CITATION REPORT List of articles citing

Mechanical Programming of Soft Actuators by Varying Fiber Angle

DOI: 10.1089/soro.2015.0001 Soft Robotics, 2015, 2, 26-32.

Source: https://exaly.com/paper-pdf/62306103/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
335	Poroelastic Foams for Simple Fabrication of Complex Soft Robots. 2015 , 27, 6334-40		88
334	Soft pneumatic actuator with adjustable stiffness layers for Multi-DoF Actuation. 2015,		34
333	Peristaltic Locomotion of a Modular Mesh-Based Worm Robot: Precision, Compliance, and Friction. <i>Soft Robotics</i> , 2015 , 2, 135-145	9.2	37
332	Modeling and design of a soft pneumatic finger for hand rehabilitation. 2015,		16
331	Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm. 2016 ,		12
330	Dielectric elastomer actuators for facial expression. 2016,		1
329	Actuating Fibers: Design and Applications. 2016 , 8, 24281-94		64
328	Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement. <i>Soft Robotics</i> , 2016 , 3, 109-119	9.2	105
327	Universal soft pneumatic robotic gripper with variable effective length. 2016,		74
326	Fiber-reinforced soft robotic anthropomorphic finger. 2016,		1
325	Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices. 2016 , 6, 34224		99
324	Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method . 2016 , 18, 978-988		120
323	Artificial muscles for jaw movements. 2016 , 6, 88-95		30
322	Contraction Sensing with Smart Braid McKibben Muscles. 2016 , 21, 1201-1209		51
321	A Miniature Soft Robotic Manipulator Based on Novel Fabrication Methods. 2016 , 1, 617-623		60
320	Rehabilitative Soft Exoskeleton for Rodents. 2017 , 25, 107-118		11
319	Serially Actuated Locomotion for Soft Robots in Tube-Like Environments. 2017 , 2, 1140-1147		22

(2017-2017)

318	Stiffness Customization and Patterning for Property Modulation of Silicone-Based Soft Pneumatic Actuators. <i>Soft Robotics</i> , 2017 , 4, 251-260	50
317	A constrained maximization formulation to analyze deformation of fiber reinforced elastomeric actuators. 2017 , 26, 065024	24
316	Automatic design of fiber-reinforced soft actuators for trajectory matching. 2017 , 114, 51-56	231
315	Effect of anisotropic thermal expansion on the torsional actuation of twist oriented polymer fibres. 2017 , 129, 127-134	12
314	. 2017,	9
313	Elastic Inflatable Actuators for Soft Robotic Applications. 2017 , 29, 1604977	174
312	A natural orifice soft robot with novel driven method for minimally invasive surgery (MIS). 2017,	1
311	A reconfigurable hybrid actuator with rigid and soft components. 2017 ,	8
310	A Programmable Mechanical Freedom and Variable Stiffness Soft Actuator with Low Melting Point Alloy. 2017 , 151-161	10
309	A Lobster-Inspired Hybrid Actuator With Rigid and Soft Components. 2017,	O
308	Design and Computational Modeling of a Modular, Compliant Robotic Assembly for Human Lumbar Unit and Spinal Cord Assistance. 2017 , 7, 14391	22
307	Modeling and experiments of a soft robotic gripper in amphibious environments. 2017 , 14, 17298814177071	4 44
306	Soft Pneumatic Actuator Fascicles for High Force and Reliability. <i>Soft Robotics</i> , 2017 , 4, 23-32 9.2	75
305	A wearable soft pneumatic finger glove with antagonistic actuators for finger rehabilitation. 2017,	O
304	Designing systems of fiber reinforced pneumatic actuators using a pseudo-rigid body model. 2017,	4
303	Modeling of multi-cavity composite soft pneumatic actuators. 2017 ,	
302	Pneumatic Multi-Pocket Elastomer Actuators for Metacarpophalangeal Joint Flexion and Abduction-Adduction. 2017 , 6, 27	9
301	SOPHIA: Soft Orthotic Physiotherapy Hand Interactive Aid. 2017 , 3,	14

Wall climbing robot using soft robotics. 2017, 300 1 Kirigami skins make a simple soft actuator crawl. 2018, 3, 299 248 A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic 76 298 actuators. 2018, 273, 285-292 Initial Design and Experimental Evaluation of a Pneumatic Interference Actuator. Soft Robotics, 16 9.2 297 **2018**, 5, 138-148 Design of Materials and Mechanisms for Responsive Robots. 2018, 1, 359-384 296 13 A Modular Soft Robotic Wrist for Underwater Manipulation. Soft Robotics, 2018, 5, 399-409 295 9.2 50 Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum 294 9.2 45 Manipulators. Soft Robotics, 2018, 5, 348-364 Analytical research on energy harvesting systems for fluidic soft actuators. 2018, 15, 172988141875587 293 A Tip-Extending Soft Robot Enables Reconfigurable and Deployable Antennas. 2018, 3, 949-956 292 42 Programmable design of soft pneu-net actuators with oblique chambers can generate coupled 291 74 bending and twisting motions. 2018, 271, 131-138 Slit Tubes for Semisoft Pneumatic Actuators. 2018, 30, 1704446 290 44 289 A Bio-inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments. 2018, 15, 204-219 28 288 A Soft Bionic Gripper with Variable Effective Length. 2018, 15, 220-235 51 A nested pneumatic muscle arrangement for amplified stroke and force behavior. 2018, 29, 1139-1156 287 2 A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness 286 46 properties. 2018, 28, 024004 Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling. 2018, 285 30 112, 187-208 Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable 284 9.2 63 Stiffness and Positioning. Soft Robotics, 2018, 5, 54-70 Structure Design and Positive Kinematics Analysis of Medical Pneumatic Soft Robot. 2018, 1257-1271 283

