Single photon emitters in exfoliated WSe2 structures

Nature Nanotechnology 10, 503-506 DOI: 10.1038/nnano.2015.67

Citation Report

#	Article	IF	CITATIONS
2	Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two Bose-Einstein condensates. Physical Review B, 2015, 92, .	1.1	36
3	Single photons for all. Nature Nanotechnology, 2015, 10, 481-481.	15.6	2
4	Excitonic resonances in thin films of WSe ₂ : from monolayer to bulk material. Nanoscale, 2015, 7, 10421-10429.	2.8	275
5	Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotechnology, 2015, 10, 507-511.	15.6	500
6	Two dimensions and one photon. Nature Nanotechnology, 2015, 10, 485-486.	15.6	21
7	Optically active quantum dots in monolayer WSe2. Nature Nanotechnology, 2015, 10, 491-496.	15.6	648
8	Single quantum emitters in monolayer semiconductors. Nature Nanotechnology, 2015, 10, 497-502.	15.6	749
9	Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe ₂ . Nano Letters, 2015, 15, 7567-7573.	4.5	229
10	Control of Light-Matter Interaction in 2D Atomic Crystals Using Microcavities. IEEE Journal of Quantum Electronics, 2015, 51, 1-8.	1.0	5
11	Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Applied Materials Today, 2015, 1, 60-66.	2.3	372
12	Spin Coherence and Dephasing of Localized Electrons in Monolayer MoS ₂ . Nano Letters, 2015, 15, 8250-8254.	4.5	49
13	Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes. Nanoscale, 2015, 7, 20521-20530.	2.8	56
14	Exciton band structure in layered MoSe ₂ : from a monolayer to the bulk limit. Nanoscale, 2015, 7, 20769-20775.	2.8	163
15	Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides. Applied Sciences (Switzerland), 2016, 6, 78.	1.3	96
16	Resonant laser spectroscopy of localized excitons in monolayer WSe_2. Optica, 2016, 3, 882.	4.8	55
17	Bulk AllnAs on InP(111) as a novel material system for pure single photon emission. Optics Express, 2016, 24, 23198.	1.7	10
18	Nanoscale Positioning of Singleâ€Photon Emitters in Atomically Thin WSe ₂ . Advanced Materials, 2016, 28, 7101-7105.	11.1	162
19	Edgeâ€Statesâ€Induced Disruption to the Energy Band Alignment at Thicknessâ€Modulated Molybdenum Sulfide Junctions. Advanced Electronic Materials, 2016, 2, 1600048.	2.6	18

#	Article	IF	CITATIONS
20	Growth and optical properties of Nb-doped WS ₂ monolayers. Applied Physics Express, 2016, 9, 071201.	1.1	58
21	Auger Recombination in Chemical Vapor Deposition-Grown Monolayer WS ₂ . Journal of Physical Chemistry Letters, 2016, 7, 5242-5246.	2.1	85
22	Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Applied Physics Letters, 2016, 108, .	1.5	95
23	The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals. Scientific Reports, 2016, 6, 39619.	1.6	150
24	Photoinduced Modification of Single-Photon Emitters in Hexagonal Boron Nitride. ACS Photonics, 2016, 3, 2490-2496.	3.2	109
25	Second harmonic generation in nanoscale films of transition metal dichalcogenide: Accounting for multipath interference. AIP Advances, 2016, 6, 095306.	0.6	14
26	Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 2016, 10, 216-226.	15.6	2,779
27	Why all the fuss about 2D semiconductors?. Nature Photonics, 2016, 10, 202-204.	15.6	261
28	Electrical and Thermoelectric Transport by Variable Range Hopping in Thin Black Phosphorus Devices. Nano Letters, 2016, 16, 3969-3975.	4.5	65
29	Single Defect Light-Emitting Diode in a van der Waals Heterostructure. Nano Letters, 2016, 16, 3944-3948.	4.5	115
30	Pressure-induced Kâ€"î› crossing in monolayer WSe ₂ . Nanoscale, 2016, 8, 10843-10848.	2.8	35
31	Valley Zeeman Splitting and Valley Polarization of Neutral and Charged Excitons in Monolayer MoTe ₂ at High Magnetic Fields. Nano Letters, 2016, 16, 3624-3629.	4.5	102
32	Revealing the nature of excitons in liquid exfoliated monolayer tungsten disulphide. Nanotechnology, 2016, 27, 425701.	1.3	13
33	Solid-state single-photon emitters. Nature Photonics, 2016, 10, 631-641.	15.6	1,174
34	Chemical doping modulation of nonlinear photoluminescence properties in monolayer MoS ₂ . Applied Physics Express, 2016, 9, 055202.	1.1	16
35	Visualization of Defect-Induced Excitonic Properties of the Edges and Grain Boundaries in Synthesized Monolayer Molybdenum Disulfide. Journal of Physical Chemistry C, 2016, 120, 24080-24087.	1.5	20
36	Structural Attributes and Photodynamics of Visible Spectrum Quantum Emitters in Hexagonal Boron Nitride. Nano Letters, 2016, 16, 7037-7045.	4.5	160
37	Time-Resolved Stark Spectroscopy in CdSe Nanoplatelets: Exciton Binding Energy, Polarizability, and Field-Dependent Radiative Rates. Nano Letters, 2016, 16, 6576-6583.	4.5	60

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
30	The Neverending Story. Springer Series in Materials Science, 2010, , 513-527.	0.4	0
39	Luminescence of 2D TMDC. Springer Series in Materials Science, 2016, , 295-320.	0.4	0
40	Radiatively Limited Dephasing and Exciton Dynamics in MoSe ₂ Monolayers Revealed with Four-Wave Mixing Microscopy. Nano Letters, 2016, 16, 5333-5339.	4.5	133
41	Localized emission from defects in MoSe_2 layers. Optical Materials Express, 2016, 6, 2081.	1.6	55
42	Distinctive in-Plane Cleavage Behaviors of Two-Dimensional Layered Materials. ACS Nano, 2016, 10, 8980-8988.	7.3	90
43	Phonon induced line broadening and population of the dark exciton in a deeply trapped localized emitter in monolayer WSe_2. Optics Express, 2016, 24, 8066.	1.7	19
44	Phonon-Photon Mapping in a Color Center in Hexagonal Boron Nitride. Physical Review Letters, 2016, 117, 097402.	2.9	70
45	Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>WS</mml:mi><mml:mn>2</mml:mn></mml:msub>. Physical Review Letters. 2016. 117. 077402.</mml:math 	2.9	76
46	Exciton dynamics in monolayer transition metal dichalcogenides. Journal of the Optical Society of America B: Optical Physics, 2016, 33, C39.	0.9	135
47	Photoluminescence Dynamics of Aryl sp ³ Defect States in Single-Walled Carbon Nanotubes. ACS Nano, 2016, 10, 8355-8365.	7.3	80
48	High Quality Factor Mechanical Resonators Based on WSe ₂ Monolayers. Nano Letters, 2016, 16, 5102-5108.	4.5	117
49	Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy. Optica, 2016, 3, 377.	4.8	34
50	Spin-valley qubit in nanostructures of monolayer semiconductors: Optical control and hyperfine interaction. Physical Review B, 2016, 93, .	1.1	56
51	Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions. Physical Review Letters, 2016, 116, 127402.	2.9	105
52	Trion formation dynamics in monolayer transition metal dichalcogenides. Physical Review B, 2016, 93, .	1.1	159
53	Tuning Valley Polarization in a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><ml:mrow><r with a Tiny Magnetic Field. Physical Review X, 2016, 6, .</r </ml:mrow></mml:msub></mml:mrow></mml:math>	mm ៤ខេ n>2	<b nss::mn> </td
54	Spin–flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. 2D Materials, 2016, 3, 035009.	2.0	73
55	Valleytronics in 2D materials. Nature Reviews Materials, 2016, 1, .	23.3	1,712

	CITATION	Report	
#	Article	IF	Citations
56	Atomically thin quantum light-emitting diodes. Nature Communications, 2016, 7, 12978.	5.8	242
57	Exciton-phonon relaxation bottleneck and radiative decay of thermal exciton reservoir in two-dimensional materials. Physical Review B, 2016, 94, .	1.1	21
58	Cascaded emission of single photons from the biexciton in monolayered WSe2. Nature Communications, 2016, 7, 13409.	5.8	86
59	Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nature Communications, 2016, 7, 11283.	5.8	244
60	Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor. Scientific Reports, 2016, 6, 28190.	1.6	299
61	Two-dimensional hexagonal semiconductors beyond graphene. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 043001.	0.7	19
62	Strategies for bright single photon sources in solid state: Coupled quantum dot cavities and monolayer-based systems. , 2016, , .		0
63	Evidence for Fast Interlayer Energy Transfer in MoSe ₂ /WS ₂ Heterostructures. Nano Letters, 2016, 16, 4087-4093.	4.5	205
64	Electrically pumped single-defect light emitters in WSe ₂ . 2D Materials, 2016, 3, 025038.	2.0	66
65	Revealing Defect-State Photoluminescence in Monolayer WS ₂ by Cryogenic Laser Processing. ACS Nano, 2016, 10, 5847-5855.	7.3	91
66	Reversible uniaxial strain tuning in atomically thin WSe ₂ . 2D Materials, 2016, 3, 021011.	2.0	125
67	Bright UV Single Photon Emission at Point Defects in <i>h</i> -BN. Nano Letters, 2016, 16, 4317-4321.	4.5	321
68	Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides. Proceedings of SPIE, 2016, , .	0.8	1
69	Direct measurement of exciton valley coherence in monolayer WSe2. Nature Physics, 2016, 12, 677-682.	6.5	223
70	Highly Directional Room-Temperature Single Photon Device. Nano Letters, 2016, 16, 2527-2532.	4.5	63
71	Quantum emission from hexagonal boron nitride monolayers. Nature Nanotechnology, 2016, 11, 37-41.	15.6	1,006
72	Single photons at room temperature. Nature Nanotechnology, 2016, 11, 7-8.	15.6	19
73	Defect engineering of single- and few-layer MoS ₂ by swift heavy ion irradiation. 2D Materials, 2017, 4, 015034.	2.0	60

#	Article	IF	CITATIONS
74	Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications. Applied Physics Reviews, 2017, 4, 011301.	5.5	97
75	Localized defect states in MoS ₂ monolayers: Electronic and optical properties. Physica Status Solidi (B): Basic Research, 2017, 254, 1600645.	0.7	30
76	A review on single photon sources in silicon carbide. Reports on Progress in Physics, 2017, 80, 034502.	8.1	163
77	Single-photon emitters in GaSe. 2D Materials, 2017, 4, 021010.	2.0	77
78	Evaluation of photoluminescence quantum yield of monolayer WSe ₂ using reference dye of 3â€borylbithiophene derivative. Physica Status Solidi (B): Basic Research, 2017, 254, 1600563.	0.7	18
79	Near-field spectral mapping of individual exciton complexes of monolayer WS ₂ correlated with local defects and charge population. Nanoscale, 2017, 9, 2272-2278.	2.8	44
80	Opto-valleytronic imaging of atomically thin semiconductors. Nature Nanotechnology, 2017, 12, 329-334.	15.6	55
81	Catalytically-etched hexagonal boron nitride flakes and their surface activity. Applied Surface Science, 2017, 402, 254-260.	3.1	6
82	Sub-bandgap Voltage Electroluminescence and Magneto-oscillations in a WSe ₂ Light-Emitting van der Waals Heterostructure. Nano Letters, 2017, 17, 1425-1430.	4.5	41
83	Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Materials, 2017, 4, 021019.	2.0	76
84	Atomic Defects in Twoâ€Dimensional Materials: From Singleâ€Atom Spectroscopy to Functionalities in Optoâ€∤Electronics, Nanomagnetism, and Catalysis. Advanced Materials, 2017, 29, 1606434.	11.1	211
85	Tunable spin and valley dependent magneto-optical absorption in molybdenum disulfide quantum dots. Scientific Reports, 2017, 7, 41044.	1.6	27
86	Roomâ€Temperature Singleâ€Photon Emission from Oxidized Tungsten Disulfide Multilayers. Advanced Optical Materials, 2017, 5, 1600939.	3.6	27
87	Quantum-Confined Stark Effect of Individual Defects in a van der Waals Heterostructure. Nano Letters, 2017, 17, 2253-2258.	4.5	81
88	Estimation of nonclassical independent Gaussian processes by classical interferometry. Scientific Reports, 2017, 7, 39641.	1.6	3
89	Optical properties of atomically thin transition metal dichalcogenides: observations and puzzles. Nanophotonics, 2017, 6, 1289-1308.	2.9	165
90	Spectroscopic investigation of defects in two-dimensional materials. Nanophotonics, 2017, 6, 1219-1237.	2.9	94
91	Photonâ€Pair Generation with a 100 nm Thick Carbon Nanotube Film. Advanced Materials, 2017, 29, 1605978.	11.1	28

