3D Bioprinting Human Chondrocytes with Nanocellulos Tissue Engineering Applications

Biomacromolecules

16, 1489-1496

DOI: 10.1021/acs.biomac.5b00188

Citation Report

#	Article	IF	CITATIONS
1	The likely role of proteolytic enzymes in unwanted differentiation of stem cells in culture. Future Science OA, 2015, 1, FSO28.	0.9	14
2	The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication, 2015, 7, 045002.	3.7	240
3	Repopulating Decellularized Kidney Scaffolds: An Avenue for Ex Vivo Organ Generation. Materials, 2016, 9, 190.	1.3	18
4	Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects. Polymers, 2016, 8, 219.	2.0	70
5	Applications of Alginate-Based Bioinks in 3D Bioprinting. International Journal of Molecular Sciences, 2016, 17, 1976.	1.8	454
6	Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications. Materials, 2016, 9, 797.	1.3	154
7	3D Bioprinting Technologies for Hard Tissue and Organ Engineering. Materials, 2016, 9, 802.	1.3	112
8	Three-Dimensional Fabrication for Microfluidics by Conventional Techniques and Equipment Used in Mass Production. Micromachines, 2016, 7, 82.	1.4	11
9	Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting. Molecules, 2016, 21, 685.	1.7	354
10	Emulsion Inks for 3D Printing of High Porosity Materials. Macromolecular Rapid Communications, 2016, 37, 1369-1374.	2.0	77
11	Threeâ€dimensional printing in orthopaedic surgery: review of current and future applications. ANZ Journal of Surgery, 2016, 86, 648-653.	0.3	100
12	Whole-Organ Tissue Engineering: No Longer Just a Dream. Current Pathobiology Reports, 2016, 4, 87-98.	1.6	6
13	Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Lowâ€Viscosity Bioink. Advanced Materials, 2016, 28, 677-684.	11.1	677
14	3D-Bioprinting of Polylactic Acid (PLA) Nanofiber–Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells. ACS Biomaterials Science and Engineering, 2016, 2, 1732-1742.	2.6	232
15	Design considerations and challenges for mechanical stretch bioreactors in tissue engineering. Biotechnology Progress, 2016, 32, 543-553.	1.3	17
16	New strategy for enhancing <i>in situ</i> cell viability of cell-printing process via piezoelectric transducer-assisted three-dimensional printing. Biofabrication, 2016, 8, 025010.	3.7	37
17	Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 2016, 1, 93-108.	8.6	336
18	Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Engineering and Regenerative Medicine, 2016, 13, 622-635.	1.6	47

#	Article	IF	CITATIONS
19	Three-dimensional bio-printing equipment technologies for tissue engineering and regenerative medicine. Tissue Engineering and Regenerative Medicine, 2016, 13, 663-676.	1.6	26
20	Bacterial Cellulose Produced by Gluconacetobacter xylinus Culture Using Complex Carbon Sources for Biomedical Applications. MRS Advances, 2016, 1, 2563-2567.	0.5	0
21	Advances in Bioprinting Technologies for Craniofacial Reconstruction. Trends in Biotechnology, 2016, 34, 700-710.	4.9	80
22	Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering, 2016, 44, 2090-2102.	1.3	518
23	Emerging Trends in Biomaterials Research. Annals of Biomedical Engineering, 2016, 44, 1861-1862.	1.3	7
24	Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures. BioNanoMaterials, 2016, 17, .	1.4	35
25	3D printing of functional biomaterials for tissue engineering. Current Opinion in Biotechnology, 2016, 40, 103-112.	3.3	584
26	A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydrate Polymers, 2016, 148, 29-35.	5.1	52
27	Application areas of 3D bioprinting. Drug Discovery Today, 2016, 21, 1257-1271.	3.2	258
28	Designing Biomaterials for 3D Printing. ACS Biomaterials Science and Engineering, 2016, 2, 1679-1693.	2.6	581
29	3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting, 2016, 1-2, 22-35.	2.9	212
30	Bioink properties before, during and after 3D bioprinting. Biofabrication, 2016, 8, 032002.	3.7	783
31	Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. Journal of Materials Chemistry B, 2016, 4, 7178-7203.	2.9	54
32	Three-dimensional bioprinting is not only about cell-laden structures. Chinese Journal of Traumatology - English Edition, 2016, 19, 187-192.	0.7	24
33	Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures. Advanced Materials Technologies, 2016, 1, 1600096.	3.0	118
34	3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for <i>in vitro</i> neocartilage formation. Biofabrication, 2016, 8, 035002.	3.7	211
35	3D Bioprinting Using a Templated Porous Bioink. Advanced Healthcare Materials, 2016, 5, 1724-1730.	3.9	148
36	Biodegradable polymer scaffolds. Journal of Materials Chemistry B, 2016, 4, 7493-7505.	2.9	64

#	Article	IF	CITATIONS
37	Recent advances in bioprinting techniques: approaches, applications and future prospects. Journal of Translational Medicine, 2016, 14, 271.	1.8	406
38	Design and Printing Strategies in 3D Bioprinting of Cellâ€Hydrogels: A Review. Advanced Healthcare Materials, 2016, 5, 2856-2865.	3.9	251
39	Advances in printing biomaterials and living cells. Current Opinion in Organ Transplantation, 2016, 21, 467-475.	0.8	31
40	Automated Robotic Dispensing Technique for Surface Guidance and Bioprinting of Cells. Journal of Visualized Experiments, 2016, , .	0.2	7
41	A comprehensive review on droplet-based bioprinting: Past, present and future. Biomaterials, 2016, 102, 20-42.	5.7	616
42	Three-Dimensional Printing in Plastic and Reconstructive Surgery. Annals of Plastic Surgery, 2016, 77, 569-576.	0.5	146
43	Translucent and ductile nanocellulose-PEG bionanocomposites—A novel substrate with potential to be functionalized by printing for wound dressing applications. Industrial Crops and Products, 2016, 93, 193-202.	2.5	38
44	Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 2016, 93, 2-25.	2.5	1,186
45	Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials, 2016, 82, 208-220.	5.7	127
46	3D bioprinting for engineering complex tissues. Biotechnology Advances, 2016, 34, 422-434.	6.0	1,240
47	Personalized development of human organs using 3D printing technology. Medical Hypotheses, 2016, 87, 30-33.	0.8	77
48	Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, 2016, 76, 321-343.	5.7	1,154
49	Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chemical Reviews, 2016, 116, 1496-1539.	23.0	580
50	Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. , 2017, 105, 1016-1028.		58
51	3D Bioprinting for Tissue and Organ Fabrication. Annals of Biomedical Engineering, 2017, 45, 148-163.	1.3	507
52	State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering. Annals of Biomedical Engineering, 2017, 45, 195-209.	1.3	242
53	Printing of Three-Dimensional Tissue Analogs for Regenerative Medicine. Annals of Biomedical Engineering, 2017, 45, 115-131.	1.3	71
54	Three-Dimensional Printing of Tissue/Organ Analogues Containing Living Cells. Annals of Biomedical Engineering, 2017, 45, 180-194.	1.3	58

