Ongoing hydrothermal activities within Enceladus

Nature 519, 207-210 DOI: 10.1038/nature14262

Citation Report

#	Article	IF	CITATIONS
1	Modeling Europa's dust plumes. Geophysical Research Letters, 2015, 42, 10,541.	1.5	24
2	SILICATES ON IAPETUS FROM CASSINI'S COMPOSITE INFRARED SPECTROMETER. Astrophysical Journal Letters, 2015, 811, L27.	3.0	1
3	Chemical Gardens as Flow-through Reactors Simulating Natural Hydrothermal Systems. Journal of Visualized Experiments, 2015, , .	0.2	17
4	Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300°C and 500Âbar. Progress in Earth and Planetary Science, 2015, 2, .	1.1	45
5	Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. Life, 2015, 5, 1652-1686.	1.1	55
6	Hints of hot springs found on Saturnian moon. Nature, 2015, , .	13.7	Ο
7	Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau. Chinese Journal of Oceanology and Limnology, 2015, 33, 1391-1401.	0.7	17
8	Microorganisms in extreme environments with a view to astrobiology in the outer solar system. Proceedings of SPIE, 2015, , .	0.8	1
9	Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations. Planetary and Space Science, 2015, 119, 208-221.	0.9	10
10	Enceladus' hot springs. Nature, 2015, 519, 162-163.	13.7	7
11	From Chemical Gardens to Chemobrionics. Chemical Reviews, 2015, 115, 8652-8703.	23.0	216
12	The fluffy core of Enceladus. Icarus, 2015, 258, 54-66.	1.1	61
14	The pH of Enceladus' ocean. Geochimica Et Cosmochimica Acta, 2015, 162, 202-219.	1.6	205
15	High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nature Communications, 2015, 6, 8604.	5.8	152
16	Impact craters: An ice study on Rhea. Icarus, 2015, 261, 80-90.	1.1	20
17	Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophysical Research Letters, 2016, 43, 5653-5660.	1.5	141
18	Geophysical controls of chemical disequilibria in Europa. Geophysical Research Letters, 2016, 43, 4871-4879.	1.5	153
19	THE EFFECTS OF CRACKING ON THE SURFACE POTENTIAL OF ICY GRAINS IN SATURN'S E-RING: LABORATORY STUDIES. Astrophysical Journal, 2016, 825, 106.	1.6	4

λτιών Ρερώ

	CITATION	Report	
#	Article	IF	CITATIONS
20	Strategic map for exploring the ocean-world Enceladus. Acta Astronautica, 2016, 126, 52-58.	1.7	20
21	AstRoMap European Astrobiology Roadmap. Astrobiology, 2016, 16, 201-243.	1.5	99
22	Enceladus's and Dione's floating ice shells supported by minimum stress isostasy. Geophysical Research Letters, 2016, 43, 10,088.	1.5	126
23	Enceladus Life Finder: The search for life in a habitable Moon. , 2016, , .		39
24	Crustal control of dissipative ocean tides in Enceladus and other icy moons. Icarus, 2016, 280, 278-299.	1.1	44
25	Microbial Morphology and Motility as Biosignatures for Outer Planet Missions. Astrobiology, 2016, 16, 755-774.	1.5	34
26	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	1.5	133
27	Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophysical Research Letters, 2016, 43, 7417-7423.	1.5	26
28	Fluid chemistry in the Solitaire and Dodo hydrothermal fields of the Central Indian Ridge. Geofluids, 2016, 16, 988-1005.	0.3	29
29	Hydrogen and carbon isotope systematics in hydrogenotrophic methanogenesis under H2-limited and H2-enriched conditions: implications for the origin of methane and its isotopic diagnosis. Progress in Earth and Planetary Science, 2016, 3, .	1.1	35
30	The diurnal libration and interior structure of Enceladus. Icarus, 2016, 277, 311-318.	1.1	41
31	THEO concept mission: Testing the Habitability of Enceladus's Ocean. Advances in Space Research, 2016, 58, 1117-1137.	1.2	13
32	Cassini's Grand Finale. Nature Geoscience, 2016, 9, 472-473.	5.4	17
33	Geologic evolution of the Lost City Hydrothermal Field. Geochemistry, Geophysics, Geosystems, 2016, 17, 375-394.	1.0	30
34	Genesis of volatile components at Saturn's regular satellites. Origin of Titan's atmosphere. Geochemistry International, 2016, 54, 7-26.	0.2	8
35	Potassium chloride-bearing ice VII and ice planet dynamics. Geochimica Et Cosmochimica Acta, 2016, 174, 156-166.	1.6	4
36	Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3972-3975.	3.3	74
38	Consequences of large impacts on Enceladus' core shape. Icarus, 2016, 264, 300-310.	1.1	31