		ITATION RE	PORT	
#	Article		IF	CITATIONS
92	Active 2D materials for on-chip nanophotonics and quantum optics. Nanophotonics, 2017, 6, 1329-	1342.	2.9	38
93	Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nature Nanotechnolo 2017, 12, 757-762.	gy,	15.6	340
94	Carrier thermoelectric transport model for black phosphorus field-effect transistors. Chemical Physics Letters, 2017, 678, 271-274.		1.2	2
95	2D Nanoelectronics. Nanoscience and Technology, 2017, , .		1.5	20
96	On-stack two-dimensional conversion of MoS ₂ into MoO ₃ . 2D Materials 2017, 4, 014003.	,	2.0	51
97	Exciton center-of-mass localization and dielectric environment effect in monolayer WS2. Journal of Applied Physics, 2017, 121, 235702.		1.1	20
98	Progress on Electronic and Optoelectronic Devices of 2D Layered Semiconducting Materials. Small, 2017, 13, 1604298.		5.2	65
99	Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe ₂ –Ag Plasmonic Hybrid Structures. Nano Letters, 20 4317-4322.	017, 17,	4.5	31
100	The magnetic proximity effect and electrical field tunable valley degeneracy in MoS ₂ /Eu van der Waals heterojunctions. Nanoscale, 2017, 9, 9502-9509.	ıS	2.8	64
101	Large-scale quantum-emitter arrays in atomically thin semiconductors. Nature Communications, 2028, 15093.	17,	5.8	406
102	Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Natur Communications, 2017, 8, 15053.	e	5.8	350
103	Quantum Nanooptics in the Electron Microscope. Advances in Imaging and Electron Physics, 2017, 185-235.	199,	0.1	2
104	Light–matter interaction in transition metal dichalcogenides and their heterostructures. Journal Physics D: Applied Physics, 2017, 50, 173001.		1.3	91
105	Photodetecting and light-emitting devices based on two-dimensional materials. Chinese Physics B, 2 26, 036801.	017,	0.7	30
106	Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces. Chemical Reviews, 2017, 117, 5174-5222.		23.0	126
107	Electronic Devices Based on Atomically Thin Materials. Nanoscience and Technology, 2017, , 161-19	6.	1.5	0
108	Electric Field Effect in Twoâ€Dimensional Transition Metal Dichalcogenides. Advanced Functional Materials, 2017, 27, 1602404.		7.8	57
109	Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Materials, 2017, 4, 015032.		2.0	10

#	Article	IF	CITATIONS
110	Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications, 2017, 8, 1132.	5.8	105
111	Coupling Emission from Single Localized Defects in Two-Dimensional Semiconductor to Surface Plasmon Polaritons. Nano Letters, 2017, 17, 6564-6568.	4.5	57
112	DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. Journal of Molecular Modeling, 2017, 23, 292.	0.8	1
113	Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nature Communications, 2017, 8, 705.	5.8	351
114	Dielectric environment and/or random disorder effects on free, charged and localized excitonic states in monolayer WS ₂ . Journal of Physics Condensed Matter, 2017, 29, 435305.	0.7	17
115	Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nature Communications, 2017, 8, 572.	5.8	181
116	Designing artificial 2D crystals with site and size controlled quantum dots. Scientific Reports, 2017, 7, 9965.	1.6	16
117	Langmuir-Blodgett Deposition of 2D Materials for Unique Identification. Springer Theses, 2017, , 63-88.	0.0	Ο
118	Efficient Carrier-to-Exciton Conversion in Field Emission Tunnel Diodes Based on MIS-Type van der Waals Heterostack. Nano Letters, 2017, 17, 5156-5162.	4.5	71
119	Defect Structure of Localized Excitons in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mn>2Monolayer_Physical Review Letters_2017_119_046101</mml:mn></mml:msub></mml:mrow></mml:math 	ml <mark>:mn</mark> > <td>nml:msub></td>	nml:msub>
120	Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nature Photonics, 2017, 11, 577-582.	15.6	235
121	Tungsten dichalcogenides (WS ₂ , WSe ₂ , and WTe ₂): materials chemistry and applications. Journal of Materials Chemistry A, 2017, 5, 18299-18325.	5.2	295
122	Ultrathin ternary semiconductor TlGaSe ₂ phototransistors with broad-spectral response. 2D Materials, 2017, 4, 035021.	2.0	22
123	Optical Absorption and Emission Mechanisms of Single Defects in Hexagonal Boron Nitride. Physical Review Letters, 2017, 119, 057401.	2.9	106
124	Enhanced Directional Emission from Monolayer WSe ₂ Integrated onto a Multiresonant Silicon-Based Photonic Structure. ACS Photonics, 2017, 4, 3031-3038.	3.2	38
125	The optical response of monolayer, few-layer and bulk tungsten disulfide. Nanoscale, 2017, 9, 13128-13141.	2.8	97
126	On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source. Nano Letters, 2017, 17, 5446-5451.	4.5	72
127	Defects in Two-Dimensional Materials. , 2017, , 359-378.		2

#	Article	IF	CITATIONS
128	Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters. Physical Review X, 2017, 7, .	2.8	67
129	Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nature Communications, 2017, 8, 1551.	5.8	105
130	Contact morphology and revisited photocurrent dynamics in monolayer MoS2. Npj 2D Materials and Applications, 2017, 1, .	3.9	16
131	Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Science Advances, 2017, 3, e1701696.	4.7	427
132	Electron spin relaxation in a transition-metal dichalcogenide quantum dot. 2D Materials, 2017, 4, 025114.	2.0	30
133	High-performance semiconductor quantum-dot single-photon sources. Nature Nanotechnology, 2017, 12, 1026-1039.	15.6	741
134	Fluorescence Intermittency in Monolayer WSe ₂ . Chinese Physics Letters, 2017, 34, 077801.	1.3	0
135	Magnetic brightening and control of dark excitons in monolayer WSe2. Nature Nanotechnology, 2017, 12, 883-888.	15.6	315
136	Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations. Physical Review B, 2017, 95, .	1.1	83
137	Size-tunable Lateral Confinement in Monolayer Semiconductors. Scientific Reports, 2017, 7, 3324.	1.6	57
138	Room temperature single photon source using fiber-integrated hexagonal boron nitride. Journal Physics D: Applied Physics, 2017, 50, 295101.	1.3	37
139	Intervalley dark trion states with spin lifetimes of 150 ns in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2Physical Review B, 2017, 95, .</mml:mn></mml:msub></mml:math 	:m t : <td>nl:moub></td>	nl:moub>
140	Nanoscale Bandgap Tuning across an Inhomogeneous Ferroelectric Interface. ACS Applied Materials & Interfaces, 2017, 9, 24704-24710.	4.0	14
141	Single photon emission from deep-level defects in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold">WS<mml:msub><mml:mi mathvariant="bold">e</mml:mi><mml:mn mathvariant="bold">2/mml:mi><mml:msub></mml:msub></mml:mn </mml:msub></mml:mi </mml:mrow>_Physical Paview B_2017_95</mml:math 	1.1	25
142	Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides. Physical Review B, 2017, 95, .	1.1	53
143	Monolayered MoSe ₂ : a candidate for room temperature polaritonics. 2D Materials, 2017, 4, 015006.	2.0	50
144	Screening effect of graphite and bilayer graphene on excitons in MoSe ₂ monolayer. 2D Materials, 2017, 4, 015021.	2.0	15
145	Light-Matter Interactions in Two-Dimensional Transition Metal Dichalcogenides: Dominant Excitonic Transitions in Mono- and Few-Layer MoX\$_2\$ and Band Nesting. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 219-230	1.9	46

# 146	ARTICLE Optical manipulation of valley pseudospin. Nature Physics, 2017, 13, 26-29.	IF 6.5	Citations
147	Cavity nonlinear optics with layered materials. Nanophotonics, 2017, 7, 355-370.	2.9	43
148	Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures. Optica, 2017, 4, 669.	4.8	26
149	Valley Polarized Single Photon Source Based on Transition Metal Dichalcogenides Quantum Dots. , 0, , \cdot		0
150	Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chemical Society Reviews, 2018, 47, 3100-3128.	18.7	604
151	Quantum Emitters in Hexagonal Boron Nitride Have Spectrally Tunable Quantum Efficiency. Advanced Materials, 2018, 30, e1704237.	11.1	33
152	Hole Transport in Exfoliated Monolayer MoS ₂ . ACS Nano, 2018, 12, 2669-2676.	7.3	41
153	Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots. Journal of Physics Condensed Matter, 2018, 30, 145301.	0.7	6
154	Near-field exciton imaging of chemically treated MoS ₂ monolayers. Nanoscale, 2018, 10, 8851-8858.	2.8	17
155	Terahertz surface emission from layered semiconductor WSe2. Applied Surface Science, 2018, 448, 416-423.	3.1	38
156	Spontaneous Emission Enhancement in Strain-Induced WSe ₂ Monolayer-Based Quantum Light Sources on Metallic Surfaces. ACS Photonics, 2018, 5, 1919-1926.	3.2	78
157	Revealing the nature of low-temperature photoluminescence peaks by laser treatment in van der Waals epitaxially grown WS ₂ monolayers. Nanoscale, 2018, 10, 4807-4815.	2.8	29
158	Inducing coherent quantum dot interactions. Physical Review B, 2018, 97, .	1.1	28
159	2D Layered Materialâ€Based van der Waals Heterostructures for Optoelectronics. Advanced Functional Materials, 2018, 28, 1706587.	7.8	279
160	Interlayer Trions in the MoS ₂ /WS ₂ van der Waals Heterostructure. Nano Letters, 2018, 18, 1460-1465.	4.5	56
161	Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2018, 118, 6091-6133.	23.0	1,000
162	Imaging of Optically Active Defects with Nanometer Resolution. Nano Letters, 2018, 18, 1739-1744.	4.5	61
163	Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots. Physical Review B, 2018, 97, .	1.1	19