282	A Closed-Form Kinematic Model for Fiber-Reinforced Elastomeric Enclosures. 2018, 10,	9
281	SwellingEwist interaction in fiber-reinforced hyperelastic materials: the example of azimuthal shear. 2018 , 109, 63-84	9
280	. 2018,	3
279	Kinematic Analysis of Novel Soft Robotic Arm Based on Virtual Work Principle. 2018,	3
278	A Soft Robotic Gripper with Sensory Feedback Fabricated by Latex using Coagulant Dipping Process. 2018 ,	3
277	Force Generation by Parallel Combinations of Fiber-Reinforced Fluid-Driven Actuators. 2018 , 3, 3999-4006	9
276	Design and Control of a Soft Combined Actuator. 2018,	
275	Fiber Embroidery of Self-Sensing Soft Actuators. 2018 , 3,	16
274	A Variable Degree-of-Freedom and Self-Sensing Soft Bending Actuator Based on Conductive Liquid Metal and Thermoplastic Polymer Composites. 2018 ,	2
273	Accurate multivariable arbitrary piecewise model regression of McKibben and Peano muscle static and damping force behavior. 2018 , 27, 105048	4
272	Bio-Inspired Octopus Robot Based on Novel Soft Fluidic Actuator. 2018,	13
271	Systematic engineering design helps creating new soft machines. 2018 , 5, 5	10
270	Additive Manufacture of Composite Soft Pneumatic Actuators. <i>Soft Robotics</i> , 2018 , 5, 726-736 9.2	28
269	Fabrication of Soft Pneumatic Network Actuators with Oblique Chambers. 2018,	5
268	Design and Analysis of Soft Pneumatic Actuator Powered Fin for Manta-ray Bot. 2018,	
267	Nanofiber-reinforced soft fluidic micro-actuators. 2018 , 28, 084002	21
266	Development of a SMA-Fishing-Line-McKibben Bending Actuator. 2018 , 6, 27183-27189	17
265	A New Spiral-Type Inflatable Pure Torsional Soft Actuator. <i>Soft Robotics</i> , 2018 , 5, 527-540 9.2	27

264	Soft Robotic Grippers. 2018 , 30, e1707035		555
263	Continuum-Based Geometry/Analysis Approach for Flexible and Soft Robotic Systems. <i>Soft Robotics</i> , 2018 , 5, 613-621	9.2	8
262	Towards Pneumatic Spiral Grippers: Modeling and Design Considerations. <i>Soft Robotics</i> , 2018 , 5, 695-70	99.2	26
261	Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles. <i>Soft Robotics</i> , 2018 , 5, 685-694	9.2	65
260	Lithographic production of vertically aligned CNT strain sensors for integration in soft robotic microactuators. 2018 ,		2
259	Helical actuation on a soft inflated robot body. 2018,		17
258	Geometry-Based Customization of Bending Modalities for 3D-Printed Soft Pneumatic Actuators. 2018 , 3, 3489-3496		18
257	Design and Development of a Topology-Optimized Three-Dimensional Printed Soft Gripper. <i>Soft Robotics</i> , 2018 , 5, 650-661	9.2	26
256	Analytic solutions for the static equilibrium configurations of externally loaded cantilever soft robotic arms. 2018 ,		5
255	Design of a bi-segmented soft actuator with hardware encoded quasi-static inflation sequence. 2018 ,		3
254	Exploiting Textile Mechanical Anisotropy for Fabric-Based Pneumatic Actuators. <i>Soft Robotics</i> , 2018 , 5, 662-674	9.2	76
253	Design and modeling of a soft robotic surface with hyperelastic material. 2018 , 130, 109-122		21
252	Parameter estimation and modeling of a pneumatic continuum manipulator with asymmetric building blocks. 2018 ,		11
251	Strategies to Control Performance of 3D-Printed, Cable-Driven Soft Polymer Actuators: From Simple Architectures to Gripper Prototype. 2018 , 10,		15
250	Helically wound soft actuators for torsion control. 2018,		0
249	Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots. <i>Soft Robotics</i> , 2018 , 5, 567-575	9.2	28
248	Unusual extensionEorsionInflation couplings in pressurized thin circular tubes with helical anisotropy. 2019 , 24, 2694-2712		5
247	New Rigid-Soft Coupling Structure and Its Stiffness Adjusting Device. 2019 , 51-63		