#	Article	IF	CITATIONS
39	Navigation technology for exploration of glacier ice with maneuverable melting probes. Cold Regions Science and Technology, 2016, 123, 53-70.	1.6	46
40	Habitability: A Review. Astrobiology, 2016, 16, 89-117.	1.5	246
41	Aggregate particles in the plumes of Enceladus. Icarus, 2016, 264, 227-238.	1.1	16
42	Enceladus's measured physical libration requires a global subsurface ocean. Icarus, 2016, 264, 37-47.	1.1	289
43	Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research. Origins of Life and Evolution of Biospheres, 2017, 47, 39-56.	0.8	54
44	Synchronized chaotic targeting and acceleration of surface chemistry in prebiotic hydrothermal microenvironments. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1275-1280.	3.3	15
45	Remote Sensing of Potential Biosignatures from Rocky, Liquid, or Icy (Exo)Planetary Surfaces. Astrobiology, 2017, 17, 231-252.	1.5	29
46	Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies. Earth and Planetary Science Letters, 2017, 463, 36-47.	1.8	39
47	Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science, 2017, 356, 155-159.	6.0	396
48	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133.	6.0	7
48 49	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133. Fates of satellite ejecta in the Saturn system, II. Icarus, 2017, 284, 70-89.	6.0	7
48 49 51	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133. Fates of satellite ejecta in the Saturn system, II. Icarus, 2017, 284, 70-89. Radioisotope power system-based enceladus smallsat mission concept: Enceladus express. , 2017, , .	6.0	7 13 0
48 49 51 52	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133. Fates of satellite ejecta in the Saturn system, II. Icarus, 2017, 284, 70-89. Radioisotope power system-based enceladus smallsat mission concept: Enceladus express., 2017, ,. The impact of a pressurized regional sea or global ocean on stresses on Enceladus. Journal of Geophysical Research E: Planets, 2017, 122, 1258-1275.	6.0 1.1 1.5	7 13 0 12
48 49 51 52 53	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133. Fates of satellite ejecta in the Saturn system, II. Icarus, 2017, 284, 70-89. Radioisotope power system-based enceladus smallsat mission concept: Enceladus express., 2017, ,. The impact of a pressurized regional sea or global ocean on stresses on Enceladus. Journal of Ceophysical Research E: Planets, 2017, 122, 1258-1275. Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS. Icarus, 2017, 292, 1-12.	6.0 1.1 1.5 1.1	7 13 0 12 10
48 49 51 52 53 54	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133. Fates of satellite ejecta in the Saturn system, II. Icarus, 2017, 284, 70-89. Radioisotope power system-based enceladus smallsat mission concept: Enceladus express., 2017, ,. The impact of a pressurized regional sea or global ocean on stresses on Enceladus. Journal of Geophysical Research E: Planets, 2017, 122, 1258-1275. Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS. Icarus, 2017, 292, 1-12. Thermally anomalous features in the subsurface of Enceladus's south polar terrain. Nature Astronomy, 2017, 1,.	 6.0 1.1 1.5 1.1 4.2 	7 13 0 12 10 41
 48 49 51 52 53 54 	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133. Fates of satellite ejecta in the Saturn system, II. Icarus, 2017, 284, 70-89. Radioisotope power system-based enceladus smallsat mission concept: Enceladus express. , 2017, ,. The impact of a pressurized regional sea or global ocean on stresses on Enceladus. Journal of Geophysical Research E: Planets, 2017, 122, 1258-1275. Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS. Icarus, 2017, 292, 1-12. Thermally anomalous features in the subsurface of Enceladus's south polar terrain. Nature Astronomy, 2017, 1,. New Perspectives on Mineral Nucleation and Crowth. , 2017, ,.	 6.0 1.1 1.5 1.1 4.2 	7 13 0 12 10 41
 48 49 51 52 53 54 55 56 	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133. Fates of satellite ejecta in the Saturn system, II. Icarus, 2017, 284, 70-89. Radioisotope power system-based enceladus smallsat mission concept: Enceladus express., 2017, ,. The impact of a pressurized regional sea or global ocean on stresses on Enceladus. Journal of Geophysical Research E: Planets, 2017, 122, 1258-1275. Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS. Icarus, 2017, 292, 1-12. Thermally anomalous features in the subsurface of Enceladus's south polar terrain. Nature Astronomy, 2017, 1, . New Perspectives on Mineral Nucleation and Growth., 2017,,. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. Astrobiology, 2017, 17, 820-833.	 6.0 1.1 1.5 1.1 4.2 1.5 	 7 13 0 12 10 41 50 62

		CITATION REPORT		
#	Article		IF	CITATIONS
58	A Novel Strategy to Seek Biosignatures at Enceladus and Europa. Astrobiology, 2017,	17, 852-861.	1.5	9
59	Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry. Astrobiolo 786-812.	gy, 2017, 17,	1.5	20
60	Digital Holographic Microscopy, a Method for Detection of Microorganisms in Plume S Enceladus and Other Icy Worlds. Astrobiology, 2017, 17, 913-925.	Samples from	1.5	26
61	Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas composit of antifreezes and radionuclides. Geochimica Et Cosmochimica Acta, 2017, 212, 324-3	ions, and fate 371.	1.6	74
62	Could It Be Snowing Microbes on Enceladus? Assessing Conditions in Its Plume and In Future Missions. Astrobiology, 2017, 17, 876-901.	plications for	1.5	67
63	Keeping the ocean warm. Nature Astronomy, 2017, 1, 821-822.		4.2	Ο
64	Antarctic environments as models of planetary habitats: University Valley as a model f and Lake Untersee as a model for Enceladus and ancient Mars. Polar Journal, 2017, 7,	or modern Mars 303-318.	0.4	10
65	Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy, 2017,	, 1, 841-847.	4.2	158
67	Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladu Analyzer. Astrobiology, 2017, 17, 902-912.	us Organic	1.5	35
68	Abiotic and Biotic Formation of Amino Acids in the Enceladus Ocean. Astrobiology, 20	17, 17, 862-875.	1.5	40
70	Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 20	017, 209, 43-81.	3.7	68
71	Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry. Astrobiolog 834-839.	gy, 2017, 17,	1.5	60
72	Cosmic dust in space and on Earth. Astronomy and Geophysics, 2017, 58, 1.35-1.40.		0.1	4
73	Relationships between sucretolerance and salinotolerance in bacteria from hypersaline and their implications for the exploration of Mars and the icy worlds. International Jou Astrobiology, 2017, 16, 156-162.	e environments rnal of	0.9	10
74	Ocean worlds exploration. Acta Astronautica, 2017, 131, 123-130.		1.7	93
75	A Community Grows around the Geysering World of Enceladus. Astrobiology, 2017, 1	7, 815-819.	1.5	4
76	Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Ex Environments. Life, 2017, 7, 37.	treme Earth	1.1	10
77	Inhabited or Uninhabited? Pitfalls in the Interpretation of Possible Chemical Signatures Extraterrestrial Life. Frontiers in Microbiology, 2017, 8, 1622.	s of	1.5	16