#	ARTICLE Strongly Interaction-Enhanced Valley Magnetic Response in Monolayer <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
164	display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mn>2Physical Review Letters, 2018, 120, 066402.</mml:mn></mml:msub></mml:mrow>	nml:mn> </td <td>45 mml:msub><!--</td--></td>	45 mml:msub> </td
165	The interplay between excitons and trions in a monolayer of MoSe2. Applied Physics Letters, 2018, 112, .	1.5	35
166	Franck Condon shift assessment in 2D MoS ₂ . Journal of Physics Condensed Matter, 2018, 30, 095501.	0.7	8
167	Single photon emitters in boron nitride: More than a supplementary material. Optics Communications, 2018, 411, 158-165.	1.0	34
168	Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators. Semiconductor Science and Technology, 2018, 33, 013001.	1.0	58
169	Light Sources and Photodetectors Enabled by 2D Semiconductors. Small Methods, 2018, 2, 1800019.	4.6	35
170	Material platforms for spin-based photonic quantum technologies. Nature Reviews Materials, 2018, 3, 38-51.	23.3	453
171	Nonlinear Optics with 2D Layered Materials. Advanced Materials, 2018, 30, e1705963.	11.1	485
172	3D Localized Trions in Monolayer WSe ₂ in a Charge Tunable van der Waals Heterostructure. Nano Letters, 2018, 18, 2859-2863.	4.5	36
173	Augmented Quantum Yield of a 2D Monolayer Photodetector by Surface Plasmon Coupling. Nano Letters, 2018, 18, 2316-2323.	4.5	82
174	Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor. Nano Letters, 2018, 18, 2351-2357.	4.5	36
175	Towards spontaneous parametric down conversion from monolayer MoS2. Scientific Reports, 2018, 8, 3862.	1.6	28
176	Nonstoichiometry induced broadband tunable photoluminescence of monolayer WSe ₂ . Chemical Communications, 2018, 54, 743-746.	2.2	12
177	Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons, 2018, 3, 90-204.	4.1	309
178	Optical Properties of 2D Semiconductor WS ₂ . Advanced Optical Materials, 2018, 6, 1700767.	3.6	265
179	Strongly Coherent Single-Photon Emission from Site-Controlled InGaN Quantum Dots Embedded in GaN Nanopyramids. ACS Photonics, 2018, 5, 439-444.	3.2	29
180	Ruthenium oxide modified hierarchically porous boron-doped graphene aerogels as oxygen electrodes for lithium–oxygen batteries. RSC Advances, 2018, 8, 39829-39836.	1.7	9
181	Synthesis of ultrathin WSe ₂ nanosheets and their high-performance catalysis for conversion of amines to imines. Nanoscale, 2018, 10, 20266-20271.	2.8	31

#	Article	IF	CITATIONS
182	Rational design of a triiodide-intercalated dielectric-switching hybrid for visible-light absorption. Journal of Materials Chemistry C, 2018, 6, 12170-12174.	2.7	14
183	Quantum Confined Excitons in 2-Dimensional Materials. Springer Theses, 2018, , .	0.0	8
184	Spatial control of carrier capture in two-dimensional materials: Beyond energy selection rules. Physical Review B, 2018, 98, .	1.1	9
185	Multidimensional Coherent Spectroscopy of Semiconductors. Laser and Photonics Reviews, 2018, 12, 1800171.	4.4	49
186	Coupling quantum emitters in WSe2 monolayers to a metal-insulator-metal waveguide. Applied Physics Letters, 2018, 113, .	1.5	19
187	2d Quantum Light-Matter Interfaces. Springer Theses, 2018, , 91-107.	0.0	0
188	Introduction: 2d-Based Quantum Technologies. Springer Theses, 2018, , 1-30.	0.0	0
189	Deterministic Arrays of Single-Photon Sources. Springer Theses, 2018, , 47-70.	0.0	0
190	Atomically-Thin Quantum Light Emitting Diodes. Springer Theses, 2018, , 71-89.	0.0	13
191	Termination-dependent edge states of MBE-grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>WSe</mml:mi> <mml:mn>2Physical Review B, 2018, 98, .</mml:mn></mml:msub></mml:math 	:m n1 <td>nl:msub></td>	nl:msub>
191 192	Termination-dependent edge states of MBE-grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2Physical Review B, 2018, 98, . Induced valley splitting in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml: mathvariant="normal">S<mml:mn>2</mml:mn></mml: </mml:msub></mml:mrow></mml:math </mml:mn></mml:msub>Mo by an antiferromagnetic insulating CoO(111) substrate. Physical Review B, 2018, 98, .</mml:math 	:m n 1 <td>nl:#œub>35</td>	nl:#œub>35
191 192 193	Termination-dependent edge states of MBE-grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mi>Physical Review B, 2018, 98, . Induced valley splitting in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml: mathvariant="normal">S</mml: </mml:msub></mml:mrow></mml:math </mml:mi><mml:mn>2<mml:mi>Mo</mml:mi><mml:msub> antiferromagnetic insulating CoO(111) substrate. Physical Review B, 2018, 98, . Dynamic theory of nanophotonic control of two-dimensional semiconductor nonlinearities. Physical Review B, 2018, 98, .</mml:msub></mml:mn></mml:msub></mml:math 	:m h 1Mi _{1.1} 1.1	nl:1763ub>35 3
191 192 193 194	Termination-dependent edge states of MBE-grown <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mi>2Physical Review B, 2018, 98, . Induced valley splitting in monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml: mathvariant="normal">S</mml: </mml:msub></mml:mrow></mml:math </mml:mi><mml:mn>2</mml:mn></mml:msub> by an antiferromagnetic insulating CoO(111) substrate. Physical Review B, 2018, 98, . Dynamic theory of nanophotonic control of two-dimensional semiconductor nonlinearities. Physical Review B, 2018, 98, . Radiative lifetime of localized excitons in transition-metal dichalcogenides. Physical Review B, 2018, 98, .</mml:math 	:mh1mi1.1 1.1	nl:1763ub>35 3 22
191 192 193 194	Termination-dependent edge states of MBE-grown <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mi>2 Physical Review B, 2018, 98, . Induced valley splitting in monolayer <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:msub><mml:msub><mml:mi>Mo</mml:mi><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub< ml=""> Dynamic theory of nanophotonic control of two-dimensional semiconductor nonlinearities. Physical Review B, 2018, 98, . msub <td< td=""><td>:mh1mi 1.1 1.1 0.4</td><td>nl:1763ub>35 3 22 1</td></td<></mml:msub<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math<></mml:mi></mml:msub></mml:math<>	:mh1mi 1.1 1.1 0.4	nl:1763ub>35 3 22 1
 191 192 193 194 195 196 	Termination-dependent edge states of MBE-grown <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mi>2 Physical Review B, 2018, 98, . Induced valley splitting in monolayer <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>WSe</mml:mi><mml:mi><mml:msub><mml:mi><mml:mi> mathvariant="normal">> S</mml:mi><mml:mi> mathvariant="normal">> S</mml:mi><mml:mn>2</mml:mn></mml:mi></mml:msub></mml:mi></mml:mrow></mml:math<></mml:mi></mml:msub>> by an antiferromagnetic insulating CoO(111) substrate. Physical Review B, 2018, 98, . Dynamic theory of nanophotonic control of two-dimensional semiconductor nonlinearities. Physical Review B, 2018, 98, . Radiative lifetime of localized excitons in transition-metal dichalcogenides. Physical Review B, 2018, 98, . Laser Synthesis, Processing, and Spectroscopy of Atomically-Thin Two Dimensional Materials. Springer Series in Materials Science, 2018, , 1-37. Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride. Optica, 2018, 5, 1128.</mml:math<>	:mh1mi 1.1 1.1 0.4 4.8	nl:msub>35 3 22 1 159
 191 192 193 194 195 196 197 	Termination-dependent edge states of MBE-grown <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi>Cmml:mi> Physical Review B, 2018, 98, . Induced valley splitting in monolayer <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>WSe</mml:mi><mml:msub><mml:msub><mml:mi>Mo</mml:mi><mml:msub><mml:msub><mml:mi>Mo</mml:mi><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub< ml=""> Radiative lifetime of localized excitons in transition-metal dichalcogenides. Physical</mml:msub<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math<></mml:msub></mml:math<>	:mn1 < /mr mi 1.1 1.1 0.4 4.8 2.9	ml:msub>35 3 22 1 159 18
 191 192 193 194 195 196 197 198 	Termination-dependent edge states of MBE-grown <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi>Cmml:mi> Physical Review B, 2018, 98, . Induced valley splitting in monolayer <mml:math< td=""> xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub>Mo<mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math<></mml:msub><td>:mh1 < /mr mi 1.1 1.1 1.1 0.4 4.8 2.9 1.7</td><td>ml:msub>35 3 22 1 159 18 33</td></mml:math<>	:mh1 < /mr mi 1.1 1.1 1.1 0.4 4.8 2.9 1.7	ml:msub>35 3 22 1 159 18 33

#	Article	IF	CITATIONS
200	Defect-Induced Modification of Low-Lying Excitons and Valley Selectivity in Monolayer Transition Metal Dichalcogenides. Physical Review Letters, 2018, 121, 167402.	2.9	109
201	Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nature Nanotechnology, 2018, 13, 1137-1142.	15.6	198
202	Band Mixing Effects in InAs/GaAs Quantum Rings and in MoS\$\$_2\$\$2 Quantum Dots Ring-Like Behaving. Nanoscience and Technology, 2018, , 535-558.	1.5	0
203	Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. Npj 2D Materials and Applications, 2018, 2, .	3.9	526
204	Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nature Chemistry, 2018, 10, 1089-1095.	6.6	78
205	Long-lived photoluminescence polarization of localized excitons in liquid exfoliated monolayer enriched WS ₂ . Nanotechnology, 2018, 29, 335703.	1.3	3
206	Defect-Induced Photoluminescence Enhancement and Corresponding Transport Degradation in Individual Suspended Carbon Nanotubes. Physical Review Applied, 2018, 9, .	1.5	2
207	Atomically Resolved Observation of Continuous Interfaces between an As-Grown MoS ₂ Monolayer and a WS ₂ /MoS ₂ Heterobilayer on SiO ₂ . ACS Applied Nano Materials, 2018, 1, 2041-2048.	2.4	13
208	Doping with Nb enhances the photoresponsivity of WSe2 thin sheets. AIP Advances, 2018, 8, .	0.6	13
209	Reverse Saturable Absorption Induced by Phononâ€Assisted Antiâ€Stokes Processes. Advanced Materials, 2018, 30, e1801638.	11.1	57
210	Emerging trends in 2D nanotechnology that are redefining our understanding of "Nanocomposites― Nano Today, 2018, 21, 18-40.	6.2	59
211	Theory of strain-induced confinement in transition metal dichalcogenide monolayers. Physical Review B, 2018, 97, .	1.1	22
212	Effect of phonon-bath dimensionality on the spectral tuning of single-photon emitters in the Purcell regime. Physical Review B, 2018, 97, .	1.1	2
213	Microcavity enhanced single photon emission from two-dimensional WSe2. Applied Physics Letters, 2018, 112, .	1.5	35
215	Background and Theory. Springer Theses, 2018, , 7-24.	0.0	0
216	Increasing Light Extraction Using UV Curable SILs. Springer Theses, 2018, , 61-84.	0.0	0
218	Anomalous Pressure Characteristics of Defects in Hexagonal Boron Nitride Flakes. ACS Nano, 2018, 12, 7127-7133.	7.3	51
219	Stark Tuning of Single-Photon Emitters in Hexagonal Boron Nitride. Nano Letters, 2018, 18, 4710-4715.	4.5	127

