-181,	1.4	2
924	Metabolic compatibility and the rarity of prokaryote endosymbioses. Proceedings of th Academy of Sciences of the United States of America, 2023, 120, .	ie National	3.3	0
925	DNA-binding mechanism and evolution of replication protein A. Nature Communicatio	ns, 2023, 14, .	5.8	4
926	Astroglial functions. , 2023, , 199-294.			9
934	The virome of the last eukaryotic common ancestor and eukaryogenesis. Nature Micro 1008-1017.	biology, 2023, 8,	5.9	14
935	Evolution: Mitochondrial Ribosomes Across Species. Methods in Molecular Biology, 20	23, , 7-21.	0.4	1
959	Machine learning for microbiologists. Nature Reviews Microbiology, 2024, 22, 191-205	5.	13.6	6