A microRNA-Hippo pathway that promotes cardiomyoo regeneration in mice

Science Translational Medicine 7, 279ra38 DOI: 10.1126/scitranslmed.3010841

Citation Report

#	Article	IF	CITATIONS
1	Non-coding RNAs in cardiac regeneration. Oncotarget, 2015, 6, 42613-42622.	0.8	46
2	MicroRNA delivery for regenerative medicine. Advanced Drug Delivery Reviews, 2015, 88, 108-122.	6.6	125
3	RNA Mimics as Therapeutics for Cardiac Regeneration: A Paradigm Shift. Molecular Therapy, 2015, 23, 984-986.	3.7	0
4	Small RNA: From development to regeneration. Science Translational Medicine, 2015, 7, 279fs12.	5.8	5
5	miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Medicinal Chemistry, 2015, 7, 1771-1792.	1.1	196
6	Harnessing the microRNA pathway for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2015, 89, 68-74.	0.9	35
7	Hippo and Cardiac Hypertrophy. Circulation Research, 2015, 117, 832-834.	2.0	14
8	miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Reports, 2015, 12, 760-773.	2.9	79
9	Translational aspects of cardiac cell therapy. Journal of Cellular and Molecular Medicine, 2015, 19, 1757-1772.	1.6	24
10	AntimiR-34a to Enhance Cardiac Repair After Ischemic Injury. Circulation Research, 2015, 117, 395-397.	2.0	7
11	Harnessing the Induction of Cardiomyocyte Proliferation for Cardiac Regenerative Medicine. Current Treatment Options in Cardiovascular Medicine, 2015, 17, 404.	0.4	16
12	MicroRNAs in the Myocyte Enhancer Factor 2 (MEF2)-regulated Gtl2-Dio3 Noncoding RNA Locus Promote Cardiomyocyte Proliferation by Targeting the Transcriptional Coactivator Cited2. Journal of Biological Chemistry, 2015, 290, 23162-23172.	1.6	54
13	Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy. Genes, 2016, 7, 55.	1.0	57
14	Cellular and molecular basis of cardiac regeneration. Turkish Journal of Biology, 2016, 40, 265-275.	2.1	0
15	Asxl2â^'/â^' Mice Exhibit De Novo Cardiomyocyte Production during Adulthood. Journal of Developmental Biology, 2016, 4, 32.	0.9	3
16	Direct cellular reprogramming for cardiac repair and regeneration. European Journal of Heart Failure, 2016, 18, 145-156.	2.9	21
17	Micro RNAs: an arguable appraisal in medicine. Endocrine Regulations, 2016, 50, 106-124.	0.5	8
18	Analysis of microRNAs in a knock-in hESC line expressing epitope-tagged AGO2. Animal Cells and Systems, 2016, 20, 24-30.	0.8	2

TION REI

#	Article	IF	CITATIONS
19	Hippo/Yap Signaling in Cardiac Development and Regeneration. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 38.	0.4	45
20	Gene transfer to promote cardiac regeneration. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 359-369.	2.7	9
21	Endogenous Mechanisms of Cardiac Regeneration. International Review of Cell and Molecular Biology, 2016, 326, 67-131.	1.6	10
22	Knockdown of Plakophilin 2 Downregulates miR-184 Through CpG Hypermethylation and Suppression of the E2F1 Pathway and Leads to Enhanced Adipogenesis In Vitro. Circulation Research, 2016, 119, 731-750.	2.0	43
23	Regulation of Myocardial Cell Growth and Death by the Hippo Pathway. Circulation Journal, 2016, 80, 1511-1519.	0.7	55
24	Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Science Translational Medicine, 2016, 8, 352ra108.	5.8	271
25	Isolation, Culture and Transduction of Adult Mouse Cardiomyocytes. Journal of Visualized Experiments, 2016, , .	0.2	22
26	Therapeutic targeting of autophagy in myocardial infarction and heart failure. Expert Review of Cardiovascular Therapy, 2016, 14, 1007-1019.	0.6	29
27	MicroRNAs in cardiovascular disease. Current Opinion in Cardiology, 2016, 31, 249-254.	0.8	70
28	Mending a Faltering Heart. Circulation Research, 2016, 118, 344-351.	2.0	21
29	From Bench to Bedside: New Approaches to Therapeutic Discovery for Heart Failure. Heart Lung and Circulation, 2016, 25, 425-434.	0.2	14
30	Building and re-building the heart by cardiomyocyte proliferation. Development (Cambridge), 2016, 143, 729-740.	1.2	227
31	Overexpression of Tbx20 in Adult Cardiomyocytes Promotes Proliferation and Improves Cardiac Function After Myocardial Infarction. Circulation, 2016, 133, 1081-1092.	1.6	133
32	Heart regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1749-1759.	1.9	25
33	Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Reviews and Reports, 2017, 13, 170-191.	5.6	30
34	Hippo vs. Crab: tissueâ€specific functions of the mammalian Hippo pathway. Genes To Cells, 2017, 22, 6-31.	0.5	17
35	Manipulating the Proliferative Potential of Cardiomyocytes by Gene Transfer. Methods in Molecular Biology, 2017, 1553, 41-53.	0.4	3
36	Mechanisms of Cardiomyocyte Proliferation and Differentiation in Development and Regeneration. Current Cardiology Reports, 2017, 19, 13.	1.3	46

