Integrated allelic, transcriptional, and phenomic dissective truncations in health and disease

Science Translational Medicine

7, 270ra6

DOI: 10.1126/scitranslmed.3010134

Citation Report

#	Article	IF	CITATIONS
1	Genetic Variation in Cardiomyopathy and Cardiovascular Disorders. Circulation Journal, 2015, 79, 1409-1415.	0.7	24
2	Alternative Splicing Signatures in RNAâ€seq Data: Percent Spliced in (PSI). Current Protocols in Human Genetics, 2015, 87, 11.16.1-11.16.14.	3.5	104
3	Rare Titin (TTN) Variants in Diseases Associated with Sudden Cardiac Death. International Journal of Molecular Sciences, 2015, 16, 25773-25787.	1.8	16
4	OBSCN Mutations Associated with Dilated Cardiomyopathy and Haploinsufficiency. PLoS ONE, 2015, 10, e0138568.	1.1	70
5	Prevalence of Titin Truncating Variants in General Population. PLoS ONE, 2015, 10, e0145284.	1.1	85
6	Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model. BioMed Research International, 2015, 2015, 1-6.	0.9	16
7	An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish. ELife, 2015, 4, e09406.	2.8	83
8	CAPN3-mediated processing of C-terminal titin replaced by pathological cleavage in titinopathy. Human Molecular Genetics, 2015, 24, 3718-3731.	1.4	36
9	Role of Titin Missense Variants in Dilated Cardiomyopathy. Journal of the American Heart Association, 2015, 4, .	1.6	64
10	The Genetic Landscape of Cardiomyopathy and Its Role in Heart Failure. Cell Metabolism, 2015, 21, 174-182.	7.2	106
11	Arrhythmias in Viral Myocarditis and Pericarditis. Cardiac Electrophysiology Clinics, 2015, 7, 269-281.	0.7	62
12	Tackling the Achilles' Heel of Genetic Testing. Science Translational Medicine, 2015, 7, 270fs1.	5.8	4
13	The Rapidly Evolving Role of Titin in Cardiac Physiology andÂCardiomyopathy. Canadian Journal of Cardiology, 2015, 31, 1351-1359.	0.8	48
14	Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science, 2015, 349, 982-986.	6.0	508
15	A Review of the Giant Protein Titin in Clinical Molecular Diagnostics of Cardiomyopathies. Frontiers in Cardiovascular Medicine, 2016, 3, 21.	1.1	90
16	Relevance of truncating titin mutations in dilated cardiomyopathy. Clinical Genetics, 2016, 90, 49-54.	1.0	43
17	Clinical and Mechanistic Insights Into theÂGenetics of Cardiomyopathy. Journal of the American College of Cardiology, 2016, 68, 2871-2886.	1.2	244
19	Genetics and Genomics of Single-Gene Cardiovascular Diseases. Journal of the American College of Cardiology, 2016, 68, 2831-2849.	1.2	43

ARTICLE IF CITATIONS # Peripartum Cardiomyopathy. Circulation, 2016, 133, 1397-1409. 20 1.6 304 Recovery of Cardiac Function in Cardiomyopathy Caused by Titin Truncation. JAMA Cardiology, 2016, 1, 234. Combination of Whole Genome Sequencing, Linkage, and Functional Studies Implicates a Missense Mutation in Titin as a Cause of Autosomal Dominant Cardiomyopathy With Features of Left 22 5.167 Ventricular Noncompaction. Circulation: Cardiovascular Genetics, 2016, 9, 426-435. Alternative Splicing, Internal Promoter, Nonsense-Mediated Decay, or All Three. Circulation: 5.1 Cardiovascular Genetics, 2016, 9, 419-425. Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin's I-band: the 24 1.5 17 cardiomyopathy-linked mutation T2580I. Open Biology, 2016, 6, 160114. An †Omics' Perspective on Cardiomyopathies and Heart Failure. Trends in Molecular Medicine, 2016, 22, 3.5 813-827. Truncating Variants in Filamin C. Journal of the American College of Cardiology, 2016, 68, 2452-2453. 26 1.2 2 Exon- and contraction-dependent functions of titin in sarcomere assembly. Development (Cambridge), 1.2 24 2016, 143, 4713-4722. Reassessment of Genomic Sequence Variation to Harmonize Interpretation for Personalized Medicine. 28 2.6 53 American Journal of Human Genetics, 2016, 99, 1140-1149. Wars2 is a determinant of angiogenesis. Nature Communications, 2016, 7, 12061. 5.8 Moderate Physical Activity in Healthy Adults Is Associated With Cardiac Remodeling. Circulation: 30 1.3 40 Cardiovascular Imaging, 2016, 9, . Rare coding TTN variants are associated with electrocardiographic QT interval in the general 1.6 population. Scientific Reports, 2016, 6, 28356. The Diagnosis and Evaluation of Dilated Cardiomyopathy. Journal of the American College of 32 1.2 363 Cardiology, 2016, 67, 2996-3010. Titin truncating mutations: A rare cause of dilated cardiomyopathy in the young. Progress in Pediatric 0.2 23 Cardiology, 2016, 40, 41-45. 34 "Big data―gets personal. Science Translational Medicine, 2016, 8, 322fs3-3fs3. 5.8 4 Development of a Comprehensive Sequencing Assay for Inherited Cardiac Condition Genes. Journal of Cardiovascular Translational Research, 2016, 9, 3-11. Genetic basis of familial dilated cardiomyopathy patients undergoing heart transplantation. Journal 36 0.3 60 of Heart and Lung Transplantation, 2016, 35, 625-635. Newborn testing and screening by whole-genome sequencing. Genetics in Medicine, 2016, 18, 214-216. 1.1