#	Article	IF	CITATIONS
78	Origin of the Reductive Tricarboxylic Acid (rTCA) Cycle-Type CO2 Fixation: A Perspective. Life, 2017, 7, 39.	1.1	23
79	Cassini–Huygens: Saturn, rings and moons. Astronomy and Geophysics, 2017, 58, 4.20-4.25.	0.1	1
80	Biological methane production under putative Enceladus-like conditions. Nature Communications, 2018, 9, 748.	5.8	91
81	Dusty Rings. , 0, , 308-337.		6
82	Laboratory Studies of Planetary Ring Systems. , 0, , 494-516.		1
83	An experimental study on impactâ€induced alterations of planetary organic simulants. Meteoritics and Planetary Science, 2018, 53, 1267-1282.	0.7	4
84	Halogens on and Within the Ocean Worlds of the Outer Solar System. Springer Geochemistry, 2018, , 997-1016.	0.1	2
85	Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Science Reviews, 2018, 214, 1.	3.7	33
86	Does Titan's long-wavelength topography contain information about subsurface ocean dynamics?. Icarus, 2018, 310, 149-164.	1.1	22
87	Cold cases: What we don't know about Saturn's Moons. Planetary and Space Science, 2018, 155, 41-49.	0.9	5
88	Discovery of moganite in a lunar meteorite as a trace of H ₂ O ice in the Moon's regolith. Science Advances, 2018, 4, eaar4378.	4.7	21
89	Sea ice, extremophiles and life on extra-terrestrial ocean worlds. International Journal of Astrobiology, 2018, 17, 1-16.	0.9	62
90	Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV–vis spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 389-397.	2.0	14
91	Impact ionisation mass spectrometry of platinum-coated olivine and magnesite-dominated cosmic dust analogues. Planetary and Space Science, 2018, 156, 96-110.	0.9	16
92	Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system. Planetary and Space Science, 2018, 155, 73-90.	0.9	26
93	Occupied and Empty Regions of the Space of Extremophile Parameters. , 2018, , 199-230.		5
94	Geophysical Investigations of Habitability in Ice overed Ocean Worlds. Journal of Geophysical Research E: Planets, 2018, 123, 180-205.	1.5	133
95	Life in the Universe. , 2018, , .		23

#	Article	IF	CITATIONS
97	The Habitability of Icy Ocean Worlds in the Solar System. , 2018, , 2855-2877.		2
98	How to Detect Life on Icy Moons. Astrobiology, 2018, 18, 843-855.	1.5	30
99	Dust Emission by Active Moons. Space Science Reviews, 2018, 214, 1.	3.7	3
100	The Liquidus Temperature for Methanolâ€Water Mixtures at High Pressure and Low Temperature, With Application to Titan. Journal of Geophysical Research E: Planets, 2018, 123, 3080-3087.	1.5	7
101	Ocean Worlds in the Outer Regions of the Solar System (Review). Solar System Research, 2018, 52, 371-381.	0.3	10
102	In situ collection of dust grains falling from Saturn's rings into its atmosphere. Science, 2018, 362, .	6.0	44
103	Kinetics of D/H isotope fractionation between molecular hydrogen and water. Geochimica Et Cosmochimica Acta, 2018, 242, 191-212.	1.6	15
104	Measuring Perchlorate and Sulfate in Planetary Brines Using Raman Spectroscopy. ACS Earth and Space Chemistry, 2018, 2, 1068-1074.	1.2	4
105	Is Extraterrestrial Life Suppressed on Subsurface Ocean Worlds due to the Paucity of Bioessential Elements?. Astronomical Journal, 2018, 156, 151.	1.9	29
106	Habitability of Exoplanet Waterworlds. Astrophysical Journal, 2018, 864, 75.	1.6	76
107	Simulating putative Enceladus-like conditions: The possibility of biological methane production on Saturn's icy moon. Proceedings of the International Astronomical Union, 2018, 14, 219-221.	0.0	1
108	Review of Saturn's icy moons following the Cassini mission. Reports on Progress in Physics, 2018, 81, 065901.	8.1	9
109	Cryogenic silicification of microorganisms in hydrothermal fluids. Earth and Planetary Science Letters, 2018, 498, 1-8.	1.8	12
110	Low Energy Subsurface Environments as Extraterrestrial Analogs. Frontiers in Microbiology, 2018, 9, 1605.	1.5	37
111	Lunar and Martian Silica. Minerals (Basel, Switzerland), 2018, 8, 267.	0.8	19
112	Geoelectrodes and Fuel Cells for Simulating Hydrothermal Vent Environments. Astrobiology, 2018, 18, 1147-1158.	1.5	5
113	Binding of Nucleic Acid Components to the Serpentinite-Hosted Hydrothermal Mineral Brucite. Astrobiology, 2018, 18, 989-1007.	1.5	18
115	Deep‧ea Hydrothermal Fields as Natural Power Plants. ChemElectroChem, 2018, 5, 2162-2166.	1.7	15