#	Article	IF	CITATIONS
37	Cnot3 enhances human embryonic cardiomyocyte proliferation by promoting cell cycle inhibitor mRNA degradation. Scientific Reports, 2017, 7, 1500.	1.6	10
38	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 725-736.	1.8	114
39	Non-coding microRNAs for cardiac regeneration: Exploring novel alternatives to induce heart healing. Non-coding RNA Research, 2017, 2, 93-99.	2.4	5
40	An innovative biologic system for photon-powered myocardium in the ischemic heart. Science Advances, 2017, 3, e1603078.	4.7	88
41	Cardiac regenerative medicine: At the crossroad of microRNA function and biotechnology. Non-coding RNA Research, 2017, 2, 27-37.	2.4	8
42	The Hippo Pathway. Current Topics in Developmental Biology, 2017, 123, 181-228.	1.0	60
43	Cardiac regeneration: All work and no repair?. Science Translational Medicine, 2017, 9, .	5.8	11
44	Injectable, Guest–Host Assembled Polyethylenimine Hydrogel for siRNA Delivery. Biomacromolecules, 2017, 18, 77-86.	2.6	67
45	Engineered Hydrogels for Local and Sustained Delivery of RNAâ€Interference Therapies. Advanced Healthcare Materials, 2017, 6, 1601041.	3.9	79
46	A DGCR8-Independent Stable MicroRNA Expression Strategy Reveals Important Functions of miR-290 and miR-183–182 Families in Mouse Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 1618-1629.	2.3	17
47	<i>MiR-138</i> protects cardiac cells against hypoxia through modulation of glucose metabolism by targetting pyruvate dehydrogenase kinase 1. Bioscience Reports, 2017, 37, .	1.1	16
48	Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nature Reviews Drug Discovery, 2017, 16, 699-717.	21.5	245
49	Multimodal Regulation of Cardiac Myocyte Proliferation. Circulation Research, 2017, 121, 293-309.	2.0	86
50	The roles of non-coding RNAs in cardiac regenerative medicine. Non-coding RNA Research, 2017, 2, 100-110.	2.4	15
51	Hippo Pathway: An Emerging Regulator of Craniofacial and Dental Development. Journal of Dental Research, 2017, 96, 1229-1237.	2.5	32
52	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
53	A MicroRNA302-367-Erk1/2-Klf2-S1pr1 Pathway Prevents Tumor Growth via Restricting Angiogenesis and Improving Vascular Stability. Circulation Research, 2017, 120, 85-98.	2.0	37
54	Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cellular and Molecular Life Sciences, 2017, 74, 1019-1034.	2.4	63

#	Article	IF	CITATIONS
55	The Hippo pathway in organ development, homeostasis, and regeneration. Current Opinion in Cell Biology, 2017, 49, 99-107.	2.6	176
56	Neonatal Heart-Enriched miR-708 Promotes Proliferation and Stress Resistance of Cardiomyocytes in Rodents. Theranostics, 2017, 7, 1953-1965.	4.6	53
57	The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. International Journal of Molecular Sciences, 2017, 18, 745.	1.8	133
58	Inhibition of miR-302 Suppresses Hypoxia-Reoxygenation-Induced H9c2 Cardiomyocyte Death by Regulating Mcl-1 Expression. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-9.	1.9	23
59	Noncoding RNA and Cardiomyocyte Proliferation. Stem Cells International, 2017, 2017, 1-6.	1.2	6
60	Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell, 2018, 173, 104-116.e12.	13.5	434
61	Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nature Biomedical Engineering, 2018, 2, 293-303.	11.6	249
62	Myocardial regeneration therapy in heart failure: Current status and future therapeutic implications in clinical practice. International Journal of Cardiology, 2018, 260, 124-130.	0.8	6
63	A context-specific cardiac \hat{l}^2 -catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart. Nucleic Acids Research, 2018, 46, 2850-2867.	6.5	39
64	The MicroRNA. Methods in Molecular Biology, 2018, 1733, 1-25.	0.4	19
65	TLR3 Mediates Repair and Regeneration of Damaged Neonatal Heart through Glycolysis Dependent YAP1 Regulated miR-152 Expression. Cell Death and Differentiation, 2018, 25, 966-982.	5.0	70
66	Interactions between microRNAs and long non-coding RNAs in cardiac development and repair. Pharmacological Research, 2018, 127, 58-66.	3.1	43
67	Heart regeneration and the cardiomyocyte cell cycle. Pflugers Archiv European Journal of Physiology, 2018, 470, 241-248.	1.3	39
68	Sustained cardiac programming by shortâ€ŧerm juvenile exercise training in male rats. Journal of Physiology, 2018, 596, 163-180.	1.3	20
69	Myocardial Repair. , 2018, , 425-439.		0
70	OBSOLETE: Myocardial Repair. , 2018, , .		0
71	OBSOLETE: MicroRNAs in Cardiac Development and Function. , 2018, , .		0
72	A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Advanced Healthcare Materials, 2019, 8, e1801011.	3.9	61