(2019-2019)

246	Dynamic morphological computation through damping design of soft material robots: application to under-actuated grippers. 2019 ,	1
245	INFORA: A Novel Inflatable Origami-based Actuator. 2019,	2
244	A robotic forearm orthosis using soft fabric-based helical actuators. 2019,	17
243	Design and Modeling of a Continuous Soft Robot. 2019 , 333-345	
242	Development of Active Soft Robotic Manipulators for Stable Grasping Under Slippery Conditions. 2019 , 7, 97604-97613	4
241	Soft Robotic Gripper with Chambered Fingers for Performing In-Hand Manipulation. 2019 , 9, 2967	13
240	Soft Fiber-Reinforced Pneumatic Actuator Design and Fabrication: Towards Robust, Soft Robotic Systems. 2019 , 103-114	4
239	Simulation and fabrication of a pneumatic network actuator with capability of bending in multi-planes. 2019 ,	1
238	3D Printable Vacuum-Powered Soft Linear Actuators. 2019 ,	6
237	Design and Modeling of a Parallel-Pipe-Crawling Pneumatic Soft Robot. 2019 , 7, 134301-134317	24
236	Structure, phase transformation and corrosion resistance of CrAlN/CN composite multilayer films in NaCl aqueous solution. 2019 , 45, 24446-24452	5
235	Assessment of upper limb muscle synergies for industrial overhead tasks: a preliminary study. 2019,	12
234	. 2019 , 24, 2118-2129	39
233	Toward a bio-inspired variable-stiffness morphing limb for amphibious robot locomotion. 2019,	9
232	Deformation of a closed hyperelastic helical spring. 2019 , 110, 1-8	3
231	. 2019 , 4, 1478-1484	6
230	A Self-Folding Pneumatic Piston for Mechanically Robust Origami Robots. 2019 , 4, 1372-1378	4
229	Towards Autonomous Robotic Systems. 2019 ,	1

228	Robotic Artificial Muscles: Current Progress and Future Perspectives. 2019 , 35, 761-781	110
227	Generalized Delta Mechanisms from Soft Actuators. 2019,	4
226	A Review of Biological Fluid Power Systems and Their Potential Bionic Applications. 2019 , 16, 367-399	16
225	Dynamic Morphological Computation Through Damping Design of Soft Continuum Robots. 2019 , 6, 23	5
224	Likely chirality of stochastic anisotropic hyperelastic tubes. 2019 , 114, 9-20	10
223	Marionette-based programming of a soft textile inflatable actuator. 2019 , 291, 93-98	7
222	Design and Actuation of a Fabric-Based Worm-Like Robot. 2019 , 4,	11
221	Vacuum-Powered Soft Pneumatic Twisting Actuators to Empower New Capabilities for Soft Robots. 2019 , 4, 1800429	32
220	Soft Robotics in Minimally Invasive Surgery. <i>Soft Robotics</i> , 2019 , 6, 423-443	138
219	Modeling the Bending Behavior of Fiber-Reinforced Pneumatic Actuators Using a Pseudo-Rigid-Body Model. 2019 , 11,	7
218	Experimental Characterisation of Hydraulic Fiber-Reinforced Soft Actuators for Worm-Like Robots. 2019 ,	4
217	A New Cable-driven Torsion and Bending Soft Actuator Inspired by Parallel Robot. 2019,	
216	Introduction of a Flexible Adaptive AUV-Capture Device Based on bio-inspired hydraulic Soft Robot. 2019 ,	
215	Image-Guided Locomotion of a Pneumatic-Driven Peristaltic Soft Robot. 2019,	8
214	Soft Pneumatic Helical Actuator with High Contraction Ratio. 2019,	
213	A Multimodal Soft Crawling-Climbing Robot with the Controllable Horizontal Plane to Slope Transition*. 2019 ,	8
212	Programmable Design of Soft Actuators and Robots*. 2019,	3
211	A Novel Varying Angle Fiber-Reinforced Elastomer as a Soft Pneumatic Bending Actuator. 2019 ,	

(2020-2019)