#	Article	IF	Citations
116	Project VALKYRIE: Laser-Powered Cryobots and Other Methods for Penetrating Deep Ice on Ocean Worlds. , 2018, , 47-165.		12
117	Exploring Kepler Giant Planets in the Habitable Zone. Astrophysical Journal, 2018, 860, 67.	1.6	32
118	Operation of pneumatically-actuated membrane-based microdevices for in situ analysis of extraterrestrial organic molecules after prolonged storage and in multiple orientations with respect to Earth's gravitational field. Sensors and Actuators B: Chemical, 2018, 272, 229-235.	4.0	8
119	Tightly coupled navigation system of a differential magnetometer system and a MEMS-IMU for Enceladus. , 2018, , .		1
120	Follow the High Subcritical Water. Geosciences (Switzerland), 2019, 9, 249.	1.0	3
121	Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. Rapid Communications in Mass Spectrometry, 2019, 33, 1751-1760.	0.7	21
122	Enceladus: First Observed Primordial Soup Could Arbitrate Origin-of-Life Debate. Astrobiology, 2019, 19, 1263-1278.	1.5	26
123	Biomarker Profiling of Microbial Mats in the Geothermal Band of Cerro Caliente, Deception Island (Antarctica): Life at the Edge of Heat and Cold. Astrobiology, 2019, 19, 1490-1504.	1.5	27
124	Peptide Synthesis under the Alkaline Hydrothermal Conditions on Enceladus. ACS Earth and Space Chemistry, 2019, 3, 2559-2568.	1.2	20
125	Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5231-5243.	1.6	98
126	Using dust shed from asteroids as microsamples to link remote measurements with meteorite classes. Meteoritics and Planetary Science, 2019, 54, 2046-2066.	0.7	4
127	The Dawn of Dust Astronomy. Space Science Reviews, 2019, 215, 1.	3.7	19
128	Chemical Ionization Mass Spectrometry: Applications for the In Situ Measurement of Nonvolatile Organics at Ocean Worlds. Astrobiology, 2019, 19, 1196-1210.	1.5	9
129	Astrobiologie - die Suche nach außerirdischem Leben. , 2019, , .		2
131	Origin and Evolution of Life-Related Molecules. , 2019, , 261-276.		0
132	Circumplanetary Dust Populations. Space Science Reviews, 2019, 215, 1.	3.7	8
133	Contributions from Accreted Organics to Titan's Atmosphere: New Insights from Cometary and Chondritic Data. Astrophysical Journal, 2019, 871, 59.	1.6	39
134	Implications of nonsynchronous rotation on the deformational history and ice shell properties in the south polar terrain of Enceladus. Icarus, 2019, 321, 445-457.	1.1	12

	CHATION K	EPORT	
#	Article	IF	CITATIONS
135	Enceladus's crust as a non-uniform thin shell: II tidal dissipation. Icarus, 2019, 332, 66-91.	1.1	31
136	Cassini-Huygens' exploration of the Saturn system: 13 years of discovery. Science, 2019, 364, 1046-1051.	6.0	35
137	Acid–Base Catalytic Effects on Reduction of Methanol in Hot Water. Catalysts, 2019, 9, 373.	1.6	2
138	A Test in a High Altitude Lake of a Multi-Parametric Rapid Methodology for Assessing Life in Liquid Environments on Planetary Bodies: A Potential New Freshwater Polychaete Tubeworm Community. Frontiers in Environmental Science, 2019, 7, .	1.5	1
139	Recent cryovolcanism in Virgil Fossae on Pluto. Icarus, 2019, 330, 155-168.	1.1	45
140	Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Frontiers in Microbiology, 2019, 10, 780.	1.5	339
141	Decomposition of amino acids in water with application to in-situ measurements of Enceladus, Europa and other hydrothermally active icy ocean worlds. Icarus, 2019, 329, 140-147.	1.1	24
142	New Mixed Finite Element Methods for Natural Convection with Phase-Change in Porous Media. Journal of Scientific Computing, 2019, 80, 141-174.	1.1	10
143	Enceladus: Evidence and Unsolved Questions for an Ice-Covered Habitable World. , 2019, , 399-407.		1
144	Enceladus's ice shell structure as a window on internal heat production. Icarus, 2019, 332, 111-131.	1.1	77
145	Biological Contamination Prevention for Outer Solar System Moons of Astrobiological Interest: What Do We Need to Know?. Astrobiology, 2019, 19, 951-974.	1.5	24
146	Challenges of identifying putative planetary-origin meteorites of non-igneous material. Geoscience Frontiers, 2019, 10, 1879-1890.	4.3	1
147	Evolution of Saturn's mid-sized moons. Nature Astronomy, 2019, 3, 543-552.	4.2	58
148	Tidal dissipation in Enceladus' uneven, fractured ice shell. Icarus, 2019, 328, 218-231.	1.1	32
149	Translational and Rotational Diffusion in Liquid Water at Very High Pressure: A Simulation Study. Journal of Physical Chemistry B, 2019, 123, 10025-10035.	1.2	4
150	Membrane Lipid Composition and Amino Acid Excretion Patterns of Methanothermococcus okinawensis Grown in the Presence of Inhibitors Detected in the Enceladian Plume. Life, 2019, 9, 85.	1.1	12
151	Introduction to Volatiles in the Martian Crust. , 2019, , 1-12.		5
152	Do tidally-generated inertial waves heat the subsurface oceans of Europa and Enceladus?. Icarus, 2019, 321, 126-140.	1.1	31

#	Article	IF	Citations
153	The NASA Roadmap to Ocean Worlds. Astrobiology, 2019, 19, 1-27.	1.5	209
154	Long-term stability of Enceladus' uneven ice shell. Icarus, 2019, 319, 476-484.	1.1	59
155	The mid-IR spectral effects of darkening agents and porosity on the silicate surface features of airless bodies. Icarus, 2019, 321, 71-81.	1.1	3
156	A Systematic Way to Life Detection: Combining Field, Lab and Space Research in Low Earth Orbit. Advances in Astrobiology and Biogeophysics, 2019, , 111-122.	0.6	4
157	Carbonate-hydroxide chemical-garden tubes in the soda ocean of Enceladus: Abiotic membranes and microtubular forms of calcium carbonate. Icarus, 2019, 319, 337-348.	1.1	21
158	Collecting amino acids in the Enceladus plume. International Journal of Astrobiology, 2019, 18, 47-59.	0.9	24
159	Subsurface exolife. International Journal of Astrobiology, 2019, 18, 112-141.	0.9	33
160	The effect of high-velocity dust particle impacts on microchannel plate (MCP) detectors. Planetary and Space Science, 2020, 183, 104628.	0.9	8
161	Cooling patterns in rotating thin spherical shells — Application to Titan's subsurface ocean. Icarus, 2020, 338, 113509.	1.1	28
162	Protein Stability in Titan's Subsurface Water Ocean. Astrobiology, 2020, 20, 190-198.	1.5	1
163	Ceres: Astrobiological Target and Possible Ocean World. Astrobiology, 2020, 20, 269-291.	1.5	43
164	Planetary exploration of Saturn moons Enceladus and Dione. Acta Astronautica, 2020, 168, 200-203.	1.7	1
165	Metastable equilibrium of substitution reactions among oxygen- and nitrogen-bearing organic compounds at hydrothermal conditions. Geochimica Et Cosmochimica Acta, 2020, 272, 93-104.	1.6	7
166	Analog Experiments for the Identification of Trace Biosignatures in Ice Grains from Extraterrestrial Ocean Worlds. Astrobiology, 2020, 20, 179-189.	1.5	37
167	Feasibility of Enceladus plume biosignature analysis: Successful capture of organic ice particles in hypervelocity impacts. Meteoritics and Planetary Science, 2020, 55, .	0.7	10
170	Tectonics of Enceladus' South Pole: Block Rotation of the Tiger Stripes. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006471.	1.5	8
171	The convergence of minerals and life. Physics of Life Reviews, 2020, 34-35, 99-104.	1.5	1
172	On the Habitability and Future Exploration of Ocean Worlds. Space Science Reviews, 2020, 216, 1.	3.7	36