# 220	ARTICLE Two-dimensional light-emitting materials: preparation, properties and applications. Chemical Society Reviews, 2018, 47, 6128-6174.	IF 18.7	CITATIONS
221	Nanophotonics with 2D transition metal dichalcogenides [Invited]. Optics Express, 2018, 26, 15972.	1.7	134
222	Microsecond Valley Lifetime of Defect-Bound Excitons in Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mn>2Physical Review Letters, 2018, 121, 057403.</mml:mn></mml:msub></mml:mrow></mml:math 	ml <mark>:mn</mark> > <td>114 nml:msub><!--</td--></td>	114 nml:msub> </td
223	Light–Matter Interaction of Single Quantum Emitters with Dielectric Nanostructures. Photonics, 2018, 5, 14.	0.9	6
224	Emerging photonic architectures in two-dimensional opto-electronics. Chemical Society Reviews, 2018, 47, 6824-6844.	18.7	71
225	Tunability in the optical response of defective monolayer WSe ₂ by computational analysis. Nanoscale, 2018, 10, 13751-13760.	2.8	16
226	The role of momentum-dark excitons in the elementary optical response of bilayer WSe2. Nature Communications, 2018, 9, 2586.	5.8	70
227	Light Emission Properties of 2D Transition Metal Dichalcogenides: Fundamentals and Applications. Advanced Optical Materials, 2018, 6, 1800420.	3.6	88
228	Single photon emission from graphene quantum dots at room temperature. Nature Communications, 2018, 9, 3470.	5.8	86
229	Coupling Single Photons from Discrete Quantum Emitters in WSe ₂ to Lithographically Defined Plasmonic Slot Waveguides. Nano Letters, 2018, 18, 6812-6819.	4.5	53
230	Radiative Enhancement of Single Quantum Emitters in WSe ₂ Monolayers Using Site-Controlled Metallic Nanopillars. ACS Photonics, 2018, 5, 3466-3471.	3.2	51
231	Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides. Advanced Materials, 2018, 30, e1802687.	11.1	86
232	Monolayer Transition Metal Dichalcogenides as Light Sources. Advanced Materials, 2018, 30, e1707627.	11.1	76
233	Environmental engineering of transition metal dichalcogenide optoelectronics. Frontiers of Physics, 2018, 13, 1.	2.4	13
234	Luminescence in 2D Materials and van der Waals Heterostructures. Advanced Optical Materials, 2018, 6, 1701296.	3.6	58
235	Manyâ€Body Complexes in 2D Semiconductors. Advanced Materials, 2019, 31, e1706945.	11.1	255
236	How Substitutional Point Defects in Two-Dimensional WS ₂ Induce Charge Localization, Spin–Orbit Splitting, and Strain. ACS Nano, 2019, 13, 10520-10534.	7.3	86
237	2D materials for quantum information science. Nature Reviews Materials, 2019, 4, 669-684.	23.3	305

#	Article	IF	CITATIONS
238	Physics of excitons and their transport in two dimensional transition metal dichalcogenide semiconductors. RSC Advances, 2019, 9, 25439-25461.	1.7	24
239	Light-Induced Interfacial Phenomena in Atomically Thin 2D van der Waals Material Hybrids and Heterojunctions. ACS Energy Letters, 2019, 4, 2323-2335.	8.8	31
240	Atomic localization of quantum emitters in multilayer hexagonal boron nitride. Nanoscale, 2019, 11, 14362-14371.	2.8	46
241	Local electronic structure of UHV cleaved WS2 surface: In-situ STM and STS studies. AIP Conference Proceedings, 2019, , .	0.3	0
242	Review on the quantum emitters in two-dimensional materials. Journal of Semiconductors, 2019, 40, 071903.	2.0	47
243	Quantum light sources from semiconductor. Journal of Semiconductors, 2019, 40, 070301.	2.0	3
244	Electrically driven single-photon sources. Journal of Semiconductors, 2019, 40, 071904.	2.0	5
245	Controlling photon antibunching from 1D emitters using optical antennas. Nanoscale, 2019, 11, 14907-14911.	2.8	5
246	An experimental investigation: The impact of cobalt doping on optical properties of YbFeO3-ẟ thin film. Materials Research Bulletin, 2019, 119, 110567.	2.7	22
247	Hyperfine interaction in atomically thin transition metal dichalcogenides. Nanoscale Advances, 2019, 1, 2624-2632.	2.2	18
248	Layer-Dependent Interfacial Transport and Optoelectrical Properties of MoS ₂ on Ultraflat Metals. ACS Applied Materials & Interfaces, 2019, 11, 31543-31550.	4.0	33
249	Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Boron Nitride. ACS Photonics, 2019, 6, 1955-1962.	3.2	83
250	Localized Intervalley Defect Excitons as Single-Photon Emitters in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mrow><m Physical Review Letters, 2019, 123, 146401.</m </mml:mrow></mml:msub></mml:mrow></mml:math 	29 ml:mn>2<	/mml:mn>
251	Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nature Communications, 2019, 10, 4435.	5.8	168
252	Exciton Luminescence of Wse2 Bilayers. Russian Physics Journal, 2019, 62, 1017-1022.	0.2	2
253	Growth and characterization of two-dimensional crystals for communication and energy applications. Progress in Crystal Growth and Characterization of Materials, 2019, 65, 100465.	1.8	5
254	Measurement of local optomechanical properties of a direct bandgap 2D semiconductor. APL Materials, 2019, 7, .	2.2	18
255	Observation of Anisotropic Strain-Wave Dynamics and Few-Layer Dephasing in MoS ₂ with Ultrafast Electron Microscopy. Nano Letters, 2019, 19, 8216-8224.	4.5	35

#	Article	IF	CITATIONS
256	Waveguide-Based Platform for Large-FOV Imaging of Optically Active Defects in 2D Materials. ACS Photonics, 2019, 6, 3100-3107.	3.2	11
257	Coupling of deterministically activated quantum emitters in hexagonal boron nitride to plasmonic surface lattice resonances. Nanophotonics, 2019, 8, 2057-2064.	2.9	18
258	First-principles study of coupled effect of ripplocations and S-vacancies in MoS2. Journal of Applied Physics, 2019, 126, .	1.1	5
259	Quantum Nature of Light in Nonstoichiometric Bulk Perovskites. ACS Nano, 2019, 13, 10711-10716.	7.3	2
260	Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides. Nature Communications, 2019, 10, 3825.	5.8	48
261	Advances in quantum light emission from 2D materials. Nanophotonics, 2019, 8, 2017-2032.	2.9	74
262	Strain-Tunable Single Photon Sources in WSe ₂ Monolayers. Nano Letters, 2019, 19, 6931-6936.	4.5	71
263	Position and Frequency Control of Strain-Induced Quantum Emitters in WSe ₂ Monolayers. Nano Letters, 2019, 19, 7534-7539.	4.5	36
264	Photon Correlation Spectroscopy of Luminescent Quantum Defects in Carbon Nanotubes. Nano Letters, 2019, 19, 7078-7084.	4.5	16
265	Room-Temperature Giant Stark Effect of Single Photon Emitter in van der Waals Material. Nano Letters, 2019, 19, 7100-7105.	4.5	40
266	Magnetic Proximity Coupling of Quantum Emitters in WSe ₂ to van der Waals Ferromagnets. Nano Letters, 2019, 19, 7301-7308.	4.5	21
267	Quantum defects by design. Nanophotonics, 2019, 8, 1867-1888.	2.9	58
268	Linearly Polarized Luminescence of Atomically Thin MoS ₂ Semiconductor Nanocrystals. ACS Nano, 2019, 13, 13006-13014.	7.3	24
269	Engineering Point-Defect States in Monolayer WSe ₂ . ACS Nano, 2019, 13, 1595-1602.	7.3	35
270	Single-Layer Janus-Type Platinum Dichalcogenides and Their Heterostructures. Journal of Physical Chemistry C, 2019, 123, 4549-4557.	1.5	81
271	Unraveling the Defect Emission and Exciton–Lattice Interaction in Bilayer WS2. Journal of Physical Chemistry C, 2019, 123, 4433-4440.	1.5	14
272	Carrier dynamics and spin–valley–layer effects in bilayer transition metal dichalcogenides. Faraday Discussions, 2019, 214, 175-188.	1.6	3
273	The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2. Nature Communications, 2019, 10, 2330.	5.8	55

#	Article	IF	CITATIONS
274	Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nature Communications, 2019, 10, 2755.	5.8	132
275	On-chip integrated photonic circuits based on two-dimensional materials and hexagonal boron nitride as the optical confinement layer. Journal of Applied Physics, 2019, 125, 230901.	1.1	13
276	Locally defined quantum emission from epitaxial few-layer tungsten diselenide. Applied Physics Letters, 2019, 114, .	1.5	18
277	Magneto-spectroscopy of exciton Rydberg states in a CVD grown WSe2 monolayer. Applied Physics Letters, 2019, 114, .	1.5	17
278	Singleâ€photon emission from a further confined InGaN/GaN quantum disc via reverseâ€reaction growth. Quantum Engineering, 2019, 1, e20.	1.2	18
279	Point Defects and Localized Excitons in 2D WSe ₂ . ACS Nano, 2019, 13, 6050-6059.	7.3	127
280	Ultra‣ong Lifetimes of Single Quantum Emitters in Monolayer WSe ₂ /hBN Heterostructures. Advanced Quantum Technologies, 2019, 2, 1900022.	1.8	13
281	Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nature Nanotechnology, 2019, 14, 426-431.	15.6	46
282	Versatile Crystal Structures and (Opto)electronic Applications of the 2D Metal Monoâ€, Diâ€, and Triâ€Chalcogenide Nanosheets. Advanced Functional Materials, 2019, 29, 1900040.	7.8	58
283	Wide-Field Spectral Super-Resolution Mapping of Optically Active Defects in Hexagonal Boron Nitride. Nano Letters, 2019, 19, 2516-2523.	4.5	63
284	Single photon emission in WSe ₂ up 160 K by quantum yield control. 2D Materials, 2019, 6, 035017.	2.0	53
285	Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nature Communications, 2019, 10, 1709.	5.8	100
286	Enhancing functionalities of atomically thin semiconductors with plasmonic nanostructures. Nanophotonics, 2019, 8, 577-598.	2.9	26
287	Phonon-assisted emission and absorption of individual color centers in hexagonal boron nitride. 2D Materials, 2019, 6, 035006.	2.0	56
288	Accidental Contamination of Substrates and Polymer Films by Organic Quantum Emitters. Nano Letters, 2019, 19, 3207-3213.	4.5	8
289	Neutral and defect-induced exciton annihilation in defective monolayer WS ₂ . Nanoscale, 2019, 11, 7913-7920.	2.8	36
290	Quantum-Dot-Like States in Molybdenum Disulfide Nanostructures Due to the Interplay of Local Surface Wrinkling, Strain, and Dielectric Confinement. Nano Letters, 2019, 19, 3182-3186.	4.5	43
291	Electrically tunable quantum emitters in an ultrathin graphene–hexagonal boron nitride van der Waals heterostructure. Applied Physics Letters, 2019, 114,	1.5	23