#	Article	IF	CITATIONS
55	3D Bioprinting: New Directions in Articular Cartilage Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 2657-2668.	2.6	52
56	The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances, 2017, 35, 217-239.	6.0	770
57	3D cell bioprinting of self-assembling peptide-based hydrogels. Materials Letters, 2017, 190, 103-106.	1.3	97
58	Current Progress in Bioprinting. Advanced Structured Materials, 2017, , 227-259.	0.3	6
59	Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds. Biofabrication, 2017, 9, 015022.	3.7	71
60	Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia, 2017, 57, 1-25.	4.1	490
62	Injectable Alginate Hydrogel Cross-Linked by Calcium Gluconate-Loaded Porous Microspheres for Cartilage Tissue Engineering. ACS Omega, 2017, 2, 443-454.	1.6	77
63	Droplet-Based Bioprinting â^— â^—With contributions by Hemanth Gudupati and Madhuri Dey, The Pennsylvania State University , 2017, , 125-163.		1
64	Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures. Advanced Functional Materials, 2017, 27, 1604619.	7.8	447
65	Development of a novel alginateâ€polyvinyl alcoholâ€hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Journal of Biomedical Materials Research - Part A, 2017, 105, 1457-1468.	2.1	261
66	Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry. Biomacromolecules, 2017, 18, 1238-1248.	2.6	61
67	Bio-based materials with novel characteristics for tissue engineering applications – A review. International Journal of Biological Macromolecules, 2017, 98, 837-846.	3.6	168
68	Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3Dâ€Printed Mesoreactors. Angewandte Chemie, 2017, 129, 4354-4358.	1.6	27
69	3D bioprinting of cell-laden hydrogels for advanced tissue engineering. Current Opinion in Biomedical Engineering, 2017, 2, 58-66.	1.8	50
70	Advances in Nanostructured Cellulose-based Biomaterials. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	16
71	Towards biologically relevant synthetic designer matrices in 3D bioprinting for tissue engineering and regenerative medicine. Current Opinion in Biomedical Engineering, 2017, 2, 90-98.	1.8	12
72	Simple Inkjet Process To Fabricate Microstructures of Chitinous Nanocrystals for Cell Patterning. Biomacromolecules, 2017, 18, 1993-1999.	2.6	25
73	The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine. Lecture Notes in Mechanical Engineering, 2017, , 353-365.	0.3	9

	CITATION	Report	
#	Article	lF	CITATIONS
74	3D Bioprinting for Cardiovascular Tissue Engineering. , 2017, , 167-182.		8
75	Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions. Engineering, 2017, 3, 28-35.	3.2	115
76	Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries. Sustainable Energy and Fuels, 2017, 1, 1090-1097.	2.5	48
77	Rapid Prototyping in Cardiac Disease. , 2017, , .		5
78	Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules, 2017, 18, 1-26.	2.6	185
79	3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering, 2017, 2, 29-34.	1.8	155
80	Cross-linkable multi-stimuli responsive hydrogel inks for direct-write 3D printing. Polymer Chemistry, 2017, 8, 4199-4206.	1.9	53
83	3D-Printed High Strength Bioactive Supramolecular Polymer/Clay Nanocomposite Hydrogel Scaffold for Bone Regeneration. ACS Biomaterials Science and Engineering, 2017, 3, 1109-1118.	2.6	187
84	Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics. Scientific Reports, 2017, 7, 3246.	1.6	53
85	3D-Printable Bioactivated Nanocellulose–Alginate Hydrogels. ACS Applied Materials & Interfaces, 2017, 9, 21959-21970.	4.0	252
86	In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1227.	0.3	107
87	â€~Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: Stateâ€ofâ€theâ€Art. Advanced Healthcare Materials, 2017, 6, 1700264.	3.9	316
88	Influence of shear thinning and material flow on robotic dispensing of poly(ethylene glycol) diacrylate/poloxamer 407 hydrogels. Journal of Applied Polymer Science, 2017, 134, 45083.	1.3	23
89	3D Printing of Biosamples: A Concise Review. Journal of Molecular and Engineering Materials, 2017, 05, 1740002.	0.9	0
90	Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3Dâ€Printed Mesoreactors. Angewandte Chemie - International Edition, 2017, 56, 4290-4294.	7.2	72
91	Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Scientific Reports, 2017, 7, 658.	1.6	342
92	Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers, 2017, 163, 301-316.	5.1	286
93	Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs. Tissue Engineering - Part B: Reviews, 2017, 23, 436-450.	2.5	66

#	Article	IF	CITATIONS
94	Tissue Engineering Using Plant-Derived Cellulose Nanofibrils (CNF) as Scaffold Material. ACS Symposium Series, 2017, , 171-189.	0.5	9
95	Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing. ACS Applied Materials & Interfaces, 2017, 9, 40878-40886.	4.0	106
96	Bioinks for bioprinting functional meniscus and articular cartilage. Journal of 3D Printing in Medicine, 2017, 1, 269-290.	1.0	23
97	Analysis of rheology and wall depletion of microfibrillated cellulose suspension using optical coherence tomography. Cellulose, 2017, 24, 4715-4728.	2.4	19
98	Printing@Clinic: From Medical Models to Organ Implants. ACS Biomaterials Science and Engineering, 2017, 3, 3083-3097.	2.6	21
99	Impact of intermediate UV curing and yield stress of 3D printed poly(ethylene glycol) diacrylate hydrogels on interlayer connectivity and maximum build height. Additive Manufacturing, 2017, 18, 136-144.	1.7	16
100	Celluloseâ€Nanofiberâ€Enabled 3D Printing of a Carbonâ€Nanotube Microfiber Network. Small Methods, 2017, 1, 1700222.	4.6	130
101	3D printing for clinical application in otorhinolaryngology. European Archives of Oto-Rhino-Laryngology, 2017, 274, 4079-4089.	0.8	54
102	Internalization of (bis)phosphonate-modified cellulose nanocrystals by human osteoblast cells. Cellulose, 2017, 24, 4235-4252.	2.4	20
103	Modified bionanocellulose for bioactive wound-healing dressing. European Polymer Journal, 2017, 96, 200-209.	2.6	23
104	Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures. Scientific Reports, 2017, 7, 8018.	1.6	155
105	Mechanically Tunable Bioink for 3D Bioprinting of Human Cells. Advanced Healthcare Materials, 2017, 6, 1700255.	3.9	86
106	Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics. ACS Applied Materials & Interfaces, 2017, 9, 26438-26446.	4.0	52
107	Bioprinting: uncovering the utility layer-by-layer. Journal of 3D Printing in Medicine, 2017, 1, 165-179.	1.0	13
108	3D bioprinting and the current applications in tissue engineering. Biotechnology Journal, 2017, 12, 1600734.	1.8	160
109	Spatially and temporally controlled hydrogels for tissue engineering. Materials Science and Engineering Reports, 2017, 119, 1-35.	14.8	151
110	3D Printing Polymers with Supramolecular Functionality for Biological Applications. Biomacromolecules, 2017, 18, 2669-2687.	2.6	90
111	Three-dimensional bioprinting of volumetric tissues and organs. MRS Bulletin, 2017, 42, 585-592.	1.7	39