#	Article	IF	CITATIONS
173	Heat Production and Tidally Driven Fluid Flow in the Permeable Core of Enceladus. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006209.	1.5	18
174	Key Technologies and Instrumentation for Subsurface Exploration of Ocean Worlds. Space Science Reviews, 2020, 216, 1.	3.7	18
175	Returning Samples From Enceladus for Life Detection. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	32
176	Kinetics and Mechanisms of Hydrothermal Ketonic Decarboxylation. ACS Earth and Space Chemistry, 2020, 4, 2082-2095.	1.2	6
177	Demonstration of Autonomous Nested Search for Local Maxima Using an Unmanned Underwater Vehicle. , 2020, , .		2
178	In Situ Formation of Monohydrocalcite in Alkaline Saline Lakes of the Valley of Gobi Lakes: Prediction for Mg, Ca, and Total Dissolved Carbonate Concentrations in Enceladus' Ocean and Alkaline-Carbonate Ocean Worlds. Minerals (Basel, Switzerland), 2020, 10, 669.	0.8	12
179	Microbial Component Detection in Enceladus Snowing Phenomenon. Astrophysical Bulletin, 2020, 75, 166-175.	0.3	2
180	3D Printed Minerals as Astrobiology Analogs of Hydrothermal Vent Chimneys. Astrobiology, 2020, 20, 1405-1412.	1.5	3
181	Effect of Copper Salts on Amide Hydrothermal Formation and Reactivity. ACS Earth and Space Chemistry, 2020, 4, 1596-1603.	1.2	4
182	Molecular evolution during hydrothermal reactions from formaldehyde and ammonia simulating aqueous alteration in meteorite parent bodies. Icarus, 2020, 347, 113827.	1.1	18
183	The ambivalent role of water at the origins of life. FEBS Letters, 2020, 594, 2717-2733.	1.3	37
184	Effects of Amino Acids on Iron-Silicate Chemical Garden Precipitation. Langmuir, 2020, 36, 5793-5801.	1.6	20
185	Discriminating Abiotic and Biotic Fingerprints of Amino Acids and Fatty Acids in Ice Grains Relevant to Ocean Worlds. Astrobiology, 2020, 20, 1168-1184.	1.5	38
186	Theoretical Study of Formation of Methanol under Hydrothermal Conditions. Journal of Physical Chemistry A, 2020, 124, 4496-4505.	1.1	0
187	Simulating microbial processes in extraterrestrial, aqueous environments. Journal of Microbiological Methods, 2020, 172, 105883.	0.7	7
188	Internally Heated Porous Convection: An Idealized Model for Enceladus' Hydrothermal Activity. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006451.	1.5	10
189	Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Science Reviews, 2020, 216, 1.	3.7	43
190	Characterizing organic particle impacts on inert metal surfaces: Foundations for capturing organic molecules during hypervelocity transits of Enceladus plumes. Meteoritics and Planetary Science, 2020, 55, 465-479.	0.7	19

#	Article	IF	CITATIONS
191	Simulating Serpentinization as It Could Apply to the Emergence of Life Using the JPL Hydrothermal Reactor. Astrobiology, 2020, 20, 307-326.	1.5	22
192	Microbial Diversity and Biosignatures: An Icy Moons Perspective. Space Science Reviews, 2020, 216, 1.	3.7	14
193	Characterizing deposits emplaced by cryovolcanic plumes on Europa. Icarus, 2020, 343, 113667.	1.1	20
194	Large Ocean Worlds with High-Pressure Ices. Space Science Reviews, 2020, 216, 1.	3.7	62
195	Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans. Space Science Reviews, 2020, 216, 9.	3.7	25
196	The Carbonate Geochemistry of Enceladus' Ocean. Geophysical Research Letters, 2020, 47, e2019GL085885.	1.5	64
197	Factoring Origin of Life Hypotheses into the Search for Life in the Solar System and Beyond. Life, 2020, 10, 52.	1.1	16
198	Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies. Astrobiology, 2020, 20, 897-915.	1.5	15
199	Towards Determining Biosignature Retention in Icy World Plumes. Life, 2020, 10, 40.	1.1	7
200	Direct Synthesis of Amides from Amines and Carboxylic Acids under Hydrothermal Conditions. ACS Earth and Space Chemistry, 2020, 4, 722-729.	1.2	18
201	Quantitative in situ mapping of elements in deep-sea hydrothermal vents using laser-induced breakdown spectroscopy and multivariate analysis. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 158, 103232.	0.6	28
202	Synthetic fluid inclusions XXIII. Effect of temperature and fluid composition on rates of serpentinization of olivine. Geochimica Et Cosmochimica Acta, 2021, 292, 285-308.	1.6	16
203	The effect of Europa and Enceladus analog seawater composition on isotopic measurements of volatile CO2. Icarus, 2021, 358, 114216.	1.1	1
204	Partitioning of Crystalline and Amorphous Phases During Freezing of Simulated Enceladus Ocean Fluids. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	21
205	Oxidation processes diversify the metabolic menu on Enceladus. Icarus, 2021, 364, 114248.	1.1	29
206	Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061 Perspective. Space Science Reviews, 2021, 217, 1.	3.7	11
207	Repeated impact-driven plume formation on Enceladus over megayear timescales. Icarus, 2021, 357, 114281.	1.1	2
208	Plausible Emergence of Biochemistry in Enceladus Based on Chemobrionics. Chemistry - A European Journal, 2021, 27, 600-604.	1.7	9