210	Single chamber multiple degree-of-freedom soft pneumatic actuator enabled by adjustable stiffness layers. 2019 , 28, 035012		14	
209	Tube-crawling soft robots driven by multistable buckling mechanics. 2019 , 26, 61-68		10	
208	Application-Driven Design of Soft, 3-D Printed, Pneumatic Actuators With Bellows. 2019 , 24, 78-87		54	
207	Hardware Sequencing of Inflatable Nonlinear Actuators for Autonomous Soft Robots. 2019 , 31, e1804.	598	25	
206	. 2019 , 24, 109-119		11	
205	4 DOFs Hollow Soft Pneumatic Actuator⊞OSE. 2019 , 6, 045703		10	
204	Soft Poly-Limbs: Toward a New Paradigm of Mobile Manipulation for Daily Living Tasks. <i>Soft Robotics</i> , 2019 , 6, 38-53	9.2	35	
203	Soft Robotic Pad Maturing for Practical Applications. <i>Soft Robotics</i> , 2020 , 7, 30-43	9.2	10	
202	Modeling and Analysis of Soft Pneumatic Actuator with Symmetrical Chambers Used for Bionic Robotic Fish. <i>Soft Robotics</i> , 2020 , 7, 168-178	9.2	13	
201	An elastica robot: Tip-control in tendon-actuated elastic arms. 2020 , 34, 100584		O	
200	Effective enhanced model for a large deformable soft pneumatic actuator. 2020 , 36, 245-255		5	
199	Interfacing Soft and Hard: A Spring Reinforced Actuator. <i>Soft Robotics</i> , 2020 , 7, 44-58	9.2	22	
198	Torsional artificial muscles. 2020 , 7, 667-693		39	
197	Poisson Induced Bending Actuator for Soft Robotic Systems. <i>Soft Robotics</i> , 2020 , 7, 155-167	9.2	5	
196	Fluidic Fabric Muscle Sheets for Wearable and Soft Robotics. Soft Robotics, 2020, 7, 179-197	9.2	36	
195	Designing Fiber-Reinforced Soft Actuators for Planar Curvilinear Shape Matching. <i>Soft Robotics</i> , 2020 , 7, 109-121	9.2	17	
194	A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications. 2020 , 1,		24	
193	Reinforced Gels and Elastomers for Biomedical and Soft Robotics Applications. 2020 , 2, 1073-1091		40	

192	Optimization of Anti-kinking Designs for Vascular Grafts Based on Supramolecular Materials. 2020 , 7,	7
191	Development and Performance Analysis of Pneumatic Soft-Bodied Bionic Basic Execution Unit. 2020 , 2020, 1-13	2
190	Enhancements of Loading Capacity and Moving Ability by Microstructures for Wireless Soft Robot Boats. 2020 , 36, 14728-14736	1
189	A Pneumatically Driven, Disposable, Soft Robotic Gripper Equipped with Retractable, Telescopic Fingers. 2020 ,	1
188	A Pneumatic Soft Gripper with Configurable Workspace and Self-sensing. 2020,	1
187	Parallel Helix Actuators for Soft Robotic Applications. 2020 , 7, 119	5
186	Evaluation of a Circumferential Extending Antagonist Actuator in a Soft Arm. 2020,	1
185	Employing Pneumatic, Telescopic Actuators for the Development of Soft and Hybrid Robotic Grippers. 2020 , 7, 601274	3
184	Design and Mathematical Model for Bending Pneumatic Soft Actuators with Asymmetric Cavity. 2020 ,	О
183	Viscoelastic Behavior of Glass-Fiber-Reinforced Silicone Composites Exposed to Cyclic Loading. 2020 , 12,	8
182	Pressure-Driven Manipulator with Variable Stiffness Structure. 2020,	5
181	Research development of soft manipulator: A review. 2020 , 12, 168781402095009	3
180	Programmable Stimuli-Responsive Actuators for Complex Motions in Soft Robotics: Concept, Design and Challenges. 2020 , 9, 131	4
179	Bio-Inspired Conformable and Helical Soft Fabric Gripper with Variable Stiffness and Touch Sensing. 2020 , 5, 2000724	19
178	Biomedical soft robots: current status and perspective. 2020 , 10, 369-385	10
177	A Novel Soft Bending Actuator Using Combined Positive and Negative Pressures. 2020 , 8, 472	11
176	Mechanics of transiently cross-linked nematic networks. 2020 , 141, 104021	6
175	Design and Computational Modeling of Fabric Soft Pneumatic Actuators for Wearable Assistive Devices. 2020 , 10, 9638	19

(2021-2020)