#	Article	IF	CITATIONS
73	The Role of the Autonomic Nervous System in Cardiovascular Toxicity. , 2018, , 61-114.		2
74	Gene Therapy for Heart Failure: New Perspectives. Current Heart Failure Reports, 2018, 15, 340-349.	1.3	23
75	Generation of MicroRNA-34 Sponges and Tough Decoys for the Heart: Developments and Challenges. Frontiers in Pharmacology, 2018, 9, 1090.	1.6	21
76	Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration. Current Drug Targets, 2018, 20, 241-254.	1.0	7
77	miRNAs that Induce Human Cardiomyocyte Proliferation Converge on the Hippo Pathway. Cell Reports, 2018, 23, 2168-2174.	2.9	73
78	The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults. Journal of Physiology, 2018, 596, 5625-5640.	1.3	32
79	How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases. Journal of Immunology Research, 2018, 2018, 1-8.	0.9	24
80	RNA therapeutics for heart disease. Biochemical Pharmacology, 2018, 155, 468-478.	2.0	18
81	MicroRNA signatures in cardiac biopsies and detection of allograft rejection. Journal of Heart and Lung Transplantation, 2018, 37, 1329-1340.	0.3	34
82	Elevated Expression of miR302-367 in Endothelial Cells Inhibits Developmental Angiogenesis via CDC42/CCND1 Mediated Signaling Pathways. Theranostics, 2018, 8, 1511-1526.	4.6	14
83	A Hearty Dose of Noncoding RNAs: The Imprinted DLK1-DIO3 Locus in Cardiac Development and Disease. Journal of Cardiovascular Development and Disease, 2018, 5, 37.	0.8	23
84	The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nature Reviews Cardiology, 2018, 15, 672-684.	6.1	252
85	MicroRNAs in Cardiac Development and Function. , 2018, , 340-348.		2
86	Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 2018, 15, 585-600.	6.1	268
87	Circulating miRNA-302 family members as potential biomarkers for the diagnosis of acute heart failure. Biomarkers in Medicine, 2018, 12, 871-880.	0.6	24
88	Cardiomyocyte Proliferation for Therapeutic Regeneration. Current Cardiology Reports, 2018, 20, 63.	1.3	35
89	The role of cardiac transcription factor NKX2-5 in regulating the human cardiac miRNAome. Scientific Reports, 2019, 9, 15928.	1.6	3
90	A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model. Acta Biomaterialia, 2019, 86, 223-234.	4.1	42

	Сітатіо	n Report	
# 91	ARTICLE The microRNA and the perspectives of miR-302. Heliyon, 2019, 5, e01167.	IF 1.4	Citations
92	Endogenous Regeneration of the Mammalian Heart. , 2019, , 339-354.		2
93	Emerging Roles for Immune Cells and MicroRNAs in Modulating the Response to Cardiac Injury. Journal of Cardiovascular Development and Disease, 2019, 6, 5.	0.8	6
94	Stimulating Cardiogenesis as a Treatment for Heart Failure. Circulation Research, 2019, 124, 1647-1657.	2.0	59
95	A comprehensive, multiscale framework for evaluation of arrhythmias arising from cell therapy in the whole post-myocardial infarcted heart. Scientific Reports, 2019, 9, 9238.	1.6	21
96	MicroRNA-302d promotes the proliferation of human pluripotent stem cell-derived cardiomyocytes by inhibiting <i>LATS2</i> in the Hippo pathway. Clinical Science, 2019, 133, 1387-1399.	1.8	20
97	Common Regulatory Pathways Mediate Activity of MicroRNAs Inducing Cardiomyocyte Proliferation. Cell Reports, 2019, 27, 2759-2771.e5.	2.9	77
98	An <i>in Vivo</i> miRNA Delivery System for Restoring Infarcted Myocardium. ACS Nano, 2019, 13, 9880-9894.	7.3	101
99	Noncoding RNAs as Regulators of Gene Expression in Pluripotency and Differentiation. , 2019, , 73-105.		0
100	miR-199a-3p promotes cardiomyocyte proliferation by inhibiting Cd151 expression. Biochemical and Biophysical Research Communications, 2019, 516, 28-36.	1.0	24
101	Effects of Spaceflight and Simulated Microgravity on YAP1 Expression in Cardiovascular Progenitors: Implications for Cell-Based Repair. International Journal of Molecular Sciences, 2019, 20, 2742.	1.8	27
102	Endoplasmic reticulum and the microRNA environment in the cardiovascular system. Canadian Journal of Physiology and Pharmacology, 2019, 97, 515-527.	0.7	3
103	The Role of Reactive Oxygen Species in In Vitro Cardiac Maturation. Trends in Molecular Medicine, 2019, 25, 482-493.	3.5	17
104	microRNA Modulation. , 2019, , 1-66.		0
105	Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nature Communications, 2019, 10, 1802.	5.8	190
106	Noncoding RNAs in Cardiovascular Disease. , 2019, , 43-87.		2
107	Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation, 2019, 139, 2668-2684.	1.6	125
108	STAT3 Phosphorylation Mediating DMSO's Function on Fetal Cardiomyocyte Proliferation with Developmental Changes. International Heart Journal, 2019, 60, 392-399.	0.5	2