#	Article	IF	CITATIONS
209	Revealing a new transport form of natural material by naturally occurring spherical amorphous silica particles in soil aerosol. Chemical Geology, 2021, 559, 119950.	1.4	6
212	Method for detecting and quantitating capture of organic molecules in hypervelocity impacts. MethodsX, 2021, 8, 101239.	0.7	5
213	Ironâ€Silicate Chemical Garden Morphology and Silicate Reactivity with Alphaâ€Keto Acids. ChemSystemsChem, 2021, 3, e2000058.	1.1	3
214	Identification of Possible Heat Sources for the Thermal Output of Enceladus. Planetary Science Journal, 2021, 2, 29.	1.5	1
215	Editorial: Astrobiology of Mars, Europa, Titan and Enceladus - Most Likely Places for Alien Life. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	3
216	Exobiology Extant Life Surveyor (EELS). , 2021, , .		0
217	Minimum Units of Habitability and Their Abundance in the Universe. Astrobiology, 2021, 21, 481-489.	1.5	6
218	Ocean Energy for Ocean Worlds. , 2021, , .		0
219	Sampling Accelerated Micron Scale Ice Particles with a Quadrupole Ion Trap Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 2021, 32, 1162-1168.	1.2	9
220	Analytical Chemistry in Astrobiology. Analytical Chemistry, 2021, 93, 5981-5997.	3.2	7
221	The Enceladus Orbilander Mission Concept: Balancing Return and Resources in the Search for Life. Planetary Science Journal, 2021, 2, 77.	1.5	74
222	Quantifying the extent of amide and peptide bond synthesis across conditions relevant to geologic and planetary environments. Geochimica Et Cosmochimica Acta, 2021, 300, 318-332.	1.6	11
223	Active microbial sulfate reduction in fluids of serpentinizing peridotites of the continental subsurface. Communications Earth & Environment, 2021, 2, .	2.6	21
224	Sampling Plume Deposits on Enceladus' Surface to Explore Ocean Materials and Search for Traces of Life or Biosignatures. Planetary Science Journal, 2021, 2, 100.	1.5	8
225	How deep is the ocean? Exploring the phase structure of water-rich sub-Neptunes. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3414-3432.	1.6	20
226	Self-preserving ice layers on CO ₂ clathrate particles: Implications for Enceladus, Pluto, and similar ocean worlds. Astronomy and Astrophysics, 2021, 650, A54.	2.1	16
227	Bayesian analysis of Enceladus's plume data to assess methanogenesis. Nature Astronomy, 2021, 5, 805-814.	4.2	29
228	Life on Enceladus? It depends on its origin. Nature Astronomy, 2021, 5, 740-741.	4.2	11

#	Article	IF	CITATIONS
229	High-Rayleigh-number convection in porous–fluid layers. Journal of Fluid Mechanics, 2021, 920, .	1.4	9
230	Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization. Physics-Uspekhi, 2021, 64, 386-419.	0.8	24
231	Carbonaceous nanoparticles in Zibo hot springs: Implications for the cycling of carbon and associated elements. Environmental Chemistry Letters, 2021, 19, 4009.	8.3	2
232	Exploration of Enceladus and Titan: investigating ocean worlds' evolution and habitability in the Saturn system. Experimental Astronomy, 2022, 54, 877-910.	1.6	3
233	The Science Case for a Return to Enceladus. Planetary Science Journal, 2021, 2, 132.	1.5	40
234	On the Feasibility of Informative Biosignature Measurements Using an Enceladus Plume Organic Analyzer. Planetary Science Journal, 2021, 2, 163.	1.5	6
235	Short lifespans of serpentinization in the rocky core of Enceladus: Implications for hydrogen production. Icarus, 2021, 364, 114461.	1.1	18
236	Hydrothermal Experiments with Protonated Benzylamines Provide Predictions of Temperature-Dependent Deamination Rates for Geochemical Modeling. ACS Earth and Space Chemistry, 2021, 5, 1997-2012.	1.2	4
237	Ocean Circulation on Enceladus with a High- versus Low-salinity Ocean. Planetary Science Journal, 2021, 2, 151.	1.5	31
238	A Recipe for the Geophysical Exploration of Enceladus. Planetary Science Journal, 2021, 2, 157.	1.5	14
239	A Case for a Small to Negligible Influence of Dust Charging on the Ionization Balance in the Coma of Comet 67P. Planetary Science Journal, 2021, 2, 156.	1.5	3
240	Enceladus' Tiger Stripes as Frictional Faults: Effect on Stress and Heat Production. Geophysical Research Letters, 2021, 48, e2021GL094849.	1.5	5
241	Quantitative evaluation of the feasibility of sampling the ice plumes at Enceladus for biomarkers of extraterrestrial life. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
242	Tiger: Concept Study for a New Frontiers Enceladus Habitability Mission. Planetary Science Journal, 2021, 2, 195.	1.5	5
243	Prospects for Life Beyond Earth. , 2021, , 258-262.		0
244	The Geochemistry of Icy Moons. , 2021, , 207-216.		2
245	Prebiotic Organic Chemistry of Formamide and the Origin of Life in Planetary Conditions: What We Know and What Is the Future. International Journal of Molecular Sciences, 2021, 22, 917.	1.8	15
246	Silica and Alumina Nanophases: Natural Processes and Industrial Applications. , 2017, , 293-316.		10