		CITATION R	EPORT	
#	Article		IF	CITATIONS
112	Nanocellulosic materials as bioinks for 3D bioprinting. Biomaterials Science, 2017, 5, 19	88-1992.	2.6	77
113	Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanufacturir 2017, 2, 1.	ng Reviews,	4.8	72
114	3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Advanced Healthcar 2017, 6, 1700298.	e Materials,	3.9	238
115	Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting. ACS App & Interfaces, 2017, 9, 43449-43458.	blied Materials	4.0	270
116	Fast Setting Silk Fibroin Bioink for Bioprinting of Patientâ€5pecific Memoryâ€5hape Imp Healthcare Materials, 2017, 6, 1701021.	plants. Advanced	3.9	74
117	A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting differentiation of neural stem cells. Journal of Materials Chemistry B, 2017, 5, 8854-886	and 4.	2.9	139
118	Bio-inks for 3D bioprinting: recent advances and future prospects. Polymer Chemistry, 2 4451-4471.	.017, 8,	1.9	256
119	Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication, 2017, 9, 034104.		3.7	163
120	Development of a clay based bioink for 3D cell printing for skeletal application. Biofabric 034103.	cation, 2017, 9,	3.7	238
121	Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Advance Materials, 2017, 6, 1600791.	ed Healthcare	3.9	21
122	3D printing of polymer matrix composites: A review and prospective. Composites Part B 2017, 110, 442-458.	: Engineering,	5.9	2,295
123	Bioresorbable polymers for bioprinting applications. , 2017, , 331-362.			1
124	Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft engineering: Characterization and evaluation. Materials Science and Engineering C, 201	tissue 7, 71, 678-684.	3.8	120
125	Alginate Sulfate–Nanocellulose Bioinks for Cartilage Bioprinting Applications. Annals Engineering, 2017, 45, 210-223.	of Biomedical	1.3	317
126	Visit to intensive care of 2050. Intensive Care Medicine, 2017, 43, 97-100.		3.9	5
127	Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regene Cartilage, 2017, 8, 327-340.	ration.	1.4	90
128	Surface properties and porosity of highly porous, nanostructured cellulose II particles. C 2017, 24, 435-440.	ellulose,	2.4	35
129	Evaluation of bioprinter technologies. Additive Manufacturing, 2017, 13, 179-200.		1.7	141

#	Article	IF	CITATIONS
130	Advances in 3-Dimensional Printing in Otolaryngology. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 178.	1.2	36
131	Biomaterials in Meniscus Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 249-270.	0.7	5
132	Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue . Tissue Engineering - Part B: Reviews, 2017, 23, 225-236.	2.5	55
133	Stimulation of chondrocytes and chondroinduced mesenchymal stem cells by osteoinduced mesenchymal stem cells under a fluid flow stimulus on an integrated microfluidic device. Molecular Medicine Reports, 2018, 17, 2277-2288.	1.1	14
134	Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. Materials, 2017, 10, 977.	1.3	113
135	Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules, 2017, 22, 778.	1.7	46
136	Bacterial Nanocellulose from Side-Streams of Kombucha Beverages Production: Preparation and Physical-Chemical Properties. Polymers, 2017, 9, 374.	2.0	86
137	3D Printing of Cytocompatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. Materials, 2017, 10, 136.	1.3	110
138	Mechanical Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils. Polymers, 2017, 9, 378.	2.0	74
139	Extrusion-Based Bioprinting â^— â^—With minor contributions by Monika Hospodiuk, The Pennsylvania State University , 2017, , 93-124.		5
140	Bioprinter Technologies â^— â^—With contributions by Hemanth Gudupati and Kazim Moncal, The Pennsylvania State University , 2017, , 199-241.		3
141	Applications of 3D Bioprinting â^— â^—With minor contributions by Dr. Weijie Peng, The Pennsylvania State University , 2017, , 271-312.		1
142	Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. International Journal of Molecular Sciences, 2017, 18, 1597.	1.8	133
143	5.14 Biofabrication in Tissue Engineering â~†. , 2017, , 236-266.		26
144	Materials for Use in Bioprinting. , 2017, , 81-94.		0
145	Hybrid polysaccharide-based systems for biomedical applications. , 2017, , 107-149.		3
146	Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS ONE, 2017, 12, e0189428.	1.1	100
147	Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives. BioResources, 2017, 12, .	0.5	70

#	Article	IF	CITATIONS
148	Recent advances in hydrogels for cartilage tissue engineering. , 2017, 33, 59-75.		230
149	Nanocellulose Extracted from Defoliation of Ginkgo Leaves. MRS Advances, 2018, 3, 2077-2088.	0.5	11
150	3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive Materials, 2018, 3, 144-156.	8.6	751
151	Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices. Biomacromolecules, 2018, 19, 701-711.	2.6	98
152	Bioinks for 3D bioprinting: an overview. Biomaterials Science, 2018, 6, 915-946.	2.6	828
153	Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties. Green Chemistry, 2018, 20, 2558-2570.	4.6	76
154	3D bio-printing technology for body tissues and organs regeneration. Journal of Medical Engineering and Technology, 2018, 42, 187-202.	0.8	32
155	Biopolymers and polymers in the search of alternative treatments for meniscal regeneration: State of the art and future trends. Applied Materials Today, 2018, 12, 51-71.	2.3	76
156	Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. Advances in Experimental Medicine and Biology, 2018, 1058, 221-245.	0.8	6
157	Printing of Patterned, Engineered <i>E.Âcoli</i> Biofilms with a Low-Cost 3D Printer. ACS Synthetic Biology, 2018, 7, 1328-1337.	1.9	67
158	Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chemistry, 2018, 20, 2428-2448.	4.6	228
159	3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering. Nanotechnology, 2018, 29, 185101.	1.3	134
160	Highly Elastic Biodegradable Single-Network Hydrogel for Cell Printing. ACS Applied Materials & Interfaces, 2018, 10, 9969-9979.	4.0	90
161	Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydrate Polymers, 2018, 189, 22-30.	5.1	104
162	Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. Journal of Controlled Release, 2018, 274, 35-55.	4.8	68
163	3D Printing of Bacteria: The Next Frontier in Biofabrication. Trends in Biotechnology, 2018, 36, 340-341.	4.9	43
164	Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustainable Chemistry and Engineering, 2018, 6, 2807-2828.	3.2	347
165	Pulping and Pretreatment Affect the Characteristics of Bagasse Inks for Three-dimensional Printing. ACS Sustainable Chemistry and Engineering, 2018, 6, 4068-4075.	3.2	33