#	Article	IF	CITATIONS
109	Fatty Acid Oxidation Promotes Cardiomyocyte Proliferation Rate but Does Not Change Cardiomyocyte Number in Infant Mice. Frontiers in Cell and Developmental Biology, 2019, 7, 42.	1.8	39
110	Regenerative therapy based on miRNA-302 mimics for enhancing host recovery from pneumonia caused by <i>Streptococcus pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8493-8498.	3.3	21
111	Transient Introduction of miR-294 in the Heart Promotes Cardiomyocyte Cell Cycle Reentry After Injury. Circulation Research, 2019, 125, 14-25.	2.0	81
112	Oxidized lowâ€density lipoprotein promotes vascular endothelial cell dysfunction by stimulating miRâ€496 expression and inhibiting the Hippo pathway effector YAP. Cell Biology International, 2019, 43, 528-538.	1.4	19
113	Function Follows Form ― A Review of Cardiac Cell Therapy ―. Circulation Journal, 2019, 83, 2399-2412.	0.7	40
114	Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Research and Therapy, 2019, 10, 336.	2.4	37
115	Defined factors to reactivate cell cycle activity in adult mouse cardiomyocytes. Scientific Reports, 2019, 9, 18830.	1.6	12
116	The regulation and function of the Hippo pathway in heart regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e335.	5.9	25
117	Noncoding RNAs regulating cardiac muscle mass. Journal of Applied Physiology, 2019, 127, 633-644.	1.2	10
118	Implications of scar structure and mechanics for post-infarction cardiac repair and regeneration. Experimental Cell Research, 2019, 376, 98-103.	1.2	12
119	Inhibition of GSK-3 to induce cardiomyocyte proliferation: a recipe for in situ cardiac regeneration. Cardiovascular Research, 2019, 115, 20-30.	1.8	31
120	Cardiomyocyte proliferation, a target for cardiac regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118461.	1.9	19
121	Spotlight on epigenetic reprogramming in cardiac regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 26-37.	2.3	8
122	Exosomes as intercellular communication messengers for cardiovascular and cerebrovascular diseases. , 2020, , 199-238.		5
123	MicroRNAomic Transcriptomic Analysis Reveal Deregulation of Clustered Cellular Functions in Human Mesenchymal Stem Cells During in Vitro Passaging. Stem Cell Reviews and Reports, 2020, 16, 222-238.	1.7	3
124	MircroRNA-10b Promotes Human Embryonic Stem Cell-Derived Cardiomyocyte Proliferation via Novel Target Gene LATS1. Molecular Therapy - Nucleic Acids, 2020, 19, 437-445.	2.3	14
125	The Emerging Link between the Hippo Pathway and Non-coding RNA. Biological and Pharmaceutical Bulletin, 2020, 43, 1-10.	0.6	11
126	A miRNA's insight into the regenerating heart: a concise descriptive analysis. Heart Failure Reviews, 2020, 25, 1047-1061.	1.7	3

#	Article	IF	Citations
127	MicroRNA302-367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 112-119.	0.7	15
128	Delta-1 Functionalized Hydrogel Promotes hESC-Cardiomyocyte Graft Proliferation and Maintains Heart Function Post-Injury. Molecular Therapy - Methods and Clinical Development, 2020, 17, 986-998.	1.8	11
129	miR-301a-PTEN-AKT Signaling Induces Cardiomyocyte Proliferation and Promotes Cardiac Repair Post-MI. Molecular Therapy - Nucleic Acids, 2020, 22, 251-262.	2.3	26
130	MiRNAs: A Powerful Tool in Deciphering Gynecological Malignancies. Frontiers in Oncology, 2020, 10, 591181.	1.3	9
131	Cardiac Regeneration After Myocardial Infarction: an Approachable Goal. Current Cardiology Reports, 2020, 22, 122.	1.3	28
132	Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Research in Cardiology, 2020, 115, 52.	2.5	48
133	Harnessing Mechanosensation in Next Generation Cardiovascular Tissue Engineering. Biomolecules, 2020, 10, 1419.	1.8	12
134	Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches—An Overview. Pharmaceutics, 2020, 12, 752.	2.0	32
135	Adult Cardiomyocyte Proliferation: a New Insight for Myocardial Infarction Therapy. Journal of Cardiovascular Translational Research, 2021, 14, 457-466.	1.1	13
136	Differential Regulation of mTOR Complexes with miR-302a Attenuates Myocardial Reperfusion Injury in Diabetes. IScience, 2020, 23, 101863.	1.9	10
137	mir15a/mir16â€1 cluster and its novel targeting molecules negatively regulate cardiac hypertrophy. Clinical and Translational Medicine, 2020, 10, e242.	1.7	8
138	Gene Therapy for the Heart Lessons Learned and Future Perspectives. Circulation Research, 2020, 126, 1394-1414.	2.0	81
139	Molecular Mechanism of Hippo–YAP1/TAZ Pathway in Heart Development, Disease, and Regeneration. Frontiers in Physiology, 2020, 11, 389.	1.3	43
140	Toward Cardiac Regeneration: Combination of Pluripotent Stem Cell-Based Therapies and Bioengineering Strategies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 455.	2.0	49
141	An Engineered Mouse to Identify Proliferating Cells and Their Derivatives. Frontiers in Cell and Developmental Biology, 2020, 8, 388.	1.8	2
142	miR-25 Promotes Cardiomyocyte Proliferation by Targeting FBXW7. Molecular Therapy - Nucleic Acids, 2020, 19, 1299-1308.	2.3	21
143	Direct Comparison of Mononucleated and Binucleated Cardiomyocytes Reveals Molecular Mechanisms Underlying Distinct Proliferative Competencies. Cell Reports, 2020, 30, 3105-3116.e4.	2.9	41
144	Research progress on myocardial regeneration: what is new?. Chinese Medical Journal, 2020, , 716-723.	0.9	5

