Huntington disease

Nature Reviews Disease Primers 1, 15005

DOI: 10.1038/nrdp.2015.5

Citation Report

#	Article	IF	Citations
1	The Genetic Modifiers of Motor OnsetAgeÂ(GeM MOA) Website: Genome-wide Association Analysis for Genetic Modifiers of Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 279-284.	0.9	30
2	H–D exchange in deuterated trifluoroacetic acid via ligand-directed NHC–palladium catalysis: a powerful method for deuteration of aromatic ketones, amides, and amino acids. Tetrahedron Letters, 2015, 56, 6231-6235.	0.7	21
3	Dysregulation of Corticostriatal Connectivity in Huntington's Disease: AÂRole for Dopamine Modulation. Journal of Huntington's Disease, 2016, 5, 303-331.	0.9	36
4	Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington's Disease. Frontiers in Cellular Neuroscience, 2016, 10, 37.	1.8	47
5	Corticostriatal Dysfunction in Huntington's Disease: The Basics. Frontiers in Human Neuroscience, 2016, 10, 317.	1.0	52
6	Lysosomal Calcium in Neurodegeneration. Messenger (Los Angeles, Calif: Print), 2016, 5, 56-66.	0.3	21
7	Psychogenic non-epileptic seizures in early Huntington's disease. Practical Neurology, 2016, 16, 452-454.	0.5	4
8	Attenuated pupillary light responses and downregulation of opsin expression parallel decline in circadian disruption in two different mouse models of Huntington's disease. Human Molecular Genetics, 2016, 25, ddw359.	1.4	14
9	Progressive gene dose-dependent disruption of the methamphetamine-sensitive circadian oscillator-driven rhythms in a knock-in mouse model of Huntington's disease. Experimental Neurology, 2016, 286, 69-82.	2.0	8
10	Delayed emergence of subdiffraction-sized mutant huntingtin fibrils following inclusion body formation. Quarterly Reviews of Biophysics, 2016, 49, e2.	2.4	39
11	The global prevalence of Huntington's disease: a systematic review and discussion. Neurodegenerative Disease Management, 2016, 6, 331-343.	1.2	88
12	Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease. Journal of Neurochemistry, 2016, 139, 22-25.	2.1	58
13	Conformational modulation mediated by polyglutamine expansion in CAG repeat expansion disease-associated proteins. Biochemical and Biophysical Research Communications, 2016, 478, 949-955.	1.0	2
14	Monitoring Huntington's Disease Mortality across a 30-Year Period: Geographic and Temporal Patterns. Neuroepidemiology, 2016, 47, 155-163.	1.1	6
15	Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Human Molecular Genetics, 2016, 25, ddw286.	1.4	195
16	Huntington disease reduced penetrance alleles occur at high frequency in the general population. Neurology, 2016, 87, 282-288.	1.5	82
17	Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Scientific Reports, 2016, 6, 31652.	1.6	59
18	Sequence Context Influences the Structure and Aggregation Behavior of a PolyQ Tract. Biophysical Journal, 2016, 110, 2361-2366.	0.2	58

#	Article	IF	CITATIONS
19	Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. Human Molecular Genetics, 2016, 25, ddw122.	1.4	62
20	22 Years of predictive testing for Huntington's disease: the experience of the UK Huntington's Prediction Consortium. European Journal of Human Genetics, 2016, 24, 1396-1402.	1.4	73
21	Clinical Trials in Spinal and Bulbar Muscular Atrophyâ€"Past, Present, and Future. Journal of Molecular Neuroscience, 2016, 58, 379-387.	1.1	15
22	Simultaneous acquisition of infrared, fluorescence and light scattering spectra of proteins: direct evidence for pre-fibrillar species in amyloid fibril formation. Analyst, The, 2016, 141, 963-973.	1.7	7
23	What's wrong with my mouse cage? Methodological considerations for modeling lifestyle factors and geneâ€"environment interactions in mice. Journal of Neuroscience Methods, 2016, 265, 99-108.	1.3	32
24	Oxidative metabolism and Ca 2+ handling in striatal mitochondria from YAC128 mice, a model of Huntington's disease. Neurochemistry International, 2017, 109, 24-33.	1.9	21
25	Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radical Biology and Medicine, 2017, 111, 281-293.	1.3	58
26	Clinical applications of MALDI imaging technologies in cancer and neurodegenerative diseases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 795-816.	1.1	46
27	Tetrabenazine Versus Deutetrabenazine for Huntington's Disease: Twins or Distant Cousins?. Movement Disorders Clinical Practice, 2017, 4, 582-585.	0.8	48
28	Animal Models of Movement Disorders. , 2017, , 11-21.		O
29	A stop-signal task for sheep: introduction and validation of a direct measure for the stop-signal reaction time. Animal Cognition, 2017, 20, 615-626.	0.9	15
30	Driving with a neurodegenerative disorder: an overview of the current literature. Journal of Neurology, 2017, 264, 1678-1696.	1.8	35
31	Prospective Evaluation of Predictive DNA Testing for Huntington's Disease in a Large German Center. Journal of Genetic Counseling, 2017, 26, 1029-1040.	0.9	13
32	Motivational, proteostatic and transcriptional deficits precede synapse loss, gliosis and neurodegeneration in the B6.HttQ111/+ model of Huntington's disease. Scientific Reports, 2017, 7, 41570.	1.6	16
33	The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington's disease patients. Scientific Reports, 2017, 7, 1307.	1.6	150
34	Dynamin Functions and Ligands: Classical Mechanisms Behind. Molecular Pharmacology, 2017, 91, 123-134.	1.0	38
35	Early and brain region-specific decrease of de novo cholesterol biosynthesis in Huntington's disease: A cross-validation study in Q175 knock-in mice. Neurobiology of Disease, 2017, 98, 66-76.	2.1	36
36	Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair, 2017, 56, 144-155.	1.3	32

#	Article	IF	CITATIONS
37	Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core. Nature Communications, 2017, 8, 15462.	5.8	81
38	Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis. Lancet Neurology, The, 2017, 16, 601-609.	4.9	272
39	Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels. Human Molecular Genetics, 2017, 26, 1258-1267.	1.4	14
40	Huntington's Disease: Nuclear Gatekeepers Under Attack. Neuron, 2017, 94, 1-4.	3.8	20
41	Huntington's disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer's disease. Scientific Reports, 2017, 7, 44849.	1.6	45
42	Study of the Huntington's disease <i><scp>IT</scp>â€15</i> gene in different ethnic groups in Ecuador. Clinical Genetics, 2017, 92, 544-547.	1.0	8
43	Developmental alterations in Huntington's disease neural cells and pharmacological rescue in cells and mice. Nature Neuroscience, 2017, 20, 648-660.	7.1	199
44	DNA repair in the trinucleotide repeat disorders. Lancet Neurology, The, 2017, 16, 88-96.	4.9	75
45	The targetable A1 Huntington disease haplotype has distinct Amerindian and European origins in Latin America. European Journal of Human Genetics, 2017, 25, 332-340.	1.4	15
46	Backbone Engineering within a Latent \hat{l}^2 -Hairpin Structure to Design Inhibitors of Polyglutamine Amyloid Formation. Journal of Molecular Biology, 2017, 429, 308-323.	2.0	21
47	Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2017, 88, 1-14.	1.5	50
48	HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models. Scientific Reports, 2017, 7, 12556.	1.6	27
49	Huntingtin Fibrils Poke Membranes. Cell, 2017, 171, 32-33.	13.5	4
50	Haplotype-based stratification of Huntington's disease. European Journal of Human Genetics, 2017, 25, 1202-1209.	1.4	24
51	The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes. Cell Reports, 2017, 20, 2980-2991.	2.9	96
52	Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders. Advances in Neurobiology, 2017, 18, 113-142.	1.3	45
53	Therapies targeting DNA and RNA in Huntington's disease. Lancet Neurology, The, 2017, 16, 837-847.	4.9	233
54	Mutant Huntingtin Inhibits αB-Crystallin Expression and Impairs Exosome Secretion from Astrocytes. Journal of Neuroscience, 2017, 37, 9550-9563.	1.7	68

#	Article	IF	CITATIONS
55	Discovery of Small Molecules that Induce the Degradation of Huntingtin. Angewandte Chemie, 2017, 129, 11688-11691.	1.6	5
56	Discovery of Small Molecules that Induce the Degradation of Huntingtin. Angewandte Chemie - International Edition, 2017, 56, 11530-11533.	7.2	84
57	Mutant Huntingtin Is Secreted via a Late Endosomal/Lysosomal Unconventional Secretory Pathway. Journal of Neuroscience, 2017, 37, 9000-9012.	1.7	64
58	AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease. Gene Therapy, 2017, 24, 630-639.	2.3	69
59	Fifteen Years of Clinical Trials inÂHuntington's Disease: A Very Low ClinicalÂDrug Development Success Rate. Journal of Huntington's Disease, 2017, 6, 157-163.	0.9	50
60	Extracellular Vesicles in Neurodegenerative Diseases: A Double-Edged Sword. Tissue Engineering and Regenerative Medicine, 2017, 14, 667-678.	1.6	34
61	Polyglutamine expansion affects huntingtin conformation in multiple Huntington's disease models. Scientific Reports, 2017, 7, 5070.	1.6	32
62	Genetic modifiers of Mendelian disease: Huntington's disease and the trinucleotide repeat disorders. Human Molecular Genetics, 2017, 26, R83-R90.	1.4	53
63	Protein phosphatase 1 regulates huntingtin exon 1 aggregation and toxicity. Human Molecular Genetics, 2017, 26, 3763-3775.	1.4	32
64	The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiology of Disease, 2017, 97, 46-59.	2.1	105
65	Antipsychotic drugs in Huntington's disease. Expert Review of Neurotherapeutics, 2017, 17, 227-237.	1.4	27
66	Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochemical and Biophysical Research Communications, 2017, 483, 1051-1062.	1.0	76
67	Energy defects in Huntington's disease: Why "inÂvivo―evidence matters. Biochemical and Biophysical Research Communications, 2017, 483, 1084-1095.	1.0	57
68	A modifier of Huntington's disease onset at the MLH1 locus. Human Molecular Genetics, 2017, 26, 3859-3867.	1.4	88
69	The diagnosis and natural history of Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 144, 63-67.	1.0	11
70	Anaesthesia and orphan disease: airway and anaesthetic management in Huntington's disease. BMJ Case Reports, 2017, 2017, bcr-2017-221354.	0.2	2
71	Ex vivo gene therapy for the treatment of neurological disorders. Progress in Brain Research, 2017, 230, 99-132.	0.9	43
72	Microglial Activation in the Pathogenesis of Huntington's Disease. Frontiers in Aging Neuroscience, 2017, 9, 193.	1.7	95

#	Article	IF	Citations
73	Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Frontiers in Neuroscience, 2017, 11, 451.	1.4	139
74	De novo Synthesis of Sphingolipids Is Defective in Experimental Models of Huntington's Disease. Frontiers in Neuroscience, 2017, 11, 698.	1.4	43
75	The Generation of Mouse and Human Huntington Disease iPS Cells Suitable for In vitro Studies on Huntingtin Function. Frontiers in Molecular Neuroscience, 2017, 10, 253.	1.4	30
76	miR-196a Enhances Neuronal Morphology through Suppressing RANBP10 to Provide Neuroprotection in Huntington's Disease. Theranostics, 2017, 7, 2452-2462.	4.6	47
77	A new Caenorhabditis elegans model of human huntingtin 513 aggregation and toxicity in body wall muscles. PLoS ONE, 2017, 12, e0173644.	1.1	35
78	Distinct cellular toxicity of two mutant huntingtin mRNA variants due to translation regulation. PLoS ONE, 2017, 12, e0177610.	1.1	8
79	CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease. Journal of Clinical Investigation, 2017, 127, 2719-2724.	3.9	282
80	Potential Therapeutic Targets of the Endocannabinoid System in Common Neurodegenerative Disorders and Organic Acidemias. FIRE Forum for International Research in Education, 2017, 5, 232640981772366.	0.7	1
81	From huntingtin gene toÂHuntington's disease-altering strategies. , 2017, , 251-276.		0
82	Corticostriatal network dysfunction in Huntington's disease: Deficits in neural processing, glutamate transport, and ascorbate release. CNS Neuroscience and Therapeutics, 2018, 24, 281-291.	1.9	28
83	Therapeutic effects of stem cells in rodent models of Huntington's disease: Review and electrophysiological findings. CNS Neuroscience and Therapeutics, 2018, 24, 329-342.	1.9	17
84	Cysteine Metabolism in Neuronal Redox Homeostasis. Trends in Pharmacological Sciences, 2018, 39, 513-524.	4.0	198
85	The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 346-357.	1.1	60
86	Identification of distinct conformations associated with monomers and fibril assemblies of mutant huntingtin. Human Molecular Genetics, 2018, 27, 2330-2343.	1.4	26
87	†You-on-a-chip' for precision medicine. Expert Review of Precision Medicine and Drug Development, 2018, 3, 137-146.	0.4	13
88	Gene Therapy Strategies to Restore ER Proteostasis in Disease. Molecular Therapy, 2018, 26, 1404-1413.	3.7	35
89	Does Nâ€terminal huntingtin function as a â€~holdase' for inhibiting cellular protein aggregation?. FEBS Journal, 2018, 285, 1791-1811.	2.2	6
90	Tandem repeats mediating genetic plasticity in health and disease. Nature Reviews Genetics, 2018, 19, 286-298.	7.7	300

#	Article	IF	CITATIONS
91	The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628561774183.	1.5	15
92	Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology, 2018, 90, e717-e723.	1.5	65
93	Potassium channel dysfunction in neurons and astrocytes in Huntington's disease. CNS Neuroscience and Therapeutics, 2018, 24, 311-318.	1.9	28
94	The central role of DNA damage and repair in CAG repeat diseases. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	76
95	Clinical Features of Huntington's Disease. Advances in Experimental Medicine and Biology, 2018, 1049, 1-28.	0.8	109
96	RNA Related Pathology in Huntington's Disease. Advances in Experimental Medicine and Biology, 2018, 1049, 85-101.	0.8	13
97	Gastrodia elata alleviates mutant huntingtin aggregation through mitochondrial function and biogenesis mediation. Phytomedicine, 2018, 39, 75-84.	2.3	10
98	Degradation of huntingtin mediated by a hybrid molecule composed of IAP antagonist linked to phenyldiazenyl benzothiazole derivative. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 707-710.	1.0	33
99	Biomarkers in cerebrospinal fluid for synucleinopathies, tauopathies, and other neurodegenerative disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 146, 99-113.	1.0	5
100	Targeted biochemical profiling of brain from Huntington's disease patients reveals novel metabolic pathways of interest. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2430-2437.	1.8	32
101	Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. Current Protocols in Neuroscience, 2018, 83, e47.	2.6	17
102	Insights into the Aggregation Mechanism of PolyQ Proteins with DifferentÂGlutamine Repeat Lengths. Biophysical Journal, 2018, 114, 1847-1857.	0.2	37
103	An imageâ€based model of brain volume biomarker changes in Huntington's disease. Annals of Clinical and Translational Neurology, 2018, 5, 570-582.	1.7	50
104	Designing aptamers which respond to intracellular oxidative stress and inhibit aggregation of mutant huntingtin. Free Radical Biology and Medicine, 2018, 120, 311-316.	1.3	8
105	Monitoring Cell-to-cell Transmission of Prion-like Protein Aggregates in Drosophila Melanogaster . Journal of Visualized Experiments, 2018, , .	0.2	3
106	A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington's Disease. Cell, 2018, 173, 989-1002.e13.	13.5	231
107	Translation of MicroRNA-Based Huntingtin-Lowering Therapies from Preclinical Studies to the Clinic. Molecular Therapy, 2018, 26, 947-962.	3.7	29
108	Cerebrospinal fluid neurogranin and TREM2 in Huntington's disease. Scientific Reports, 2018, 8, 4260.	1.6	25