#	Article	IF	Citations
38	Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. New England Journal of Medicine, 2016, 374, 233-241.	13.9	432
39	The role of genetic testing in unexplained sudden death. Translational Research, 2016, 168, 59-73.	2.2	33
40	Molecular genetics and pathogenesis of cardiomyopathy. Journal of Human Genetics, 2016, 61, 41-50.	1.1	84
42	A landscape of circular RNA expression in the human heart. Cardiovascular Research, 2017, 113, cvw250.	1.8	216
43	219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April–1 May 2016. Neuromuscular Disorders, 2017, 27, 396-407.	0.3	29
44	A Potential Oligogenic Etiology of Hypertrophic Cardiomyopathy. Circulation Research, 2017, 120, 1084-1090.	2.0	47
45	Genetics and genomics of dilated cardiomyopathy and systolic heart failure. Genome Medicine, 2017, 9, 20.	3.6	114
46	Genetic determinants of myocardial dysfunction. Journal of Medical Genetics, 2017, 54, 1-10.	1.5	7
47	Association between mutation status and left ventricular reverse remodelling in dilated cardiomyopathy. Heart, 2017, 103, 1704-1710.	1.2	64
48	Recovery in Patients With Dilated Cardiomyopathy With Loss-of-Function Mutations in the Titin Gene. JAMA Cardiology, 2017, 2, 700.	3.0	10
49	Novex-3, the tiny titin of muscle. Biophysical Reviews, 2017, 9, 201-206.	1.5	16
50	Truncating Variants in Titin Independently Predict Early Arrhythmias in Patients With Dilated Cardiomyopathy. Journal of the American College of Cardiology, 2017, 69, 2466-2468.	1.2	56
51	Titin-truncating mutations in dilated cardiomyopathy. Current Opinion in Cardiology, 2017, 32, 232-238.	0.8	27
52	Titin-Truncating Variants Increase the Risk of Cardiovascular Death in Patients With Hypertrophic Cardiomyopathy. Canadian Journal of Cardiology, 2017, 33, 1292-1297.	0.8	18
53	Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy. Biophysical Reviews, 2017, 9, 207-223.	1.5	55
54	Obscurin variants and inherited cardiomyopathies. Biophysical Reviews, 2017, 9, 239-243.	1.5	25
55	Exome sequencing–based molecular autopsy of formalin-fixed paraffin-embedded tissue after sudden death. Genetics in Medicine, 2017, 19, 1127-1133.	1.1	26
56	Truncating Titin (TTN) Variants in Chemotherapy-Induced Cardiomyopathy. Journal of Cardiac Failure, 2017, 23, 476-479.	0.7	61

#	Article	IF	CITATIONS
57	Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Review of Proteomics, 2017, 14, 117-136.	1.3	34
58	A Novel Founder Mutation in MYBPC3: Phenotypic Comparison With the Most Prevalent MYBPC3 Mutation in Spain. Revista Espanola De Cardiologia (English Ed), 2017, 70, 105-114.	0.4	10
59	Issues and Challenges in Diagnostic Sequencing for Inherited Cardiac Conditions. Clinical Chemistry, 2017, 63, 116-128.	1.5	7
60	Hypertrophic Cardiomyopathy Gene Testing. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	2
61	The giant protein titin regulates the length of the striated muscle thick filament. Nature Communications, 2017, 8, 1041.	5.8	79
62	Should Identifying a Titin Truncating Variant Change the Management of Patients With DilatedÂCardiomyopathy?. Journal of the American College of Cardiology, 2017, 70, 2275-2277.	1.2	2
63	Phenotype and Clinical Outcomes of TitinÂCardiomyopathy. Journal of the American College of Cardiology, 2017, 70, 2264-2274.	1.2	86
64	Dilated Cardiomyopathy. Circulation Research, 2017, 121, 731-748.	2.0	527
65	Between Disease-Causing and an Innocent Bystander: The Role of Titin as a Modifier in Hypertrophic Cardiomyopathy. Canadian Journal of Cardiology, 2017, 33, 1217-1220.	0.8	7
66	A â€~second truncation' in TTN causes early onset recessive muscular dystrophy. Neuromuscular Disorders, 2017, 27, 1009-1017.	0.3	18
67	The Role of Genetics in Peripartum Cardiomyopathy. Journal of Cardiovascular Translational Research, 2017, 10, 437-445.	1.1	13
68	Novel Genetic Triggers and Genotype–Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	99
69	Lamin A/C Cardiomyopathy. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	8
70	Sudden Cardiac Death in Genetic Cardiomyopathies. Cardiac Electrophysiology Clinics, 2017, 9, 581-603.	0.7	13
71	When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. Journal of Muscle Research and Cell Motility, 2017, 38, 303-316.	0.9	14
72	Abnormal contractility in human heart myofibrils from patients with dilated cardiomyopathy due to mutations in TTN and contractile protein genes. Scientific Reports, 2017, 7, 14829.	1.6	40
73	Molecular mechanisms in cardiomyopathy. Clinical Science, 2017, 131, 1375-1392.	1.8	49
74	Personalizing Risk Stratification for Sudden Death in Dilated Cardiomyopathy. Circulation, 2017, 136, 215-231.	1.6	171