#	Article	IF	CITATIONS
145	Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing. Developmental Cell, 2020, 53, 102-116.e8.	3.1	95
146	Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1805-1819.	1.8	39
147	Role of miR-302/367 cluster in human physiology and pathophysiology. Acta Biochimica Et Biophysica Sinica, 2020, 52, 791-800.	0.9	14
148	N-Cadherin Overexpression Mobilizes the Protective Effects of Mesenchymal Stromal Cells Against Ischemic Heart Injury Through a β-Catenin–Dependent Manner. Circulation Research, 2020, 126, 857-874.	2.0	62
149	Comprehensive circRNA expression profile and construction of circRNA-related ceRNA network in cardiac fibrosis. Biomedicine and Pharmacotherapy, 2020, 125, 109944.	2.5	26
150	Reviewing the Limitations of Adult Mammalian Cardiac Regeneration: Noncoding RNAs as Regulators of Cardiomyogenesis. Biomolecules, 2020, 10, 262.	1.8	11
151	Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death and Differentiation, 2020, 27, 2158-2175.	5.0	43
152	Pentoxifylline alleviated cardiac injury via modulating the cardiac expression of IncRNA-00654-miR-133a-SOX5 mRNA in the rat model of ischemia-reperfusion. Biomedicine and Pharmacotherapy, 2020, 124, 109842.	2.5	6
153	Regulatory RNAs in Heart Failure. Circulation, 2020, 141, 313-328.	1.6	133
154	Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Frontiers in Bioengineering and Biotechnology, 2020, 8, 323.	2.0	13
155	Mechanisms of Neonatal Heart Regeneration. Current Cardiology Reports, 2020, 22, 33.	1.3	25
156	Fluorescent conjugated polymer nanovector for in vivo tracking and regulating the fate of stem cells for restoring infarcted myocardium. Acta Biomaterialia, 2020, 109, 195-207.	4.1	12
157	Non-coding RNA therapeutics for cardiac regeneration. Cardiovascular Research, 2021, 117, 674-693.	1.8	56
158	miR-19a/19b improves the therapeutic potential of mesenchymal stem cells in a mouse model of myocardial infarction. Gene Therapy, 2021, 28, 29-37.	2.3	8
159	Cardiac Regeneration: New Hope for an Old Dream. Annual Review of Physiology, 2021, 83, 59-81.	5.6	28
160	What we know about cardiomyocyte dedifferentiation. Journal of Molecular and Cellular Cardiology, 2021, 152, 80-91.	0.9	28
161	Endogenous Mechanisms for Cardiomyocyte Regeneration. , 2021, , 259-267.		0
162	The emerging therapeutic role of mesenchymal stem cells in anthracycline-induced cardiotoxicity. Cell and Tissue Research, 2021, 384, 1-12.	1.5	3