#	ARTICLE	IF	CITATIONS
109	Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium, 2018, 70, 87-94.	1.1	248
110	Innate Immunity and Neurodegeneration. Annual Review of Medicine, 2018, 69, 437-449.	5.0	221
111	Brain Regions Showing White Matter Loss inÂHuntington's Disease Are Enriched for Synaptic and Metabolic Genes. Biological Psychiatry, 2018, 83, 456-465.	0.7	79
112	Hypothesis for the cause and therapy of neurodegenerative diseases. Medical Hypotheses, 2018, 110, 60-63.	0.8	6
113	Progress in developing transgenic monkey model for Huntington's disease. Journal of Neural Transmission, 2018, 125, 401-417.	1.4	14
114	Huntington's disease: a clinical review. European Journal of Neurology, 2018, 25, 24-34.	1.7	671
115	CRISPR editing in biological and biomedical investigation. Journal of Cellular Physiology, 2018, 233, 3875-3891.	2.0	19
117	Nanomedicine and Phage Capsids. Viruses, 2018, 10, 307.	1.5	8
118	Thermoregulatory disorders in Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 761-775.	1.0	6
119	The Role of Mitochondria in Reactive Oxygen Species Generation and Its Implications for Neurodegenerative Diseases. Cells, 2018, 7, 274.	1.8	205
120	Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel alphaLISA Assay. ENeuro, 2018, 5, ENEURO.0234-18.2018.	0.9	10
121	Nutrient-Dependent Changes of Protein Palmitoylation: Impact on Nuclear Enzymes and Regulation of Gene Expression. International Journal of Molecular Sciences, 2018, 19, 3820.	1.8	23
122	Regulatory mechanisms of incomplete huntingtin mRNA splicing. Nature Communications, 2018, 9, 3955.	5.8	55
123	Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjugate Chemistry, 2018, 29, 3937-3966.	1.8	23
124	Antidepressant Effects of Probucol on Early-Symptomatic YAC128 Transgenic Mice for Huntington's Disease. Neural Plasticity, 2018, 2018, 1-17.	1.0	11
125	Altered driving performance of symptomatic Huntington's disease gene carriers in simulated road conditions. Traffic Injury Prevention, 2018, 19, 708-714.	0.6	4
126	The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Alzheimer's Disease., 2018, 08, .		23
127	Structural Fingerprinting of Protein Aggregates by Dynamic Nuclear Polarization-Enhanced Solid-State NMR at Natural Isotopic Abundance. Journal of the American Chemical Society, 2018, 140, 14576-14580.	6.6	22

#	Article	IF	CITATIONS
128	Repeat-associated non-ATG (RAN) translation. Journal of Biological Chemistry, 2018, 293, 16127-16141.	1.6	81
129	Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Frontiers in Molecular Neuroscience, 2018, 11, 318.	1.4	23
130	The many disguises of the signalling endosome. FEBS Letters, 2018, 592, 3615-3632.	1.3	37
131	Mutational analysis implicates the amyloid fibril as the toxic entity in Huntington's disease. Neurobiology of Disease, 2018, 120, 126-138.	2.1	37
132	The visual cortex and visual cognition in Huntington's disease: An overview of current literature. Behavioural Brain Research, 2018, 351, 63-74.	1.2	17
133	Using Genomic Data to Find Disease-Modifying Loci in Huntington's Disease (HD). Methods in Molecular Biology, 2018, 1780, 443-461.	0.4	2
134	CRISPR/Cas9-Mediated Genome Editing for Huntington's Disease. Methods in Molecular Biology, 2018, 1780, 463-481.	0.4	17
135	Antisense oligonucleotides in neurological disorders. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641877693.	1.5	100
136	A Liquid to Solid Phase Transition Underlying Pathological Huntingtin Exon1 Aggregation. Molecular Cell, 2018, 70, 588-601.e6.	4.5	252
137	Integrative Characterization of the R6/2 Mouse Model of Huntington's Disease Reveals Dysfunctional Astrocyte Metabolism. Cell Reports, 2018, 23, 2211-2224.	2.9	79
138	A Friend or Foe: Calcineurin across the Gamut of Neurological Disorders. ACS Central Science, 2018, 4, 805-819.	5 . 3	35
139	Striatal Mutant Huntingtin Protein Levels Decline with Age in Homozygous Huntington's Disease Knock-In Mouse Models. Journal of Huntington's Disease, 2018, 7, 137-150.	0.9	14
140	Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases. Frontiers in Neuroscience, 2018, 12, 75.	1.4	80
141	Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Frontiers in Neuroscience, 2018, 12, 342.	1.4	152
142	Patient-Derived iPSCs and iNsâ€"Shedding New Light on the Cellular Etiology of Neurodegenerative Diseases. Cells, 2018, 7, 38.	1.8	5
143	Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin. Cells, 2018, 7, 59.	1.8	20
144	Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals, 2018, 11, 44.	1.7	213
145	Synaptopathy, circuitopathy and the computational biology of Huntington's disease. BMC Biology, 2018, 16, 71.	1.7	12

#	Article	IF	CITATIONS
146	Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. International Journal of Biological Sciences, 2018, 14, 341-357.	2.6	194
147	REST overexpression in mice causes deficits in spontaneous locomotion. Scientific Reports, 2018, 8, 12083.	1.6	7
148	Structural and functional changes of the visual cortex in early Huntington's disease. Human Brain Mapping, 2018, 39, 4776-4786.	1.9	27
149	Macro roles for microRNAs in neurodegenerative diseases. Non-coding RNA Research, 2018, 3, 154-159.	2.4	40
150	Genetic Modification of Huntington Disease Acts Early in the Prediagnosis Phase. American Journal of Human Genetics, 2018, 103, 349-357.	2.6	30
151	Discrete roles of trehalose and Hsp 104 in inhibition of protein aggregation in yeast cells. FEMS Yeast Research, 2018, 18, .	1.1	6
152	Inhibition of Aggregation of Mutant Huntingtin by Nucleic Acid Aptamers In Vitro and in a Yeast Model of Huntington's Disease. , 2018, , 207-228.		0
153	RNAi-Based GluN3A Silencing Prevents and Reverses Disease Phenotypes Induced by Mutant huntingtin. Molecular Therapy, 2018, 26, 1965-1972.	3.7	13
154	Population-specific genetic modification of Huntington's disease in Venezuela. PLoS Genetics, 2018, 14, e1007274.	1.5	27
155	Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. Progress in Molecular Biology and Translational Science, 2018, 154, 105-145.	0.9	17
156	RNA Editing Deficiency in Neurodegeneration. Advances in Neurobiology, 2018, 20, 63-83.	1.3	13
157	Physician perception versus true efficacy of tetrabenazine for Huntington's disease. Current Medical Research and Opinion, 2018, 34, 1537-1538.	0.9	0
158	Multiple clinical features of Huntington's disease correlate with mutant HTT gene CAG repeat lengths and neurodegeneration. Journal of Neurology, 2019, 266, 551-564.	1.8	38
159	Regulators of the transsulfuration pathway. British Journal of Pharmacology, 2019, 176, 583-593.	2.7	205
160	Addressing the Value of Multidisciplinary Clinical Care in Huntington's Disease: A Snapshot of a New Huntington's Disease Center. Journal of Huntington's Disease, 2019, 8, 501-507.	0.9	5
161	Mutant huntingtin fails to directly impair brain mitochondria. Journal of Neurochemistry, 2019, 151, 716-731.	2.1	13
162	The pathobiology of perturbed mutant huntingtin proteinâ€"protein interactions in Huntington's disease. Journal of Neurochemistry, 2019, 151, 507-519.	2.1	70
163	Nutraceuticals and physical activity: Their role on oxysterols-mediated neurodegeneration. Journal of Steroid Biochemistry and Molecular Biology, 2019, 193, 105430.	1.2	6

#	Article	IF	Citations
164	Diverse functions of DNA glycosylases processing oxidative base lesions in brain. DNA Repair, 2019, 81, 102665.	1.3	10
165	Phenotype onset in Huntington's disease knockâ€in mice is correlated with the incomplete splicing of the mutant huntingtin gene. Journal of Neuroscience Research, 2019, 97, 1590-1605.	1.3	38
166	Astrocyte–Neuron Interactions in the Striatum: Insights on Identity, Form, and Function. Trends in Neurosciences, 2019, 42, 617-630.	4.2	67
167	A New View of the T-Loop Junction: Implications for Self-Primed Telomere Extension, Expansion of Disease-Related Nucleotide Repeat Blocks, and Telomere Evolution. Frontiers in Genetics, 2019, 10, 792.	1.1	29
168	Circadian dysfunction in the Q175 model of Huntington's disease: Network analysis. Journal of Neuroscience Research, 2019, 97, 1606-1623.	1.3	14
169	Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nature Medicine, 2019, 25, 1131-1142.	15.2	139
170	Role of Mutant TBP in Regulation of Myogenesis on Muscle Satellite Cells. Current Medical Science, 2019, 39, 734-740.	0.7	4
171	Astrocyte molecular signatures in Huntington's disease. Science Translational Medicine, 2019, 11, .	5.8	152
172	Quality of Care for Huntington's Disease in the United States: Findings from a National Survey of Patients and Caregivers. Journal of Huntington's Disease, 2019, 8, 509-519.	0.9	8
173	Predictive testing for Huntington disease over 24 years: Evolution of the profile of the participants and analysis of symptoms. Molecular Genetics & Enomic Medicine, 2019, 7, e00881.	0.6	6
174	Genetic deletion of S6k1 does not rescue the phenotypic deficits observed in the R6/2 mouse model of Huntington's disease. Scientific Reports, 2019, 9, 16133.	1.6	2
175	Extensive Expression Analysis of Htt Transcripts in Brain Regions from the zQ175 HD Mouse Model Using a QuantiGene Multiplex Assay. Scientific Reports, 2019, 9, 16137.	1.6	16
176	Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic Huntington's Disease Monkeys. Journal of Huntington's Disease, 2019, 8, 443-448.	0.9	10
177	Nmnat restores neuronal integrity by neutralizing mutant Huntingtin aggregate-induced progressive toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19165-19175.	3.3	23
178	Transgenic minipig model of Huntington's disease exhibiting gradually progressing neurodegeneration. DMM Disease Models and Mechanisms, 2019, 13, .	1.2	16
179	One decade ago, one decade ahead in huntington's disease. Movement Disorders, 2019, 34, 1434-1439.	2.2	7
180	Emerging Role of Genetic Alterations Affecting Exosome Biology in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2019, 20, 4113.	1.8	39
181	Eye Movement Abnormalities in Neurodegenerative Diseases. , 0, , .		3

#	Article	IF	CITATIONS
183	Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington's Disease. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34725-34735.	4.0	101
184	CRISPR-Cas9-Mediated Genome Editing Increases Lifespan and Improves Motor Deficits in a Huntington's Disease Mouse Model. Molecular Therapy - Nucleic Acids, 2019, 17, 829-839.	2.3	92
185	Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 2019, 15, 565-581.	4.9	1,578
186	Leptin deficiency reverses high metabolic state and weight loss without affecting central pathology in the R6/2 mouse model of Huntington's disease. Neurobiology of Disease, 2019, 132, 104560.	2.1	14
187	Cerebrospinal fluid flow dynamics in Huntington's disease evaluated by phase contrast <scp>MRI</scp> . European Journal of Neuroscience, 2019, 49, 1632-1639.	1.2	5
188	Platelet abnormalities in Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 272-283.	0.9	33
189	New insights into the role of microRNAs and long noncoding RNAs in most common neurodegenerative diseases. Journal of Cellular Biochemistry, 2019, 120, 8908-8918.	1.2	33
190	MSH3 modifies somatic instability and disease severity in Huntington's and myotonic dystrophy type 1. Brain, 2019, 142, 1876-1886.	3.7	114
191	Recent advances in molecular therapies for neurological disease: triplet repeat disorders. Human Molecular Genetics, 2019, 28, R80-R87.	1.4	19
192	MnFe2O4 nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. Biomaterials, 2019, 216, 119248.	5.7	28
194	Developmental and transcriptomic features characterize defects of silk gland growth and silk production in silkworm naked pupa mutant. Insect Biochemistry and Molecular Biology, 2019, 111, 103175.	1.2	17
195	Treatment of Neurodegenerative Diseases with Bioactive Components of <i>Tripterygium wilfordii </i> The American Journal of Chinese Medicine, 2019, 47, 769-785.	1.5	36
196	Cellular Specificity of NF-κB Function in the Nervous System. Frontiers in Immunology, 2019, 10, 1043.	2.2	201
197	Biocompatible Inhibitor Based on Chitosan and Amphiphilic Peptide against Mutant Huntingtin Toxicity. ChemBioChem, 2019, 20, 2133-2140.	1.3	4
198	Use of human pluripotent stem cell-derived cells for neurodegenerative disease modeling and drug screening platform. Future Medicinal Chemistry, 2019, 11, 1305-1322.	1.1	23
199	Major Contribution of Somatostatin-Expressing Interneurons and Cannabinoid Receptors to Increased GABA Synaptic Activity in the Striatum of Huntingtonâ \in [™] s Disease Mice. Frontiers in Synaptic Neuroscience, 2019, 11, 14.	1.3	28
200	Modern approaches for modelling dystonia and Huntington's disease in vitro and in vivo. International Journal of Experimental Pathology, 2019, 100, 64-71.	0.6	4
201	The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-26.	1.9	92

#	ARTICLE	IF	CITATIONS
202	Inhibition of tumour necrosis factor alpha in the R6/2 mouse model of Huntington's disease by etanercept treatment. Scientific Reports, 2019, 9, 7202.	1.6	16
203	Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. Journal of Neurolmmune Pharmacology, 2019, 14, 608-641.	2.1	22
204	Managing Huntington's disease – the neuropsychiatric approach. European Neuropsychopharmacology, 2019, 29, S543-S544.	0.3	0
205	Hdac4 Interactions in Huntington's Disease Viewed Through the Prism of Multiomics. Molecular and Cellular Proteomics, 2019, 18, S92-S113.	2.5	28
206	Clinical Presentation and Features of Juvenile-Onset Huntington's Disease: A Systematic Review. Journal of Huntington's Disease, 2019, 8, 171-179.	0.9	35
207	Real-life' hippocampal-dependent spatial memory impairments in Huntington's disease. Cortex, 2019, 119, 46-60.	1.1	11
208	Genetic Counseling in Huntington's Disease: Potential New Challenges on Horizon?. Frontiers in Neurology, 2019, 10, 453.	1.1	31
209	New insights of poly(ADP-ribosylation) in neurodegenerative diseases: A focus on protein phase separation and pathologic aggregation. Biochemical Pharmacology, 2019, 167, 58-63.	2.0	32
210	Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington's disease monkeys. PLoS ONE, 2019, 14, e0214156.	1.1	23
211	Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications. Frontiers in Molecular Neuroscience, 2019, 12, 68.	1.4	48
212	Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease. Neuron, 2019, 101, 801-819.	3.8	202
213	Visual Object Perception in Premanifest and Early Manifest Huntington's Disease. Archives of Clinical Neuropsychology, 2019, 34, 1320-1328.	0.3	6
214	Enhanced cerebral branched-chain amino acid metabolism in R6/2 mouse model of Huntington's disease. Cellular and Molecular Life Sciences, 2019, 76, 2449-2461.	2.4	12
215	Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annual Review of Neuroscience, 2019, 42, 227-247.	5.0	62
216	Assessment of the Performance of a Modified Motor Scale as Applied to Juvenile Onset Huntington's Disease. Journal of Huntington's Disease, 2019, 8, 181-193.	0.9	6
217	Prevalence of Carriers of Intermediate and Pathological Polyglutamine Disease–Associated Alleles Among Large Population-Based Cohorts. JAMA Neurology, 2019, 76, 650.	4.5	63
218	Combination of stem cell and gene therapy ameliorates symptoms in Huntington's disease mice. Npj Regenerative Medicine, 2019, 4, 7.	2.5	30
219	Oxysterol research: a brief review. Biochemical Society Transactions, 2019, 47, 517-526.	1.6	74