#	Article	IF	CITATIONS
75	Position Statement on the Diagnosis and Management of Familial Dilated Cardiomyopathy. Heart Lung and Circulation, 2017, 26, 1127-1132.	0.2	11
76	Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. European Journal of Heart Failure, 2017, 19, 512-521.	2.9	127
77	Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genetics in Medicine, 2017, 19, 192-203.	1.1	585
78	Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clinical Research in Cardiology, 2017, 106, 127-139.	1.5	156
79	Titin-truncating variants affect heart function in disease cohorts and the general population. Nature Genetics, 2017, 49, 46-53.	9.4	255
80	Massive parallel sequencing questions the pathogenic role of missense variants in dilated cardiomyopathy. International Journal of Cardiology, 2017, 228, 742-748.	0.8	16
81	Germline TTN variants are enriched in PTEN-wildtype Bannayan–Riley–Ruvalcaba syndrome. Npj Genomic Medicine, 2017, 2, 37.	1.7	10
82	Molecular Epidemiology of Heart Failure. JACC Basic To Translational Science, 2017, 2, 757-769.	1.9	25
83	Titin Truncating Variants in Dilated Cardiomyopathy – Prevalence and Genotype-Phenotype Correlations. PLoS ONE, 2017, 12, e0169007.	1.1	63
84	High proportion of genetic cases in patients with advanced cardiomyopathy including a novel homozygous Plakophilin 2-gene mutation. PLoS ONE, 2017, 12, e0189489.	1.1	33
85	Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy. Genome Biology, 2017, 18, 170.	3.8	70
86	Titin cardiomyopathy: why we need to go big to understand the giant. European Heart Journal, 2018, 39, 874-875.	1.0	4
87	Congenital Titinopathy: Comprehensive characterization and pathogenic insights. Annals of Neurology, 2018, 83, 1105-1124.	2.8	93
88	Association of Cardiomyopathy With <i>MYBPC3</i> D389V and <i>MYBPC3^{Δ25bp}</i> Intronic Deletion in South Asian Descendants. JAMA Cardiology, 2018, 3, 481.	3.0	31
89	Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. European Heart Journal, 2018, 39, 864-873.	1.0	132
90	CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation. Genetics in Medicine, 2018, 20, 1246-1254.	1.1	75
91	Next-Generation Sequencing to Diagnose Muscular Dystrophy, Rhabdomyolysis, and HyperCKemia. Canadian Journal of Neurological Sciences, 2018, 45, 262-268.	0.3	26
92	Understanding Titin Variants in the Age of Next-Generation Sequencing—A Titanic Challenge. JAMA Neurology, 2018, 75, 539.	4.5	2

	СІТАТ	CITATION REPORT	
#	Article	IF	CITATIONS
93	Gene Editing and Gene-Based Therapeutics for Cardiomyopathies. Heart Failure Clinics, 2018, 14, 179-18	.8. 1.0	8
94	Genetic Evaluation of Cardiomyopathy—A Heart Failure Society of America Practice Guideline. Journal of Cardiac Failure, 2018, 24, 281-302.	0.7	280
95	Genetic Pathogenesis of Hypertrophic and Dilated Cardiomyopathy. Heart Failure Clinics, 2018, 14, 139-146.	1.0	83
96	The first titin (c.59926 + 1G > A) founder mutation associated with dilated cardiomyopathy. European Journal of Heart Failure, 2018, 20, 803-806.	2.9	16
97	Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nature Reviews Cardiology, 2018, 15, 241-252.	6.1	115
98	Titin Gene and Protein Functions in Passive and Active Muscle. Annual Review of Physiology, 2018, 80, 389-411.	5.6	167
99	Understanding Peripartum Cardiomyopathy. Annual Review of Medicine, 2018, 69, 165-176.	5.0	25
100	A circular RNA regulator quaking: a novel gold mine to be unfolded in doxorubicin-mediated cardiotoxicity. Non-coding RNA Investigation, 2018, 2, 19-19.	0.6	3
101	Clinical Phenotype and Genotype Associations With Improvement in Left Ventricular Function in Dilated Cardiomyopathy. Circulation: Heart Failure, 2018, 11, e005220.	1.6	51
102	Linking Clinical Parameters and Genotype in Dilated Cardiomyopathy. Circulation: Heart Failure, 2018, 11, e005459.	1.6	0
103	Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation. JAMA - Journal of the American Medical Association, 2018, 320, 2354.	3.8	144
104	A-Band Titin Truncation in Zebrafish Causes Dilated Cardiomyopathy and Hemodynamic Stress Intolerance. Circulation Genomic and Precision Medicine, 2018, 11, e002135.	1.6	35
105	Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nature Communications, 2018, 9, 4316.	5.8	93
106	Molecular analysis of inherited cardiomyopathy using next generation semiconductor sequencing technologies. Journal of Translational Medicine, 2018, 16, 241.	1.8	15
107	Complex roads from genotype to phenotype in dilated cardiomyopathy: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 1287-1303.	1.8	91
108	Genetic Etiology for Alcohol-Induced Cardiac Toxicity. Journal of the American College of Cardiology, 2018, 71, 2293-2302.	1.2	182
109	Association mapping from sequencing reads using k-mers. ELife, 2018, 7, .	2.8	88
110	Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits. Biophysical Reviews, 2018, 10, 1053-1060.	1.5	5

#	Article	IF	CITATIONS
112	Genetic Testing. , 2018, , 743-748.		0
113	Truncations of the titin Z-disc predispose to a heart failure with preserved ejection phenotype in the context of pressure overload. PLoS ONE, 2018, 13, e0201498.	1.1	6
114	Cardiomyopathies and Related Changes in Contractility of Human Heart Muscle. International Journal of Molecular Sciences, 2018, 19, 2234.	1.8	50
115	Using Gene Expression to Annotate Cardiovascular GWAS Loci. Frontiers in Cardiovascular Medicine, 2018, 5, 59.	1.1	13
116	Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease. Frontiers in Neuroscience, 2018, 12, 230.	1.4	21
117	Right Heart in Dilated Cardiomyopathy. , 2018, , 363-369.		0
118	Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 2018, 20, 899-909.	1.1	172
119	Primary Myocardial Fibrosis as an Alternative Phenotype Pathway of Inherited Cardiac Structural Disorders. Circulation, 2018, 137, 2716-2726.	1.6	41
120	Genome sequencing as a first-line genetic test in familial dilated cardiomyopathy. Genetics in Medicine, 2019, 21, 650-662.	1.1	52
121	Unraveling obscurins in heart disease. Pflugers Archiv European Journal of Physiology, 2019, 471, 735-743.	1.3	23
122	Association of Titin-Truncating Genetic Variants With Life-threatening Cardiac Arrhythmias in Patients With Dilated Cardiomyopathy and Implanted Defibrillators. JAMA Network Open, 2019, 2, e196520.	2.8	33
123	Cronos Titin Is Expressed in Human Cardiomyocytes and Necessary for Normal Sarcomere Function. Circulation, 2019, 140, 1647-1660.	1.6	50
124	Rare Genetic Variants Associated With Sudden Cardiac Death in Adults. Journal of the American College of Cardiology, 2019, 74, 2623-2634.	1.2	27
125	Low mutation rate in the TTN gene in paediatric patients with dilated cardiomyopathy – a pilot study. Scientific Reports, 2019, 9, 16409.	1.6	11
126	Atrial Fibrillation Genetics Update: Toward Clinical Implementation. Frontiers in Cardiovascular Medicine, 2019, 6, 127.	1.1	26
127	Genome-Wide Analysis of Left Ventricular Image-Derived Phenotypes Identifies Fourteen Loci Associated With Cardiac Morphogenesis and Heart Failure Development. Circulation, 2019, 140, 1318-1330.	1.6	138
128	Deleting Full Length Titin Versus the Titin M-Band Region Leads to Differential Mechanosignaling and Cardiac Phenotypes. Circulation, 2019, 139, 1813-1827.	1.6	45
129	Centronuclear myopathy with cardiomyopathy due to recessive titinopathy. Muscle and Nerve, 2019, 59, E26-E27.	1.0	3