#	Article	IF	CITATIONS
163	Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics, 2021, 11, 8771-8796.	4.6	50
165	Cell type–specific microRNA therapies for myocardial infarction. Science Translational Medicine, 2021, 13, .	5.8	23
166	Natriuretic peptides and Forkhead O transcription factors act in a cooperative manner to promote cardiomyocyte cell cycle re-entry in the postnatal mouse heart. BMC Developmental Biology, 2021, 21, 6.	2.1	3
167	Application of Cell, Tissue, and Biomaterial Delivery in Cardiac Regenerative Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 1000-1021.	2.6	11
168	A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduction and Targeted Therapy, 2021, 6, 79.	7.1	95
169	3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nature Communications, 2021, 12, 753.	5.8	247
170	Non-coding RNAs in Cardiac Regeneration. Frontiers in Physiology, 2021, 12, 650566.	1.3	17
171	miR-106a–363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury. Basic Research in Cardiology, 2021, 116, 19.	2.5	34
172	LncRNAs in Cardiomyocyte Maturation: New Window for Cardiac Regenerative Medicine. Non-coding RNA, 2021, 7, 20.	1.3	6
173	MicroRNAâ€302câ€3p inhibits endothelial cell pyroptosis via directly targeting NODâ€; LRR―and pyrin domainâ€containing protein 3 in atherosclerosis. Journal of Cellular and Molecular Medicine, 2021, 25, 4373-4386.	1.6	22
174	Molecular regulation of myocardial proliferation and regeneration. Cell Regeneration, 2021, 10, 13.	1.1	13
175	Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development. Journal of Cardiovascular Development and Disease, 2021, 8, 56.	0.8	3
176	Decreased YAP activity reduces proliferative ability in human induced pluripotent stem cell of duchenne muscular dystrophy derived cardiomyocytes. Scientific Reports, 2021, 11, 10351.	1.6	7
177	LARP7 Protects Against Heart Failure by Enhancing Mitochondrial Biogenesis. Circulation, 2021, 143, 2007-2022.	1.6	35
178	miRNA in cardiac development and regeneration. Cell Regeneration, 2021, 10, 14.	1.1	34
179	Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Science Translational Medicine, 2021, 13, .	5.8	68
180	Mechanisms Underlying Cardiomyocyte Development: Can We Exploit Them to Regenerate the Heart?. Current Cardiology Reports, 2021, 23, 81.	1.3	1
181	Induced Cardiomyocyte Proliferation: A Promising Approach to Cure Heart Failure. International Journal of Molecular Sciences, 2021, 22, 7720.	1.8	7

#	Article	IF	CITATIONS
182	Single dose of synthetic microRNA-199a or microRNA-149 mimic does not improve cardiac function in a murine model of myocardial infarction. Molecular and Cellular Biochemistry, 2021, 476, 4093-4106.	1.4	3
183	Cyclin D2 Overexpression Enhances the Efficacy of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes for Myocardial Repair in a Swine Model of Myocardial Infarction. Circulation, 2021, 144, 210-228.	1.6	61
184	Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart. International Journal of Molecular Sciences, 2021, 22, 7764.	1.8	18
185	Non-Coding RNAs in Stem Cell Regulation and Cardiac Regeneration: Current Problems and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 9160.	1.8	6
186	A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nature Communications, 2021, 12, 4808.	5.8	13
187	Efficient and precise delivery of microRNA by photoacoustic force generated from semiconducting polymer-based nanocarriers. Biomaterials, 2021, 275, 120907.	5.7	15
188	Targeting the Hippo pathway in heart repair. Cardiovascular Research, 2022, 118, 2402-2414.	1.8	13
189	Reactive Oxygen Species-Mediated Diabetic Heart Disease: Mechanisms and Therapies. Antioxidants and Redox Signaling, 2022, 36, 608-630.	2.5	5
190	RNA interference therapeutics for cardiac regeneration. Current Opinion in Genetics and Development, 2021, 70, 48-53.	1.5	5
191	Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Seminars in Cell and Developmental Biology, 2021, 118, 150-162.	2.3	12
192	Mechanisms to Induce Cardiomyocyte Proliferation. , 2021, , 269-278.		1
193	Nonâ€coding RNAs in cardiomyocyte proliferation and cardiac regeneration: Dissecting their ther ther ther ther therapeutic values. Journal of Cellular and Molecular Medicine, 2021, 25, 2315-2332.	1.6	10
194	Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration. Signal Transduction and Targeted Therapy, 2021, 6, 31.	7.1	33
195	The roles of microRNAs in mouse development. Nature Reviews Genetics, 2021, 22, 307-323.	7.7	73
196	miRâ€26a attenuates cardiac apoptosis and fibrosis by targeting ataxia–telangiectasia mutated in myocardial infarction. Journal of Cellular Physiology, 2020, 235, 6085-6102.	2.0	36
197	MicroRNA302-367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy. , 2020, 56, 112.		1
198	Prospective Advances in Non-coding RNAs Investigation. Advances in Experimental Medicine and Biology, 2020, 1229, 385-426.	0.8	1
199	Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nature Biomedical Engineering, 2017, 1, 983-992.	11.6	184