#	Article	IF	CITATIONS
220	Seizures and movement disorders: phenomenology, diagnostic challenges and therapeutic approaches. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 920-928.	0.9	22
221	Exploration, Inference, and Prediction in Neuroscience and Biomedicine. Trends in Neurosciences, 2019, 42, 251-262.	4.2	150
222	CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS ONE, 2019, 14, e0212198.	1.1	25
223	Alterations in Hippocampal Inhibitory Synaptic Transmission in the R6/2 Mouse Model of Huntington's Disease. Neuroscience, 2019, 404, 130-140.	1.1	13
224	Attitudes of Potential Participants Towards Molecular Therapy Trials in Huntington's Disease. Journal of Huntington's Disease, 2019, 8, 79-85.	0.9	7
225	Probing initial transient oligomerization events facilitating Huntingtin fibril nucleation at atomic resolution by relaxation-based NMR. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3562-3571.	3.3	61
226	Fluid and imaging biomarkers for Huntington's disease. Molecular and Cellular Neurosciences, 2019, 97, 67-80.	1.0	41
227	Ghrelinâ€mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington's disease. Journal of Neuroendocrinology, 2019, 31, e12699.	1.2	12
228	Astrocytes in Neuropathologies Affecting the Frontal Cortex. Frontiers in Cellular Neuroscience, 2019, 13, 44.	1.8	24
229	Is Huntington's disease on the threshold of a new era in treatment?. Neurodegenerative Disease Management, 2019, 9, 255-258.	1.2	0
231	Hat1 acetylates histone H4 and modulates the transcriptional program in Drosophila embryogenesis. Scientific Reports, 2019, 9, 17973.	1.6	11
232	The Influence of Murine Genetic Background in Adeno-Associated Virus Transduction of the Mouse Brain. Human Gene Therapy Clinical Development, 2019, 30, 169-181.	3.2	16
233	Safer Attitude to Risky Decision-Making in Premanifest Huntington's Disease Subjects. Frontiers in Psychology, 2019, 10, 846.	1.1	3
234	Task-switching abilities in pre-manifest Huntington's disease subjects. Parkinsonism and Related Disorders, 2019, 60, 111-117.	1.1	15
235	A comparative systemâ€level analysis of the neurodegenerative diseases. Journal of Cellular Physiology, 2019, 234, 5215-5229.	2.0	6
236	Melanocortin 4 receptor activation protects striatal neurons and glial cells from 3-nitropropionic acid toxicity. Molecular and Cellular Neurosciences, 2019, 94, 41-51.	1.0	11
237	Proteomic analysis of protein homeostasis and aggregation. Journal of Proteomics, 2019, 198, 98-112.	1.2	30
238	Striatal <scp>GABA</scp> ergic interneuron dysfunction in the Q175 mouse model of Huntington's disease. European Journal of Neuroscience, 2019, 49, 79-93.	1.2	27

#	ARTICLE	IF	CITATIONS
239	Effects of stimulus-related variables on mental states recognition in Huntington's disease. International Journal of Neuroscience, 2019, 129, 563-572.	0.8	6
240	Spatial memory in Huntington's disease: A comparative review of human and animal data. Neuroscience and Biobehavioral Reviews, 2019, 98, 194-207.	2.9	17
241	Pathways to disease from natural variations in human cytoplasmic tRNAs. Journal of Biological Chemistry, 2019, 294, 5294-5308.	1.6	59
242	Pathological role of apoptosis signal-regulating kinase 1 in human diseases and its potential as a therapeutic target for cognitive disorders. Journal of Molecular Medicine, 2019, 97, 153-161.	1.7	14
243	Protective Effects of Antioxidants in Huntington's Disease: an Extensive Review. Neurotoxicity Research, 2019, 35, 739-774.	1.3	50
244	Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington's disease-like phenotype in BACHD mice. Human Molecular Genetics, 2019, 28, 1661-1670.	1.4	29
245	The Expanding Clinical Universe of Polyglutamine Disease. Neuroscientist, 2019, 25, 512-520.	2.6	17
246	FAN1 modifies Huntington's disease progression by stabilizing the expanded <i>HTT</i> CAG repeat. Human Molecular Genetics, 2019, 28, 650-661.	1.4	99
247	Laquinimod Treatment Improves Myelination Deficits at the Transcriptional and Ultrastructural Levels in the YAC128 Mouse Model of Huntington Disease. Molecular Neurobiology, 2019, 56, 4464-4478.	1.9	27
248	Comparable rates of simulator sickness in Huntington's disease and healthy individuals. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 60, 499-504.	1.8	4
249	Alzheimer's Disease and Dementia. , 2019, , 25-82.		2
250	Predictors of simulated driving performance in Huntington's disease. Parkinsonism and Related Disorders, 2019, 60, 64-69.	1.1	7
251	Huntington disease: A quarter century of progress since the gene discovery. Journal of the Neurological Sciences, 2019, 396, 52-68.	0.3	62
252	Nucleus–cytoplasm crossâ€ŧalk in the aging brain. Journal of Neuroscience Research, 2020, 98, 247-261.	1.3	3
253	Potential Circadian Rhythms in Oligodendrocytes? Working Together Through Time. Neurochemical Research, 2020, 45, 591-605.	1.6	20
254	Green tea infusion alleviates neurodegeneration induced by mutant Huntingtin in <i>Drosophila</i> Nutritional Neuroscience, 2020, 23, 183-189.	1.5	15
255	Quantification of Motor Function in Huntington Disease Patients Using Wearable Sensor Devices. Digital Biomarkers, 2020, 3, 103-115.	2.2	23
256	Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases. Cellular and Molecular Life Sciences, 2020, 77, 977-996.	2.4	24

#	Article	IF	CITATIONS
257	Erucic acid, a nutritional PPARδ-ligand may influence Huntington's disease pathogenesis. Metabolic Brain Disease, 2020, 35, 1-9.	1.4	12
258	Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiology of Disease, 2020, 134, 104619.	2.1	56
259	Parkinson disease. European Journal of Neurology, 2020, 27, 27-42.	1.7	757
260	Genetic Risk Underlying Psychiatric and Cognitive Symptoms in Huntington's Disease. Biological Psychiatry, 2020, 87, 857-865.	0.7	29
261	The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington's disease mice. Free Radical Biology and Medicine, 2020, 146, 372-382.	1.3	36
262	Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain, 2020, 143, 407-429.	3.7	49
263	Therapeutic Antisense Targeting of Huntingtin. DNA and Cell Biology, 2020, 39, 154-158.	0.9	16
264	A role of cellular translation regulation associated with toxic Huntingtin protein. Cellular and Molecular Life Sciences, 2020, 77, 3657-3670.	2.4	14
265	Could metformin be therapeutically useful in Huntington's disease?. Reviews in the Neurosciences, 2020, 31, 297-317.	1.4	8
266	Sex differences in movement disorders. Nature Reviews Neurology, 2020, 16, 84-96.	4.9	122
267	Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Frontiers in Neurology, 2020, 11, 1056.	1.1	23
268	Cell cycle re-entry of neurons and reactive neuroblastosis in Huntington's disease: Possibilities for neural-glial transition in the brain. Life Sciences, 2020, 263, 118569.	2.0	12
269	Synthetically Engineered Adeno-Associated Virus for Efficient, Safe, and Versatile Gene Therapy Applications. ACS Nano, 2020, 14, 14262-14283.	7.3	33
270	The microbiota–microglia axis in central nervous system disorders. Brain Pathology, 2020, 30, 1159-1177.	2.1	52
271	Investigating the Transition of Pre-Symptomatic to Symptomatic Huntington's Disease Status Based on Omics Data. International Journal of Molecular Sciences, 2020, 21, 7414.	1.8	19
272	Enhancing mitophagy as a therapeutic approach for neurodegenerative diseases. International Review of Neurobiology, 2020, 155, 169-202.	0.9	20
273	Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochemistry International, 2020, 140, 104823.	1.9	25
274	Sex differences in movement disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 175, 275-282.	1.0	7

#	Article	IF	CITATIONS
275	Wild-type huntingtin regulates human macrophage function. Scientific Reports, 2020, 10, 17269.	1.6	7
276	Context-Specific Striatal Astrocyte Molecular Responses Are Phenotypically Exploitable. Neuron, 2020, 108, 1146-1162.e10.	3.8	73
277	The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules, 2020, 10, 1401.	1.8	13
278	Dietary Intake, Mediterranean Diet Adherence and Caloric Intake in Huntington's Disease: A Review. Nutrients, 2020, 12, 2946.	1.7	10
279	Montreal cognitive assessment for evaluating cognitive impairment in Huntington's disease: a systematic review. CNS Spectrums, 2022, 27, 27-45.	0.7	7
280	The Interaction of Aging and Cellular Stress Contributes to Pathogenesis in Mouse and Human Huntington Disease Neurons. Frontiers in Aging Neuroscience, 2020, 12, 524369.	1.7	21
281	Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Frontiers in Neuroscience, 2020, 14, 572965.	1.4	150
282	A sword of Damocles': patient and caregiver beliefs, attitudes and perspectives on presymptomatic testing for autosomal dominant polycystic kidney disease: a focus group study. BMJ Open, 2020, 10, e038005.	0.8	5
283	Rab8 Promotes Mutant HTT Aggregation, Reduces Neurodegeneration, and Ameliorates Behavioural Alterations in a Drosophila Model of Huntington's Disease. Journal of Huntington's Disease, 2020, 9, 253-263.	0.9	8
284	Therapeutic strategies for Huntington's disease. Current Opinion in Neurology, 2020, 33, 508-518.	1.8	19
285	Imaging Mutant Huntingtin Aggregates: Development of a Potential PET Ligand. Journal of Medicinal Chemistry, 2020, 63, 8608-8633.	2.9	30
286	Synaptic Dysfunction in Huntington's Disease: Lessons from Genetic Animal Models. Neuroscientist, 2022, 28, 20-40.	2.6	28
287	Ferroptosis Mechanisms Involved in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2020, 21, 8765.	1.8	204
288	Pathological characterization of T2*-weighted MRI contrast in the striatum of Huntington's disease patients. Neurolmage: Clinical, 2020, 28, 102498.	1.4	9
289	Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes, 2020, 11, 1418.	1.0	11
290	Different Clinical Contexts of Use of Blood Neurofilament Light Chain Protein in the Spectrum of Neurodegenerative Diseases. Molecular Neurobiology, 2020, 57, 4667-4691.	1.9	33
291	Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1. Journal of Molecular Biology, 2020, 432, 4722-4744.	2.0	34
292	Therapeutic Update on Huntington's Disease: Symptomatic Treatments and Emerging Disease-Modifying Therapies. Neurotherapeutics, 2020, 17, 1645-1659.	2.1	40

#	Article	IF	CITATIONS
293	Lentiviral delivery of human erythropoietin attenuates hippocampal atrophy and improves cognition in the R6/2 mouse model of Huntington's disease. Neurobiology of Disease, 2020, 144, 105024.	2.1	4
294	Loss of Hap1 selectively promotes striatal degeneration in Huntington disease mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20265-20273.	3.3	27
295	Circadian alterations in patients with neurodegenerative diseases: Neuropathological basis of underlying network mechanisms. Neurobiology of Disease, 2020, 144, 105029.	2.1	28
296	Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nature Reviews Neurology, 2020, 16, 529-546.	4.9	248
297	Prevalence of Huntington's disease in Southern Sardinia, Italy. Parkinsonism and Related Disorders, 2020, 80, 54-57.	1.1	7
298	Striosomes Mediate Value-Based Learning Vulnerable in Age and a Huntington's Disease Model. Cell, 2020, 183, 918-934.e49.	13.5	27
299	Neurogranin: A Potential Biomarker of Neurological and Mental Diseases. Frontiers in Aging Neuroscience, 2020, 12, 584743.	1.7	37
300	Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics. Pharmaceuticals, 2020, 13, 341.	1.7	15
301	Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. Journal of Materials Chemistry B, 2020, 8, 8748-8767.	2.9	44
302	Metabolomic Nuclear Magnetic Resonance Studies at Presymptomatic and Symptomatic Stages of Huntington's Disease on a <i>Drosophila</i> Model. Journal of Proteome Research, 2020, 19, 4034-4045.	1.8	15
303	Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease. Accounts of Chemical Research, 2020, 53, 2347-2357.	7.6	25
304	Gene expression profiles complement the analysis of genomic modifiers of the clinical onset of Huntington disease. Human Molecular Genetics, 2020, 29, 2788-2802.	1.4	17
305	Fluorescent Diagnostic Probes in Neurodegenerative Diseases. Advanced Materials, 2020, 32, e2001945.	11.1	95
306	Ferroptosis: Biological Rust of Lipid Membranes. Antioxidants and Redox Signaling, 2021, 35, 487-509.	2.5	42
307	Silencing Srsf6 does not modulate incomplete splicing of the huntingtin gene in Huntington's disease models. Scientific Reports, 2020, 10, 14057.	1.6	17
308	Ginsenoside Rg1 exerts neuroprotective effects in 3-nitropronpionic acid-induced mouse model of Huntington's disease via suppressing MAPKs and NF-ήB pathways in the striatum. Acta Pharmacologica Sinica, 2021, 42, 1409-1421.	2.8	23
309	Cerebellar Direct Current Stimulation (ctDCS) in the Treatment of Huntington's Disease: A Pilot Study and a Short Review of the Literature. Frontiers in Neurology, 2020, 11, 614717.	1.1	4
310	Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 611735.	1.8	29