#	ARTICLE	IF	CITATIONS
130	Novel Therapies for Prevention and Early Treatment of Cardiomyopathies. Circulation Research, 2019, 124, 1536-1550.	2.0	47
131	Molecular characterization of dilated cardiomyopathy. Revista Portuguesa De Cardiologia (English) Tj ETQq1	1 0.784314 rg	gBT /Overlo <mark>c</mark> i
132	Genomics-First Evaluation of Heart Disease Associated With Titin-Truncating Variants. Circulation, 2019, 140, 42-54.	1.6	97
133	From Hypertrophy to Heart Failure: What Is New in Genetic Cardiomyopathies. Current Heart Failure Reports, 2019, 16, 157-167.	1.3	9
134	Fine mapping titin's C-zone: Matching cardiac myosin-binding protein C stripes with titin's super-repeats. Journal of Molecular and Cellular Cardiology, 2019, 133, 47-56.	0.9	39
135	The Translational Landscape of the Human Heart. Cell, 2019, 178, 242-260.e29.	13.5	407
136	Sudden cardiac death in nonischemic cardiomyopathy. Progress in Cardiovascular Diseases, 2019, 62, 235-241.	1.6	13
137	The giant titin: how to evaluate its role in cardiomyopathies. Journal of Muscle Research and Cell Motility, 2019, 40, 159-167.	0.9	11
138	The co-segregation of the MYL2 R58Q mutation in Chinese hypertrophic cardiomyopathy family and its pathological effect on cardiomyopathy disarray. Molecular Genetics and Genomics, 2019, 294, 1241-1249.	1.0	5
139	Mortality Risk Associated With Truncating Founder Mutations in Titin. Circulation Genomic and Precision Medicine, 2019, 12, e002436.	1.6	5
140	Dilated cardiomyopathy. Nature Reviews Disease Primers, 2019, 5, 32.	18.1	347
141	Genetics of Dilated Cardiomyopathy: Current Knowledge and Future Perspectives. , 2019, , 45-69.		3
143	NGS-Based genetic testing for heritable cardiovascular diseases. Specific requirements for obtaining informed consent. Molecular and Cellular Probes, 2019, 45, 70-78.	0.9	0
144	Recessive mutations in proximal I-band of TTN gene cause severe congenital multi-minicore disease without cardiac involvement. Neuromuscular Disorders, 2019, 29, 350-357.	0.3	10
145	The assembly and evaluation of antisense oligonucleotides applied in exon skipping for titin-based mutations in dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2019, 131, 12-19.	0.9	6
146	Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 2019, 21, 553-576.	2.9	224
147	Genetic Variants Associated With Cancer Therapy–Induced Cardiomyopathy. Circulation, 2019, 140, 31-41.	1.6	195
148	Whole-Exome Sequencing Reveals Novel Genetic Variation for Dilated Cardiomyopathy in Pediatric Chinese Patients. Pediatric Cardiology, 2019, 40, 950-957.	0.6	5

#	Article	IF	CITATIONS
149	Molecular characterization of dilated cardiomyopathy. Revista Portuguesa De Cardiologia, 2019, 38, 141-142.	0.2	0
150	Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes. Scientific Reports, 2019, 9, 3625.	1.6	10
151	Relevance of Titin Missense and Non-Frameshifting Insertions/Deletions Variants in Dilated Cardiomyopathy. Scientific Reports, 2019, 9, 4093.	1.6	30
152	Titin in muscular dystrophy and cardiomyopathy: Urinary titin as a novel marker. Clinica Chimica Acta, 2019, 495, 123-128.	0.5	14
153	Advances in the Genetic Basis and Pathogenesis of Sarcomere Cardiomyopathies. Annual Review of Genomics and Human Genetics, 2019, 20, 129-153.	2.5	108
154	Titin mutations and muscle disease. Pflugers Archiv European Journal of Physiology, 2019, 471, 673-682.	1.3	42
155	Left Ventricular Noncompaction. Journal of the American College of Cardiology, 2019, 73, 1612-1615.	1.2	9
156	Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nature Communications, 2019, 10, 1538.	5.8	104
157	Titin truncations lead to impaired cardiomyocyte autophagy and mitochondrial function in vivo. Human Molecular Genetics, 2019, 28, 1971-1981.	1.4	19
158	Risk Stratification in Patients With Nonisquemic Dilated Cardiomyopathy. The Role of Genetic Testing. Revista Espanola De Cardiologia (English Ed), 2019, 72, 333-340.	0.4	6
159	Genetics of atrial cardiomyopathy. Current Opinion in Cardiology, 2019, 34, 275-281.	0.8	7
160	The Giant Protein Titin's Role in Cardiomyopathy: Genetic, Transcriptional, and Post-translational Modifications of TTN and Their Contribution to Cardiac Disease. Frontiers in Physiology, 2019, 10, 1436.	1.3	77
161	Precision Medicine in the Management of Dilated Cardiomyopathy. Journal of the American College of Cardiology, 2019, 74, 2921-2938.	1.2	57
162	Risk Stratification for Sudden Cardiac Death in Non-Ischaemic Dilated Cardiomyopathy. Current Cardiology Reports, 2019, 21, 155.	1.3	46
163	Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. American Journal of Human Genetics, 2019, 104, 76-93.	2.6	176
164	Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet, The, 2019, 393, 61-73.	6.3	379
165	Papel de la genética en la estratificación del riesgo de pacientes con miocardiopatÃa dilatada no isquémica. Revista Espanola De Cardiologia, 2019, 72, 333-340.	0.6	8
166	Sarcomere variants in arrhythmogenic cardiomyopathy: Pathogenic factor or bystander?. Gene, 2019, 687, 82-89.	1.0	7