#	Article	IF	CITATIONS
166	Pore Size Manipulation in 3D Printed Cryogels Enables Selective Cell Seeding. Advanced Materials Technologies, 2018, 3, 1700340.	3.0	26
167	Ear Reconstruction and 3D Printing: Is It Reality?. Current Surgery Reports, 2018, 6, 1.	0.4	11
168	Direct 3D Printing of High Strength Biohybrid Gradient Hydrogel Scaffolds for Efficient Repair of Osteochondral Defect. Advanced Functional Materials, 2018, 28, 1706644.	7.8	243
169	Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. Journal of Polymer Research, 2018, 25, 1.	1.2	34
170	Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnology Advances, 2018, 36, 521-533.	6.0	90
171	Recent advances in 3D bioprinting for the regeneration of functional cartilage. Regenerative Medicine, 2018, 13, 73-87.	0.8	30
172	Silkâ€Based Bioinks for 3D Bioprinting. Advanced Healthcare Materials, 2018, 7, e1701204.	3.9	146
173	3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale, 2018, 10, 4421-4431.	2.8	212
174	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie, 2018, 130, 2377-2380.	1.6	7
175	3D Bioprinting of Self‣tanding Silkâ€Based Bioink. Advanced Healthcare Materials, 2018, 7, e1701026.	3.9	177
176	Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2018, , .	0.7	25
177	Rubbery Chitosan/Carrageenan Hydrogels Constructed through an Electroneutrality System and Their Potential Application as Cartilage Scaffolds. Biomacromolecules, 2018, 19, 340-352.	2.6	70
178	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 2353-2356.	7.2	89
179	Exploiting Advanced Hydrogel Technologies to Address Key Challenges in Regenerative Medicine. Advanced Healthcare Materials, 2018, 7, e1700939.	3.9	105
180	Tyrosinase-doped bioink for 3D bioprinting of living skin constructs. Biomedical Materials (Bristol), 2018, 13, 035008.	1.7	95
182	Recent trends in bioinks for 3D printing. Biomaterials Research, 2018, 22, 11.	3.2	585
183	3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures. Macromolecular Bioscience, 2018, 18, e1800034.	2.1	24
184	Natural Origin Materials for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 3-30.	0.8	15

#	Article	IF	CITATIONS
185	Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis. Biochemical and Biophysical Research Communications, 2018, 500, 658-664.	1.0	47
186	Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, , .	0.8	2
187	3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures. Bioprinting, 2018, 11, e00023.	2.9	9
188	Characterization of hydrogel printer for direct cell-laden scaffolds. AIP Conference Proceedings, 2018, , .	0.3	3
189	Three-Dimensional Printing of Wood-Derived Biopolymers: A Review Focused on Biomedical Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 5663-5680.	3.2	183
190	3D printing: prospects and challenges. , 2018, , 299-379.		8
191	A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. Bioprinting, 2018, 9, 19-36.	2.9	101
192	3D bioprinting and its <i>in vivo</i> applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 444-459.	1.6	174
193	Designification of Neurotechnological Devices through 3D Printed Functional Materials. Advanced Functional Materials, 2018, 28, 1703905.	7.8	3
194	Bioprinting and its applications in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules, 2018, 107, 261-275.	3.6	242
195	Synthesis and characterizations of alginate- <i>α</i> -tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial. Biomedical Materials (Bristol), 2018, 13, 025008.	1.7	32
196	Additive manufacturing of biomaterials. Progress in Materials Science, 2018, 93, 45-111.	16.0	502
197	3D Bioprinting for Tissue Engineering. , 2018, , 105-123.		7
198	The <i>Biomaker</i> : an entryâ€level bioprinting device for biotechnological applications. Journal of Chemical Technology and Biotechnology, 2018, 93, 792-799.	1.6	20
199	Surface tailoring and design-driven prototyping of fabrics with 3D-printing: An all-cellulose approach. Materials and Design, 2018, 140, 409-419.	3.3	50
200	Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybernetics and Biomedical Engineering, 2018, 38, 158-169.	3.3	31
201	3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting, 2018, 9, 1-6.	2.9	154
202	3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018, 3, 278-314.	8.6	866

#	Article	IF	CITATIONS
203	An innovative cell-printed microscale collagen model for mimicking intestinal villus epithelium. Chemical Engineering Journal, 2018, 334, 2308-2318.	6.6	34
204	Alginate Utilization in Tissue Engineering and Cell Therapy. Springer Series in Biomaterials Science and Engineering, 2018, , 121-155.	0.7	13
205	Meniscus ECMâ€functionalised hydrogels containing infrapatellar fat padâ€derived stem cells for bioprinting of regionally defined meniscal tissue. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1826-e1835.	1.3	52
206	3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. Journal of Materials Chemistry B, 2018, 6, 7066-7075.	2.9	129
209	Three-dimensional bioprinting for organ bioengineering: promise and pitfalls. Current Opinion in Organ Transplantation, 2018, 23, 649-656.	0.8	11
210	ECM Based Bioink for Tissue Mimetic 3D Bioprinting. Advances in Experimental Medicine and Biology, 2018, 1064, 335-353.	0.8	50
211	Natural Polymers for Organ 3D Bioprinting. Polymers, 2018, 10, 1278.	2.0	112
212	Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews, 2018, 118, 11575-11625.	23.0	1,008
213	Advancements in craniofacial prosthesis fabrication: A narrative review of holistic treatment. Journal of Advanced Prosthodontics, 2018, 10, 430.	1.1	12
214	Recent advances in stem cell therapeutics and tissue engineering strategies. Biomaterials Research, 2018, 22, 36.	3.2	131
219	Cardiovascular tissue bioprinting: Physical and chemical processes. Applied Physics Reviews, 2018, 5, 041106.	5.5	36
220	Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews, 2018, 5, .	5.5	129
221	Three-Dimensional Bioprinting of Cartilage by the Use of Stem Cells: A Strategy to Improve Regeneration. Materials, 2018, 11, 1749.	1.3	73
222	Bio-Based Polymers for 3D Printing of Bioscaffolds. Polymer Reviews, 2018, 58, 668-687.	5.3	67
223	Fabrication of Gellan Gum Tubular Structure Using Coaxial Needles: A Study on Wall Thickness and Encapsulation. , 2018, , .		1
224	A Hyaluronic Acid Based Injectable Hydrogel Formed via Photo-Crosslinking Reaction and Thermal-Induced Diels-Alder Reaction for Cartilage Tissue Engineering. Polymers, 2018, 10, 949.	2.0	45
225	Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells. Biomacromolecules, 2018, 19, 4307-4319.	2.6	67
226	Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering. Biomacromolecules, 2018, 19, 4442-4452.	2.6	146