#	Article	IF	CITATIONS
311	Investigational Assay for Haplotype Phasing of the Huntingtin Gene. Molecular Therapy - Methods and Clinical Development, 2020, 19, 162-173.	1.8	9
312	Gene Therapy for Neurodegenerative Diseases: Slowing Down the Ticking Clock. Frontiers in Neuroscience, 2020, 14, 580179.	1.4	42
313	A CRISPR-strategy for the generation of a detectable fluorescent hESC reporter line (WAe009-A-37) for the subpallial determinant GSX2. Stem Cell Research, 2020, 49, 102016.	0.3	0
314	P2X7 Receptor Upregulation in Huntington's Disease Brains. Frontiers in Molecular Neuroscience, 2020, 13, 567430.	1.4	25
315	Case report and literature review of Huntington disease with intermediate CAG expansion. BMJ Neurology Open, 2020, 2, e000027.	0.7	9
316	Biological Aging and the Cellular Pathogenesis of Huntington's Disease. Journal of Huntington's Disease, 2020, 9, 115-128.	0.9	24
317	Neuromelanin Magnetic Resonance Imaging of the Substantia Nigra in Huntington's Disease. Journal of Huntington's Disease, 2020, 9, 143-148.	0.9	2
318	The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biology, 2020, 34, 101567.	3.9	82
319	Manganese-induced Mitochondrial Dysfunction Is Not Detectable at Exposures Below the Acute Cytotoxic Threshold in Neuronal Cell Types. Toxicological Sciences, 2020, 176, 446-459.	1.4	21
320	Histone deacetylase-3: Friend and foe of the brain. Experimental Biology and Medicine, 2020, 245, 1130-1141.	1.1	8
321	Recent Advancements of Nanomedicine in Neurodegenerative Disorders Theranostics. Advanced Functional Materials, 2020, 30, 2003054.	7.8	83
322	Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. Journal of Parkinson's Disease, 2020, 10, 1-28.	1.5	40
323	Phosphodiesterase 9A Inhibition Facilitates Corticostriatal Transmission in Wild-Type and Transgenic Rats That Model Huntington's Disease. Frontiers in Neuroscience, 2020, 14, 466.	1.4	6
324	Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Frontiers in Neuroscience, 2020, 14, 494.	1.4	156
325	Why Woody got the blues: The neurobiology of depression in Huntington's disease. Neurobiology of Disease, 2020, 142, 104958.	2.1	29
326	Harmine Acts as an Indirect Inhibitor of Intracellular Protein Aggregation. ACS Omega, 2020, 5, 5620-5628.	1.6	8
327	Conditional Knockout of GLT-1 in Neurons Leads to Alterations in Aspartate Homeostasis and Synaptic Mitochondrial Metabolism in Striatum and Hippocampus. Neurochemical Research, 2020, 45, 1420-1437.	1.6	17
328	Morphometric in vivo evidence of thalamic atrophy correlated with cognitive and motor dysfunction in Huntington's disease: The IMAGE-HD study. Psychiatry Research - Neuroimaging, 2020, 298, 111048.	0.9	1

#	Article	IF	CITATIONS
329	Abrogation of prenucleation, transient oligomerization of the Huntingtin exon 1 protein by human profilin I. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 , $5844-5852$.	3.3	20
330	Psychological reactions to predictive genetic testing for Huntington's disease: A qualitative study. Journal of Genetic Counseling, 2020, 29, 1093-1105.	0.9	14
331	Antisense oligonucleotides for neurodegeneration. Science, 2020, 367, 1428-1429.	6.0	62
332	Recent Overview of the Use of iPSCs Huntington's Disease Modeling and Therapy. International Journal of Molecular Sciences, 2020, 21, 2239.	1.8	39
333	Subcellular Localization And Formation Of Huntingtin Aggregates Correlates With Symptom Onset And Progression In A Huntington'S Disease Model. Brain Communications, 2020, 2, fcaa066.	1.5	34
334	Kinetics of Fast Tetramerization of the Huntingtin Exon 1 Protein Probed by Concentration-Dependent On-Resonance $\langle i\rangle R\langle i\rangle\langle sub\rangle I \langle sub\rangle$ Measurements. Journal of Physical Chemistry Letters, 2020, 11, 5643-5648.	2.1	9
335	Clinical Manifestation of Juvenile and Pediatric HD Patients: A Retrospective Case Series. Brain Sciences, 2020, 10, 340.	1.1	19
336	Huntington's Disease—An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells, 2020, 9, 1514.	1.8	17
337	Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects. American Journal of Human Genetics, 2020, 107, 96-110.	2.6	45
338	Probing the characteristics and biofunctional effects of disease-affected cells and drug response via machine learning applications. Critical Reviews in Biotechnology, 2020, 40, 951-977.	5.1	7
339	Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules, 2020, 10, 985.	1.8	16
340	Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates. Acta Neuropathologica, 2020, 140, 737-764.	3.9	43
341	Clinical, radiological, and genetic characteristics in patients with Huntington's disease in a Taiwanese cohort. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 352-359.	1.1	1
342	Diffusion-weighted MRI in neurodegenerative and psychiatric animal models: Experimental strategies and main outcomes. Journal of Neuroscience Methods, 2020, 343, 108814.	1.3	3
343	Inhibiting cellular uptake of mutant huntingtin using a monoclonal antibody: Implications for the treatment of Huntington's disease. Neurobiology of Disease, 2020, 141, 104943.	2.1	11
344	The effects of multidisciplinary rehabilitation on neuroimaging, biological, cognitive and motor outcomes in individuals with premanifest Huntington's disease. Journal of the Neurological Sciences, 2020, 416, 117022.	0.3	16
345	Compromised IGF signaling causes caspase-6 activation in Huntington disease. Experimental Neurology, 2020, 332, 113396.	2.0	6
346	Quadruplex targets in neurodegenerative diseases. Annual Reports in Medicinal Chemistry, 2020, , 441-483.	0.5	1

#	Article	IF	Citations
347	Innate Immunity: A Common Denominator between Neurodegenerative and Neuropsychiatric Diseases. International Journal of Molecular Sciences, 2020, 21, 1115.	1.8	70
348	Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntingtonမs disease. Nature Communications, 2020, 11, 1105.	5 . 8	123
349	Cerebellum-enriched protein INPP5A contributes to selective neuropathology in mouse model of spinocerebellar ataxias type 17. Nature Communications, 2020, 11, 1101.	5.8	21
350	Genome editing methods in animal models. Animal Cells and Systems, 2020, 24, 8-16.	0.8	33
351	Elevated Serum α-Synuclein Levels in Huntington's Disease Patients. Neuroscience, 2020, 431, 34-39.	1.1	7
352	Pridopidine in the treatment of Huntington's disease. Reviews in the Neurosciences, 2020, 31, 441-451.	1.4	9
353	Accuracy of automated amygdala MRI segmentation approaches in Huntington's disease in the IMAGEâ€HD cohort. Human Brain Mapping, 2020, 41, 1875-1888.	1.9	9
354	The Expanding Therapeutic Potential of Neuronal KCC2. Cells, 2020, 9, 240.	1.8	31
355	Altered Levels and Isoforms of Tau and Nuclear Membrane Invaginations in Huntington's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 574.	1.8	27
356	Therapeutic Advances for Huntington's Disease. Brain Sciences, 2020, 10, 43.	1.1	106
357	Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Frontiers in Neuroscience, 2020, 14, 48.	1.4	79
358	Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 192-217.	2.0	69
359	Extending the Phenotypic Spectrum of Huntington Disease: Hypothermia. Molecular Syndromology, 2020, 11, 56-58.	0.3	1
360	The Dichotomic Role of Macrophage Migration Inhibitory Factor in Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 3023.	1.8	15
361	Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases. Current Neuropharmacology, 2020, 18, 348-407.	1.4	65
362	Huntingtin-Lowering Therapies for Huntington Disease. JAMA Neurology, 2020, 77, 764.	4.5	39
363	Medical, Surgical, and Genetic Treatment of Huntington Disease. Neurologic Clinics, 2020, 38, 367-378.	0.8	25
364	Analysis of the Circadian Regulation of Cancer Hallmarks by a Cross-Platform Study of Colorectal Cancer Time-Series Data Reveals an Association with Genes Involved in Huntington's Disease. Cancers, 2020, 12, 963.	1.7	15

#	Article	IF	Citations
365	Mitochondrial Protection by PARP Inhibition. International Journal of Molecular Sciences, 2020, 21, 2767.	1.8	21
366	The Inverse Comorbidity between Oncological Diseases and Huntington's Disease: Review of Epidemiological and Biological Evidence. Russian Journal of Genetics, 2020, 56, 269-279.	0.2	1
367	Stabilization of elongated polyglutamine tracts by a helical peptide derived from N â€terminal huntingtin. IUBMB Life, 2020, 72, 1528-1536.	1.5	2
368	Nanoformulations of Herbal Extracts in Treatment of Neurodegenerative Disorders. Frontiers in Bioengineering and Biotechnology, 2020, 8, 238.	2.0	98
369	Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells, 2020, 9, 846.	1.8	24
370	Mitochondrial and Redox-Based Therapeutic Strategies in Huntington's Disease. Antioxidants and Redox Signaling, 2021, 34, 650-673.	2.5	17
371	Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy, 2021, 17, 672-689.	4.3	109
372	Epigenetic mechanisms underlying enhancer modulation of neuronal identity, neuronal activity and neurodegeneration. Neurobiology of Disease, 2021, 147, 105155.	2.1	15
373	Brown Adipose Tissue: A Metabolic Regulator in a Hypothalamic Cross Talk?. Annual Review of Physiology, 2021, 83, 279-301.	5.6	16
374	Genetic testing in dementia — utility and clinical strategies. Nature Reviews Neurology, 2021, 17, 23-36.	4.9	26
375	RAB39B's role in membrane traffic, autophagy, and associated neuropathology. Journal of Cellular Physiology, 2021, 236, 1579-1592.	2.0	16
376	DNA Damage Triggers a New Phase in Neurodegeneration. Trends in Genetics, 2021, 37, 337-354.	2.9	37
377	Diffusion imaging in Huntington's disease: comprehensive review. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 62-69.	0.9	22
378	Bile Acids: A Communication Channel in the Gut-Brain Axis. NeuroMolecular Medicine, 2021, 23, 99-117.	1.8	76
379	A mammalian system for high-resolution imaging of intact cells by cryo-electron tomography. Progress in Biophysics and Molecular Biology, 2021, 160, 87-96.	1.4	2
380	Mediators of mitophagy that regulate mitochondrial quality control play crucial role in diverse pathophysiology. Cell Biology and Toxicology, 2021, 37, 333-366.	2.4	14
381	TDP-43 proteinopathy impairs mRNP granule mediated postsynaptic translation and mRNA metabolism. Theranostics, 2021, 11, 330-345.	4.6	19
382	Cortical morphometry and neural dysfunction in Huntington's disease: a review. European Journal of Neurology, 2021, 28, 1406-1419.	1.7	6

#	Article	IF	Citations
383	Advantages of brain penetrating inhibitors of kynurenine-3-monooxygenase for treatment of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 2021, 697, 108702.	1.4	12
384	Minocycline in neurodegenerative and psychiatric diseases: An update. European Journal of Neurology, 2021, 28, 1056-1081.	1.7	44
385	Neuropsychiatric comorbidities in Huntington's and Parkinson's Disease: A United States claims database analysis. Annals of Clinical and Translational Neurology, 2021, 8, 126-137.	1.7	8
386	Dynamics of Cortical Degeneration Over a Decade in Huntington's Disease. Biological Psychiatry, 2021, 89, 807-816.	0.7	32
387	Signaling by cGAS–STING in Neurodegeneration, Neuroinflammation, and Aging. Trends in Neurosciences, 2021, 44, 83-96.	4.2	121
388	Molecular landscape of long noncoding RNAs in brain disorders. Molecular Psychiatry, 2021, 26, 1060-1074.	4.1	33
389	Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Progress in Neurobiology, 2021, 200, 101973.	2.8	29
390	Informing about genetic risk in families with Huntington disease: comparison of attitudes across two decades. European Journal of Human Genetics, 2021, 29, 672-679.	1.4	5
391	Effect of luteolin on the transgenic Drosophila model of Huntington's disease. Computational Toxicology, 2021, 17, 100148.	1.8	4
392	Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials, 2021, 269, 120492.	5.7	46
393	CRISPR/Cas gene therapy. Journal of Cellular Physiology, 2021, 236, 2459-2481.	2.0	87
394	Drugging DNA Damage Repair Pathways for Trinucleotide Repeat Expansion Diseases. Journal of Huntington's Disease, 2021, 10, 203-220.	0.9	21
395	Antisense Oligonucleotide Therapeutics for Neurodegenerative Disorders. Current Geriatrics Reports, 0 , 1 .	1.1	2
396	Regenerative nanomedicine applications for neurodegenerative diseases of central nervous system., 2021,, 259-287.		1
397	The Role of NCOA4-Mediated Ferritinophagy in Ferroptosis. Advances in Experimental Medicine and Biology, 2021, 1301, 41-57.	0.8	80
398	Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acidÂnanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine, 2021, 16, 19-35.	1.7	18
399	Sirtuins in mechanistic target of rapamycin complex 1 signaling. , 2021, , 191-212.		0
400	Development of novel bioassays to detect soluble and aggregated Huntingtin proteins on three technology platforms. Brain Communications, 2021, 3, fcaa231.	1.5	11

#	Article	IF	CITATIONS
401	Circadian and Sleep Dysfunctions in Neurodegenerative Disorders—An Update. Frontiers in Neuroscience, 2020, 14, 627330.	1.4	33
402	Dissecting the role of glutamine in seeding peptide aggregation. Computational and Structural Biotechnology Journal, 2021, 19, 1595-1602.	1.9	15
403	Age-related and disease locus-specific mechanisms contribute to early remodelling of chromatin structure in Huntington's disease mice. Nature Communications, 2021, 12, 364.	5.8	14
405	Protective Effect of Natural Products against Huntington's Disease: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. ACS Chemical Neuroscience, 2021, 12, 391-418.	1.7	34
406	The Evolving Landscape of Exosomes in Neurodegenerative Diseases: Exosomes Characteristics and a Promising Role in Early Diagnosis. International Journal of Molecular Sciences, 2021, 22, 440.	1.8	84
407	Management of Motor Symptoms in Dementia Disorders. , 2021, , 201-227.		1
408	Mitochondrial abnormalities in neurological disorders. , 2021, , 193-245.		0
409	Linking Huntington disease, brain-derived neurotrophic factor, and depressive-like behaviors. , 2021, , 161-177.		2
410	Longitudinal subcortical segmentation with deep learning. , 2021, 11596, .		2
412	The development of PATâ€HD: A coâ€designed tool to promote physical activity in people with Huntington's disease. Health Expectations, 2021, 24, 638-647.	1.1	3
413	Target-induced clustering activates Trim-Away of pathogens and proteins. Nature Structural and Molecular Biology, 2021, 28, 278-289.	3.6	44
414	MRI subcortical segmentation in neurodegeneration with cascaded 3D CNNs. , 2021, 11596 , .		6
415	What, When and How to Measureâ€"Peripheral Biomarkers in Therapy of Huntington's Disease. International Journal of Molecular Sciences, 2021, 22, 1561.	1.8	21
417	A PolyQ Membrane Protein of Vibrio cholerae Acts as the Receptor for Phage Infection. Journal of Virology, 2021, 95, .	1.5	1
418	Huntington's Disease Pathogenesis: Two Sequential Components. Journal of Huntington's Disease, 2021, 10, 35-51.	0.9	49
419	CAG repeat instability in embryonic stem cells and derivative spermatogenic cells of transgenic Huntington's disease monkey. Journal of Assisted Reproduction and Genetics, 2021, 38, 1215-1229.	1.2	6
420	Modifiers of Somatic Repeat Instability in Mouse Models of Friedreich Ataxia and the Fragile X-Related Disorders: Implications for the Mechanism of Somatic Expansion in Huntington's Disease. Journal of Huntington's Disease, 2021, 10, 149-163.	0.9	15
421	Validation of diagnostic codes and epidemiologic trends of Huntington disease: a population-based study in Navarre, Spain. Orphanet Journal of Rare Diseases, 2021, 16, 77.	1.2	8