		15	6
#		IF	CITATIONS
167	Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management. Heart Lung and Circulation, 2019, 28, 31-38.	0.2	51
168	RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy. Protein and Cell, 2019, 10, 405-416.	4.8	45
169	Coâ€expression analysis provides important module and pathways of human dilated cardiomyopathy. Journal of Cellular Physiology, 2020, 235, 494-503.	2.0	8
170	Prevalence of TTN mutations inÂpatients withÂdilated cardiomyopathy. Herz, 2020, 45, 29-36.	0.4	6
171	Monogenic and Polygenic Contributions to Atrial Fibrillation Risk. Circulation Research, 2020, 126, 200-209.	2.0	79
172	Genetic Cardiomyopathies. , 2020, , 77-114.		1
173	Familial Dilated Cardiomyopathy. Heart Lung and Circulation, 2020, 29, 566-574.	0.2	29
174	Clinical Phenotypes and Prognosis of Dilated Cardiomyopathy Caused by Truncating Variants in the <i>TTN</i> Gene. Circulation: Heart Failure, 2020, 13, e006832.	1.6	75
175	Altered Enhancer and Promoter Usage Leads to Differential Gene Expression in the Normal and Failed Human Heart. Circulation: Heart Failure, 2020, 13, e006926.	1.6	10
176	Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-30.	1.9	13
177	Discovery of TITIN Gene Truncating Variant Mutations and 5-Year Outcomes in Patients With Nonischemic Dilated Cardiomyopathy. American Journal of Cardiology, 2020, 137, 97-102.	0.7	8
178	A long-read RNA-seq approach to identify novel transcripts of very large genes. Genome Research, 2020, 30, 885-897.	2.4	29
179	New Insights on Genetic Diagnostics in Cardiomyopathy and Arrhythmia Patients Gained by Stepwise Exome Data Analysis. Journal of Clinical Medicine, 2020, 9, 2168.	1.0	4
181	Incorporating Spinal Muscular Atrophy Analysis by Next-Generation Sequencing into a Comprehensive Multigene Panel for Neuromuscular Disorders. Genetic Testing and Molecular Biomarkers, 2020, 24, 616-624.	0.3	12
182	Dilated cardiomyopathy caused by truncating titin variants: long-term outcomes, arrhythmias, response to treatment and sex differences. Journal of Medical Genetics, 2021, 58, 832-841.	1.5	14
183	The Egyptian Collaborative Cardiac Genomics (ECCO-GEN) Project: defining a healthy volunteer cohort. Npj Genomic Medicine, 2020, 5, 46.	1.7	5
184	Modifications of Titin Contribute to the Progression of Cardiomyopathy and Represent a Therapeutic Target for Treatment of Heart Failure. Journal of Clinical Medicine, 2020, 9, 2770.	1.0	16
185	Novel heterozygous truncating titin variants affecting the Aâ€band are associated with cardiomyopathy and myopathy/muscular dystrophy. Molecular Genetics & Genomic Medicine, 2020, 8, e1460.	0.6	10

#	Article	IF	CITATIONS
186	Titin-truncating mutations associated with dilated cardiomyopathy alter length-dependent activation and its modulation via phosphorylation. Cardiovascular Research, 2022, 118, 241-253.	1.8	16
187	Clinical Interpretation and Management of Genetic Variants. JACC Basic To Translational Science, 2020, 5, 1029-1042.	1.9	23
188	Epigenetic Regulation of Alternative mRNA Splicing in Dilated Cardiomyopathy. Journal of Clinical Medicine, 2020, 9, 1499.	1.0	11
189	Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nature Communications, 2020, 11, 2254.	5.8	140
190	Challenges in the diagnosis and discovery of rare genetic disorders using contemporary sequencing technologies. Briefings in Functional Genomics, 2020, 19, 243-258.	1.3	27
191	Prognostic implications of pathogenic truncating variants in the TTN gene. International Journal of Cardiology, 2020, 316, 180-183.	0.8	1
192	Transcript expression-aware annotation improves rare variant interpretation. Nature, 2020, 581, 452-458.	13.7	142
193	Early-onset atrial fibrillation patients show reduced left ventricular ejection fraction and increased atrial fibrosis. Scientific Reports, 2020, 10, 10039.	1.6	12
194	Genetic Factors Involved in Cardiomyopathies and in Cancer. Journal of Clinical Medicine, 2020, 9, 1702.	1.0	4
195	Titin Truncating Variants in Adults Without Known Congestive HeartÂFailure. Journal of the American College of Cardiology, 2020, 75, 1239-1241.	1.2	22
196	Variant Interpretation for Dilated Cardiomyopathy. Circulation Genomic and Precision Medicine, 2020, 13, e002480.	1.6	70
197	Improved Criteria for the Classification of Titin Variants in Inherited Skeletal Myopathies. Journal of Neuromuscular Diseases, 2020, 7, 153-166.	1.1	18
198	Genetic Animal Models for Arrhythmogenic Cardiomyopathy. Frontiers in Physiology, 2020, 11, 624.	1.3	29
199	Genetic Basis and Genotype–Phenotype Correlations in Han Chinese Patients with Idiopathic Dilated Cardiomyopathy. Scientific Reports, 2020, 10, 2226.	1.6	17
200	Emerging concepts in arrhythmogenic dilated cardiomyopathy. Heart Failure Reviews, 2021, 26, 1219-1229.	1.7	20
201	Prospective Evaluation of the Utility of Whole Exome Sequencing in Dilated Cardiomyopathy. Journal of the American Heart Association, 2020, 9, e013346.	1.6	28
202	Reevaluating the Genetic Contribution of Monogenic Dilated Cardiomyopathy. Circulation, 2020, 141, 387-398.	1.6	148
203	Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovascular Research, 2020, 116, 1600-1619.	1.8	28