174	Investigating the Mechanics of Human-Centered Soft Robotic Actuators with Finite Element Analysis. 2020 ,		3
173	Instant soft robot: A simple recipe for quick and easy manufacturing. 2020,		3
172	Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk. <i>Soft Robotics</i> , 2020 , 7, 597-614	9.2	33
171	Suppressed Interdiffusion and Degradation in Flexible and Transparent Metal Electrode-Based Perovskite Solar Cells with a Graphene Interlayer. 2020 , 20, 3718-3727		40
170	A soft pneumatic bistable reinforced actuator bioinspired by Venus Flytrap with enhanced grasping capability. 2020 , 15, 056017		14
169	Finite Element Modeling in the Design Process of 3D Printed Pneumatic Soft Actuators and Sensors. 2020 , 9, 52		22
168	Challenges of continuum robots in clinical context: a review. 2020 , 2, 032003		41
167	Kirigami-Inspired Inflatables with Programmable Shapes. 2020 , 32, e2001863		55
166	Simple, Low-Hysteresis, Foldable, Fabric Pneumatic Artificial Muscle. 2020 , 5, 3406-3413		21
165	Geometric Confined Pneumatic Soft-Rigid Hybrid Actuators. Soft Robotics, 2020, 7, 574-582	9.2	9
165 164	Geometric Confined Pneumatic Soft-Rigid Hybrid Actuators. <i>Soft Robotics</i> , 2020 , 7, 574-582 Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials. 2020 , 2, 1900183	9.2	9
	Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials.	9.2	
164	Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials. 2020 , 2, 1900183	9.2	5
164	Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials. 2020, 2, 1900183 Continuum soft actuators based on reprogrammable geometric constraints. 2020, 36, 100649	9.2	5
164 163 162	Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials. 2020, 2, 1900183 Continuum soft actuators based on reprogrammable geometric constraints. 2020, 36, 100649 Pneumatic Coiling Actuator Inspired by the Awns of. 2020, 7, 17	9.2	5 1 6
164 163 162 161	Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials. 2020, 2, 1900183 Continuum soft actuators based on reprogrammable geometric constraints. 2020, 36, 100649 Pneumatic Coiling Actuator Inspired by the Awns of. 2020, 7, 17 Computational design of shape-programmable gel plates. 2020, 144, 103313 Design, Modeling, and Evaluation of Fabric-Based Pneumatic Actuators for Soft Wearable Assistive		5 1 6
164 163 162 161	Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials. 2020, 2, 1900183 Continuum soft actuators based on reprogrammable geometric constraints. 2020, 36, 100649 Pneumatic Coiling Actuator Inspired by the Awns of. 2020, 7, 17 Computational design of shape-programmable gel plates. 2020, 144, 103313 Design, Modeling, and Evaluation of Fabric-Based Pneumatic Actuators for Soft Wearable Assistive Gloves. Soft Robotics, 2020, 7, 583-596		5 1 6

156	A Single-Chamber Pneumatic Soft Bending Actuator With Increased Stroke-Range by Local Electric Guidance. 2021 , 68, 8455-8463	3
155	Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human-Robot Interface. 2021 , 33, e2002640	94
154	Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications. 2021 , 4, 123-145	13
153	The softness distribution index: towards the creation of guidelines for the modeling of soft-bodied robots. 2021 , 40, 197-223	4
152	Soft Twisting Pneumatic Actuators Enabled by Freeform Surface Design. 2021 , 1-1	5
151	Soft Robotics: Research, Challenges, and Prospects. 2021 , 33, 45-68	4
150	Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators. 2021 , 13,	6
149	A Modular Geometrical Framework for Modelling the Force-Contraction Profile of Vacuum-Powered Soft Actuators. 2021 , 8, 606938	2
148	Muscle-fiber array inspired, multiple-mode, pneumatic artificial muscles through planar design and one-step rolling fabrication. 2021 , 8, nwab048	6
147	Procedural Telementoring in Rural, Underdeveloped, and Austere Settings: Origins, Present Challenges, and Future Perspectives. 2021 , 23, 115-139	4
146	Design, Fabrication, and Characterization of a Helical Twisting, Contracting, and Bending Fabric Soft Continuum Actuator. 2021 ,	0
145	Automated Fiber Embedding for Soft Mechatronic Components. 2021 , 6, 4071-4078	1
144	A large-scale, light-weight, and soft braided robot manipulator with rapid expansion capabilities. 2021 ,	
143	Analysis of Soft Kirigami Unit Cells for Tunable Stiffness Architectures. 2021 ,	Ο
142	Precurved, Fiber-Reinforced Actuators Enable Pneumatically Efficient Replication of Complex Biological Motions. <i>Soft Robotics</i> , 2021 ,	0
141	Topology optimization of hyperelastic structures with anisotropic fiber reinforcement under large deformations. 2021 , 378, 113496	2
140	Soft Robotic Manipulators: Designs, Actuation, Stiffness Tuning, and Sensing. 2021 , 6, 2100018	14
139	Pneumatic Artificial Muscle Based on Novel Winding Method. 2021 , 10, 100	1