#	Article	IF	CITATIONS
203	Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. Journal of Clinical Investigation, 2019, 129, 2107-2122.	3.9	178
204	Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. Journal of Clinical Investigation, 2017, 127, 899-911.	3.9	126
205	Redirecting cardiac growth mechanisms for therapeutic regeneration. Journal of Clinical Investigation, 2017, 127, 427-436.	3.9	51
206	MicroRNA‑93 promotes angiogenesis and attenuates remodeling via inactivation of the Hippo/Yap pathway by targeting Lats2 after myocardial infarctionï‰. Molecular Medicine Reports, 2020, 22, 483-493.	1.1	9
207	miR‑449a‑5p suppresses CDK6 expression to inhibit cardiomyocyte proliferation. Molecular Medicine Reports, 2020, 23, 1-1.	1.1	9
208	New Trends in Heart Regeneration: A Review. Journal of Stem Cells and Regenerative Medicine, 2016, 12, 61-68.	2.2	16
209	Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. Advanced NanoBiomed Research, 2021, 1, 2100075.	1.7	8
210	Reawakening the Intrinsic Cardiac Regenerative Potential: Molecular Strategies to Boost Dedifferentiation and Proliferation of Endogenous Cardiomyocytes. Frontiers in Cardiovascular Medicine, 2021, 8, 750604.	1.1	13
211	Gene and Cell Therapy in Heart Failure. , 2016, , 335-354.		0
212	Cellular Approaches to Adult Mammalian Heart Regeneration. Pancreatic Islet Biology, 2016, , 101-119.	0.1	0
213	Regenerative Mechanisms of the Adult Injured and Failing Heart. , 2017, , 377-400.		0
214	Noncoding RNAs in Ischemic Cardiovascular Disease and Repair Mechanisms. Cardiac and Vascular Biology, 2017, , 61-82.	0.2	1
216	Sustained miRNA release regenerates the heart. Nature Biomedical Engineering, 2017, 1, 931-933.	11.6	1
217	Stimulation of autologous progenitorial and committed cells in ischemically damaged myocardium. Russian Journal of Cardiology, 2018, , 123-129.	0.4	3
220	microRNA Modulation. , 2020, , 511-576.		0
221	Factors affecting the proliferation of cardiomyocyte. E3S Web of Conferences, 2020, 218, 03044.	0.2	0
222	Injectable biopolymers in the treatment of heart failure and cardiac remodeling. , 2020, , 333-355.		0
223	Non-coding RNAs in Cardiac Regeneration. Advances in Experimental Medicine and Biology, 2020, 1229, 163-180.	0.8	4

#	Article	IF	CITATIONS
225	Targeting cardiomyocyte proliferation as a key approach of promoting heart repair after injury. Molecular Biomedicine, 2021, 2, 34.	1.7	5
226	Neuregulin-1 enhances cell-cycle activity, delays cardiac fibrosis, and improves cardiac performance in rat pups with right ventricular pressure load. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, e493-e510.	0.4	5
227	MicroRNA-1825 induces proliferation of adult cardiomyocytes and promotes cardiac regeneration post ischemic injury. American Journal of Translational Research (discontinued), 2017, 9, 3120-3137.	0.0	26
228	Photosynthetic symbiotic therapeutics – An innovative, effective treatment for ischemic cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2022, 164, 51-57.	0.9	4
229	State-Of-Play for Cellular Therapies in Cardiac Repair and Regeneration. Stem Cells, 2021, 39, 1579-1588.	1.4	11
230	Therapeutic Acellular Scaffolds for Limiting Left Ventricular Remodelling-Current Status and Future Directions. International Journal of Molecular Sciences, 2021, 22, 13054.	1.8	5
231	MiR-218 Promotes Adriamycin-Induced H9C2 Apoptosis by Inhibiting Stress-Associated Endoplasmic Reticulum Protein 1. Disease Markers, 2022, 2022, 1-10.	0.6	1
232	MICU1-dependent mitochondrial calcium uptake regulates lung alveolar type 2 cell plasticity and lung regeneration. JCI Insight, 2022, 7, .	2.3	11
233	Hippo-Yap/Taz signalling in zebrafish regeneration. Npj Regenerative Medicine, 2022, 7, 9.	2.5	11
234	Tailoring Cardiac Synthetic Transcriptional Modulation Towards Precision Medicine. Frontiers in Cardiovascular Medicine, 2021, 8, 783072.	1.1	1
235	Approaches Toward Targeting Matrix Metalloproteases for Prognosis and Therapies in Gynecological Cancer: MicroRNAs as a Molecular Driver. Frontiers in Oncology, 2021, 11, 720622.	1.3	3
236	The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Frontiers in Cardiovascular Medicine, 2021, 8, 809580.	1.1	10
238	Restoring Ravaged Heart: Molecular Mechanisms and Clinical Application of miRNA in Heart Regeneration. Frontiers in Cardiovascular Medicine, 2022, 9, 835138.	1.1	4
239	The role of the Hippo pathway in autophagy in the heart. Cardiovascular Research, 2023, 118, 3320-3330.	1.8	11
240	Heart regeneration: 20 years of progress and renewed optimism. Developmental Cell, 2022, 57, 424-439.	3.1	28
241	Signaling pathways and targeted therapy for myocardial infarction. Signal Transduction and Targeted Therapy, 2022, 7, 78.	7.1	175
242	Neonatal Kalp Rejenerasyonu: Hippo Sinyal Yolağı'nın Rolü. Arsiv Kaynak Tarama Dergisi, 2022, 31, 28	3-3041	0
243	Regulatory miRNAs in Cardiovascular and Alzheimer's Disease: A Focus on Copper. International Journal of Molecular Sciences, 2022, 23, 3327.	1.8	3