ARTICLE IF CITATIONS # Identification of known and unknown genes associated with mitral valve prolapse using an exome 204 1.5 22 slice methodology. Journal of Medical Genetics, 2020, 57, 843-850. A new congenital multicore titinopathy associated with fast myosin heavy chain deficiency. Annals of 1.7 Clinical and Translational Neurology, 2020, 7, 846-854. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. 206 0.8 12 Advances in Experimental Medicine and Biology, 2020, 1236, 189-223. Amino Acid-Level Signal-to-Noise Analysis Aids in Pathogenicity Prediction of Incidentally Identified <i>TTN</i> -Encoded Titin Truncating Variants. Circulation Genomic and Precision Medicine, 2021, 14, e003131. Dual hereditary and immuneâ€mediated neuromuscular diagnoses after cancer immunotherapy. Muscle 208 1.0 4 and Nerve, 2021, 63, E21-E24. LRP10 Mutations May Correlate with Sporadic Parkinson's Disease in China. Molecular Neurobiology, 209 2021, 58, 1212-1216. Microfluidic and Organ-on-a-Chip Approaches to Investigate Cellular and Microenvironmental 211 Contributions to Cardiovascular Function and Pathology. Frontiers in Bioengineering and 2.0 25 Biotechnology, 2021, 9, 624435. Genetics of dilated cardiomyopathy. Current Opinion in Cardiology, 2021, 36, 288-294. 0.8 21 213 Titin Truncation Variant in Dilated Cardiomyopathy. International Heart Journal, 2021, 62, 221-223. 0.5 0 Genomic Context Differs Between Human Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy. 214 1.6 Journal of the American Heart Association, 2021, 10, e019944. A Novel Titin Truncation Variant Linked to Familial Dilated Cardiomyopathy Found in a Japanese Family and Its Functional Analysis in Genome-Edited Model Cells. International Heart Journal, 2021, 62, 215 0.5 6 359-366. Clinical Significance of Variants in the TTN Gene in a Large Cohort of Patients With Sporadic Dilated 1.1 Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 657689. Assessing the Role of Rare Genetic Variation in Patients With Heart Failure. JAMA Cardiology, 2021, 6, 217 3.0 37 379. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 2021, 23, 1391-1398. 1.1 145 Uncovering Inherited Cardiomyopathy With Human Induced Pluripotent Stem Cells. Frontiers in Cell 220 1.8 5 and Developmental Biology, 2021, 9, 672039. Genetic and Phenotypic Landscape of Peripartum Cardiomyopathy. Circulation, 2021, 143, 1852-1862. Zebrafish as a tractable model of human cardiovascular disease. British Journal of Pharmacology, 222 2.7 70 2022, 179, 900-917. Molecular analysis of dilated and left ventricular noncompaction cardiomyopathies in Egyptian 0.4 children. Cardiology in the Young, 2021, , 1-6.

#	Article	IF	CITATIONS
224	Contemporary and Future Approaches toÂPrecision Medicine in InheritedÂCardiomyopathies. Journal of the American College of Cardiology, 2021, 77, 2551-2572.	1.2	11
225	The Complex and Diverse Genetic Architecture of Dilated Cardiomyopathy. Circulation Research, 2021, 128, 1514-1532.	2.0	49
226	Genetic analysis using targeted next-generation sequencing of sporadic Chinese patients with idiopathic dilated cardiomyopathy. Journal of Translational Medicine, 2021, 19, 189.	1.8	7
227	Evidence-Based Assessment of Genes in Dilated Cardiomyopathy. Circulation, 2021, 144, 7-19.	1.6	213
228	The Combined Human Genotype of Truncating TTN and RBM20 Mutations Is Associated with Severe and Early Onset of Dilated Cardiomyopathy. Genes, 2021, 12, 883.	1.0	15
229	Towards precision medicine in heart failure. Nature Reviews Cardiology, 2021, 18, 745-762.	6.1	34
230	The Interplay Between Titin, Polygenic Risk, and Modifiable Cardiovascular Risk Factors in Atrial Fibrillation. Canadian Journal of Cardiology, 2021, 37, 848-856.	0.8	10
231	Whole-exome sequencing reveals genetic risks of early-onset sporadic dilated cardiomyopathy in the Chinese Han population. Science China Life Sciences, 2022, 65, 770-780.	2.3	7
232	Myopathic Cardiac Genotypes Increase Risk for Myocarditis. JACC Basic To Translational Science, 2021, 6, 584-592.	1.9	36
233	Genetic Determinant of Familial Dilated Cardiomyopathy and Genotype-Targeted Therapeutic Strategy. , 0, , .		1
234	The Sarcomeric Spring Protein Titin: Biophysical Properties, Molecular Mechanisms, and Genetic Mutations Associated with Heart Failure and Cardiomyopathy. Current Cardiology Reports, 2021, 23, 121.	1.3	18
235	Looking at the Right Side: Amenability of the Right Ventricle to Therapy in Patients With Titin-Related Dilated Cardiomyopathy. Canadian Journal of Cardiology, 2021, 37, 1699-1701.	0.8	0
236	Dilated cardiomyopathy in the era of precision medicine: latest concepts and developments. Heart Failure Reviews, 2022, 27, 1173-1191.	1.7	43
237	Endotyping in Heart Failure ― Identifying Mechanistically Meaningful Subtypes of Disease ―. Circulation Journal, 2021, 85, 1407-1415.	0.7	3
238	Pathogenic Variants Associated With Dilated Cardiomyopathy Predict Outcome in Pediatric Myocarditis. Circulation Genomic and Precision Medicine, 2021, 14, e003250.	1.6	27
239	Contribution of Noncanonical Splice Variants to <i>TTN</i> Truncating Variant Cardiomyopathy. Circulation Genomic and Precision Medicine, 2021, 14, e003389.	1.6	15
240	Titin M-line insertion sequence 7 is required for proper cardiac function in mice. Journal of Cell Science, 2021, 134, .	1.2	1
241	Substrate Characterization and Outcomes of Ventricular Tachycardia Ablation in <i>TTN (Titin)</i> Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e010006.	2.1	6