#	Article	IF	CITATIONS
227	Facile Engineering of Longâ€Term Culturable Ex Vivo Vascularized Tissues Using Biologically Derived Matrices. Advanced Healthcare Materials, 2018, 7, e1800845.	3.9	23
228	Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules, 2018, 23, 2684.	1.7	267
229	Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups. Gels, 2018, 4, 69.	2.1	20
230	Cellulose-Based Hydrogels as Biomaterials. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	0
231	Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomaterials Science and Engineering, 2018, 4, 3610-3616.	2.6	128
232	Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly. International Journal of Molecular Sciences, 2018, 19, 2700.	1.8	32
233	Advances and Future Perspectives in 4D Bioprinting. Biotechnology Journal, 2018, 13, e1800148.	1.8	168
234	Responsive cellulose-hydrogel composite ink for 4D printing. Materials and Design, 2018, 160, 108-118.	3.3	162
235	Biomimetic Bacterial Cellulose-Enhanced Double-Network Hydrogel with Excellent Mechanical Properties Applied for the Osteochondral Defect Repair. ACS Biomaterials Science and Engineering, 2018, 4, 3534-3544.	2.6	67
236	A Methylcellulose Hydrogel as Support for 3D Plotting of Complex Shaped Calcium Phosphate Scaffolds. Gels, 2018, 4, 68.	2.1	44
237	A bioprinting printing approach to regenerate cartilage for microtia treatment. Bioprinting, 2018, 12, e00031.	2.9	10
238	Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks. Biofabrication, 2018, 10, 034105.	3.7	93
239	Extrusion-Based Biofabrication in Tissue Engineering and Regenerative Medicine. , 2018, , 255-281.		15
240	Fabrication and Printing of Multi-material Hydrogels. , 2018, , 397-430.		0
241	Development of Nanocellulose-Based Bioinks for 3D Bioprinting of Soft Tissue. , 2018, , 331-352.		6
242	Enzyme treated CNF biofilms: Characterization. International Journal of Biological Macromolecules, 2018, 117, 713-720.	3.6	11
243	Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Progress in Biomaterials, 2018, 7, 77-92.	1.8	127
244	Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. Journal of Materials Science, 2018, 53, 11883-11900.	1.7	60

ARTICLE IF CITATIONS # Essential steps in bioprinting: From pre- to post-bioprinting. Biotechnology Advances, 2018, 36, 245 6.0 105 1481-1504. Thiolâ€"Ene Alginate Hydrogels as Versatile Bioinks for Bioprinting. Biomacromolecules, 2018, 19, 246 2.6 146 3390-3400. 247 Bioprinting of 3D tissues/organs combined with microfluidics. RSC Advances, 2018, 8, 21712-21727. 1.7 69 Characterization of pulp derived nanocellulose hydrogels using AVAP® technology. Carbohydrate 248 5.1 34 Polymers, 2018, 198, 270-280. Facile fabrication of sulfated alginate electrospun nanofibers. Carbohydrate Polymers, 2018, 198, 249 5.1 45 481-485. Promising Sensing Platforms Based on Nanocellulose. Springer Series on Chemical Sensors and Biosensors, 2018, , 273-301. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease 251 6.6 297 modeling. Advanced Drug Delivery Reviews, 2018, 132, 235-251. Assessing printability of bioinks., 2018, , 173-189. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. Journal of Materials 253 2.9 78 Chemistry B, 2018, 6, 5499-5529. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering. Journal of Functional 254 1.8 381 Biomaterials, 2018, 9, 22. 3D bioprinting of polysaccharides and their derivatives: From characterization to application., 2018,, 255 17 105-141. Preparation of α-alumina powder and binder For 3D printer. MRS Advances, 2018, 3, 969-975. 256 Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties. ACS 257 2.6 31 Biomaterials Science and Engineering, 2018, 4, 3108-3124. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers, 2018, 10, 285. 142 Biopolymer hydrogel bioinks., 2018, , 125-136. 259 12 3D bioprinting of tissues and organs for regenerative medicine. Advanced Drug Delivery Reviews, 2018, 132, 296-332 Bioengineering Approaches for Bladder Regeneration. International Journal of Molecular Sciences, 261 1.8 70 2018, 19, 1796. Novel Biomaterials Used in Medical 3D Printing Techniques. Journal of Functional Biomaterials, 2018, 1.8 9, 17.

#	ARTICLE	IF	CITATIONS
263	Candidate bioinks for 3D bioprinting soft tissue. , 2018, , 145-172.		9
264	3D bioprinting cartilage. , 2018, , 277-304.		12
265	3D Printing in Pharmaceutical and Medical Applications – Recent Achievements and Challenges. Pharmaceutical Research, 2018, 35, 176.	1.7	428
266	Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink. Biofabrication, 2018, 10, 045002.	3.7	86
267	Three-Dimensional Printing of a Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of Shear Thinning and Postprinting Curing. ACS Biomaterials Science and Engineering, 2018, 4, 3088-3098.	2.6	60
268	3D Printing of Silk Particle-Reinforced Chitosan Hydrogel Structures and Their Properties. ACS Biomaterials Science and Engineering, 2018, 4, 3036-3046.	2.6	78
269	A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomaterialia, 2018, 74, 90-111.	4.1	168
270	A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis. Advances in Experimental Medicine and Biology, 2018, 1089, 23-36.	0.8	45
271	Assessment of a Novel Computer Algorithm for Printing a 3-Dimensional Nasal Prosthetic. JAMA Otolaryngology - Head and Neck Surgery, 2018, 144, 557.	1.2	10
272	Tissue Engineering Strategies for Osteochondral Repair. Advances in Experimental Medicine and Biology, 2018, 1059, 353-371.	0.8	33
273	Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices. ACS Applied Materials & Interfaces, 2018, 10, 17489-17507.	4.0	171
274	Recent advances on 3D printing of patient-specific implants for fibrocartilage tissue regeneration. Journal of 3D Printing in Medicine, 2018, 2, 129-140.	1.0	6
275	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	2.6	10
276	Recent Advances of Multifunctional Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-28.	0.6	0
277	3D Bioprinting and its application to organ-on-a-chip. Microelectronic Engineering, 2018, 200, 1-11.	1.1	51
278	Stimuli-Responsive Cellulose Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-40.	0.6	0
279	Regeneration – eine neue therapeutische Dimension in der Hals-Nasen-Ohrenheilkunde. Laryngo- Rhino- Otologie, 2018, 97, S185-S213.	0.2	0
280	3D Printing is a Transformative Technology in Congenital Heart Disease. JACC Basic To Translational Science, 2018, 3, 294-312.	1.9	76

#	Article	IF	CITATIONS
281	3D printing with cellulose materials. Cellulose, 2018, 25, 4275-4301.	2.4	204
283	A novel thixotropic magnesium phosphate-based bioink with excellent printability for application in 3D printing. Journal of Materials Chemistry B, 2018, 6, 4502-4513.	2.9	37
284	Fabrication of Cellulose Nanocrystal Films through Differential Evaporation for Patterned Coatings. ACS Applied Nano Materials, 2018, 1, 3098-3104.	2.4	43
285	Label free process monitoring of 3D bioprinted engineered constructs via dielectric impedance spectroscopy. Biofabrication, 2018, 10, 035012.	3.7	15
286	Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Biomedical Materials (Bristol), 2019, 14, 065009.	1.7	53
287	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	7.8	60
288	A mechanically robust thixotropic collagen and hyaluronic acid bioink supplemented with gelatin nanoparticles. Bioprinting, 2019, 16, e00058.	2.9	43
289	Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale, 2019, 11, 19842-19849.	2.8	93
290	iPSC Bioprinting: Where are We at?. Materials, 2019, 12, 2453.	1.3	32
291	Molecular dynamics simulation of the interaction of HLL peptide and 2D materials with individual residue resolution. Computational Materials Science, 2019, 169, 109112.	1.4	4
292	Nanocellulose-Based Inks—Effect of Alginate Content on the Water Absorption of 3D Printed Constructs. Bioengineering, 2019, 6, 65.	1.6	37
293	Potential Clinical Applications of Three-Dimensional Bioprinting. , 2019, , 101-125.		3
294	Materials as Bioinks and Bioink Design. , 2019, , 67-100.		7
295	Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials. Materials Science and Engineering C, 2019, 104, 109961.	3.8	36
296	Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 2019, 11, 042001.	3.7	363
297	Upregulation of long noncoding TNFSF10 contributes to osteoarthritis progression through the miRâ€376â€3p/FGFR1 axis. Journal of Cellular Biochemistry, 2019, 120, 19610-19620.	1.2	31
298	Polysaccharide-based scaffold for tissue-regeneration. , 2019, , 189-212.		3
299	High-strength hydrogel-based bioinks. Materials Chemistry Frontiers, 2019, 3, 1736-1746.	3.2	44