#	TICLE		CITATIONS
247	Monolithic Simulation of Convection-Coupled Phase-Change: Verification and Reproducibility. Lecture Notes in Computational Science and Engineering, 2018, , 177-197.	0.1	2
248	Macromolecular organic compounds from the depths of Enceladus. Nature, 2018, 558, 564-568.	13.7	282
249	Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
250	Serpentinite and the search for life beyond Earth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20180421.	1.6	29
251	Exploring Deep-Sea Brines as Potential Terrestrial Analogues of Oceans in the Icy Moons of the Outer Solar System. Current Issues in Molecular Biology, 2020, 38, 123-162.	1.0	16
252	Removal of organic contaminants from iron sulfides as a pretreatment for mineral-mediated chemical synthesis under prebiotic hydrothermal conditions. Geochemical Journal, 2017, 51, 495-505.	0.5	3
253	The Geochemistry of Enceladus: Composition and Controls. , 2018, , .		35
254	Geophysics and Tidal-Thermal Evolution of Enceladus. , 2018, , .		5
255	On the Origin of the Pluto System. , 2020, , 1-1.		4
256	Instantaneous Habitable Windows in the Parameter Space of Enceladus' Ocean. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006951.	1.5	10
257	Wonder of the Solar System: Icy Geysers and Liquid Water on Enceladus. , 2016, , 37-44.		0
258	Die Ursprļnge des Lebendigen. , 2017, , 153-220.		0
259	The Habitability of Icy Ocean Worlds in the Solar System. , 2018, , 1-23.		0
260	Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Sciences Series of ISSI, 2018, , 343-375.	0.0	0
261	Ursprung und Evolution des Lebendigen. , 2019, , 193-279.		0
262	Bacterial Communities from Deep Hydrothermal Systems: The Southern Gulf of California as an Example of Primeval Environments. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2020, , 149-166.	0.4	3
263	The Planets, Their Satellites and Smaller Planetary Bodies. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 605-633.	0.1	0
264	The subsurface habitability of small, icy exomoons. Astronomy and Astrophysics, 2020, 636, A50.	2.1	6

	CHATION	ICLPORT	
#	Article	IF	CITATIONS
265	Enceladus as a Potential Niche for Methanogens and Estimation of Its Biomass. Life, 2021, 11, 1182.	1.1	5
266	The Deep Rocky Biosphere: New Geomicrobiological Insights and Prospects. Frontiers in Microbiology, 2021, 12, 785743.	1.5	3
267	Enceladus as a potential oasis for life: Science goals and investigations for future explorations. Experimental Astronomy, 2022, 54, 809-847.	1.6	5
268	Enceladus and Titan: emerging worlds of the Solar System. Experimental Astronomy, 0, , 1.	1.6	1
269	Cryovolcanism. , 2022, , 161-234.		3
270	Assessment of Automated Nucleic Acid Extraction Systems in Combination with MinION Sequencing As Potential Tools for the Detection of Microbial Biosignatures. Astrobiology, 2022, 22, 87-103.	1.5	8
271	Mass Spectrometric Fingerprints of Bacteria and Archaea for Life Detection on Icy Moons. Astrobiology, 2022, 22, 143-157.	1.5	11
272	Theoretical Considerations on the Characteristic Timescales of Hydrogen Generation by Serpentinization Reactions on Enceladus. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	10
273	Developing technological synergies between deep-sea and space research. Elementa, 2022, 10, .	1.1	8
274	Quantitative and Compositional Analysis of Trace Amino Acids in Icy Moon Analogues Using a Microcapillary Electrophoresis Laser-Induced Fluorescence Detection System. ACS Earth and Space Chemistry, 2022, 6, 333-345.	1.2	2
276	The Lake Alchichica from an Astrobiological Perspective. , 2022, , 391-413.		0
277	Modeling the complete set of Cassini's UVIS occultation observations of Enceladus' plume. Icarus, 2022, 383, 114918.	1.1	1
278	Interpreting Molecular and Isotopic Biosignatures in Methane-Derived Authigenic Carbonates in the Light of a Potential Carbon Cycle in the Icy Moons. Astrobiology, 2022, 22, 552-567.	1.5	1
279	Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. Astrobiology, 2022, 22, 685-712.	1.5	21
280	Analytical Chemistry Throughout This Solar System. Annual Review of Analytical Chemistry, 2022, 15, 197-219.	2.8	2
281	Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds. Nature Astronomy, 2022, 6, 554-559.	4.2	12
282	Incorporating Microbes into Laboratory-Grown Chimneys for Hydrothermal Microbiology Experiments. ACS Earth and Space Chemistry, 2022, 6, 953-961.	1.2	2
285	The Tides of Enceladus' Porous Core. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	20