#	Article	IF	CITATIONS
242	Mechanisms of TTNtv-Related Dilated Cardiomyopathy: Insights from Zebrafish Models. Journal of Cardiovascular Development and Disease, 2021, 8, 10.	0.8	10
243	Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies. Genetics in Medicine, 2021, 23, 856-864.	1.1	45
244	Inherited cardiomyopathies. , 2021, , 277-290.		0
245	The Genetic Landscape of Cardiomyopathies. Cardiac and Vascular Biology, 2019, , 45-91.	0.2	20
246	Cardiac sarcomere mechanics in health and disease. Biophysical Reviews, 2021, 13, 637-652.	1.5	21
251	Analysis of neurodegenerative Mendelian genes in clinically diagnosed Alzheimer Disease. PLoS Genetics, 2017, 13, e1007045.	1.5	40
252	Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS ONE, 2017, 12, e0181465.	1.1	32
253	Practical Aspects in Genetic Testing for Cardiomyopathies and Channelopathies. , 2019, 40, 187-200.		6
254	The Missing "lnc―between Genetics and Cardiac Disease. Non-coding RNA, 2020, 6, 3.	1.3	5
255	Importance of Genetic Testing in Dilated Cardiomyopathy: Applications and Challenges in Clinical Practice. Arquivos Brasileiros De Cardiologia, 2019, 113, 274-281.	0.3	3
256	<i>In Silico</i> Analysis of Novel Titin Non-Synonymous Missense Variants Detected by Targeted Next-Generation Sequencing in a Cohort of Romanian Index Patients with Hypertrophic Cardiomyopathy. Revista Romana De Cardiologie, 2021, 31, 565-571.	0.0	1
257	Titin Mutation Is Associated With Tumor Mutation Burden and Promotes Antitumor Immunity in Lung Squamous Cell Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 761758.	1.8	14
258	Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovascular Research, 2022, 118, 2903-2918.	1.8	38
259	Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. International Journal of Molecular Sciences, 2021, 22, 11154.	1.8	3
260	A Haplotype of Two Novel Polymorphisms in \hat{l} -Sarcoglycan Gene Increases Risk of Dilated Cardiomyopathy in Mongoloid Population. PLoS ONE, 2015, 10, e0145602.	1.1	9
261	Which way to grow? Force over time may be the heart's Dao de jing. Global Cardiology Science & Practice, 2016, 2016, e201621.	0.3	0
263	Role of Cardiovascular Magnetic Resonance in Dilated Cardiomyopathy. , 2019, , 383-390.e4.		0
266	Distrofia muscular de cinturas 2J, revisión bibliográfica y reporte de un caso pediátrico en Ecuador. Metro Ciencia, 2020, 28, 8-13.	0.0	0

#	Article	IF	CITATIONS
271	Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to <i>TTN</i> mutations. Science Translational Medicine, 2021, 13, eabd3079.	5.8	59
272	Truncated titin proteins in dilated cardiomyopathy. Science Translational Medicine, 2021, 13, eabd7287.	5.8	39
273	Targeted Next Generation Sequencing for Genetic Mutations of Dilated Cardiomyopathy. Acta Cardiologica Sinica, 2019, 35, 571-584.	0.1	5
274	Genotype phenotype analysis in a family carrying truncating mutations in the titin gene. Acta Myologica, 2021, 40, 61-65.	1.5	0
275	The ACMG SF v3.0 gene list increases returnable variant detection by 22% when compared with v2.0 in the ClinSeqÂcohort. Genetics in Medicine, 2022, 24, 736-743.	1.1	7
276	Genetic risk factors for dilated cardiomyopathy. Russian Journal of Cardiology, 2021, 26, 4628.	0.4	0
277	Prenatal exome sequencing and chromosomal microarray analysis in fetal structural anomalies in a highly consanguineous population reveals a propensity of ciliopathy genes causing multisystem phenotypes. Human Genetics, 2022, 141, 101-126.	1.8	6
278	A heterozygous TTN (c. 79,684C>T) mutant human induced pluripotent stem cell line (ZZUNEUi023-A) generated from a Kazakh patient with dilated cardiomyopathy. Stem Cell Research, 2021, 57, 102614.	0.3	2
279	Beneficial Effects of Cardiomyopathy-Associated Genetic Variants on Physical Performance: A Hypothesis-Generating Scoping Review. Cardiology, 2022, 147, 90-97.	0.6	2
280	Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: from molecular mechanisms to therapeutic targets. A position paper from the Heart Failure Association (HFA) and the Working Group on Myocardial Function of the European Society of Cardiology (ESC). European Journal of Heart Failure. 2022. 24. 406-420.	2.9	22
281	Genetic Determinants of Sudden Unexpected Death in Pediatrics. Genetics in Medicine, 2022, 24, 839-850.	1.1	20
282	Peripartum cardiomyopathy: a global effort to find the cause and cure for the rare and little understood disease. Biophysical Reviews, 2022, 14, 369-379.	1.5	4
283	Reading Frame Repair of <i>TTN</i> Truncation Variants Restores Titin Quantity and Functions. Circulation, 2022, 145, 194-205.	1.6	14
284	Genetic findings in patients with primary fibrotic atrial cardiomyopathy. European Journal of Medical Genetics, 2022, 65, 104429.	0.7	4
285	Causative Variants for Inherited Cardiac Conditions in a Southeast Asian Population Cohort. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003536.	1.6	1
286	Exome Sequencing Highlights a Potential Role for Concealed Cardiomyopathies in Youthful Sudden Cardiac Death. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003497.	1.6	15
287	Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nature Genetics, 2022, 54, 240-250.	9.4	68
288	Heterozygous missense variant in theÂTTNÂgene causing Tibial muscular dystrophy. Egyptian Journal of Medical Human Genetics, 2022, 23, .	0.5	0