138	Re-foldable origami-inspired bidirectional twisting of artificial muscles reproduces biological motion. 2021 , 2, 100407	1
137	Intelligent Soft Surgical Robots for Next-Generation Minimally Invasive Surgery. 2021 , 3, 2100011	13
136	A bio-inspired soft planar actuator capable of broadening its working area. 2021, 3, 025029	1
135	Automated Routing of Muscle Fibers for Soft Robots. 2021 , 37, 996-1008	3
134	Modeling and Fabrication of Soft Actuators Based on Fiber-Reinforced Elastomeric Enclosures. 2021 , 10, 127	1
133	Research on performance of rigid-hoop-reinforced multi-DOF soft actuator. 2021 , 13, 168781402110267	O
132	Analytical Modeling of the Interaction Between Soft Balloon-Like Actuators and Soft Tubular Environment for Gastrointestinal Inspection. <i>Soft Robotics</i> , 2021 ,	0
131	Kirigami-inspired stents for sustained local delivery of therapeutics. 2021 , 20, 1085-1092	18
130	Modeling and application of anisotropic hyperelasticity of PDMS polymers with surface patterns obtained by additive manufacturing technology. 2021 , 118, 104412	4
129	DNA-Helix Inspired Wire Routing in Cylindrical Structures and Its Application to Flexible Surgical Devices. <i>Soft Robotics</i> , 2021 ,	O
128	Cooperative collapse of helical structure enables the actuation of twisting pneumatic artificial muscle. 2021 , 201, 106483	6
127	Inversion and perversion in twist incompatible isotropic tubes. 2021 , 46, 101303	2
126	Stiffness Preprogrammable Soft Bending Pneumatic Actuators for High-Efficient, Conformal Operation. <i>Soft Robotics</i> , 2021 ,	8
125	Design of multi-material soft pneumatic modules.	2
124	Feasibility of Fiber Reinforcement Within Magnetically Actuated Soft Continuum Robots. 2021, 8, 715662	2
123	Kinematic modeling and solution of rigid-flexible and variable-diameter underwater continuous manipulator with load. 1-16	1
122	Generative Design Procedure for Embedding Specified Planar Behavior in Modular Soft Pneumatic Actuators. <i>Soft Robotics</i> , 2021 ,	2
121	Deflected Versus Preshaped Soft Pneumatic Actuators: A Design and Performance Analysis Toward Reliable Soft Robots. <i>Soft Robotics</i> , 2021 ,	1

MotorSkins-a bio-inspired design approach towards an interactive soft-robotic exosuit. 2021, 16,

119	Design, Fabrication, and Validation of a New Family of 3D-Printable Structurally-Programmable Actuators for Soft Robotics. 2021 , 6, 7941-7948	О
118	Analytical Design of a Pneumatic Elastomer Robot with Deterministically Adjusted Stiffness 2021 , 6, 7773-7780	
117	Soft pneumatic actuators by digital light processing combined with injection-assisted post-curing. 2021 , 42, 159-172	2
116	Origami-Inspired Soft Actuators for Stimulus Perception and Crawling Robot Applications. 2021 , 1-17	3
115	Bioinspired Shape-Changing Soft Robots for Underwater Locomotion: Actuation and Optimization for Crawling and Swimming. 2021 , 7-39	1
114	Artificial Muscles for Underwater Soft Robotic System. 2021 , 71-97	3
113	An Integrated Compliant Fabric Skin Softens, Lightens, and Simplifies a Mesh Robot. 2017 , 315-327	4
112	Design and Test of a New Spiral Driven Pure Torsional Soft Actuator. 2017 , 127-139	3
111	Modular crawling robots using soft pneumatic actuators. 2021 , 16, 163-175	4
110	Analytical modeling for design and performance evaluations of a new low aspect ratio soft rotary pneumatic actuator. 2020 , 29, 125015	2
109	Design of Fully Soft Actuator with Double-Helix Tendon Routing Path for Twisting Motion. 2020 ,	1
108	Inflation-Induced Twist in Geometrically Incompatible Isotropic Tubes. 2021, 88,	8
107	A New Type of Soft Pneumatic Torsional Actuator With Helical Chambers for Flexible Machines. 2021 , 13,	9
106	Design and Modeling of Soft Continuum Manipulators Using Parallel Asymmetric Combination of Fiber-Reinforced Elastomers. 2021 , 13,	7
105	Actuation of soft materials through ultrasonic atomization. 2018,	1
104	Reality-Assisted Evolution of Soft Robots through Large-Scale Physical Experimentation: A Review. 2020 , 26, 484-506	9
103	Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots. 2021 , 1-21	3