	CHAHON	NLPORI	
# 300	ARTICLE A review on the challenges of 3D printing of organic powders. Bioprinting, 2019, 16, e00057.	IF 2.9	Citations 20
301	Ex Vivo and In Vivo Biocompatibility Assessment (Blood and Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants. Scientific Reports, 2019, 9, 10553.	1.6	45
302	Processing nanocellulose to bulk materials: a review. Cellulose, 2019, 26, 7585-7617.	2.4	98
303	3D Printing High-Consistency Enzymatic Nanocellulose Obtained from a Soda-Ethanol-O2 Pine Sawdust Pulp. Bioengineering, 2019, 6, 60.	1.6	12
304	Natural Polymerâ€Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Advanced Healthcare Materials, 2019, 8, e1900670.	3.9	178
305	Development of a Selfâ€Assembled Peptide/Methylcelluloseâ€Based Bioink for 3D Bioprinting. Macromolecular Materials and Engineering, 2019, 304, 1900353.	1.7	31
306	Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development. Biomacromolecules, 2019, 20, 2953-2961.	2.6	16
307	3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Colloids and Surfaces B: Biointerfaces, 2019, 181, 1026-1034.	2.5	72
308	3D and 4D Printing of Polymers for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 164.	2.0	275
309	Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. Carbohydrate Polymers, 2019, 223, 115041.	5.1	49
310	Nanocellulose Composite Biomaterials in Industry and Medicine. Biologically-inspired Systems, 2019, , 693-784.	0.4	5
311	Hydrogels for Liver Tissue Engineering. Bioengineering, 2019, 6, 59.	1.6	60
312	Bioprinting functional tissues. Acta Biomaterialia, 2019, 95, 32-49.	4.1	114
313	3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures. ACS Biomaterials Science and Engineering, 2019, 5, 6290-6299.	2.6	88
314	Development of a Smart Bioink for Bioprinting Applications. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	31
315	An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues. Journal of the Indian Institute of Science, 2019, 99, 405-428.	0.9	43
316	Optimization of 3D bioprinting of periodontal ligament cells. Dental Materials, 2019, 35, 1683-1694.	1.6	71
317	Recent advances in biomaterials for 3D scaffolds: A review. Bioactive Materials, 2019, 4, 271-292.	8.6	546

#	Article	IF	CITATIONS
318	3D printing of biopolymer nanocomposites for tissue engineering: Nanomaterials, processing and structure-function relation. European Polymer Journal, 2019, 121, 109340.	2.6	89
319	Organs-On-Chip Models of the Female Reproductive System. Bioengineering, 2019, 6, 103.	1.6	26
320	Accelerated Bone Regeneration via Three-Dimensional Cell-Printed Constructs Containing Human Nasal Turbinate-Derived Stem Cells as a Clinically Applicable Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 6171-6185.	2.6	13
321	3D Bioprinting Using Cross-Linker-Free Silk–Gelatin Bioink for Cartilage Tissue Engineering. ACS Applied Materials & Interfaces, 2019, 11, 33684-33696.	4.0	177
322	Cellulose nanofibrils for biomaterial applications. Materials Today: Proceedings, 2019, 16, 1959-1968.	0.9	25
323	Polymer-Based Additive Manufacturing. , 2019, , .		13
324	The use of bacterial polysaccharides in bioprinting. Biotechnology Advances, 2019, 37, 107448.	6.0	86
325	3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering. Bioactive Materials, 2019, 4, 256-260.	8.6	76
326	Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Marine Drugs, 2019, 17, 555.	2.2	49
327	Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials, 2019, 9, 1352.	1.9	269
328	Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 2019, 23, 100758.	5.6	66
329	Transparent cellulose nanofiber based open cell culture platform using matrix-assisted 3D printing. Carbohydrate Polymers, 2019, 225, 115235.	5.1	14
330	Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences, 2019, 20, 4628.	1.8	160
331	Advanced cell culture platforms: a growing quest for emulating natural tissues. Materials Horizons, 2019, 6, 45-71.	6.4	114
333	A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion. Carbohydrate Polymers, 2019, 212, 119-128.	5.1	35
334	Dendrimer directed assembly of dicarboxylated hairy nanocellulose. Journal of Colloid and Interface Science, 2019, 541, 444-453.	5.0	21
335	Biofabrication for osteochondral tissue regeneration: bioink printability requirements. Journal of Materials Science: Materials in Medicine, 2019, 30, 20.	1.7	34
336	Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Biofabrication, 2019, 11, 025009.	3.7	70

#	Article	IF	CITATIONS
337	Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 1150-1169.	2.6	86
338	Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials, 2019, 9, 164.	1.9	253
339	3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks. Materials Horizons, 2019, 6, 733-742.	6.4	148
340	Bagasse—A major agro-industrial residue as potential resource for nanocellulose inks for 3D printing of wound dressing devices. Additive Manufacturing, 2019, 28, 267-274.	1.7	30
341	Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 2019, 20, 2770-2778.	2.6	81
342	Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 2019, 1, 100008.	2.6	312
343	Biofabrication of bacterial nanocellulose scaffolds with complex vascular structure. Biofabrication, 2019, 11, 045010.	3.7	35
344	Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 187-194.	1.5	122
345	Polymeric Composites for Joint Replacement. , 2019, , 385-404.		0
346	Cellulose Nanocrystals as a Sustainable Raw Material: Cytotoxicity and Applications on Healthcare Technology. Macromolecular Materials and Engineering, 2019, 304, 1900092.	1.7	32
347	Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Materials, 2019, 11, .	3.8	108
348	Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall. Colloids and Interfaces, 2019, 3, 46.	0.9	43
349	Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydrate Polymers, 2019, 221, 146-156.	5.1	113
350	Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds. Materials Science and Engineering C, 2019, 103, 109784.	3.8	33
351	General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry, 2019, 13, 59-78.	1.7	89
352	Challenges in Three-Dimensional Printing of Bone Substitutes. Tissue Engineering - Part B: Reviews, 2019, 25, 387-397.	2.5	18
353	3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs. Engineering, 2019, 5, 777-794.	3.2	133
354	Osteochondral Regeneration with 3Dâ€Printed Biodegradable Highâ€Strength Supramolecular Polymer Reinforcedâ€Gelatin Hydrogel Scaffolds. Advanced Science, 2019, 6, 1900867.	5.6	239