#	Article	IF	CITATIONS
289	2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 2022, 145, 101161CIR0000000000001063.	1.6	756
290	The Cardiac Sarcomere and Cell Cycle. Current Cardiology Reports, 2022, , 1.	1.3	3
291	Severe heart failure in the setting of inflammatory cardiomyopathy with likely pathogenic titin variant. IJC Heart and Vasculature, 2022, 39, 100969.	0.6	4
292	2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure. Journal of the American College of Cardiology, 2022, 79, e263-e421.	1.2	774
293	Genetics of cancer therapy-associated cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2022, 167, 85-91.	0.9	10
294	Titin-Related Dilated Cardiomyopathy: The Clinical Trajectory and the Role of Circulating Biomarkers in the Clinical Assessment. Diagnostics, 2022, 12, 13.	1.3	3
305	Rapid Molecular Diagnosis of Genetically Inherited Neuromuscular Disorders Using Next-Generation Sequencing Technologies. Journal of Clinical Medicine, 2022, 11, 2750.	1.0	3
306	Long-Reads Sequencing Strategy to Localize Variants in TTN Repeated Domains. Journal of Molecular Diagnostics, 2022, 24, 719-726.	1.2	0
307	Exploring the Potential of Symmetric Exon Deletion to Treat Non-Ischemic Dilated Cardiomyopathy by Removing Frameshift Mutations in TTN. Genes, 2022, 13, 1093.	1.0	1
309	Titin-related Cardiomyopathy: Is it a Distinct Disease?. Current Cardiology Reports, 2022, 24, 1069-1075.	1.3	8
310	Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Frontiers in Physiology, 0, 13, .	1.3	2
311	Pathogenic Variants in Cardiomyopathy Disorder Genes Underlie Pediatric Myocarditis—Further Impact of Heterozygous Immune Disorder Gene Variants?. Journal of Cardiovascular Development and Disease, 2022, 9, 216.	0.8	3
312	Use of animal models to understand titin physiology and pathology. Journal of Cellular and Molecular Medicine, 2022, 26, 5103-5112.	1.6	6
313	Genetic Architecture of Acute Myocarditis and the Overlap With Inherited Cardiomyopathy. Circulation, 2022, 146, 1123-1134.	1.6	46
314	Genetic Evaluation of A Nation-Wide Dutch Pediatric DCM Cohort: The Use of Genetic Testing in Risk Stratification. Circulation Genomic and Precision Medicine, 0, , .	1.6	2
315	Relationship between protein arginine methyltransferase and cardiovascular disease (Review). Biomedical Reports, 2022, 17, .	0.9	5
316	Managing Specific Cardiac Conditions During Pregnancy, Labor, and Delivery. , 2023, , 48-77.		0
317	Titin-truncating variants in hiPSC cardiomyocytes induce pathogenic proteinopathy and sarcomere defects with preserved core contractile machinery. Stem Cell Reports, 2023, 18, 220-236.	2.3	2

ARTICLE IF CITATIONS # Approach to Cohort-Wide Re-Analysis of Exome Data in 1000 Individuals with Neurodevelopmental 318 1.0 2 Disorders. Genes, 2023, 14, 30. Fetal akinesia deformation sequence syndrome associated with recessive <scp><i>TTN</i></scp> variants. American Journal of Medical Genetics, Part A, 2023, 191, 760-769. Enrichment of titin-truncating variants in exon 327 in dilated cardiomyopathy and its relevance to 320 1.1 1 reduced nonsense-mediated mRNA decay efficiency. Frontiers in Genetics, 0, 13, . Cardiomyopathy prevalence exceeds 30% in individuals with TTN variants and early atrial fibrillation. 1.1 Genetics in Medicine, 2023, 25, 100012. A Novel Nonsense Pathogenic TTN Variant Identified in a Patient with Severe Dilated Cardiomyopathy. 322 1.0 0 Current Issues in Molecular Biology, 2023, 45, 2422-2430. 324 A spectrum of clinical severity of recessive titinopathies in prenatal. Frontiers in Genetics, 0, 13, . 1.1 325 Approaches to Genetic Screening in Cardiomyopathies. JACC: Heart Failure, 2023, 11, 133-142. 1.9 5 Transcriptome studies of inherited dilated cardiomyopathies. Mammalian Genome, 2023, 34, 312-322. 1.0 Affimers targeting proteins in the cardiomyocyte Z-disc: Novel tools that improve imaging of heart 328 1.1 1 tissue. Frontiers in Cardiovascular Medicine, Ó, 10, . Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Frontiers in 1.3 Physiology, 0, 14, . Prevalence and Clinical Consequences of Multiple Pathogenic Variants in Dilated Cardiomyopathy. 332 4 1.6 Circulation Genomic and Precision Medicine, 2023, 16, . Tools to differentiate between Filamin C and Titin truncating variant carriers: value of MRI. European 1.4 Journal of Human Genetics, 2023, 31, 1323-1332. Maternal Medical Disorders of Fetal Significance., 2024, , 82-98.e4. 337 0 High-proportion spliced-in titin truncating variants in African and European ancestry in the All of Us Research Program. , 2024, 3, 140-144.