102	Bioinspired Spiral Soft Pneumatic Actuator and Its Characterization. 2021 , 18, 1101	О
101	Ultrafast, miniature soft actuators. 2021 , 4, 045001	7
100	Elastomeric Spring Actuator Using Nylon Wires. 2017 , 540-547	
99	Experimental investigation of hybrid shape memory alloy pneumatic actuators. 2019,	1
98	Design and Testing of 2-Degree-of-Freedom (DOF) Printable Pneumatic Soft Finger. 2020 , 298-308	
97	Biophysical mechanism of ultrafast helical twisting contraction in the giant unicellular ciliate Spirostomum ambiguum.	2
96	A virtual work model for the design and parameter identification of cylindrical pressure-driven soft actuators. 1-16	1
95	Three-Fingered Soft Pneumatic Gripper Integrating Joint-Tuning Capability. <i>Soft Robotics</i> , 2021 , 9.2	1
94	Flexible and stable grasping by multi-jointed pneumatic actuator mimicking the human finger-impacts of structural parameters on performance.	О
93	Self-Sensing Pneumatic Compressing Actuator. 2020 , 14, 572856	2
92	Textiles in soft robots: Current progress and future trends. 2022 , 196, 113690	6
91	Biomimetic Wave Propagation in Magnetic Soft Actuator.	
90	Design and Modeling of an Elastic Inflatable Actuator to Achieve Single and Multiple Motions Through One Channel. 2022 , 209-219	
89	A Semilinear Parameter-Varying Observer Method for Fabric-Reinforced Soft Robots. 2021 , 8, 749591	O
88	Design and Modeling of Soft Pneumatic Helical Actuator with High Contraction Ratio. 2020 , 32, 1061-1070	3
87	Inflation-induced torsion and bulging of a nematic elastomer balloon. 2022 , 170, 108621	2
86	Design, Characterization and Optimization of Multi-directional Bending Pneumatic Artificial Muscles. 2021 , 18, 1358	4
85	A Soft Robotic Balloon Endoscope for Airway Procedures. <i>Soft Robotics</i> , 2021 , 9.2	1

84	A Wearable Soft Fabric Sleeve for Upper Limb Augmentation. 2021 , 21,	3
83	Development of Topology Optimized Bending-Twisting Soft Finger. 1-10	1
82	A Multigait Continuous Flexible Snake Robot for Locomotion in Complex Terrain. 2021 , 1-11	0
81	Soft Actuator with Programmable Design: Modeling, Prototyping, and Applications <i>Soft Robotics</i> , 9.2	2
80	Design and Implementation of a Scissor-mechanism-based Vacuum Powered Actuator. 2020,	О
79	Utilizing Sacrificial Molding for Embedding Motion Controlling Endostructures in Soft Pneumatic Actuators. 2020 ,	
78	Design of a Highly-Maneuverable Pneumatic Soft Actuator Driven by Intrinsic SMA Coils (PneuSMA Actuator). 2020 ,	
77	Analysis of Fiber-reinforced Soft Bending Actuators on Various Parameters for Hand Rehabilitation. 2021 ,	
76	Modeling of Soft Pneumatic Actuators with Different Orientation Angles Using Echo State Networks for Irregular Time Series Data 2022 , 13,	1
75	Inverse Design of Inflatable Soft Membranes Through Machine Learning. 2111610	4
74	3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators 2022 , 7, eabk2119	10
73	Freeform Fabrication of Pneumatic Soft Robots via Multi-Material Jointed Direct Ink Writing. 2100813	O
72	Hyperelastic Membrane Actuators: Analysis of Toroidal and Helical Multifunctional Configurations. 2022 , 2022, 1-12	1
71	Triply Periodic Channels Enable Soft Pneumatic Linear Actuator With Single Material and Scalability. 2022 , 7, 2668-2675	1
70	Soft Exoskeleton Mimics Human Cough for Assisting the Expectoration Capability of SCI Patients 2022 , PP,	
69	Model Analysis of Robotic Soft Arms including External Force Effects 2022 , 13,	O
68	Light-Activated Elongation/Shortening and Twisting of a Nematic Elastomer Balloon 2022, 14,	1
67	Implications of Spatially Constrained Bipennate Topology on Fluidic Artificial Muscle Bundle	1

(2022-2022)

66	Detachable Soft Actuators with Tunable Stiffness Based on Wire Jamming. 2022, 12, 3582	О
65	Fiber-reinforced flexible joint actuator for soft arthropod robots. 2022 , 340, 113522	O
64	A Preliminary Study of Soft Material Robotic Modelling: Finite Element Method and Cosserat Rod Model. 2021 ,	2
63	A Data-Driven Review of Soft Robotics. 2100163	2
62	A Dual-Origami Design that Enables the Quasisequential Deployment and Bending Motion of Soft Robots and Grippers. 2022 , 4, 2100176	1
61	Soft Mobile Robots: a Review of Soft Robotic Locomotion Modes. 2021 , 2, 371-397	1
60	Modeling and inverse design of bio-inspired multi-segment pneu-net soft manipulators for 3D trajectory motion. 2021 , 8, 041416	3
59	A Novel Inchworm-Inspired Soft Robotic Colonoscope Based on a Rubber Bellows 2022 , 13,	О
58	Modeling nonlinear viscoelastic responses of flexible composites for soft robotics applications. 1-13	1
57	Video_1.MP4. 2020 ,	
56	Data_Sheet_1.docx. 2020 ,	
55	Video_1.MP4. 2020 ,	
54	Video_1.MP4. 2020 ,	
53	Video_2.MP4. 2020 ,	
52	Video_1.MP4. 2020 ,	
51	Video_2.MP4. 2020 ,	
50	Video_1.MP4. 2020 ,	
49	Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook. 2022 , 1-22	2