#	ARTICLE	IF	CITATIONS
292	Single Photon Sources in Atomically Thin Materials. Annual Review of Physical Chemistry, 2019, 70, 123-142.	4.8	145
293	Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567, 66-70.	13.7	842
294	Origin of ultrafast growth of monolayer WSe2 via chemical vapor deposition. Npj Computational Materials, 2019, 5, .	3.5	28
295	Strain fields in graphene induced by nanopillar mesh. Journal of Applied Physics, 2019, 125, .	1.1	8
296	Synthesis and emerging properties of 2D layered III–VI metal chalcogenides. Applied Physics Reviews, 2019, 6, 041312.	5.5	89
297	New insights into nonclassical light emission from defects in multi-layer hexagonal boron nitride. Nanophotonics, 2019, 8, 2041-2048.	2.9	35
298	Polarization-dependent light-matter coupling and highly indistinguishable resonant fluorescence photons from quantum dot-micropillar cavities with elliptical cross section. Physical Review B, 2019, 100, .	1.1	15
299	Optical fingerprint of bright and dark localized excitonic states in atomically thin 2D materials. Physical Chemistry Chemical Physics, 2019, 21, 26077-26083.	1.3	7
300	Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light: Science and Applications, 2019, 8, 8.	7.7	51
301	Quantum Calligraphy: Writing Single-Photon Emitters in a Two-Dimensional Materials Platform. ACS Nano, 2019, 13, 904-912.	7.3	80
302	Effect of magnesium on structural and optical properties of CaTiO3: A DFT study. Physica B: Condensed Matter, 2019, 568, 88-91.	1.3	19
303	Nonlinear Nanophotonics With 2D Transition Metal Dichalcogenides. , 2019, , 305-318.		5
304	Zeeman spectroscopy of excitons and hybridization of electronic states in few-layer WSe ₂ , MoSe ₂ and MoTe ₂ . 2D Materials, 2019, 6, 015010.	2.0	22
305	Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nature Physics, 2019, 15, 221-227.	6.5	80
306	Two-Level Quantum Systems in Two-Dimensional Materials for Single Photon Emission. Nano Letters, 2019, 19, 408-414.	4.5	59
307	Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics, 2019, 4, .	3.0	92
308	Photoluminescence manipulation of WS ₂ flakes by an individual Si nanoparticle. Materials Horizons, 2019, 6, 97-106.	6.4	36
309	Orbital, spin and valley contributions to Zeeman splitting of excitonic resonances in MoSe ₂ , WSe ₂ and WS ₂ Monolayers. 2D Materials, 2019, 6, 015001.	2.0	85

#	Article	IF	CITATIONS
310	Inorganic 2D Luminescent Materials: Structure, Luminescence Modulation, and Applications. Advanced Optical Materials, 2020, 8, 1900978.	3.6	37
311	Enabling remote quantum emission in 2D semiconductors via porous metallic networks. Nature Communications, 2020, 11, 5.	5.8	20
312	Defect creation in WSe ₂ with a microsecond photoluminescence lifetime by focused ion beam irradiation. Nanoscale, 2020, 12, 2047-2056.	2.8	30
313	Single-photon emitters in hexagonal boron nitride: a review of progress. Reports on Progress in Physics, 2020, 83, 044501.	8.1	104
314	Temperature dependence of photoluminescence lifetime of atomically-thin WSe2 layer. Nanotechnology, 2020, 31, 135002.	1.3	2
315	An investigation of the optical properties of YbFe1-xIrxO3-ẟ (x=0, 0.01 and 0.10) orthoferrite films. Vacuum, 2020, 173, 109124.	1.6	27
316	Electronic and optical properties of 2D monolayer (ML) MoS2 with vacancy defect at S sites. Nano Structures Nano Objects, 2020, 21, 100404.	1.9	23
317	Optical characterization of two-dimensional semiconductors. , 2020, , 135-166.		1
318	Scalable Functionalization of Optical Fibers Using Atomically Thin Semiconductors. Advanced Materials, 2020, 32, e2003826.	11.1	31
319	Material platforms for defect qubits and single-photon emitters. Applied Physics Reviews, 2020, 7, .	5.5	96
320	The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance. Nanoscale Advances, 2020, 2, 4323-4340.	2.2	41
321	Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nature Nanotechnology, 2020, 15, 854-860.	15.6	134
322	Electric field tuning of strain-induced quantum emitters in WSe2. AIP Advances, 2020, 10, .	0.6	11
323	Valley excitons: From monolayer semiconductors to moir \tilde{A} superlattices. Semiconductors and Semimetals, 2020, 105, 269-303.	0.4	1
324	Modification of the Electronic Transport in Atomically Thin WSe ₂ by Oxidation. Advanced Materials Interfaces, 2020, 7, 2000422.	1.9	11
325	Substrate effect on the photoluminescence of chemical vapor deposition transferred monolayer WSe2. Journal of Applied Physics, 2020, 128, 043101.	1.1	16
326	Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles. APL Photonics, 2020, 5, 096105.	3.0	7
327	Naturally occurring van der Waals materials. Npj 2D Materials and Applications, 2020, 4, .	3.9	75

#	Article	IF	CITATIONS
328	Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Applied Physics Letters, 2020, 117, .	1.5	18
329	Blue emission at atomically sharp 1D heterojunctions between graphene and h-BN. Nature Communications, 2020, 11, 5359.	5.8	23
330	Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nature Communications, 2020, 11, 5502.	5.8	23
331	Valley-selective energy transfer between quantum dots in atomically thin semiconductors. Scientific Reports 2020, 10, 16971 Electronic properties of substitutional impurities in graphenelike <mml:math< td=""><td>1.6</td><td>3</td></mml:math<>	1.6	3
332	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">C <mml:mn>2 </mml:mn> </mml:mi </mml:msub> <mml:mi mathvariant="normal">N </mml:mi </mml:mrow> , <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>t </mml:mi> <mml:mi>g </mml:mi> < mathwariant="normal" > C < mml:mi> 3 </mml:mrow> </mml:math 	1.1 mml:mtex	11 xt>â^'
333	mathyariant Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chemical Reviews, 2020, 120, 12563-12591.	23.0	163
334	High‧peed Quantum Transducer with a Singleâ€Photon Emitter in a 2D Resonator. Annalen Der Physik, 2020, 532, 2000233.	0.9	6
335	Integrated single photon emitters. AVS Quantum Science, 2020, 2, .	1.8	40
336	Electrically driven photon emission from individual atomic defects in monolayer WS ₂ . Science Advances, 2020, 6, .	4.7	53
337	Photo-induced doping effect and dynamic process in monolayer MoSe ₂ . Journal of Semiconductors, 2020, 41, 082004.	2.0	7
338	Atomistic defects as single-photon emitters in atomically thin MoS2. Applied Physics Letters, 2020, 117, .	1.5	51
339	Single-photon emission from two-dimensional hexagonal boron nitride annealed in a carbon-rich environment. Applied Physics Letters, 2020, 117, .	1.5	21
340	Time-Domain Investigations of Coherent Phonons in van der Waals Thin Films. Nanomaterials, 2020, 10, 2543.	1.9	25
341	Measurement of local optomechanical properties of MoSe2 monolayers. AIP Conference Proceedings, 2020, , .	0.3	0
342	Carrier relaxation to quantum emitters in few-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>WSe </mml:mi> <mml:mn>2 Physical Review B, 2020, 102, .</mml:mn></mml:msub></mml:math 	m t.1 <td>l:@nsub></td>	l: @ nsub>
343	Large area chemical vapour deposition grown transition metal dichalcogenide monolayers automatically characterized through photoluminescence imaging. Npj 2D Materials and Applications, 2020, 4, .	3.9	20
344	2D materials beyond graphene toward Si integrated infrared optoelectronic devices. Nanoscale, 2020, 12, 11784-11807.	2.8	59
345	Induced valley and spin splitting in monolayer MoS2 by interfacial magnetic proximity of half-Heusler LiBeN substrate. Journal of Magnetism and Magnetic Materials, 2020, 512, 167061. 	1.0	2

#	Article	IF	CITATIONS
346	Examination of optical properties of YbFeO3 films via doping transition element osmium. Optical Materials, 2020, 105, 109911.	1.7	27
347	<i>AbÂlnitio</i> Studies of Exciton <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>g</mml:mi></mml:math> Factors: Monolayer Transition Metal Dichalcogenides in Magnetic Fields. Physical Review Letters, 2020, 124, 226402.	2.9	51
348	Exciton <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>g</mml:mi> factors of van der Waals heterostructures from first-principles calculations. Physical Review B, 2020, 101, .</mml:math 	1.1	82
350	Gate-Defined Accumulation-Mode Quantum Dots in Monolayer and Bilayer WSe2. Physical Review Applied, 2020, 13, .	1.5	18
351	Band Nesting in Two-Dimensional Crystals: An Exceptionally Sensitive Probe of Strain. Nano Letters, 2020, 20, 4242-4248.	4.5	30
352	Dislocations as Single Photon Sources in Two-Dimensional Semiconductors. Nano Letters, 2020, 20, 4136-4143.	4.5	16
353	Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13908-13913.	3.3	24
354	Observation of the Interlayer Exciton Gases in WSe ₂ -p:WSe ₂ Heterostructures. ACS Photonics, 2020, 7, 1622-1627.	3.2	7
355	Ultrafast Photocurrent and Absorption Microscopy of Few-Layer Transition Metal Dichalcogenide Devices That Isolate Rate-Limiting Dynamics Driving Fast and Efficient Photoresponse. Journal of Physical Chemistry C, 2020, 124, 15195-15204.	1.5	12
356	Atomic-Scale Dynamics Probed by Photon Correlations. ACS Nano, 2020, 14, 6366-6375.	7.3	17
357	Exciton Dipole Orientation of Strain-Induced Quantum Emitters in WSe ₂ . Nano Letters, 2020, 20, 5119-5126.	4.5	24
358	Correlated Exciton Fluctuations in a Two-Dimensional Semiconductor on a Metal. Nano Letters, 2020, 20, 4829-4836.	4.5	10
359	Valley Polarization in Superacid-Treated Monolayer MoS ₂ . ACS Applied Electronic Materials, 2020, 2, 1981-1988.	2.0	4
360	Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface. Beilstein Journal of Nanotechnology, 2020, 11, 740-769.	1.5	40
361	Second harmonic generation in defective hexagonal boron nitride. Journal of Physics Condensed Matter, 2020, 32, 19LT01.	0.7	17
362	Deterministically fabricated solid-state quantum-light sources. Journal of Physics Condensed Matter, 2020, 32, 153003.	0.7	41
363	Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout. Physical Review B, 2020, 101, .	1.1	8
364	Probing momentum-indirect excitons by near-resonance photoluminescence excitation spectroscopy in WS2 monolayer. 2D Materials, 2020, 7, 031002.	2.0	17

#	Article	IF	CITATIONS
365	Light–matter interaction in van der Waals hetero-structures. Journal of Physics Condensed Matter, 2020, 32, 333002.	0.7	22
366	Creation of Single-Photon Emitters in WSe ₂ Monolayers Using Nanometer-Sized Gold Tips. Nano Letters, 2020, 20, 5866-5872.	4.5	33
367	Optical properties of semiconducting transition metal dichalcogenide materials. , 2020, , 57-75.		2
368	Heterogeneous deformation of two-dimensional materials for emerging functionalities. Journal of Materials Research, 2020, 35, 1369-1385.	1.2	9
369	Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nature Photonics, 2020, 14, 324-329.	15.6	96
370	Identifying defect-related quantum emitters in monolayer WSe2. Npj 2D Materials and Applications, 2020, 4, .	3.9	35
371	Photolithographic Patterning of Organic Color enters. Advanced Materials, 2020, 32, e1906517.	11.1	14
372	Spin-Valley Locking Effect in Defect States of Monolayer MoS ₂ . Nano Letters, 2020, 20, 2129-2136.	4.5	61
373	Origin of selective enhancement of sharp defect emission lines in monolayer WSe2 on rough metal substrate. Journal of Applied Physics, 2020, 127, 073105.	1.1	4
374	Probing Exciton Dispersions of Freestanding Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2by Momentum-Resolved Electron Energy-Loss Spectroscopy, Physical Review Letters, 2020, 124, 087401.</mml:mn></mml:mrow></mml:msub></mml:math 	ml <mark>:mn</mark> > <td>nml:mrow><</td>	nml:mrow><
375	WSe ₂ 2D pâ€type semiconductorâ€based electronic devices for information technology: Design, preparation, and applications. InformaÄnÃ-Materiály, 2020, 2, 656-697.	8.5	115
376	Collective excitations in 2D atomic layers: Recent perspectives. Applied Physics Letters, 2020, 116, .	1.5	5
377	Strain-Correlated Localized Exciton Energy in Atomically Thin Semiconductors. ACS Photonics, 2020, 7, 1135-1140.	3.2	25
378	Functional hetero-interfaces in atomically thin materials. Materials Today, 2020, 37, 74-92.	8.3	21
379	Near-Unity Light Absorption in a Monolayer WS ₂ Van der Waals Heterostructure Cavity. Nano Letters, 2020, 20, 3545-3552.	4.5	48
380	Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19, 624-629.	13.3	109
381	Exciton–polaritons of a 2D semiconductor layer in a cylindrical microcavity. Journal of Applied Physics, 2020, 127, 133101.	1.1	8
382	Spin splitting and strain in epitaxial monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2on graphene. Physical Review B, 2020, 101, .</mml:mn></mml:msub></mml:math 	:mtt <td>າl:ຜຼູເມb> </td>	າ l:ຜ ຼູເມb>