#	Article	IF	CITATIONS
422	Modifiers of CAG/CTG Repeat Instability: Insights from Mammalian Models. Journal of Huntington's Disease, 2021, 10, 123-148.	0.9	46
423	What is the Pathogenic CAG Expansion Length in Huntington's Disease?. Journal of Huntington's Disease, 2021, 10, 175-202.	0.9	31
424	Functional analysis of brain derived neurotrophic factor (BDNF) in Huntington's disease. Aging, 2021, 13, 6103-6114.	1.4	9
425	A high-throughput screening to identify small molecules that suppress huntingtin promoter activity or activate huntingtin-antisense promoter activity. Scientific Reports, 2021, 11, 6157.	1.6	8
426	The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Experimental and Molecular Medicine, 2021, 53, 328-338.	3.2	54
427	Altered iron and myelin in premanifest Huntington's Disease more than 20 years before clinical onset: Evidence from the cross-sectional HD Young Adult Study. EBioMedicine, 2021, 65, 103266.	2.7	20
428	The role of CPEB family proteins in the nervous system function in the norm and pathology. Cell and Bioscience, 2021, 11, 64.	2.1	24
429	Role of older generations in the family's adjustment to Huntington disease. Journal of Community Genetics, 2021, 12, 469-477.	0.5	3
430	Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacological Research, 2021, 165, 105469.	3.1	21
431	Planning deficits in Huntington's disease: A brain structural correlation by voxel-based morphometry. PLoS ONE, 2021, 16, e0249144.	1.1	4
432	Ablation of kynurenine 3-monooxygenase rescues plasma inflammatory cytokine levels in the R6/2 mouse model of Huntington's disease. Scientific Reports, 2021, 11, 5484.	1.6	14
434	Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations. International Journal of Molecular Sciences, 2021, 22, 3244.	1.8	3
435	Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Frontiers in Cellular Neuroscience, 2021, 15, 652593.	1.8	13
436	Timing and Impact of Psychiatric, Cognitive, and Motor Abnormalities in Huntington Disease. Neurology, 2021, 96, e2395-e2406.	1.5	53
437	Exposure of R6/2 mice in an enriched environment augments P42 therapy efficacy on Huntington's disease progression. Neuropharmacology, 2021, 186, 108467.	2.0	10
438	Validating Automated Segmentation Tools in the Assessment of Caudate Atrophy in Huntington's Disease. Frontiers in Neurology, 2021, 12, 616272.	1.1	3
439	Therapeutic application of Sertoli cells for treatment of various diseases. Seminars in Cell and Developmental Biology, 2022, 121, 10-23.	2.3	8
440	Human Huntington's disease pluripotent stem cell-derived microglia develop normally but are abnormally hyper-reactive and release elevated levels of reactive oxygen species. Journal of Neuroinflammation, 2021, 18, 94.	3.1	26

#	Article	IF	CITATIONS
442	Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Frontiers in Immunology, 2021, 12, 644294.	2.2	16
443	Widespread and sustained target engagement in Huntington's disease minipigs upon intrastriatal microRNA-based gene therapy. Science Translational Medicine, 2021, 13, .	5.8	28
444	Geographic differences in the incidence of Huntington's disease in Sardinia, Italy. Neurological Sciences, 2021, 42, 5177-5181.	0.9	1
445	Cerebral venous thrombosis, neutropenia and iron-deficiency anemia in Huntington disease. Neurodegenerative Disease Management, 2021, 11, 137-142.	1.2	1
446	Genetic Screen in Adult Drosophila Reveals That dCBP Depletion in Glial Cells Mitigates Huntington Disease Pathology through a Foxo-Dependent Pathway. International Journal of Molecular Sciences, 2021, 22, 3884.	1.8	3
447	Retrograde axonal transport property of adeno-associated virus and its possible application in future. Microbes and Infection, 2021, 23, 104829.	1.0	11
448	Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites, 2021, 11, 233.	1.3	10
449	The heat shock response, determined by QuantiGene multiplex, is impaired in HD mouse models and not caused by HSF1 reduction. Scientific Reports, 2021, 11, 9117.	1.6	7
450	Probing the Interaction of Huntingtin Exonâ€1 Polypeptides with the Chaperonin Nanomachine GroEL. ChemBioChem, 2021, 22, 1985-1991.	1.3	7
451	Robust Optimization and Data Classification for Characterization of Huntington Disease Onset via Duality Methods. Journal of Optimization Theory and Applications, 2022, 193, 649-675.	0.8	4
452	The known burden of Huntington disease in the North of Scotland: prevalence of manifest and identified pre-symptomatic gene expansion carriers in the molecular era. Journal of Neurology, 2021, 268, 4170-4177.	1.8	4
453	Promising drug discovery strategies for sirtuin modulators: what lessons have we learnt?. Expert Opinion on Drug Discovery, 2021, 16, 1-13.	2.5	4
456	Correlative light and electron microscopy suggests that mutant huntingtin dysregulates the endolysosomal pathway in presymptomatic Huntington's disease. Acta Neuropathologica Communications, 2021, 9, 70.	2.4	7
457	Withaferin A Induces Heat Shock Response and Ameliorates Disease Progression in a Mouse Model of Huntington's Disease. Molecular Neurobiology, 2021, 58, 3992-4006.	1.9	19
458	Lack of association of somatic CAG repeat expansion with striatal neurodegeneration in HD knock-in animal models. Human Molecular Genetics, 2021, 30, 1497-1508.	1.4	5
459	When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. International Journal of Molecular Sciences, 2021, 22, 5911.	1.8	36
460	Tracking Huntington $\hat{E}\frac{1}{4}$ s Disease Progression Using Motor, Functional, Cognitive, and Imaging Markers. Movement Disorders, 2021, 36, 2282-2292.	2.2	10
461	Dysregulation of long nonâ€coding RNAs and their mechanisms in Huntington's disease. Journal of Neuroscience Research, 2021, 99, 2074-2090.	1.3	6

#	Article	IF	CITATIONS
462	Karyopherin abnormalities in neurodegenerative proteinopathies. Brain, 2021, 144, 2915-2932.	3.7	20
463	The Ties That Bind: Aberrant Plasticity and Networks Dysfunction in Movement Disordersâ€"Implications for Rehabilitation. Brain Connectivity, 2021, 11, 278-296.	0.8	3
464	Random Lasing Detection of Mutant Huntingtin Expression in Cells. Sensors, 2021, 21, 3825.	2.1	7
465	The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sciences, 2021, 272, 119252.	2.0	57
466	Metabolic Aspects of Adenosine Functions in the Brain. Frontiers in Pharmacology, 2021, 12, 672182.	1.6	27
467	Ranking the Predictive Power of Clinical and Biological Features Associated With Disease Progression in Huntington's Disease. Frontiers in Neurology, 2021, 12, 678484.	1.1	7
468	Propensity for somatic expansion increases over the course of life in Huntington disease. ELife, 2021, 10, .	2.8	42
469	elF3a Destabilization and TDP-43 Alter Dynamics of Heat-Induced Stress Granules. International Journal of Molecular Sciences, 2021, 22, 5164.	1.8	6
470	Huntingtin silencing delays onset and slows progression of Huntington's disease: a biomarker study. Brain, 2021, 144, 3101-3113.	3.7	21
471	The relevance of mitochondrial morphology for human disease. International Journal of Biochemistry and Cell Biology, 2021, 134, 105951.	1.2	21
472	Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington's disease. Journal of Neurochemistry, 2021, 158, 539-553.	2.1	18
473	Lipid droplets in the nervous system. Journal of Cell Biology, 2021, 220, .	2.3	82
474	Exercise mimetics: harnessing the therapeutic effects of physical activity. Nature Reviews Drug Discovery, 2021, 20, 862-879.	21.5	55
475	Association Analysis of Chromosome X to Identify Genetic Modifiers of Huntington's Disease. Journal of Huntington's Disease, 2021, 10, 367-375.	0.9	5
476	Alleviation of Huntington pathology in mice by oral administration of food additive glyceryl tribenzoate. Neurobiology of Disease, 2021, 153, 105318.	2.1	16
477	Huntington's disease: nearly four decades of human molecular genetics. Human Molecular Genetics, 2021, 30, R254-R263.	1.4	15
478	Quantitative Exchange NMR-Based Analysis of Huntingtin–SH3 Interactions Suggests an Allosteric Mechanism of Inhibition of Huntingtin Aggregation. Journal of the American Chemical Society, 2021, 143, 9672-9681.	6.6	6
479	Human iPSCâ€derived neural precursor cells differentiate into multiple cell types to delay disease progression following transplantation into YAC128 Huntington's disease mouse model. Cell Proliferation, 2021, 54, e13082.	2.4	14

#	Article	IF	CITATIONS
480	Integrated analysis on transcriptome and behaviors defines HTT repeat-dependent network modules in Huntington's disease. Genes and Diseases, 2022, 9, 479-493.	1.5	9
481	Purinergic Signaling in the Pathophysiology and Treatment of Huntington's Disease. Frontiers in Neuroscience, 2021, 15, 657338.	1.4	10
484	Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. European Journal of Human Genetics, 2021, 29, 1485-1490.	1.4	42
486	Multimodal treatment strategies in Huntington's disease. Journal of Neuroscience and Neurological Disorders, 2021, 5, 072-082.	0.1	0
487	Inhibition of GSK-3 ameliorates the pathogenesis of Huntington's disease. Neurobiology of Disease, 2021, 154, 105336.	2.1	14
488	Selective autophagy as the basis of autophagy-based degraders. Cell Chemical Biology, 2021, 28, 1061-1071.	2.5	20
489	Novelty of Sphingolipids in the Central Nervous System Physiology and Disease: Focusing on the Sphingolipid Hypothesis of Neuroinflammation and Neurodegeneration. International Journal of Molecular Sciences, 2021, 22, 7353.	1.8	18
490	Neurobiological and Psychosocial Correlates of Communication Between Huntington's Disease Patients and Their Offspring. Journal of Neuropsychiatry and Clinical Neurosciences, 2021, 33, 321-327.	0.9	2
491	A phenolic-rich extract from Ugni molinae berries reduces abnormal protein aggregation in a cellular model of Huntington's disease. PLoS ONE, 2021, 16, e0254834.	1.1	7
492	Exosomes as a potential messenger unit during heterochronic parabiosis for amelioration of Huntington's disease. Neurobiology of Disease, 2021, 155, 105374.	2.1	17
493	InÂvivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharmaceutica Sinica B, 2021, 11, 2150-2171.	5.7	97
494	Huntington's disease: diagnosis and management. Practical Neurology, 2022, 22, 32-41.	0.5	45
495	Health services utilization of Chinese patients with Huntington's disease: a cross-sectional study. BMC Health Services Research, 2021, 21, 806.	0.9	2
496	Systemic manifestation and contribution of peripheral tissues to Huntington's disease pathogenesis. Ageing Research Reviews, 2021, 69, 101358.	5.0	26
497	Pathological polyQ expansion does not alter the conformation of the Huntingtin-HAP40 complex. Structure, 2021, 29, 804-809.e5.	1.6	8
498	MicroRNAs in Huntington's Disease: Diagnostic Biomarkers or Therapeutic Agents?. Frontiers in Cellular Neuroscience, 2021, 15, 705348.	1.8	17
499	Impaired Refinement of Kinematic Variability in Huntington Disease Mice on an Automated Home Cage Forelimb Motor Task. Journal of Neuroscience, 2021, 41, 8589-8602.	1.7	4
501	A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease. Frontiers in Big Data, 2021, 4, 662200.	1.8	2

#	ARTICLE	IF	CITATIONS
502	Dynamic nanoassemblies for imaging and therapy of neurological disorders. Advanced Drug Delivery Reviews, 2021, 175, 113832.	6.6	15
504	Cellular functions regulated by deubiquitinating enzymes in neurodegenerative diseases. Ageing Research Reviews, 2021, 69, 101367.	5.0	18
505	FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease. Cell Reports, 2021, 36, 109649.	2.9	32
506	Early impairment of thalamocortical circuit activity and coherence in a mouse model of Huntington's disease. Neurobiology of Disease, 2021, 157, 105447.	2.1	5
507	Aberrant Striatal Value Representation in Huntington's Disease Gene Carriers 25 Years Before Onset. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 910-918.	1.1	1
509	Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 2021, 196, 108719.	2.0	145
510	Long non-coding RNAs in neurodegenerative diseases. Neurochemistry International, 2021, 148, 105096.	1.9	15
512	Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells International, 2021, 2021, 1-16.	1.2	10
513	Taking Cellular Heterogeneity Into Consideration When Modeling Astrocyte Involvement in Amyotrophic Lateral Sclerosis Using Human Induced Pluripotent Stem Cells. Frontiers in Cellular Neuroscience, 2021, 15, 707861.	1.8	5
514	Gene targeting techniques for Huntington's disease. Ageing Research Reviews, 2021, 70, 101385.	5.0	12
515	Expanded CAG/CTG repeats resist gene silencing mediated by targeted epigenome editing. Human Molecular Genetics, 2022, 31, 386-398.	1.4	1
516	DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Progress in Neurobiology, 2021, 204, 102114.	2.8	32
517	The blood biomarkers puzzle – A review of protein biomarkers in neurodegenerative diseases. Journal of Neuroscience Methods, 2021, 361, 109281.	1.3	14
518	Signaling Overlap between the Golgi Stress Response and Cysteine Metabolism in Huntington's Disease. Antioxidants, 2021, 10, 1468.	2.2	10
519	Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics. Molecular Neurobiology, 2021, 58, 6350-6377.	1.9	24
520	Pharmacological characterization of mutant huntingtin aggregate-directed PET imaging tracer candidates. Scientific Reports, 2021, 11, 17977.	1.6	16
521	Transplantation of human dental pulp stem cells compensates for striatal atrophy and modulates neuro-inflammation in 3-nitropropionic acid rat model of Huntington's disease. Neuroscience Research, 2021, 170, 133-144.	1.0	16
522	Isoform-Specific Reduction of the Basic Helix-Loop-Helix Transcription Factor TCF4 Levels in Huntington's Disease. ENeuro, 2021, 8, ENEURO.0197-21.2021.	0.9	2