48	Development and Analysis of Key Components of a Multi Motion Mode Soft-Bodied Pipe Robot. 2022 , 11, 125	
47	A Self-sensing Inverse Pneumatic Artificial Muscle. 2022 ,	O
46	Design and Characterisation of Cross-sectional Geometries for Soft Robotic Manipulators with Fibre-reinforced Chambers. 2022 ,	
45	Bioinspired Structures for Soft Actuators. 2101521	O
44	Elastomeric Tubes with Self-Regulated Distension. 2022 , 104369	
43	Single-Actuator Soft Robot for In-Pipe Crawling Soft Robotics, 2022 , 9.2	2
42	Cost-Effective Design of Soft Robotic Prosthetic Arm Based on 3D Printing. 2022 , 115-127	
41	Design and Study of Scissor-Mechanism-Based Pneumatic Actuator With a Characteristic of Bidirectional Contraction. 2022 , 1-9	O
40	Evaluation of two complementary modeling approaches for fiber-reinforced soft actuators. 2022 , 9,	
39	Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. 2022 , 1-1	7
38	Dexterity Analysis and Motion Optimization of In-Situ Torsionally-Steerable Flexible Surgical Robots. 2022 , 1-8	0
37	Modelling of a soft actuator with a semicircular cross section under gravity and external load. 2022 , 1-9	
36	Finite deformations of a nonlinearly elastic electrosensitive tube reinforced by two fiber families.	
35	Design and validation of a pneumatic bending actuator. 2022 ,	
34	A Novel Soft Wrist Joint with Variable Stiffness. 2022 , 346-356	
33	Design of a Novel Soft Pneumatic Gripper with Variable Gripping Size and Mode. 2022, 106,	1
32	Optimizing Out-of-Plane Stiffness for Soft Grippers. 2022 , 7, 10430-10437	
31	A brief study on additively manufactured soft pneumatic actuators. 2022 ,	O

30	3D printing of soft fluidic actuators with graded porosity. 2022 , 18, 7269-7279	1
29	Elastic Instabilities. 2022 , 67-110	O
28	On high stiffness of soft robots for compatibility of deformation and function. 1-16	O
27	Dynamic Task Space Control Enables Soft Manipulators to Perform Real-World Tasks. 2200024	1
26	Energy-saving trajectory optimization of a fluidic soft robotic arm.	1
25	Pneumatic Soft Phononic Crystals with Tunable Band Gap. 2022 , 107906	O
24	Origami-Inspired Soft Twisting Actuator.	1
23	Design and Experimental Validation of a Worm-Like Tensegrity Robot for In-Pipe Locomotion.	O
22	3D printing programmable liquid crystal elastomer soft pneumatic actuators.	0
21	A Preprogrammable Continuum Robot Inspired by Elephant Trunk for Dexterous Manipulation.	1
20	Towards accurate modeling of modular soft pneumatic robots: from volume FEM to Cosserat rod. 2022 ,	2
19	Multi-DoF Soft Robotic Actuators Based on Spring Reinforce and Particle Jamming. 2022,	O
18	Collision-Aware Fast Simulation for Soft Robots by Optimization-Based Geometric Computing. 2022 ,	O
17	Harnessing Nonuniform Pressure Distributions in Soft Robotic Actuators. 2200330	O
16	Fundamentals of burrowing in soft animals and robots. 10,	O
15	A Modular Soft Gripper with Combined Pneu-Net Actuators. 2023 , 12, 172	O
14	Mechanics of fiber-reinforced soft manipulators based on inhomogeneous Cosserat rod theory. 1-13	O
13	Pressure-induced shape-shifting of helical bacteria. 2023 , 19, 2224-2230	O

12	A High-torque Bidirectional Curl Pneumatic Artificial Muscle. 2022,	О
11	Composite Soft Pneumatic Actuators Using 3D Printed Skins. 2023 , 8, 2086-2093	o
10	Kirigami-Inspired 3D Printable Soft Pneumatic Actuators with Multiple Deformation Modes for Soft Robotic Applications.	0
9	Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. 2023 , 14,	o
8	A self-sensing intelligent soft pneumatic actuator with soft magnetic structures. 2023 , 250, 108279	O
7	Biomimetic Wave Propagation in Magnetic Soft Actuator. 2022 , 35, 225-231	o
6	In Situ Reconfigurable Continuum Robot with Varying Curvature Enabled by Programmable Tensegrity Building Blocks. 2300048	0
5	Multimaterial Embedded 3D Printing of Composite Reinforced Soft Actuators. 2023 , 6,	О
4	Reconfigurable Soft Pneumatic Actuators Using Extensible Fabric-Based Skins.	0
3	Tunable, Textile-Based Joint Impedance Module for Soft Robotic Applications.	o
2	Kinetostatic Modeling of Soft Robots: Energy-Minimization Approach and 99-Line MATLAB Implementation.	0
1	Stress-based topology optimization for fiber composites with improved stiffness and strength: Integrating anisotropic and isotropic materials. 2023 , 117041	O