#	Article	IF	CITATIONS
355	Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 2019, 16, 213-246.	2.3	154
356	3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review. Polymers, 2019, 11, 898.	2.0	107
357	Bioprinting of Human Musculoskeletal Interface. Advanced Engineering Materials, 2019, 21, 1900019.	1.6	19
358	Dynamic Hydrogels and Polymers as Inks for Three-Dimensional Printing. ACS Biomaterials Science and Engineering, 2019, 5, 2688-2707.	2.6	67
359	The Adoption of Three-Dimensional Additive Manufacturing from Biomedical Material Design to 3D Organ Printing. Applied Sciences (Switzerland), 2019, 9, 811.	1.3	43
360	A Brief Review of Nanocellulose Based Hybrid Membranes for CO2 Separation. Fibers, 2019, 7, 40.	1.8	47
361	Nano- and Micropatterned Polycaprolactone Cellulose Composite Surfaces with Tunable Protein Adsorption, Fibrin Clot Formation, and Endothelial Cellular Response. Biomacromolecules, 2019, 20, 2327-2337.	2.6	21
362	Fabrication of Biopolymer-Based Organs and Tissues Using 3D Bioprinting. , 2019, , 43-62.		7
363	POSS Hybrid Robust Biomass IPN Hydrogels with Temperature Responsiveness. Polymers, 2019, 11, 524.	2.0	9
364	Techniques and Software Used in 3D Printing for Nanomedicine Applications. , 2019, , 23-41.		8
365	3D Bioprinting: from Benches to Translational Applications. Small, 2019, 15, e1805510.	5.2	235
366	3D Bioprinting for Organs, Skin, and Engineered Tissues. , 2019, , 115-128.		Ο
367	3D bioprinting of vascular conduits for pediatric congenital heart repairs. Translational Research, 2019, 211, 35-45.	2.2	22
368	3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Journal of Visualized Experiments, 2019, , .	0.2	16
369	Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Applied Physics Reviews, 2019, 6, .	5.5	163
370	Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone and Joint Research, 2019, 8, 101-106.	1.3	65
371	Cellulose Biomaterials for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2019, 7, 45.	2.0	291
372	3D Plotted Biphasic Bone Scaffolds for Growth Factor Delivery: Biological Characterization In Vitro and In Vivo. Advanced Healthcare Materials, 2019, 8, e1801512.	3.9	47

		CITATION REPORT		
#	Article		IF	CITATIONS
373	3D printing of complex GelMA-based scaffolds with nanoclay. Biofabrication, 2019, 11,	035006.	3.7	159
375	Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers fo ACS Applied Materials & amp; Interfaces, 2019, 11, 12389-12400.	r 3D Printing.	4.0	65
376	In vitro analysis of the potential cartilage implant bacterial nanocellulose using the bov punch model. Cellulose, 2019, 26, 631-645.	ine cartilage	2.4	8
377	3D printed cellulose nanocrystal composites through digital light processing. Cellulose 3973-3985.	, 2019, 26,	2.4	65
378	Evaluation of sterilisation methods for bio-ink components: gelatin, gelatin methacrylo acid and hyaluronic acid methacryloyl. Biofabrication, 2019, 11, 035003.	yl, hyaluronic	3.7	44
379	Materials from trees assembled by 3D printing – Wood tissue beyond nature limits. ⁄ Today, 2019, 15, 280-285.	Applied Materials	2.3	35
380	Shape fidelity and structure of 3D printed high consistency nanocellulose. Scientific Re 3822.	ports, 2019, 9,	1.6	39
381	Engineering nanocellulose hydrogels for biomedical applications. Advances in Colloid a Science, 2019, 267, 47-61.	nd Interface	7.0	286
382	Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduct Applied to Disrupted Myocardium. Circulation: Arrhythmia and Electrophysiology, 2019	on When), 12, e006920.	2.1	44
383	3D Printing for In vitro and In vivo Disease Models. , 2019, , 129-142.			1
384	Plant-Derived Biomaterials: A Review of 3D Bioprinting and Biomedical Applications. Fro Mechanical Engineering, 2019, 5, .	ontiers in	0.8	77
385	Mouse <i>in vitro</i> spermatogenesis on alginate-based 3D bioprinted scaffolds. Biof 11, 035011.	abrication, 2019,	3.7	48
386	In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Nanocellulose Bioink. ACS Biomaterials Science and Engineering, 2019, 5, 2482-2490.	Novel Bacterial	2.6	55
387	Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithog three-dimensional cell culture. Journal of Biomaterials Science, Polymer Edition, 2019, 3	raphy for 80, 797-814.	1.9	46
388	Agarose Slurry as a Support Medium for Bioprinting and Culturing Freestanding Cell-La Constructs. 3D Printing and Additive Manufacturing, 2019, 6, 158-164.	den Hydrogel	1.4	55
389	Structural and mechanical characterization of crosslinked and sterilised nanocellulose- hydrogels for cartilage tissue engineering. Carbohydrate Polymers, 2019, 212, 242-25	based 	5.1	63
390	Natural fiber biodegradable composites and nanocomposites. , 2019, , 179-201.			17
391	Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biose	nsors, 2019, , .	0.5	3

ARTICLE IF CITATIONS Laser perforation and cell seeding improve bacterial nanocellulose as a potential cartilage implant in 392 2.4 15 the in vitro cartilage punch model. Cellulose, 2019, 26, 647-664. 3D Printing of Silk Fibroin for Biomedical Applications. Materials, 2019, 12, 504. 1.3 Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and 394 5.189 bioapplications. Carbohydrate Polymers, 2019, 212, 75-88. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. ACS Applied Materials & amp; Interfaces, 2019, 11, 189 8838-8848. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D 396 3.7 94 bioprinting. Biofabrication, 2019, 11, 045006. Advances in threeâ€dimensional bioprinting of bone: Progress and challenges. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 925-945. 1.3 Polymer nanocomposites having a high filler content: synthesis, structures, properties, and 398 2.8 161 applications. Nanoscale, 2019, 11, 4653-4682. 3D bioprinting of alginate scaffolds with controlled micropores by leaching of recrystallized salts. 1.7 Polymer Bulletin, 2019, 76, 6077-6088. Temperatureâ€Mediated Microfluidic Extrusion of Structurally Anisotropic Hydrogels. Advanced 400 3.0 18 Materials Technologies, 2019, 4, 1800627. Three-dimensional bioprinting of auricular cartilage: A review. Medicine in Drug Discovery, 2019, 3, 2.3 100016. Nanomaterials in 3D bioprinting., 2019, , 149-172. 403 3 Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels. Polymers, 404 30 2019, 11, 1873. 3D Printing in Personalized Drug Delivery. Current Pharmaceutical Design, 2019, 24, 5062-5071. 405 0.9 59 Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell 406 2.8 129 printing and bone regeneration applications. Nanoscale, 2019, 11, 23275-23285. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Scientific 407 107 1.6 Reports, 2019, 9, 19987. Biomechanical issues of tissue-engineered constructs for articular cartilage regeneration: in vitro 408 and in vivo approaches. British Medical Bulletin, 2019, 132, 53-80. Three-Dimensional Printing on a Rotating Cylindrical Mandrel: A Review of Additive-Lathe 3D Printing 409 1.4 10 Technology. 3D Printing and Additive Manufacturing, 2019, 6, 293-307. Advanced Polymers for Three-Dimensional (3D) Organ Bioprinting. Micromachines, 2019, 10, 814. 1.4 48