#	Article	IF	CITATIONS
244	Bioactivity and miRNome Profiling of Native Extracellular Vesicles in Human Induced Pluripotent Stem Cellâ€Cardiomyocyte Differentiation. Advanced Science, 2022, 9, e2104296.	5.6	14
245	Transcriptional coâ€activators YAP1–TAZ of Hippo signalling in doxorubicinâ€induced cardiomyopathy. ESC Heart Failure, 2022, 9, 224-235.	1.4	7
249	Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration. Basic Research in Cardiology, 2022, 117, 26.	2.5	4
250	Postnatal expression of cell cycle promoter Fam64a causes heart dysfunction by inhibiting cardiomyocyte differentiation through repression of Klf15. IScience, 2022, 25, 104337.	1.9	3
251	The cell-autonomous and non–cell-autonomous roles of the Hippo pathway in heart regeneration. Journal of Molecular and Cellular Cardiology, 2022, 168, 98-106.	0.9	5
252	The regenerative capacity of neonatal tissues. Development (Cambridge), 2022, 149, .	1.2	4
253	Defining the molecular underpinnings controlling cardiomyocyte proliferation. Clinical Science, 2022, 136, 911-934.	1.8	2
254	A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chemico-Biological Interactions, 2022, 363, 110011.	1.7	7
255	G1/S restriction point coordinates phasic gene expression and cell differentiation. Nature Communications, 2022, 13, .	5.8	6
256	Manipulating Cardiomyocyte Plasticity for Heart Regeneration. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
257	The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clinical Science, 2022, 136, 1179-1203.	1.8	7
258	Micro RNA-411 Expression Improves Cardiac Phenotype Following MyocardialÂInfarction in Mice. JACC Basic To Translational Science, 2022, 7, 859-875.	1.9	8
259	Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options?. International Journal of Molecular Sciences, 2022, 23, 10314.	1.8	9
260	Small non-coding RNA therapeutics for cardiovascular disease. European Heart Journal, 2022, 43, 4548-4561.	1.0	24
261	Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Research and Therapy, 2022, 13, .	2.4	2
263	MicroRNA Expression in the Infarcted Heart Following Neonatal Cardiovascular Progenitor Cell Transplantation in a Sheep Model of Stem Cell–Based Repair. Cell Transplantation, 2022, 31, 096368972211367.	1.2	0
264	Transposon control as a checkpoint for tissue regeneration. Development (Cambridge), 2022, 149, .	1.2	3
265	Insight into Heart-Tailored Architectures of Hydrogel to Restore Cardiac Functions after Myocardial Infarction. Molecular Pharmaceutics, 2023, 20, 57-81.	2.3	6

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
266	Genome Editing and Cardiac Regeneration. Advances in Experimental Medicine and Biology, 2023, , 37-52.	0.8	0	
267	Cardiomyocyte maturation and its reversal during cardiac regeneration. Developmental Dynamics, 2024, 253, 8-27.	0.8	3	
268	Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. Journal of Cardiovascular Development and Disease, 2022, 9, 429.	0.8	4	
269	Gene Therapy for Cardiomyocyte Renewal: Cell Cycle, a Potential Therapeutic Target. Molecular Diagnosis and Therapy, 0, , .	1.6	0	
270	Cardiac regeneration: Options for repairing the injured heart. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	5	
271	Yes-Associated Protein and Transcriptional Coactivator with PDZ-Binding Motif in Cardiovascular Diseases. International Journal of Molecular Sciences, 2023, 24, 1666.	1.8	2	
272	Stem Cells and Therapies in Cardiac Regeneration. , 2023, , 127-141.		0	
273	Hippo signaling and histone methylation control cardiomyocyte cell cycle re-entry through distinct transcriptional pathways. PLoS ONE, 2023, 18, e0281610.	1.1	3	
274	Regulation of endogenous cardiomyocyte proliferation: The known unknowns. Journal of Molecular and Cellular Cardiology, 2023, 179, 80-89.	0.9	3	
275	Endothelial plasticity across PTEN and Hippo pathways: A complex hormetic rheostat modulated by extracellular vesicles. Translational Oncology, 2023, 31, 101633.	1.7	1	
277	Analysis and Evaluation of Major COVID-19 Features: A Pairwise Comparison Approach. SN Operations Research Forum, 2023, 4, .	0.6	1	
278	Cellular reprogramming of fibroblasts in heart regeneration. Journal of Molecular and Cellular Cardiology, 2023, 180, 84-93.	0.9	3	
279	Large-scale microRNA functional high-throughput screening identifies miR-515-3p and miR-519e-3p as inducers of human cardiomyocyte proliferation. IScience, 2023, 26, 106593.	1.9	0	
280	Therapeutic Innovations for Heart Failure. Cardiac and Vascular Biology, 2023, , 337-353.	0.2	0	
305	Myocardial Tissue Repair and Regeneration. , 2023, , 497-534.		0	