#	Article	IF	Citations
523	Study Protocol for the Development of a European eHealth Platform to Improve Quality of Life in Individuals With Huntington's Disease and Their Partners (HD-eHelp Study): A User-Centered Design Approach. Frontiers in Neurology, 2021, 12, 719460.	1.1	3
524	The clinical, imaging and biological features of psychosis in Han Chinese patients with Huntington's disease. Journal of Psychiatric Research, 2021, 141, 333-338.	1.5	2
525	cGAS-STING-mediated IFN-I Response in Host Defense and Neuroinflammatory Diseases. Current Neuropharmacology, 2022, 20, 362-371.	1.4	22
526	Consequences of post-translational modifications on amyloid proteins as revealed by protein semisynthesis. Current Opinion in Chemical Biology, 2021, 64, 76-89.	2.8	9
527	Allosteric activation of Hsp70 reduces mutant huntingtin levels, the clustering of N-terminal fragments, and their nuclear accumulation. Life Sciences, 2021, 285, 120009.	2.0	5
528	Caveolin-1, a novel player in cognitive decline. Neuroscience and Biobehavioral Reviews, 2021, 129, 95-106.	2.9	15
529	The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Archives of Biochemistry and Biophysics, 2021, 710, 108977.	1.4	7
530	Calcium dysregulation and compensation in cortical pyramidal neurons of the R6/2 mouse model of Huntington's disease. Journal of Neurophysiology, 2021, 126, 1159-1171.	0.9	5
531	An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 130, 33-60.	2.9	22
532	Amplification of neurotoxic HTTex1 assemblies in human neurons. Neurobiology of Disease, 2021, 159, 105517.	2.1	6
533	Contribution of neuroinflammation, resolution, and neuroprotection in neurodegenerative diseases. , 2022, , 121-160.		0
534	Other omics approaches to the study of rare diseases. , 2021, , 229-262.		0
535	Modeling Manifest Huntington's Disease Prevalence Using Diagnosed Incidence and Survival Time. Neuroepidemiology, 2021, 55, 361-368.	1.1	15
536	Cell therapy in Huntington's disease: Taking stock of past studies to move the field forward. Stem Cells, 2021, 39, 144-155.	1.4	25
537	Gene Therapy for Huntington's Disease Using Targeted Endonucleases. Methods in Molecular Biology, 2020, 2056, 269-284.	0.4	15
538	DNA Methylation in Neuronal Development and Disease. RNA Technologies, 2019, , 103-140.	0.2	1
540	Genetic defects of autophagy linked to disease. Progress in Molecular Biology and Translational Science, 2020, 172, 293-323.	0.9	10
541	Dissociable Motivational Deficits in Pre-manifest Huntington's Disease. Cell Reports Medicine, 2020, 1, 100152.	3.3	16

#	Article	IF	CITATIONS
542	Truncation of mutant huntingtin in knock-in mice demonstrates exon1 huntingtin is a key pathogenic form. Nature Communications, 2020, 11, 2582.	5.8	37
543	Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. Communications Biology, 2020, 3, 771.	2.0	12
544	Nanotheranostic agents for neurodegenerative diseases. Emerging Topics in Life Sciences, 2020, 4, 645-675.	1.1	10
545	New developments in Huntington's disease and other triplet repeat diseases: DNA repair turns to the dark side. Neuronal Signaling, 2020, 4, NS20200010.	1.7	13
558	Blood Oxidative Stress Marker Aberrations in Patients with Huntington's Disease: A Meta-Analysis Study. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	1.9	9
559	Chorea. CONTINUUM Lifelong Learning in Neurology, 2019, 25, 1001-1035.	0.4	22
560	A Possible Role for Long Interspersed Nuclear Elements-1 (LINE-1) in Huntington's Disease Progression. Medical Science Monitor, 2018, 24, 3644-3652.	0.5	8
561	The genetics of intellectual disability: advancing technology and gene editing. F1000Research, 2020, 9, 22.	0.8	56
562	Folding Landscape of Mutant Huntingtin Exon1: Diffusible Multimers, Oligomers and Fibrils, and No Detectable Monomer. PLoS ONE, 2016, 11, e0155747.	1.1	48
563	Polyglutamine Tract Expansion Increases S-Nitrosylation of Huntingtin and Ataxin-1. PLoS ONE, 2016, 11, e0163359.	1.1	7
564	Further investigation of phenotypes and confounding factors of progressive ratio performance and feeding behavior in the BACHD rat model of Huntington disease. PLoS ONE, 2017, 12, e0173232.	1.1	11
565	Quantification of huntingtin protein species in Huntington's disease patient leukocytes using optimised electrochemiluminescence immunoassays. PLoS ONE, 2017, 12, e0189891.	1.1	14
566	Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy. Molecules and Cells, 2017, 40, 441-449.	1.0	201
567	Abnormal Photic Entrainment to Phase-Delaying Stimuli in the R6/2 Mouse Model of Huntington's Disease, despite Retinal Responsiveness to Light. ENeuro, 2019, 6, ENEURO.0088-19.2019.	0.9	8
568	Cortico-Striatal Cross-Frequency Coupling and Gamma Genesis Disruptions in Huntington's Disease Mouse and Computational Models. ENeuro, 2018, 5, ENEURO.0210-18.2018.	0.9	15
569	The Renin-Angiotensin System in Huntington's Disease: Villain or Hero?. Protein and Peptide Letters, 2020, 27, 456-462.	0.4	6
570	Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease. Current Medicinal Chemistry, 2020, 27, 5137-5158.	1.2	5
571	Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential. Current Neuropharmacology, 2019, 17, 563-579.	1.4	48

#	Article	IF	CITATIONS
572	Rhythmic Haptic Cueing Using Wearable Devices as Physiotherapy for Huntington Disease: Case Study. JMIR Rehabilitation and Assistive Technologies, 2020, 7, e18589.	1.1	6
573	Protection from the Pathogenesis of Neurodegenerative Disorders, including Alzheimer's Disease, Amyotrophic Lateral Sclerosis, Huntington's Disease, and Parkinson's Diseases, through the Mitigation of Reactive Oxygen Species. Journal of Neuroscience and Neurological Disorders, 2019, 3, 148-161.	0.1	10
574	Risk Assessment for Huntington's Disease for (Future) Offspring Requires Offering Preconceptional CAG Analysis to Both Partners. Journal of Huntington's Disease, 2019, 8, 71-78.	0.9	7
575	A Novel Caenorhabditis Elegans Proteinopathy Model Shows Changes in mRNA Translational Frameshifting During Aging. Cellular Physiology and Biochemistry, 2019, 52, 970-983.	1.1	3
576	The adjustment of \hat{I}^3 -aminobutyric acidAtonic subunits in Huntington's disease: from transcription to translation to synaptic levels into the neostriatum. Neural Regeneration Research, 2018, 13, 584.	1.6	6
577	Histone methylation in Huntington's disease: are bivalent promoters the critical targets?. Neural Regeneration Research, 2018, 13, 1191.	1.6	7
578	A concise review of human brain methylome during aging and neurodegenerative diseases. BMB Reports, 2019, 52, 577-588.	1.1	26
579	Helper virus-free gutless adenovirus (HF-GLAd): a new platform for gene therapy. BMB Reports, 2020, 53, 565-575.	1.1	9
580	Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. ELife, 2020, 9, .	2.8	24
581	Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Molecular Biology, 2021, 55, 683-704.	0.4	4
583	Age-related mitochondrial alterations in brain and skeletal muscle of the YAC128 model of Huntington disease. Npj Aging and Mechanisms of Disease, 2021, 7, 26.	4.5	8
584	Neuroinflammation in Huntington's. Neuromethods, 2022, , 215-233.	0.2	0
585	Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurology: Genetics, 2021, 7, e617.	0.9	20
586	Global Rhes knockout in the Q175 Huntington's disease mouse model. PLoS ONE, 2021, 16, e0258486.	1.1	4
587	Next generation sequencing: A promising tool to explore the personalized medicine in understanding the neurodegenerative diseases. International Journal of Clinical Biochemistry and Research, 2021, 8, 153-162.	0.0	0
588	A long way to go: caspase inhibitors in clinical use. Cell Death and Disease, 2021, 12, 949.	2.7	57
589	Human Sirtuin Regulators: The "Success―Stories. Frontiers in Physiology, 2021, 12, 752117.	1.3	52
590	Esculetin Provides Neuroprotection against Mutant Huntingtin-Induced Toxicity in Huntington's Disease Models. Pharmaceuticals, 2021, 14, 1044.	1.7	2

#	Article	IF	Citations
591	Imbalanced basal ganglia connectivity is associated with motor deficits and apathy in Huntington's disease. Brain, 2022, 145, 991-1000.	3.7	11
592	Activation of in. Neuromethods, 2022, , 39-70.	0.2	0
593	Dementia and Psychiatric Disorders. , 2017, , 125-147.		0
595	Huntington Disease., 2018,, 93-99.		1
598	Vigour of CRISPR/Cas9 Gene Editing in Alzheimer's Disease. Journal of Neuroscience and Neurological Disorders, 2018, 2, 047-051.	0.1	0
599	Metabolic Alterations Amalgamated with Huntington's Disease. , 2019, , 163-183.		0
600	Exploration of a Co-Production Approach to Developing a Walking Group with People with Huntington's Disease. Med One, 2019, 4, e190022.	1.5	2
601	Retinal and choroidal morphological changes in Huntington's disease. Rossiiskii Oftal'mologicheskii Zhurnal, 2019, 12, 56-63.	0.1	O
603	The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. Current Organic Chemistry, 2019, 23, 335-360.	0.9	7
606	Psychopharmacotherapy in Patients with Tics and Other Motor Disorders. , 2020, , 1-31.		0
607	Genetik menschlicher Erkrankungen. , 2020, , 725-812.		0
610	Potential for Stem Cell-Based Therapy in the Road of Treatment for Neurological Disorders Secondary to COVID-19. Regenerative Engineering and Translational Medicine, 2022, 8, 355-369.	1.6	3
611	Nanotechnology in gene delivery for neural regenerative medicine., 2020,, 123-157.		0
612	Generalizing MRI Subcortical Segmentation to Neurodegeneration. Lecture Notes in Computer Science, 2020, , 139-147.	1.0	3
613	Microglial Mitophagy and Neurodegenerative Disorders. Advances in Medical Diagnosis, Treatment, and Care, 2020, , 88-128.	0.1	0
614	Emotion recognition and inhibitory control in manifest and pre-manifest Huntington's disease: evidence from a new Stroop task. Neural Regeneration Research, 2020, 15, 1518.	1.6	4
615	Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics, 2021, 13, 1897.	2.0	27
617	Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease?. Frontiers in Aging Neuroscience, 2021, 13, 736734.	1.7	3

#	Article	IF	Citations
618	Mitochondrial iron metabolism and neurodegenerative diseases. NeuroToxicology, 2022, 88, 88-101.	1.4	34
621	Do Disruptions in the Circadian Timing System Contribute to Autonomic Dysfunction in Huntington's Disease?. Yale Journal of Biology and Medicine, 2019, 92, 291-303.	0.2	3
622	Volumetric MRI-Based Biomarkers in Huntington's Disease: An Evidentiary Review. Frontiers in Neurology, 2021, 12, 712555.	1.1	3
623	Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130061.	1.1	8
624	DNA Methylation in Huntington's Disease. International Journal of Molecular Sciences, 2021, 22, 12736.	1.8	14
625	Circadian rhythms in neurodegenerative disorders. Nature Reviews Neurology, 2022, 18, 7-24.	4.9	94
626	Neurology Evaluation in Dementia and Neurodegenerative Disease. , 2022, , 227-245.		0
627	Innovative Therapeutic Approaches for Huntington's Disease: From Nucleic Acids to GPCR-Targeting Small Molecules. Frontiers in Cellular Neuroscience, 2021, 15, 785703.	1.8	14
628	CRISPR-Cas9-Mediated Gene Therapy in Neurological Disorders. Molecular Neurobiology, 2022, 59, 968-982.	1.9	19
629	Huntington's disease gene hunters: an expanding tale. Movement Disorders Clinical Practice, 2022, 9, 330-333.	0.8	0
630	Impact of Oxidative DNA Damage and the Role of DNA Glycosylases in Neurological Dysfunction. International Journal of Molecular Sciences, 2021, 22, 12924.	1.8	5
632	Kynurenic acid in neurodegenerative disorders—unique neuroprotection or doubleâ€edged sword?. CNS Neuroscience and Therapeutics, 2022, 28, 19-35.	1.9	38
633	Neuroinflammation in Huntington's Disease: A Starring Role for Astrocyte and Microglia. Current Neuropharmacology, 2022, 20, 1116-1143.	1.4	22
635	Human-Induced Pluripotent Stem Cell–Based Models for Studying Sex-Specific Differences in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2021, , 57-88.	0.8	4
636	Volumetric MRI-Based Biomarkers in Huntington's Disease: An Evidentiary Review. Frontiers in Neurology, 2021, 12, 712555.	1.1	19
637	Synaptic Damage and Its Clinical Correlates in People With Early Huntington Disease. Neurology, 2022, 98, .	1.5	26
638	Genome Editing Technology for the Study and Correction of Neurodegenerative Diseases. Neurochemical Journal, 2021, 15, 339-352.	0.2	1
639	Understanding the Burdens Associated with Huntington's Disease in Manifest Patients and Care Partners–Comparing to Parkinson's Disease and the General Population. Brain Sciences, 2022, 12, 161.	1.1	8

#	Article	IF	Citations
640	Dysregulation of the Basal Ganglia Indirect Pathway in Early Symptomatic <i>Q175</i> Huntington's Disease Mice. Journal of Neuroscience, 2022, 42, 2080-2102.	1.7	6
641	SUPT4H1-edited stem cell therapy rescues neuronal dysfunction in a mouse model for Huntington's disease. Npj Regenerative Medicine, 2022, 7, 8.	2.5	12
642	Emerging prospects of extracellular vesicles for brain disease theranostics. Journal of Controlled Release, 2022, 341, 844-868.	4.8	24
643	Ginsenoside Rd: A promising natural neuroprotective agent. Phytomedicine, 2022, 95, 153883.	2.3	47
646	Ocular Motor Findings Aid in Differentiation of Spinocerebellar Ataxia Type 17 from Huntington's Disease. Cerebellum, 2023, 22, 1-13.	1.4	5
647	Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 754110.	1.8	16
648	Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Frontiers in Molecular Neuroscience, 2021, 14, 792364.	1.4	33
649	Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nature Reviews Neurology, 2022, 18, 117-124.	4.9	19
650	Extreme conservation of the poly-glutamine tract in huntingtin is related to neurodevelopmental functions: the "better―may become the "enemy of the good―in the course of evolution. Cell Death and Differentiation, 2022, 29, 266-268.	5.0	0
652	Epidemiology and economic burden of Huntington's disease: a Canadian provincial public health system perspective. Journal of Medical Economics, 2022, 25, 212-219.	1.0	7
653	Measuring movement in health and disease. Brain Research Bulletin, 2022, 181, 167-174.	1.4	2
654	$\rm IKK\hat{I}^2$ signaling mediates metabolic changes in the hypothalamus of a Huntington disease mouse model. IScience, 2022, 25, 103771.	1.9	3
655	Targeted protein degradation: Emerging concepts and protein state-specific targeting principles. Current Opinion in Chemical Biology, 2022, 67, 102114.	2.8	7
656	Combining Literature Review With a Ground Truth Approach for Diagnosing Huntington's Disease Phenocopy. Frontiers in Neurology, 2022, 13, 817753.	1.1	3
659	Dynamics of huntingtin protein interactions in the striatum identifies candidate modifiers of Huntington disease. Cell Systems, 2022, 13, 304-320.e5.	2.9	15
661	A Machineâ€Learning Derived Huntington's Disease Progression Model: Insights for Clinical Trial Design. Movement Disorders, 2022, 37, 553-562.	2.2	20
662	Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death and Disease, 2021, 12, 1139.	2.7	10
663	Food bioactives: the food image behind the curtain of health promotion and prevention against several degenerative diseases. Studies in Natural Products Chemistry, 2022, , 391-421.	0.8	6