#	Article	IF	CITATIONS
383	Excellent electronic transport in heterostructures of graphene and monoisotopic boron-nitride grown at atmospheric pressure. 2D Materials, 2020, 7, 031009.	2.0	23
384	Laser―and Ionâ€Induced Defect Engineering in WS 2 Monolayers. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000466.	1.2	6
385	Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Research, 2021, 14, 1912-1936.	5.8	34
386	Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. InformaÄnÃ-Materiály, 2021, 3, 133-154.	8.5	29
387	Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Research, 2021, 14, 1937-1954.	5.8	36
388	Insight into electronic and optical properties of Eu+2-doped CaTiO3 from GGA+U calculations. Journal of Solid State Chemistry, 2021, 293, 121796.	1.4	4
389	Emerging Lightâ€Emitting Materials for Photonic Integration. Advanced Materials, 2021, 33, e2003733.	11.1	25
390	Nanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe ₂ /MoSe ₂ Heterobilayers. Nano Letters, 2021, 21, 522-528.	4.5	18
391	Twoâ€Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. Small Science, 2021, 1, 2000053.	5.8	56
392	Correlation between electronic and optical responses of intrinsic and Cd-doped c-SrHfO3: A computational insight. Physica B: Condensed Matter, 2021, 605, 412493.	1.3	2
393	Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. Advanced Materials, 2021, 33, e2000769.	11.1	71
394	Heterogeneities at multiple length scales in 2D layered materials: From localized defects and dopants to mesoscopic heterostructures. Nano Research, 2021, 14, 1625-1649.	5.8	8
395	How defects influence the photoluminescence of TMDCs. Nano Research, 2021, 14, 29-39.	5.8	51
396	Theory and Ab Initio Calculation of Optically Excited States—Recent Advances in 2D Materials. Advanced Materials, 2021, 33, e1904306.	11.1	14
397	Gate-Switchable Arrays of Quantum Light Emitters in Contacted Monolayer MoS ₂ van der Waals Heterodevices. Nano Letters, 2021, 21, 1040-1046.	4.5	36
398	Phonon Dephasing Dynamics in MoS ₂ . Nano Letters, 2021, 21, 1434-1439.	4.5	5
399	In the Field of Quantum Technologies. Springer Series in Solid-state Sciences, 2021, , 99-131.	0.3	0
400	Entering a Two-Dimensional Materials World. Springer Series in Solid-state Sciences, 2021, , 17-59.	0.3	0

#	Article	IF	CITATIONS
401	Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chemical Society Reviews, 2021, 50, 6401-6422.	18.7	38
402	Defect and Strain Engineering of Monolayer WSe2 for Site-Controlled Single-Photon Emission up to 150K. , 2021, , .		0
403	Investigation of Hot Carrier Cooling Dynamics in Monolayer MoS ₂ . Journal of Physical Chemistry Letters, 2021, 12, 861-868.	2.1	20
404	Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. Nature Communications, 2021, 12, 871.	5.8	29
405	Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Science Advances, 2021, 7, .	4.7	51
406	Optical properties of excitons in two-dimensional transition metal dichalcogenide nanobubbles. Journal of Chemical Physics, 2021, 154, 084110.	1.2	7
407	Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. Reports on Progress in Physics, 2021, 84, 026401.	8.1	54
408	Magneto-optics of layered two-dimensional semiconductors and heterostructures: Progress and prospects. Journal of Applied Physics, 2021, 129, .	1.1	21
409	Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides. Science Advances, 2021, 7, .	4.7	11
410	Assembly of large hBN nanocrystal arrays for quantum light emission. 2D Materials, 2021, 8, 035005.	2.0	25
411	Interplay of Bright Triplet and Dark Excitons Revealed by Magnetoâ€Photoluminescence of Individual PbS/CdS Quantum Dots. Small, 2021, 17, e2006977.	5.2	6
412	Remote Phonon Control of Quantum Dots and Other Artificial Atoms. Advanced Quantum Technologies, 2021, 4, 2000128.	1.8	9
413	Site-Controlled Quantum Emitters in Monolayer MoSe ₂ . Nano Letters, 2021, 21, 2376-2381.	4.5	37
414	Deciphering the Intense Postgap Absorptions of Monolayer Transition Metal Dichalcogenides. ACS Nano, 2021, 15, 7783-7789.	7.3	4
415	Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters. ACS Photonics, 2021, 8, 1069-1076.	3.2	33
417	Quantum Plasmonics: Energy Transport Through Plasmonic Gap. Advanced Materials, 2021, 33, e2006606.	11.1	19
418	Excitonic Emission in Atomically Thin Electroluminescent Devices. Laser and Photonics Reviews, 2021, 15, 2000587.	4.4	7
419	Substrate-controlled dynamics of spin qubits in low dimensional van der Waals materials. Applied Physics Letters, 2021, 118, .	1.5	9

#	Article	IF	CITATIONS
420	Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light: Science and Applications, 2021, 10, 78.	7.7	62
421	Superradiant Emission from Coherent Excitons in van Der Waals Heterostructures. Advanced Functional Materials, 2021, 31, 2102196.	7.8	12
422	Recent advances in graphene and other 2D materials. Nano Materials Science, 2022, 4, 3-9.	3.9	97
423	Purcell-Enhanced Single Photon Source Based on a Deterministically Placed WSe ₂ Monolayer Quantum Dot in a Circular Bragg Grating Cavity. Nano Letters, 2021, 21, 4715-4720.	4.5	36
424	Upconversion Photovoltaic Effect of WS ₂ /2D Perovskite Heterostructures by Two-Photon Absorption. ACS Nano, 2021, 15, 10437-10443.	7.3	35
425	Photoluminescence upconversion of 2D materials and applications. Journal of Physics Condensed Matter, 2021, 33, 223001.	0.7	7
426	Prospects and challenges of quantum emitters in 2D materials. Applied Physics Letters, 2021, 118, .	1.5	52
427	Inducing and Probing Localized Excitons in Atomically Thin Semiconductors via Tipâ€Enhanced Cavityâ€ S pectroscopy. Advanced Functional Materials, 2021, 31, 2102893.	7.8	22
428	Impurity-Induced Emission in Re-Doped WS ₂ Monolayers. Nano Letters, 2021, 21, 5293-5300.	4.5	21
429	Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nature Communications, 2021, 12, 3779.	5.8	89
430	Optical quantum technologies with hexagonal boron nitride single photon sources. Scientific Reports, 2021, 11, 12285.	1.6	22
431	Observation of Single-Electron Transport and Charging on Individual Point Defects in Atomically Thin WSe ₂ . Journal of Physical Chemistry C, 2021, 125, 14056-14064.	1.5	5
432	Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Communications Physics, 2021, 4, .	2.0	26
433	Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nature Communications, 2021, 12, 3585.	5.8	105
434	Strain-tuning of the electronic, optical, and vibrational properties of two-dimensional crystals. Applied Physics Reviews, 2021, 8, .	5.5	67
435	Valley filter and valley valve based on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>WSe</mml:mi>double-barrier junctions modulated by polarized light. Physical Review B, 2021, 103, .</mml:mrow></mml:msub></mml:math 	11:munow><	m an: :mn>2<
436	Electronic structure evolution and exciton energy shifting dynamics in WSe ₂ : from monolayer to bulk. Journal Physics D: Applied Physics, 2021, 54, 354002.	1.3	4
437	Towards practical applications of quantum emitters in boron nitride. Scientific Reports, 2021, 11, 15506.	1.6	6

#	Article	IF	CITATIONS
438	Low temperature carrier transport mechanism and photo-conductivity of WSe2. Journal of Alloys and Compounds, 2021, 869, 159369.	2.8	13
439	Exciton–Photonics: From Fundamental Science to Applications. ACS Nano, 2021, 15, 12628-12654.	7.3	47
440	Strain of 2D materials via substrate engineering. Chinese Chemical Letters, 2022, 33, 153-162.	4.8	13
441	The optical response of artificially twisted MoS\$\$_2\$\$ bilayers. Scientific Reports, 2021, 11, 17037.	1.6	10
442	Scanning Tunneling Microscopy Observation of WSe ₂ Surface. Solid State Phenomena, 0, 323, 140-145.	0.3	0
443	Ultrasensitive Photodetection in MoS ₂ Avalanche Phototransistors. Advanced Science, 2021, 8, e2102437.	5.6	34
444	Highly Polarized Single Photons from Strain-Induced Quasi-1D Localized Excitons in WSe ₂ . Nano Letters, 2021, 21, 7175-7182.	4.5	33
445	Moiré excitons in defective van der Waals heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
446	Effect of electron-irradiation on layered quantum materials. Bulletin of Materials Science, 2021, 44, 1.	0.8	3
447	Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Research, 2022, 15, 2661-2666.	5.8	17
448	Reversible tuning the optical properties of defective TMDs monolayers. Physica Status Solidi (B): Basic Research, 0, , 2000524.	0.7	2
449	Nanoscale axial position and orientation measurement of hexagonal boron nitride quantum emitters using a tunable nanophotonic environment. Nanotechnology, 2022, 33, 015001.	1.3	7
450	Engineering and Microscopic Mechanism of Quantum Emitters Induced by Heavy Ions in hBN. ACS Photonics, 2021, 8, 2912-2922.	3.2	15
451	Photophysical Characteristics of Boron Vacancy-Derived Defect Centers in Hexagonal Boron Nitride. Journal of Physical Chemistry C, 2021, 125, 21791-21802.	1.5	15
452	Unconventional van der Waals heterostructures beyond stacking. IScience, 2021, 24, 103050.	1.9	4
454	Deterministic coupling of quantum emitter to surface plasmon polaritons, Purcell enhanced generation of indistinguishable single photons and quantum information processing. Optics Communications, 2021, 496, 127139.	1.0	5
455	Photon correlations probe the quantized nature of light emission from optoelectronic materials. Applied Physics Reviews, 2021, 8, .	5.5	6
456	First-principle calculation study of (C _N) ₃ V _B defect in hexagonal boron nitride monolayer. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 033102.	0.2	0