	CITATIO	N KEPORT	
#	Article	IF	CITATIONS
286	Science Autonomy for Ocean Worlds Astrobiology: A Perspective. Astrobiology, 2022, 22, 901-913.	1.5	7
287	Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. Astrobiology, 2022, 22, 1009-1028.	1.5	3
288	Survival strategies of an anoxic microbial ecosystem in Lake Untersee, a potential analog for Enceladus. Scientific Reports, 2022, 12, 7376.	1.6	3
289	Is the Ocean of Enceladus in a Primitive Evolutionary Stage?. , 0, , .		0
290	Habitability in the Solar System beyond the Earth and the search for life. , 2022, , 167-177.		2
291	Standards of evidence in the search for extraterrestrial life. , 2022, , 1-17.		0
293	Ice Shell Structure and Composition of Ocean Worlds: Insights from Accreted Ice on Earth. Astrobiology, 2022, 22, 937-961.	1.5	15
294	Characterization of groundwater chemistry beneath Gale Crater on early Mars by hydrothermal experiments. Icarus, 2022, 386, 115149.	1.1	0
295	How does salinity shape ocean circulation and ice geometry on Enceladus and other icy satellites?. Science Advances, 2022, 8, .	4.7	31
296	Contamination analysis of Arctic ice samples as planetary field analogs and implications for future life-detection missions to Europa and Enceladus. Scientific Reports, 2022, 12, .	1.6	5
297	Developing a Laser Induced Liquid Beam Ion Desorption Spectral Database as Reference for Spaceborne Mass Spectrometers. Earth and Space Science, 2022, 9, .	1.1	9
298	Geoelectrochemistry-driven alteration of amino acids to derivative organics in carbonaceous chondrite parent bodies. Nature Communications, 2022, 13, .	5.8	3
299	Chemical Fractionation Modeling of Plumes Indicates a Gas-rich, Moderately Alkaline Enceladus Ocean. Planetary Science Journal, 2022, 3, 191.	1.5	15
300	Experimental serpentinization of iron-rich olivine (hortonolite): Implications for hydrogen generation and secondary mineralization on Mars and icy moons. Geochimica Et Cosmochimica Acta, 2022, 335, 98-110.	1.6	3
301	Abundant phosphorus expected for possible life in Enceladus's ocean. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
302	Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge. Nature Communications, 2022, 13, .	5.8	8
303	Ocean dynamics and tracer transport over the south pole geysers of Enceladus. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3485-3494.	1.6	9
304	Detecting Lipids on Planetary Surfaces with Laser Desorption Ionization Mass Spectrometry. Planetary Science Journal, 2022, 3, 241.	1.5	1

щ		IC	CITATIONS
# 305	A multi-lander New Frontiers mission concept study for Enceladus: SILENUS. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	3
306	Hydrothermal Processing of Microorganisms: Mass Spectral Signals of Degraded Biosignatures for Life Detection on Icy Moons. ACS Earth and Space Chemistry, 2022, 6, 2508-2518.	1.2	3
307	The role of ocean circulation in driving hemispheric symmetry breaking of the ice shell of Enceladus. Earth and Planetary Science Letters, 2022, 599, 117845.	1.8	5
308	The Plasma Environment of Comet 67P/Churyumov-Gerasimenko. Space Science Reviews, 2022, 218, .	3.7	11
309	Liquid and supercritical CO2 as an organic solvent in Hadean seafloor hydrothermal systems: implications for prebiotic chemical evolution. Progress in Earth and Planetary Science, 2022, 9, .	1.1	4
310	Measurements of regolith thicknesses on Enceladus: Uncovering the record of plume activity. Icarus, 2023, 392, 115369.	1.1	5
311	Moonraker: Enceladus Multiple Flyby Mission. Planetary Science Journal, 2022, 3, 268.	1.5	5
312	The ETNA mission concept: Assessing the habitability of an active ocean world. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	2
313	Putative Methanogenic Biosphere in Enceladus's Deep Ocean: Biomass, Productivity, and Implications for Detection. Planetary Science Journal, 2022, 3, 270.	1.5	10
314	Highlight Advances in Planetary Physics in the Solar System: In Situ Detection Over the Past 20 Years. Space: Science & Technology, 2023, 3, .	1.0	0
315	DNA Polymerization in Icy Moon Abyssal Pressure Conditions. Astrobiology, 2024, 24, 151-162.	1.5	0
316	Surviving in Ocean Worlds: Experimental Characterization of Fiber Optic Tethers across Europa-like Ice Faults and Unraveling the Sliding Behavior of Ice. Planetary Science Journal, 2023, 4, 1.	1.5	3
317	Terrestrial analogs & submarine hydrothermal vents—their roles in exploring ocean worlds, habitability, andAlife beyond earth. , 2023, , 311-358.		0
318	Salty ocean and submarine hydrothermal vents on Saturn's Moon Enceladus—Tall plume of gas, jets of water vapor & organic-enriched ice particles spewing from its south pole. , 2023, , 583-616.		0
319	Hunting for environments favorable to life on planets, moons, dwarf planets, and meteorites. , 2023, , 737-772.		0
320	Dispersion of Bacteria by Low-Pressure Boiling: Life Detection in Enceladus' Plume Material. Astrobiology, 2023, 23, 269-279.	1.5	3
321	The Fermi Paradox and Astrobiology. , 2023, , 209-266.		0
322	Study of the eruption mechanism of Saturn's moon Enceladus plume using the mathematical model of a geyser (periodic bubbling spring). , 2022, , .		0

		CITATION RE	CITATION REPORT		
#	Article		IF	Citations	
323	Subsurface Science and Search for Life in Ocean Worlds. Planetary Science Journal, 2023,	ł, 22.	1.5	3	
324	OLYMPIA-LILBID: A New Laboratory Setup to Calibrate Spaceborne Hypervelocity Ice Grain Using High-Resolution Mass Spectrometry. Analytical Chemistry, 2023, 95, 3621-3628.	Detectors	3.2	1	
325	Particle entrainment and rotating convection in Enceladus' ocean. Communications Ea Environment, 2023, 4, .	rth &	2.6	4	
326	Molecular rotations trigger a glass-to-plastic fcc heterogeneous crystallization in high-pres water. Journal of Chemical Physics, 2023, 158, .	sure	1.2	5	
327	Huge Variation in H ₂ Generation During Seawater Alteration of Ultramafic Ro Geochemistry, Geophysics, Geosystems, 2023, 24, .	cks.	1.0	2	
328	Mass Spectrometric Fingerprints of Organic Compounds in NaCl-Rich Ice Grains from Euro Enceladus. ACS Earth and Space Chemistry, 2023, 7, 735-752.	ba and	1.2	7	
329	Evaluating the abiotic synthesis potential and the stability of building blocks of life beneat impact-induced steam atmosphere. Frontiers in Microbiology, 0, 14, .	ו an	1.5	1	
330	Discriminating Aromatic Parent Compounds and Their Derivative Isomers in Ice Grains Fror and Europa Using a Laboratory Analogue for Spaceborne Mass Spectrometers. Earth and S 2023, 10, .	n Enceladus pace Science,	1.1	2	
331	Instrumentation for Planetary Exploration. , 2023, , 277-307.			0	