#	Article	IF	Citations
665	Brain-derived neurotrophic factor and its clinical applications. Medical Journal of Dr D Y Patil Vidyapeeth, 2022, .	0.0	0
666	Preventive drugs for Huntington's disease: A choice-based conjoint survey of patient preferences. Journal of Clinical and Translational Science, 2022, 6, e35.	0.3	0
667	Function and therapeutic value of astrocytes in neurological diseases. Nature Reviews Drug Discovery, 2022, 21, 339-358.	21.5	160
668	Glycogen Synthase Kinase $3\hat{l}^2$ Involvement in Neuroinflammation and Neurodegenerative Diseases. Current Medicinal Chemistry, 2022, 29, 4631-4697.	1.2	14
669	Defective repair of topoisomerase I induced chromosomal damage in Huntington's disease. Cellular and Molecular Life Sciences, 2022, 79, 160.	2.4	3
670	Mitochondrial ATP Synthase is a Target of Oxidative Stress in Neurodegenerative Diseases. Frontiers in Molecular Biosciences, 2022, 9, 854321.	1.6	15
671	Inhibitory control, working memory and coping with stress: Associations with symptoms of anxiety and depression in adults with Huntington's disease Neuropsychology, 2022, 36, 288-296.	1.0	3
672	Defining Utility Values for Chorea Health States in Patients with Huntington's Disease. Advances in Therapy, 2022, 39, 1784-1793.	1.3	0
673	<scp>TRUEE</scp> ; a bioinformatic pipeline to define the functional microRNA targetome of Arabidopsis. Plant Journal, 2022, 110, 1476-1492.	2.8	4
674	Siah-1-interacting protein regulates mutated huntingtin protein aggregation in Huntington's disease models. Cell and Bioscience, 2022, 12, 34.	2.1	4
675	Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. Journal of Nanomaterials, 2022, 2022, 1-19.	1.5	38
676	Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. Biology, 2022, 11, 440.	1.3	13
678	New pathogenic insights from large animal models of neurodegenerative diseases. Protein and Cell, 2022, 13, 707-720.	4.8	19
679	Alterations in the Gut Fungal Community in a Mouse Model of Huntington's Disease. Microbiology Spectrum, 2022, 10, e0219221.	1,2	11
681	Genetic modifiers of Huntington disease differentially influence motor and cognitive domains. American Journal of Human Genetics, 2022, 109, 885-899.	2.6	29
683	Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Frontiers in Cell and Developmental Biology, 2022, 10, 837337.	1.8	17
684	Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset. Nature Neuroscience, 2022, 25, 446-457.	7.1	31
685	Metabotropic glutamate receptor 5 knockout rescues obesity phenotype in a mouse model of Huntington's disease. Scientific Reports, 2022, 12, 5621.	1.6	3

#	ARTICLE	IF	CITATIONS
686	Haplotype-specific insertion-deletion variations for allele-specific targeting in Huntington's disease. Molecular Therapy - Methods and Clinical Development, 2022, 25, 84-95.	1.8	5
689	Genetically modified large animal models for investigating neurodegenerative diseases. Cell and Bioscience, $2021,11,218.$	2.1	14
690	Targeted Genetic Reduction of Mutant Huntingtin Lessens Cardiac Pathology in the BACHD Mouse Model of Huntington's Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 810810.	1.1	2
692	Polyglutamine-Specific Gold Nanoparticle Complex Alleviates Mutant Huntingtin-Induced Toxicity. ACS Applied Materials & Diterfaces, 2021, 13, 60894-60906.	4.0	3
693	Posiphen Reduces the Levels of Huntingtin Protein through Translation Suppression. Pharmaceutics, 2021, 13, 2109.	2.0	3
695	Neural Network Aided Detection of Huntington Disease. Journal of Clinical Medicine, 2022, 11, 2110.	1.0	4
696	Standardizing the CAP Score in Huntington's Disease by Predicting Age-at-Onset. Journal of Huntington's Disease, 2022, 11, 153-171.	0.9	11
697	Hospital Admissions of Huntington´s Disease patients in a Huntington´s Disease centre between 2011 and 2016: a retrospective analysis. Movement Disorders Clinical Practice, 0, , .	0.8	0
698	Altered Cholesterol Homeostasis in Huntington's Disease. Frontiers in Aging Neuroscience, 2022, 14, 797220.	1.7	22
699	Cognitive Dysfunction in Repeat Expansion Diseases: A Review. Frontiers in Aging Neuroscience, 2022, 14, 841711.	1.7	4
706	Contribution of proteases to the hallmarks of aging and to ageâ€related neurodegeneration. Aging Cell, 2022, 21, e13603.	3.0	19
707	The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2022, 14, 872134.	1.7	21
708	MicroRNA Alteration, Application as Biomarkers, and Therapeutic Approaches in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2022, 23, 4718.	1.8	28
709	Second Sphere Interactions in Amyloidogenic Diseases. Chemical Reviews, 2022, 122, 12132-12206.	23.0	8
710	Natural history and burden of Huntington's disease in the <scp>UK</scp> : A <scp>populationâ€based</scp> cohort study. European Journal of Neurology, 2022, 29, 2249-2257.	1.7	6
711	The Lived Experiences of Depression in Huntington's Disease: A Qualitative Study. Journal of Huntington's Disease, 2022, 11, 321-335.	0.9	4
712	A Glimpse of Molecular Biomarkers in Huntington's Disease. International Journal of Molecular Sciences, 2022, 23, 5411.	1.8	15
714	From older to younger generations: Intergenerational transmission of health-related roles in families with Huntington's disease. Journal of Aging Studies, 2022, 61, 101027.	0.7	3

#	Article	IF	Citations
715	Cysteine metabolism and hydrogen sulfide signaling in Huntington's disease. Free Radical Biology and Medicine, 2022, 186, 93-98.	1.3	17
716	Adeno-Associated Viruses for Modeling Neurological Diseases in Animals: Achievements and Prospects. Biomedicines, 2022, 10, 1140.	1.4	2
717	How the study of digital footprints can supplement research in behavioral genetics and molecular psychology. , 0, 1, 2.		5
718	Healthcare resource utilization and costs in individuals with Huntington's disease by disease stage in a US population. Journal of Medical Economics, 2022, 25, 722-729.	1.0	2
719	CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy. Neuroscience Bulletin, 2022, 38, 1397-1408.	1.5	2
720	Hsp40 overexpression in pacemaker neurons delays circadian dysfunction in a <i>Drosophila</i> model of Huntington's disease. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	2
723	A New Perspective on Huntington's Disease: How a Neurological Disorder Influences the Peripheral Tissues. International Journal of Molecular Sciences, 2022, 23, 6089.	1.8	7
725	Canadian healthcare capacity gaps for disease-modifying treatment in Huntington's disease: a survey of current practice and modelling of future needs. BMJ Open, 2022, 12, e062740.	0.8	1
726	Gut Bacteria Regulate the Pathogenesis of Huntington's Disease in Drosophila Model. Frontiers in Neuroscience, 2022, 16, .	1.4	9
727	Thalamocortical Projections Are Significantly Impaired in the R6/2 Mouse Model of Huntington's Disease. ENeuro, 2022, 9, ENEURO.0103-22.2022.	0.9	3
728	Report of a family with Huntington's disease., 2022, 8, 241-245.		0
729	NMR spectroscopy, excited states and relevance to problems in cell biology – transient pre-nucleation tetramerization of huntingtin and insights into Huntington's disease. Journal of Cell Science, 2022, 135, .	1.2	5
730	A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurology, The, 2022, 21, 632-644.	4.9	78
731	Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities. Lancet Neurology, The, 2022, 21, 645-658.	4.9	96
732	Changes in brain activity with tominersen in early-manifest Huntington's disease. Brain Communications, 2022, 4, .	1.5	7
733	The roles of HSP40/DNAJ protein family in neurodegenerative diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2022, 51, 640-646.	0.1	1
734	A Remote Digital Monitoring Platform to Assess Cognitive and Motor Symptoms in Huntington Disease: Cross-sectional Validation Study. Journal of Medical Internet Research, 2022, 24, e32997.	2.1	15
735	Brain microvascular endothelial cell dysfunction in an isogenic juvenile iPSC model of Huntington's disease. Fluids and Barriers of the CNS, 2022, 19, .	2.4	8

#	Article	IF	CITATIONS
736	Renin-Angiotensin System in Huntington′s Disease: Evidence from Animal Models and Human Patients. International Journal of Molecular Sciences, 2022, 23, 7686.	1.8	2
737	Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. Biology, 2022, 11, 1009.	1.3	4
738	GRASP55 regulates the unconventional secretion and aggregation of mutant huntingtin. Journal of Biological Chemistry, 2022, 298, 102219.	1.6	14
739	Quantitative NMR analysis of the kinetics of prenucleation oligomerization and aggregation of pathogenic huntingtin exon-1 protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
740	Brain Region- and Age-Dependent 5-Hydroxymethylcytosine Activity in the Non-Human Primate. Frontiers in Aging Neuroscience, 0, 14, .	1.7	5
741	Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. Journal of Huntington's Disease, 2022, 11, 243-267.	0.9	8
742	HAP40 is a conserved central regulator of Huntingtin and a potential modulator of Huntington's disease pathogenesis. PLoS Genetics, 2022, 18, e1010302.	1.5	5
743	Hallmarks of neurodegenerative disease: A systems pharmacology perspective. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 1399-1429.	1.3	15
744	Early Changes in Striatal Activity and Motor Kinematics in a Huntington's Disease Mouse Model. Movement Disorders, 2022, 37, 2021-2032.	2.2	9
745	The role of Cdk5 in neurological disorders. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	14
746	Alternative processing of human <i>HTT</i> mRNA with implications for Huntington's disease therapeutics. Brain, 2022, 145, 4409-4424.	3.7	15
748	Biodistribution and dosimetry in human healthy volunteers of the PET radioligands [11C]CHDI-00485180-R and [11C]CHDI-00485626, designed for quantification of cerebral aggregated mutant huntingtin. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 50, 48-60.	3.3	4
749	Hunting for the cause: Evidence for prion-like mechanisms in Huntington $\hat{a} \in \mathbb{T}^M$ s disease. Frontiers in Neuroscience, 0, 16, .	1.4	6
750	PAM-altering SNP-based allele-specific CRISPR-Cas9 therapeutic strategies for Huntington's disease. Molecular Therapy - Methods and Clinical Development, 2022, 26, 547-561.	1.8	5
751	CAG Repeat Instability in the Peripheral and Central Nervous System of Transgenic Huntington's Disease Monkeys. Biomedicines, 2022, 10, 1863.	1.4	1
752	HTT-OMNI: A Web-based Platform for Huntingtin Interaction Exploration and Multi-omics Data Integration. Molecular and Cellular Proteomics, 2022, 21, 100275.	2.5	3
753	Progress and Challenges in Targeted Protein Degradation for Neurodegenerative Disease Therapy. Journal of Medicinal Chemistry, 2022, 65, 11454-11477.	2.9	31
754	Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. International Journal of Biological Macromolecules, 2022, 220, 703-720.	3.6	15

#	Article	lF	Citations
755	An unsupervised computational pipeline identifies potential repurposable drugs to treat Huntington's disease and multiple sclerosis. Artificial Intelligence in the Life Sciences, 2022, 2, 100042.	1.6	1
756	Inflammasome activation and assembly in Huntington's disease. Molecular Immunology, 2022, 151, 134-142.	1.0	5
757	Blood–brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. Lab on A Chip, 2022, 22, 3579-3602.	3.1	20
758	The role of alleles with an intermediate number of trinucleotide repeats in Parkinson's disease and other neurodegenerative disorders. Zhurnal Nevrologii I Psikhiatrii Imeni S S Korsakova, 2022, 122, 42.	0.1	0
759	Post-transcriptional regulation. , 2022, , 89-104.		0
760	Small Molecules Targeting Repeat Sequences Causing Neurological Disorders. , 2022, , 1-31.		0
761	Mitochondrial Dysregulation and the Influence in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2022, , 109-118.	0.8	1
762	Allele-specific silencing of the gain-of-function mutation in Huntington's disease using CRISPR/Cas9. JCI Insight, 2022, 7, .	2.3	9
763	Huntington's Disease: A Clinical Review. Cureus, 2022, , .	0.2	5
764	Proteomic Analysis of Adult Human Hippocampal Subfields Demonstrates Regional Heterogeneity in the Protein Expression. Journal of Proteome Research, 2022, 21, 2293-2310.	1.8	1
765	Huntington's disease age at motor onset is modified by the tandem hexamer repeat in TCERG1. Npj Genomic Medicine, 2022, 7, .	1.7	5
766	Abnormal molecular signatures of inflammation, energy metabolism, and vesicle biology in human Huntington disease peripheral tissues. Genome Biology, 2022, 23, .	3.8	10
768	Haplotyping SNPs for allele-specific gene editing of the expanded huntingtin allele using long-read sequencing. Human Genetics and Genomics Advances, 2023, 4, 100146.	1.0	6
770	Neuropathology of Huntington's Disease. , 0, , .		0
771	Impaired XK recycling for importing manganese underlies striatal vulnerability in Huntington's disease. Journal of Cell Biology, 2022, 221, .	2.3	5
772	Focusing the pivotal role of nanotechnology in Huntington's disease: an insight into the recent advancements. Environmental Science and Pollution Research, 2022, 29, 73809-73827.	2.7	9
773	The cytoprotective role of GM1 ganglioside in Huntington disease cells. Molecular Biology Reports, 2022, 49, 12253-12258.	1.0	2
774	Kynurenineâ€3â€monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression. Journal of Cellular Physiology, 2022, 237, 4339-4355.	2.0	8

#	ARTICLE	IF	CITATIONS
775	Kynurenine 3-Monooxygenase Interacts with Huntingtin at the Outer Mitochondrial Membrane. Biomedicines, 2022, 10, 2294.	1.4	4
776	Therapeutic potential of Polygala saponins in neurological diseases. Phytomedicine, 2023, 108, 154483.	2.3	11
777	Suppression of trinucleotide repeat expansion in spermatogenic cells in Huntington's disease. Journal of Assisted Reproduction and Genetics, 0, , .	1.2	1
778	A novel rhesus macaque model of Huntingtonâ \in TM s disease recapitulates key neuropathological changes along with motor and cognitive decline. ELife, 0, 11, .	2.8	7
779	Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules, 2022, 12, 1429.	1.8	4
780	Reproductive choices and intrafamilial communication in neurogenetic diseases with different self-estimated severities. Journal of Medical Genetics, 2023, 60, 346-351.	1.5	4
781	Cognitive processes of apathy in Huntington's disease show high sensitivity to disease progression. Clinical Parkinsonism & Related Disorders, 2022, 7, 100168.	0.5	0
782	Mutant huntingtin messenger RNA forms neuronal nuclear clusters in rodent and human brains. Brain Communications, 0, , .	1.5	7
783	Benefits of global mutant huntingtin lowering diminish over time in a Huntington's disease mouse model. JCI Insight, 2022, 7, .	2.3	7
784	Zebrafish as a model organism for neurodegenerative disease. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	18
785	Comorbidities and clinical outcomes in adult- and juvenile-onset Huntington's disease: a study of linked Swedish National Registries (2002–2019). Journal of Neurology, 2023, 270, 864-876.	1.8	2
786	Involvement of the G-Protein-Coupled Estrogen Receptor-1 (GPER) Signaling Pathway in Neurodegenerative Disorders: A Review. Cellular and Molecular Neurobiology, 2023, 43, 1833-1847.	1.7	4
787	Insights into White Matter Defect in Huntington's Disease. Cells, 2022, 11, 3381.	1.8	5
788	Mapping brain gene coexpression in daytime transcriptomes unveils diurnal molecular networks and deciphers perturbation gene signatures. Neuron, 2022, 110, 3318-3338.e9.	3.8	8
789	Intellectual enrichment and genetic modifiers of cognition and brain volume in Huntington's disease. Brain Communications, 2022, 4, .	1.5	3
790	Glial Glutamine Homeostasis in Health and Disease. Neurochemical Research, 2023, 48, 1100-1128.	1.6	18
791	Microarray profiling of hypothalamic gene expression changes in Huntingtonâ \in TM s disease mouse models. Frontiers in Neuroscience, 0, 16, .	1.4	3
792	Calcium imaging: A versatile tool to examine Huntingtonâ \in [™] s disease mechanisms and progression. Frontiers in Neuroscience, 0, 16, .	1.4	2