#	Article	IF	CITATIONS
457	Predictions of moiré excitons in twisted two-dimensional organic–inorganic halide perovskites. Chemical Science, 2021, 12, 6073-6080.	3.7	5
458	Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS ₂ . ACS Photonics, 2021, 8, 669-677.	3.2	48
459	Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Physical Review B, 2021, 103, .	1.1	63
460	Quantum Nanophotonics in Two-Dimensional Materials. ACS Photonics, 2021, 8, 85-101.	3.2	83
461	PbS/CdS Quantum Dot Room-Temperature Single-Emitter Spectroscopy Reaches the Telecom O and S Bands via an Engineered Stability. ACS Nano, 2021, 15, 575-587.	7.3	22
462	The super materials that could trump graphene. Nature, 2015, 522, 274-276.	13.7	88
463	Atomically thin quantum light-emitting diodes. , 0, .		1
464	Topology of transition metal dichalcogenides: the case of the core–shell architecture. Nanoscale, 2020, 12, 23897-23919.	2.8	14
465	Recent advances in mechanical strain engineering of low-dimensional semiconductors and their applications in high-performance quantum emitters. Semiconductor Science and Technology, 2020, 35, 103002.	1.0	5
466	Dark excitations in monolayer transition metal dichalcogenides. Physical Review B, 2017, 96, . Revealing electronic nature of broad bound exciton bands in two-dimensional semiconducting	1.1	60
467	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">W</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub><td>0.9</td><td>19</td></mml:mrow></mml:math></pre>	0.9	19
468	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Mo</mml:mi> <mml:msub> <mml:n Optical and electronic properties of 2Hâ^{-,}MoS2 under pressure: Revealing the spin-polarized nature of bulk electronic bands. Physical Review Materials, 2018, 2, .</mml:n </mml:msub></mml:mrow>	ni 0.9	19
469	Many-body effect of mesoscopic localized states in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS</mml:mi> <mml:mn>2monolayer. Physical Review Materials, 2019, 3, .</mml:mn></mml:msub></mml:math 	ո o ጵ/mm	l:masub>
470	Cathodoluminescence enhancement and quenching in type-I van der Waals heterostructures: Cleanliness of the interfaces and defect creation. Physical Review Materials, 2019, 3, .	0.9	18
471	Fingerprinting quantum emitters in hexagonal boron nitride using strain. Physical Review Research, 2020, 2, .	1.3	15
472	Strong Photoluminescence Fluctuations in Laser-Thinned Few-Layer WS_{2}. Acta Physica Polonica A, 2016, 130, 1176-1178.	0.2	3
473	Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics, 2018, 10, 703.	12.1	105
474	Quantum Emission from Hexagonal Boron Nitride Monolayers. , 2016, , .		2

#	Article	IF	CITATIONS
475	Irradiation of Nanostrained Monolayer WSe2 for Site-Controlled Single-Photon Emission up to 150K. , 2020, , .		3
476	Strong coupling between excitons and guided modes in WS ₂ -based nanostructures. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1447.	0.9	15
477	Chiral light-matter interactions using spin-valley states in transition metal dichalcogenides. Optics Express, 2019, 27, 21367.	1.7	19
478	Strain tuning of the emission axis of quantum emitters in an atomically thin semiconductor. Optica, 2020, 7, 580.	4.8	13
479	Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter. Optica, 2019, 6, 542.	4.8	57
480	Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes. Nanophotonics, 2018, 7, 253-267.	2.9	20
481	Effects of gap thickness and emitter location on the photoluminescence enhancement of monolayer MoS2 in a plasmonic nanoparticle-film coupled system. Nanophotonics, 2020, 9, 2097-2105.	2.9	23
482	Microcavity-coupled emitters in hexagonal boron nitride. Nanophotonics, 2020, 9, 2937-2944.	2.9	37
483	Computational design of quantum defects in two-dimensional materials. Nature Computational Science, 2021, 1, 646-654.	3.8	11
484	Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics. Advanced Materials, 2022, 34, e2107138.	11.1	28
485	Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas. Nature Communications, 2021, 12, 6063.	5.8	36
486	Spectroscopy of Single Quantum Emitters in Hexagonal Boron Nitride Using Linear and Non-Linear Excitation. , 2017, , .		0
487	Nanoscale strain-engineering and optics of quantum emitters in a two-dimensional semiconductor. , 2017, , .		0
488	Long-lived Quantum Emitters in hBN-WSe2 Van-Der-Waals Heterostructures. , 2018, , .		0
489	Deterministic Creation and Spins in Quantum Emitters in Atomically Thin Semiconductors. , 2018, , .		0
490	Coupling single defects in 2D semiconductor to a silver nanowire. , 2018, , .		0
491	Flatland Nanophotonics: A Study of Quantum-Confined Excitons in 2D Materials. , 2019, , .		0
492	Resonant photocurrent from a single quantum emitter in tungsten diselenide. 2D Materials, 2020, 7, 045021.	2.0	4

ARTICLE IF CITATIONS # Optical Inspection of 2D Materials: From Mechanical Exfoliation to Waferâ€Scale Growth and Beyond. 493 5.6 11 Advanced Science, 2022, 9, e2102128. 494 Gateâ€Tunable Magnetism via Resonant Seâ€Vacancy Levels in WSe 2. Advanced Science, 2021, , 2102911. 5.6 495 Quantum Emitters in Hexagonal Boron Nitride., 2020,,. 0 Engineered Quantum Light Sources from 2D Monolayers on a Micro-actuator., 2020,,. 496 Position and Frequency Control of Strain-induced Quantum Emitters in WSe2 Monolayers., 2020,,. 497 0 Point Defects in Two-Dimensional Indium Selenide as Tunable Single-Photon Sources. Journal of 2.1 Physical Chemistry Letters, 2021, 12, 10947-10952. Selective Antisite Defect Formation in WS₂ Monolayers via Reactive Growth on Dilute 499 11.1 14 Wâ€Au Alloy Substrates. Advanced Materials, 2022, 34, e2106674. How Blinking Affects Photon Correlations in Multichromophoric Nanoparticles. ACS Nano, 2021, , . 7.3 Highâ€performance electronics and optoelectronics of monolayer tungsten diselenide full film from 501 8.5 32 preâ€seeding strategy. InformaÄnÃ-MateriÃ;ly, 2021, 3, 1455-1469. Mode enter Placement of Monolayer WS 2 in a Photonic Polymer Waveguide. Advanced Optical 3.6 Materials, 0, , 2101684. Toward On-Demand Generation of Entangled Photon Pairs with a Quantum Dot., 0,,. 503 1 Engineering photonic environments for two-dimensional materials. Nanophotonics, 2021, 10, 1031-1058. Deterministic Creation of Quantum Emitters in Hexagonal Boron Nitride on Non-patterned Substrates. 505 0 ,2021,,. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nature Nanotechnology, 2021, 16, 1355-1361. 15.6 Effects of Mn2+ doping on the electronic, structural, and optical properties of Cs2ZrF6: An ab initio 507 1.9 4 study. Journal of Physics and Chemistry of Solids, 2022, 162, 110492. Unraveling energy and charge transfer in type-II van der Waals heterostructures. Npj Computational 508 Materials, 2021, 7, . 509 Laser Writing of Color Centers. Laser and Photonics Reviews, 2022, 16, . 4.4 23 Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nature 5.8 Communications, 2021, 12, 6753.

#	Article	IF	CITATIONS
511	Tuning the Optical Properties of a MoSe ₂ Monolayer Using Nanoscale Plasmonic Antennas. Nano Letters, 2022, 22, 561-569.	4.5	11
512	Deterministic and Scalable Generation of Exciton Emitters in 2D Semiconductor Nanodisks. Advanced Optical Materials, 2022, 10, .	3.6	3
513	Quantum photonics with layered 2D materials. Nature Reviews Physics, 2022, 4, 219-236.	11.9	82
514	Dipole moment and pressure dependent interlayer excitons in MoSSe/WSSe heterostructures. Nanoscale, 2022, 14, 3416-3424.	2.8	7
515	Strengthened Spin–Valley Polarization and Negative Magnetoresistance Based on an Asymmetrical Double-Ferromagnetic WSe ₂ Junction. SSRN Electronic Journal, 0, , .	0.4	0
516	Singleâ€Photon Emitters in Layered Van der Waals Materials. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	19
517	Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nature Reviews Materials, 2022, 7, 449-464.	23.3	94
518	Magnetic field induced valley-polarized quantum anomalous Hall effects in ferromagnetic van der Waals heterostructures. Physical Review B, 2022, 105, .	1.1	11
519	Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nature Communications, 2022, 13, 618.	5.8	97
520	Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field. Science Advances, 2022, 8, eabl5134.	4.7	13
521	Quantum emitters in 2D materials: Emitter engineering, photophysics, and integration in photonic nanostructures. Applied Physics Reviews, 2022, 9, .	5.5	37
523	Strain Engineering of Lowâ€Ðimensional Materials for Emerging Quantum Phenomena and Functionalities. Advanced Materials, 2023, 35, e2107362.	11.1	21
524	White‣ight Driven Resonant Emission from a Monolayer Semiconductor. Advanced Materials, 2022, , 2103527.	11.1	2
525	Quantum emitters and detectors based on 2D van der Waals materials. Nanoscale, 2022, 14, 5289-5313.	2.8	12
526	Defects in transition metal dichalcogenides. , 2022, , 89-117.		1
527	Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 127102.	0.2	2
528	Visualization of defect induced in-gap states in monolayer MoS2. Npj 2D Materials and Applications, 2022, 6, .	3.9	18
529	Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnology, 2022, 17, 390-395.	15.6	115

#	Article	IF	CITATIONS
530	Single-Photon Emission from Rewritable Nanoimprinted Localized Emitter Arrays in Atomically Thin Crystals. ACS Photonics, 2022, 9, 752-757.	3.2	1
531	Monitoring the Material Quality of Two-Dimensional Transition Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 3797-3810.	1.5	3
532	Understanding Heterogeneities in Quantum Materials. Advanced Materials, 2023, 35, e2106909.	11.1	8
533	Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics, 2022, 85, 046401.	8.1	74
534	Carbon defect qubit in two-dimensional WS2. Nature Communications, 2022, 13, 1210.	5.8	12
535	Valley degree of freedom in two-dimensional van der Waals materials. Journal Physics D: Applied Physics, 2022, 55, 303003.	1.3	10
536	Tailoring the optical properties of 2D transition metal dichalcogenides by strain. Optical Materials, 2022, 125, 112087.	1.7	9
538	Generating Bright Emissive States by Modulating the Bandgap of Monolayer Tungsten Diselenide. Journal of Physical Chemistry C, 2022, 126, 5598-5606.	1.5	3
539	Quantum point defects in 2D materials - the QPOD database. Npj Computational Materials, 2022, 8, .	3.5	30
540	Mechanical, Elastic, and Adhesive Properties of Twoâ€Dimensional Materials: From Straining Techniques to Stateâ€ofâ€theâ€Art Local Probe Measurements. Advanced Materials Interfaces, 2022, 9, .	1.9	24
541	Photoelectric properties of PtSe2(XPtY)/BN van der Waals heterostructure. Superlattices and Microstructures, 2021, , 107145.	1.4	1
542	In Situ Ion Counting for Improved Implanted Ion Error Rate and Silicon Vacancy Yield Uncertainty. Nano Letters, 2022, 22, 3212-3218.	4.5	9
543	Quantumâ€Engineered Devices Based on 2D Materials for Nextâ€Generation Information Processing and Storage. Advanced Materials, 2023, 35, e2109894.	11.1	22
544	Strengthened Spin–Valley Polarization and Negative Magnetoresistance Based on an Asymmetrical Double-Ferromagnetic Wse2ÂJunction. SSRN Electronic Journal, 0, , .	0.4	0
545	Electrically tunable guided mode resonance grating for switchable photoluminescence. Applied Physics Letters, 2022, 120, 191108.	1.5	0
546	Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nature Reviews Materials, 2022, 7, 778-795.	23.3	75
547	Scalable integration of quantum emitters into photonic integrated circuits. Materials for Quantum Technology, 2022, 2, 023002.	1.2	5
548	Strengthened spin–valley polarization and negative magnetoresistance based on an asymmetrical double-ferromagnetic WSe2 junction. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115301.	1.3	1