#	Article	IF	CITATIONS
793	Dietary ketosis improves circadian dysfunction as well as motor symptoms in the BACHD mouse model of Huntingtonâ \in ^{Ms} disease. Frontiers in Nutrition, 0, 9, .	1.6	4
794	Psychopharmacotherapy in Patients with Tics and Other Motor Disorders. , 2022, , 4271-4301.		0
795	Forecasting individual progression trajectories in Huntington disease enables more powered clinical trials. Scientific Reports, 2022, 12, .	1.6	5
796	Huntingtin exon $\bf 1$ deletion does not alter the subcellular distribution of huntingtin and gene transcription in mice. Frontiers in Cellular Neuroscience, $\bf 0, 16, .$	1.8	0
797	Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Seminars in Cell and Developmental Biology, 2024, 154, 316-327.	2.3	1
798	Fragment-based virtual screening identifies a first-in-class preclinical drug candidate for Huntington's disease. Scientific Reports, 2022, 12, .	1.6	6
799	Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils. Journal of Structural Biology: X, 2022, 6, 100077.	0.7	2
801	Leukocyte Telomere Length as Potential Biomarker of HD Progression: A Follow-Up Study. International Journal of Molecular Sciences, 2022, 23, 13449.	1.8	3
802	HSF1 and Its Role in Huntington's Disease Pathology. Advances in Experimental Medicine and Biology, 2022, , 35-95.	0.8	1
803	Investigational treatments for neurodegenerative diseases caused by inheritance of gene mutations: lessons from recent clinical trials. Neural Regeneration Research, 2023, .	1.6	0
804	Single-nuclei transcriptome analysis of Huntington disease iPSC and mouse astrocytes implicates maturation and functional deficits. IScience, 2023, 26, 105732.	1.9	7
805	PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Research Reviews, 2023, 84, 101817.	5.0	29
806	Repeat Detector: versatile sizing of expanded tandem repeats and identification of interrupted alleles from targeted DNA sequencing. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	5
808	A Novel Huntington's Disease Assessment Platform to Support Future Drug Discovery and Development. International Journal of Molecular Sciences, 2022, 23, 14763.	1.8	8
809	Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Translational Neurodegeneration, 2022, 11 , .	3.6	11
810	Psychosocial Impact of Huntington's Disease and Incentives to Improve Care for Affected Families in the Underserved Region of the Slovak Republic. Journal of Personalized Medicine, 2022, 12, 1941.	1.1	1
811	Dynamic 5-Hydroxymethylcytosine Change: Implication for Aging of Non-Human Primate Brain. Epigenomes, 2022, 6, 41.	0.8	0
812	Huntingtin regulates calcium fluxes in skeletal muscle. Journal of General Physiology, 2023, 155, .	0.9	2

#	ARTICLE	IF	CITATIONS
813	PGCLCs of human 45,XO reveal pathogenetic pathways of neurocognitive and psychosocial disorders. Cell and Bioscience, 2022, 12, .	2.1	1
814	CRISPR/Cas9 Mediated Therapeutic Approach in Huntington's Disease. Molecular Neurobiology, 2023, 60, 1486-1498.	1.9	8
817	Reduced <scp>D₂</scp> / <scp>D₃</scp> Receptor Binding and Glucose Metabolism in a Macaque Model of Huntington's Disease. Movement Disorders, 2023, 38, 143-147.	2.2	3
818	Design and Evaluation of [¹⁸ F]CHDI-650 as a Positron Emission Tomography Ligand to Image Mutant Huntingtin Aggregates. Journal of Medicinal Chemistry, 2023, 66, 641-656.	2.9	9
819	Research advances in cGAS–stimulator of interferon genes pathway and central nervous system diseases: Focus on new therapeutic approaches. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	5
820	Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules, 2023, 13, 26.	1.8	6
821	Early TNF-Dependent Regulation of Excitatory and Inhibitory Synapses on Striatal Direct Pathway Medium Spiny Neurons in the YAC128 Mouse Model of Huntington's Disease. Journal of Neuroscience, 2023, 43, 672-680.	1.7	6
822	Acetylation State of Lysine 14 of Histone H3.3 Affects Mutant Huntingtin Induced Pathogenesis. International Journal of Molecular Sciences, 2022, 23, 15173.	1.8	3
823	Nrf2 Pathway in Huntington's Disease (HD): What Is Its Role?. International Journal of Molecular Sciences, 2022, 23, 15272.	1.8	8
824	HSP70-binding motifs function as protein quality control degrons. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	6
825	Neuronal and astrocytic contributions to Huntingtonâ∈™s disease dissected with zinc finger protein transcriptional repressors. Cell Reports, 2023, 42, 111953.	2.9	7
827	Detection of antibodies against the huntingtin protein in human plasma. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	2
828	The MOE Modification of RNA: Origins and Widescale Impact on the Oligonucleotide Therapeutics Field. Helvetica Chimica Acta, 2023, 106 , .	1.0	4
829	The role of <scp>STING</scp> signaling in central nervous system infection and neuroinflammatory disease. WIREs Mechanisms of Disease, 2023, 15, .	1.5	7
830	Reduced-penetrance Huntington's disease-causing alleles with 39 CAG trinucleotide repeats could be a genetic factor of amyotrophic lateral sclerosis. Journal of the Chinese Medical Association, 2023, 86, 47-51.	0.6	0
831	Health care resource utilization and costs among individuals with vs without Huntington disease in a US population. Journal of Managed Care & Specialty Pharmacy, 2022, 28, 1228-1239.	0.5	2
833	PolyQ-Expanded Mutant Huntingtin Forms Inclusion Body Following Transient Cold Shock in a Two-Step Aggregation Mechanism. ACS Chemical Neuroscience, 2023, 14, 277-288.	1.7	2
834	Intravenous AAV9 administration results in safe and widespread distribution of transgene in the brain of mini-pig. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	2

#	Article	IF	CITATIONS
835	Quality of life, health-related quality of life, and associated factors in Huntingtonâ \in TM s disease: a systematic review. Journal of Neurology, 0, , .	1.8	1
836	Emerging Selenium Nanoparticles for CNS Intervention. , 0, , .		0
837	Clustering and prediction of disease progression trajectories in Huntington's disease: An analysis of Enroll-HD data using a machine learning approach. Frontiers in Neurology, 0, 13, .	1.1	5
838	The updated development of blood-based biomarkers for Huntington's disease. Journal of Neurology, 2023, 270, 2483-2503.	1.8	2
839	Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules, 2023, 28, 1283.	1.7	5
841	ALOX5-mediated ferroptosis acts as a distinct cell death pathway upon oxidative stress in Huntington's disease. Genes and Development, 2023, 37, 204-217.	2.7	12
842	A comprehensive perspective of Huntington's disease and mitochondrial dysfunction. Mitochondrion, 2023, 70, 8-19.	1.6	0
843	The temporal dynamics of mood and their association with depressive symptoms in Huntington's disease. Journal of Affective Disorders, 2023, 328, 22-28.	2.0	1
844	Resting-state fMRI reveals longitudinal alterations in brain network connectivity in the zQ175DN mouse model of Huntington's disease. Neurobiology of Disease, 2023, 181, 106095.	2.1	5
845	Early detection of exon 1 huntingtin aggregation in zQ175 brains by molecular and histological approaches. Brain Communications, 2022, 5 , .	1.5	4
846	Nanotechnology-based drug delivery for the treatment of CNS disorders. Translational Neuroscience, 2022, 13, 527-546.	0.7	13
847	Necroptosis in CNS diseases: Focus on astrocytes. Frontiers in Aging Neuroscience, 0, 14, .	1.7	4
848	Size distributions of intracellular condensates reflect competition between coalescence and nucleation. Nature Physics, 2023, 19, 586-596.	6.5	22
849	Speech biomarkers in Huntington's disease: A crossâ€sectional study in preâ€symptomatic, prodromal and early manifest stages. European Journal of Neurology, 2023, 30, 1262-1271.	1.7	4
850	An Overview of the Pathophysiological Mechanisms of 3-Nitropropionic Acid (3-NPA) as a Neurotoxin in a Huntington's Disease Model and Its Relevance to Drug Discovery and Development. Neurochemical Research, 2023, 48, 1631-1647.	1.6	7
851	Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nature Biomedical Engineering, 2023, 7, 629-646.	11.6	12
852	Subtyping monogenic disorders: Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 171-184.	1.0	1
853	Hallmarks of neurodegenerative diseases. Cell, 2023, 186, 693-714.	13.5	222

#	Article	IF	CITATIONS
854	Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants, 2023, 12, 571.	2.2	7
855	Astrocytic contributions to Huntington's disease pathophysiology. Annals of the New York Academy of Sciences, 2023, 1522, 42-59.	1.8	7
856	Integrated Bioinformatics Analysis of Shared Genes, miRNA, Biological Pathways and Their Potential Role as Therapeutic Targets in Huntington's Disease Stages. International Journal of Molecular Sciences, 2023, 24, 4873.	1.8	2
857	Advances of H2S in Regulating Neurodegenerative Diseases by Preserving Mitochondria Function. Antioxidants, 2023, 12, 652.	2.2	9
858	Disruptions of Circadian Rhythms and Sleep/Wake Cycles in Neurologic Disorders. Healthy Ageing and Longevity, 2023, , 461-480.	0.2	0
860	Sphingolipids and impaired hypoxic stress responses in Huntington disease. Progress in Lipid Research, 2023, 90, 101224.	5.3	3
861	Repetitive elements in aging and neurodegeneration. Trends in Genetics, 2023, 39, 381-400.	2.9	9
862	Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. Advances in Protein Chemistry and Structural Biology, 2023, , 415-455.	1.0	0
863	The HSPB1-p62/SQSTM1 functional complex regulates the unconventional secretion and transcellular spreading of the HD-associated mutant huntingtin protein. Human Molecular Genetics, 2023, 32, 2269-2291.	1.4	7
864	Role of autophagy and mitophagy in neurodegenerative disorders. CNS and Neurological Disorders - Drug Targets, 2023, 22, .	0.8	1
865	Aberrant resting-state brain activity in Huntington's disease: A voxel-based meta-analysis. Frontiers in Neurology, 0, 14 , .	1.1	1
866	Role of Microbiota-Modified Bile Acids in the Regulation of Intracellular Organelles and Neurodegenerative Diseases. Genes, 2023, 14, 825.	1.0	3
867	The Role of Alleles with Intermediate Numbers of Trinucleotide Repeats in Parkinson's Disease and Other Neurodegenerative Diseases. Neuroscience and Behavioral Physiology, 2023, 53, 193-201.	0.2	0
868	Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models. Neurotherapeutics, 2023, 20, 48-66.	2.1	1
869	Revisiting the critical roles of reactive astrocytes in neurodegeneration. Molecular Psychiatry, 2023, 28, 2697-2706.	4.1	10
871	Vector enabled CRISPR gene editing $\hat{a} \in A$ revolutionary strategy for targeting the diversity of brain pathologies. Coordination Chemistry Reviews, 2023, 487, 215172.	9.5	0
874	An Understanding of Different Mechanisms Leading to Neurodegenerative Diseases., 2023,, 1-53.		0
875	Neuroprotective Activities of Cinnamic Acids and their Derivatives. Frontiers in Clinical Drug Research CNS and Neurological Disorders, 2023, , 238-261.	0.1	0

#	Article	IF	Citations
876	Multi-functional Ligands and Molecular Hybridization: Conceptual Aspects and Application in the Innovative Design of Drug Candidate Prototypes for Neurodegenerative Diseases. Frontiers in Clinical Drug Research CNS and Neurological Disorders, 2023, , 1-157.	0.1	0
887	Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Molecular Biotechnology, 0, , .	1.3	1
894	A survey of algorithms for the detection of genomic structural variants from long-read sequencing data. Nature Methods, 2023, 20, 1143-1158.	9.0	5
910	The regulatory role of lipophagy in central nervous system diseases. Cell Death Discovery, 2023, 9, .	2.0	2
912	Neuroprotective effects of alkaloids. , 2023, , 245-257.		0
922	Small Molecules Targeting Repeat Sequences Causing Neurological Disorders. , 2023, , 2107-2137.		0
926	Neurogenetic motor disorders. Handbook of Clinical Neurology / Edited By PJ Vinken and G W Bruyn, 2023, , 183-250.	1.0	0
927	Advances in the neuroimaging of motor disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2023, , 359-381.	1.0	0
950	Proteomics in Huntington's Disease Biomarker Discovery. Contemporary Clinical Neuroscience, 2023, , 209-246.	0.3	0
951	Effects of H2O2 and high doses of nicotinamide on laser-induced neuronal degeneration in mouse model of Huntington's disease. , 2023, , .		0
953	The relationship between disease-specific psychosocial stressors and depressive symptoms in Huntington's disease. Journal of Neurology, 2024, 271, 289-299.	1.8	2
960	TAR DNA-Binding Protein 43 as a Potential Biomarker for Huntington's Disease. Contemporary Clinical Neuroscience, 2023, , 351-366.	0.3	0
961	Mitochondrial/Oxidative Stress Biomarkers in Huntington's Disease. Contemporary Clinical Neuroscience, 2023, , 321-350.	0.3	0
962	Digital Measures in Huntington's Disease. Contemporary Clinical Neuroscience, 2023, , 433-457.	0.3	0
969	Inorganic and metal-based nanoparticles. , 2024, , 203-235.		0
972	Recent Developments in the Application of Computer-Aided Drug Design in Neurodegenerative Disorders., 2023,, 227-258.		0
974	SMALL-MOLECULE RNA-SPLICING MODULATORS. Medicinal Chemistry Reviews, 0, , 399-417.	0.1	0
980	Plasma GFAP and its association with disease severity in Huntington's disease. Journal of Neurology, 0,	1.8	0

#	Article	IF	CITATIONS
985	Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. Naunyn-Schmiedeberg's Archives of Pharmacology, $0, , .$	1.4	0
1013	Huntington's disease: From large animal models to HD gene therapy. , 2024, , 455-472.		0
1014	Gene editing for HD: Therapeutic prospects. , 2024, , 551-570.		0
1015	Pathophysiology of synapses and circuits in Huntington disease. , 2024, , 311-336.		0
1016	Huntington's disease: Clinical features, genetic diagnosis, and brain imaging., 2024, , 1-39.		0
1021	Omics and Network-based Approaches in Understanding HD Pathogenesis. , 0, , .		O
1023	Glycosphingolipids and central nervous system–related diseases. , 2024, , 243-351.		0