#	Article	IF	CITATIONS
549	High-Density, Localized Quantum Emitters in Strained 2D Semiconductors. ACS Nano, 2022, 16, 9651-9659.	7.3	21
552	Microstructure Engineering of Hexagonal Boron Nitride for Singleâ€Photon Emitter Applications. Advanced Optical Materials, 2022, 10, .	3.6	4
553	Room Temperature Fluorescence Blinking in MoS ₂ Atomic Layers by Single Photon Energy Transfer. Laser and Photonics Reviews, 2022, 16, .	4.4	5
555	Nanowire dimers enhance light-matter interactions in monolayer MoSe2. , 2022, , .		0
556	Strain induced lifting of the charged exciton degeneracy in monolayer MoS ₂ on a GaAs nanomembrane. 2D Materials, 2022, 9, 045006.	2.0	4
557	Boost Lasing Performances of 2D Semiconductor in a Hybrid Tungsten Diselenide Monolayer/Cadmium Selenide Quantum Dots Microcavity Laser. Advanced Optical Materials, 2022, 10, .	3.6	4
558	Waveguide-coupled deterministic quantum light sources and post-growth engineering methods for integrated quantum photonics. , 2022, 1, 100018.		4
559	Accurate determination of low-dimensional materials' complex refractive index by cavity resonant method. Optical Materials, 2022, 131, 112682.	1.7	2
560	Role of H ₂ in the Substrate-Directed Synthesis of Size-tunable MoSe ₂ Nanoribbons for Exciton Engineering. ACS Applied Nano Materials, 2022, 5, 11423-11428.	2.4	3
561	Strong light-matter interactions in hybrid nanostructures with transition metal dichalcogenides. Journal of Optics (United Kingdom), 2022, 24, 093001.	1.0	5
562	Planar Optical Cavities Hybridized with Lowâ€Ðimensional Lightâ€Emitting Materials. Advanced Materials, 2023, 35, .	11.1	10
563	Excitonic performance and ultrafast dynamics in defective WSe ₂ . Applied Physics Letters, 2022, 121, 083102.	1.5	1
564	Large-Scale, High-Yield Laser Fabrication of Bright and Pure Single-Photon Emitters at Room Temperature in Hexagonal Boron Nitride. ACS Nano, 2022, 16, 14254-14261.	7.3	19
565	First-principles insights into the spin-valley physics of strained transition metal dichalcogenides monolayers. New Journal of Physics, 2022, 24, 083004.	1.2	16
566	Probing Chemical Vapor Deposition Growth Mechanism of Polycrystalline MoSe ₂ by Near-Field Photoluminescence. Journal of Physical Chemistry C, 2022, 126, 13821-13829.	1.5	5
567	Ultrafast pseudospin quantum beats in multilayer WSe2 and MoSe2. Nature Communications, 2022, 13, .	5.8	7
568	Tunable Emission from Localized Excitons Deterministically Positioned in Monolayer <i>p</i> – <i>n</i> Junctions. ACS Photonics, 2022, 9, 3067-3074.	3.2	5
569	Strain engineering of quantum confinement in WSe2 on nano-roughness glass substrates. Applied Physics Letters, 2022, 121, .	1.5	3

#	Article	IF	CITATIONS
570	Quantum Control of Optically Active Artificial Atoms With Surface Acoustic Waves. IEEE Transactions on Quantum Engineering, 2022, 3, 1-17.	2.9	5
571	Single charge control of localized excitons in heterostructures with ferroelectric thin films and two-dimensional transition metal dichalcogenides. Nanoscale, 2022, 14, 14537-14543.	2.8	1
572	Analysis of localized excitons in strained monolayer WSe ₂ by first principles calculations. Nanoscale, 2022, 14, 11378-11387.	2.8	2
573	Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices. ACS Nanoscience Au, 2022, 2, 450-485.	2.0	27
574	Coherent dynamics of multi-spin V\$\${}_{{{{{{m{B}}}}}}}^{^{-}\$\$ center in hexagonal boron nitride. Nature Communications, 2022, 13, .	5.8	25
575	Optically Active Chalcogen Vacancies in Monolayer Semiconductors. Advanced Optical Materials, 2022, 10, .	3.6	6
576	Optical Soldering of MoS ₂ Layers for Defect Structure Formation with Induced Photoluminescence. Advanced Optical Materials, 0, , 2201583.	3.6	0
577	Laser-modified Luminescence for Optical Data Storage. Chinese Physics B, O, , .	0.7	2
578	Reversal of anomalous Hall conductivity by perpendicular electric field in 2D WSe2/VSe2 heterostructure. Communications Physics, 2022, 5, .	2.0	7
579	Nonunique fraction of Fock exchange for defects in two-dimensional materials. Physical Review B, 2022, 106, .	1.1	3
580	Single-photon emitters in two-dimensional hexagonal boron nitride: properties, preparations, and applications. , 2022, , .		0
581	Challenges for Nanoscale CMOS Logic Based on Two-Dimensional Materials. Nanomaterials, 2022, 12, 3548.	1.9	13
582	On-demand generation of optically active defects in monolayer WS2 by a focused helium ion beam. Applied Physics Letters, 2022, 121, .	1.5	4
583	Cathodoluminescence monitoring of quantum emitter activation in hexagonal boron nitride. Applied Physics Letters, 2022, 121, .	1.5	9
584	Controlling Singleâ€₽hoton Emission with Ultrathin Transdimensional Plasmonic Films. Annalen Der Physik, 2023, 535, .	0.9	3
585	Characterization of monolayer WSe ₂ sandwiched in a hetero-plasmonic dimer. Nano Express, 2022, 3, 045001.	1.2	0
586	Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators. Nano Letters, 2022, 22, 9748-9756.	4.5	17
587	Hybrid electroluminescent devices composed of (In,Ca)N micro-LEDs and monolayers of transition metal dichalcogenides. Nanoscale, 2022, 14, 17271-17276.	2.8	1

#	Article	IF	CITATIONS
588	Electronic, mechanical and optical properties of the new 1T dipolonide PdPo2 and PtPo2 monolayers: A comparative study with 1T Pd and Pt-based dichalcogenides. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 146, 115548.	1.3	0
589	Conversion of Classical Light Emission from a Nanoparticleâ€Strained WSe ₂ Monolayer into Quantum Light Emission via Electron Beam Irradiation. Advanced Materials, 2023, 35, .	11.1	6
590	Decoherence of a spin-valley qubit in a MoSâ,, quantum dot. Journal of Physics Communications, 0, , .	0.5	0
591	Quantum Photon Sources in WSe ₂ Monolayers Induced by Weakly Localized Strain Fields. Journal of Physical Chemistry C, 2022, 126, 20057-20064.	1.5	4
592	"Dead―Exciton Layer and Exciton Anisotropy of Bulk MoS ₂ Extracted from Optical Measurements. ACS Nano, 2022, 16, 18637-18647.	7.3	3
593	Greatly Enhanced Emission from Spin Defects in Hexagonal Boron Nitride Enabled by a Low-Loss Plasmonic Nanocavity. Nano Letters, 2023, 23, 25-33.	4.5	15
594	Flat-Band-Induced Many-Body Interactions and Exciton Complexes in a Layered Semiconductor. Nano Letters, 2022, 22, 8883-8891.	4.5	1
595	2023 roadmap for materials for quantum technologies. Materials for Quantum Technology, 2023, 3, 012501.	1.2	12
596	Optical Based Techniques for 2D Layered Materials. , 2022, , 1-24.		1
597	Enhancement of Singleâ€Photon Purity and Coherence of Illâ€Nitride Quantum Dot with Polarizationâ€Controlled Quasiâ€Resonant Excitation. Small, 2023, 19, .	5.2	3
598	Enhancing the Purity of Deterministically Placed Quantum Emitters in Monolayer WSe ₂ . ACS Nano, 2022, 16, 20956-20963.	7.3	4
599	Real-Time Investigation of Sulfur Vacancy Generation and Passivation in Monolayer Molybdenum Disulfide <i>via in situ</i> X-ray Photoelectron Spectromicroscopy. ACS Nano, 2022, 16, 20364-20375.	7.3	11
600	Non-adiabatic Exciton Dynamics in van der Waals Heterostructures. Journal of Physical Chemistry Letters, 2022, 13, 11760-11769.	2.1	5
601	Spatially controlled two-dimensional quantum heterostructures. Materials Research Letters, 2023, 11, 327-346.	4.1	6
602	Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths. Nature Communications, 2022, 13, .	5.8	6
604	Purcell enhancement and polarization control of single-photon emitters in monolayer WSe ₂ using dielectric nanoantennas. Nanophotonics, 2023, 12, 477-484.	2.9	5
605	Atomically-thin single-photon sources for quantum communication. Npj 2D Materials and Applications, 2023, 7, .	3.9	22
606	Interface engineering in two-dimensional heterostructures towards novel emitters. Journal of Semiconductors, 2023, 44, 011001.	2.0	4

#	Article	IF	CITATIONS
607	Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chemical Reviews, 2023, 123, 3329-3442.	23.0	23
608	Unveiling the complex structure-property correlation of defects in 2D materials based on high throughput datasets. Npj 2D Materials and Applications, 2023, 7, .	3.9	14
609	Tip-induced excitonic luminescence nanoscopy of an atomically resolved van der Waals heterostructure. Nature Materials, 2023, 22, 482-488.	13.3	8
610	Exciton–Photon Interactions in Two-Dimensional Semiconductor Microcavities. ACS Photonics, 2023, 10, 2064-2077.	3.2	5
611	The structural studies and optical characteristics of phase-segregated Ir-doped LuFeO3â^'δ films. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	3
612	Photon-Emission-Correlation Spectroscopy as an Analytical Tool for Solid-State Quantum Defects. PRX Quantum, 2023, 4, .	3.5	4
613	Evidence of defect formation in monolayer MoS ₂ at ultralow accelerating voltage electron irradiation. 2D Materials, 2023, 10, 035002.	2.0	4
614	Single-Photon Emission from Two-Dimensional Materials, to a Brighter Future. Journal of Physical Chemistry Letters, 2023, 14, 3274-3284.	2.1	6
615	Strain-tunable valley polarization and localized excitons in monolayer WSe ₂ . Optics Letters, 2023, 48, 2393.	1.7	3
616	Spin-defect characteristics of single sulfur vacancies in monolayer MoS2. Npj 2D Materials and Applications, 2023, 7, .	3.9	8
617	Spatially Controlled Single Photon Emitters in hBN apped WS ₂ Domes. Advanced Optical Materials, 2023, 11, .	3.6	4
618	Chemomechanical modification of quantum emission in monolayer WSe2. Nature Communications, 2023, 14, .	5.8	3
627	Layered materials as a platform for quantum technologies. Nature Nanotechnology, 2023, 18, 555-571.	15.6	13
629	Single Photon Emitters with Polarization and Orbital Angular Momentum Locking in Monolayer Semiconductors. Nano Letters, 2023, 23, 3851-3857.	4.5	1
638	Mixed-dimensional heterostructures for quantum photonic science and technology. MRS Bulletin, 0, ,	1.7	1
659	Dielectric materials. , 2024, , 49-69.		0