	CITATION RE	PORT	
#	Article	IF	CITATIONS
411	Universal Nanocarrier Ink Platform for Biomaterials Additive Manufacturing. Small, 2019, 15, e1905421.	5.2	34
412	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews, 2019, 119, 12279-12336.	23.0	121
413	Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering, 2019, 6, 113.	1.6	60
414	Three-dimensional Bioprinting for Bone and Cartilage Restoration in Orthopaedic Surgery. Journal of the American Academy of Orthopaedic Surgeons, The, 2019, 27, e215-e226.	1.1	78
415	3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate Polymers, 2019, 203, 71-86.	5.1	232
416	Fabrication and characterization of 3D scaffolds made from blends of sodium alginate and poly(vinyl) Tj ETQq1 1	0.784314	4 rggT /Over
417	Rheological studies on nanocrystalline cellulose/alginate suspensions. Journal of Molecular Liquids, 2019, 277, 418-423.	2.3	20
418	Threeâ€dimensional printing biotechnology for the regeneration of the tooth and toothâ€supporting tissues. Biotechnology and Bioengineering, 2019, 116, 452-468.	1.7	49
419	Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing. International Journal of Advanced Manufacturing Technology, 2019, 101, 675-686.	1.5	87
420	Viscoelastic properties of nanocellulose based inks for 3D printing and mechanical properties of CNF/alginate biocomposite gels. Cellulose, 2019, 26, 581-595.	2.4	77
421	Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers, 2019, 207, 297-316.	5.1	270
422	CelloMOF: Nanocellulose Enabled 3D Printing of Metal–Organic Frameworks. Advanced Functional Materials, 2019, 29, 1805372.	7.8	148
423	Stimuli-Responsive Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 269-308.	0.6	3
424	Cellulose-Based Hydrogels as Biomaterials. Polymers and Polymeric Composites, 2019, , 1177-1203.	0.6	2
425	Recent Advances of Multifunctional Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 37-64.	0.6	2
426	Three Dimensional Printing-Based Strategies for Functional Cartilage Regeneration. Tissue Engineering - Part B: Reviews, 2019, 25, 187-201.	2.5	32
427	Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers, 2019, 209, 130-144.	5.1	647
428	Emerging Cellulose-Based Nanomaterials and Nanocomposites. , 2019, , 307-351.		16

#	Article	IF	CITATIONS
429	3D bioprinting of hydrogelâ€based biomimetic microenvironments. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1695-1705.	1.6	27
430	Functionalizing bioinks for 3D bioprinting applications. Drug Discovery Today, 2019, 24, 198-205.	3.2	114
431	Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications. Carbohydrate Polymers, 2019, 203, 238-245.	5.1	50
432	Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules, 2019, 20, 635-644.	2.6	68
433	Co-axial wet-spinning in 3D bioprinting: state of the art and future perspective of microfluidic integration. Biofabrication, 2019, 11, 012001.	3.7	75
434	3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability <i>in vitro</i> . Biofabrication, 2020, 12, 015010.	3.7	95
435	Engineering inkjet bioprinting processes toward translational therapies. Biotechnology and Bioengineering, 2020, 117, 272-284.	1.7	82
436	Additive manufacturing (AM) of medical devices and scaffolds for tissue engineering based on 3D and 4D printing. , 2020, , 119-160.		16
437	Medical and biomedical applications of 3D and 4D printed polymer nanocomposites. , 2020, , 325-366.		7
438	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465.		12
438 439	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone, 2020, 130, 115087.	1.4	12
438 439 440	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone, 2020, 130, 115087. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 2020, 229, 115514.	1.4	12 11 319
438 439 440 441	Hydrogels and hydrogel composites for 3D and 4D printing applications., 2020, , 427-465. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone, 2020, 130, 115087. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 2020, 229, 115514. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479.	1.4 5.1 2.3	12 11 319 266
438 439 440 441 442	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone, 2020, 130, 115087. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 2020, 229, 115514. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479. 3D Bioprinting: The Emergence of Programmable Biodesign. Advanced Healthcare Materials, 2020, 9, e1900554.	1.4 5.1 2.3 3.9	12 11 319 266 25
438 439 440 441 442 443	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone, 2020, 130, 115087. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 2020, 229, 115514. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479. 3D Bioprinting: The Emergence of Programmable Biodesign. Advanced Healthcare Materials, 2020, 9, e1900554. Effect of bacterial nanocellulose addition on the rheological properties of gluten-free muffin batters. Food Hydrocolloids, 2020, 98, 105315.	1.4 5.1 2.3 3.9 5.6	12 11 319 266 25 18
438 439 440 441 442 443	Hydrogels and hydrogel composites for 3D and 4D printing applications. , 2020, , 427-465. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone, 2020, 130, 115087. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 2020, 229, 115514. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479. 3D Bioprinting: The Emergence of Programmable Biodesign. Advanced Healthcare Materials, 2020, 9, e1900554. Effect of bacterial nanocellulose addition on the rheological properties of gluten-free muffin batters. Food Hydrocolloids, 2020, 98, 105315. The application of natural polymerâ€"based hydrogels in tissue engineering. , 2020, , 273-307.	1.4 5.1 2.3 3.9 5.6	12 11 319 266 25 18
438 439 440 441 442 443 443	Hydrogels and hydrogel composites for 3D and 4D printing applications., 2020, , 427-465. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone, 2020, 130, 115087. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 2020, 229, 115514. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479. 3D Bioprinting: The Emergence of Programmable Biodesign. Advanced Healthcare Materials, 2020, 9, e1900554. Effect of bacterial nanocellulose addition on the rheological properties of gluten-free muffin batters. Food Hydrocolloids, 2020, 98, 105315. The application of natural polymerâ€"based hydrogels in tissue engineering., 2020, 273-307. Rapid Biofabrication of Printable Dense Collagen Bioinks of Tunable Properties. Advanced Functional Materials, 2020, 30, 1903874.	1.4 5.1 2.3 3.9 5.6 7.8	12 11 319 266 25 18 10 31

#	Article	IF	CITATIONS
447	Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Advanced Materials, 2020, 32, e1902026.	11.1	377
448	Threeâ€dimensional printing technologies for terahertz applications: A review. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e21983.	0.8	39
449	3D and 4D printing of biomaterials and biocomposites, bioinspired composites, and related transformers. , 2020, , 467-504.		4
450	TEMPO-Nanocellulose/Ca2+ Hydrogels: Ibuprofen Drug Diffusion and In Vitro Cytocompatibility. Materials, 2020, 13, 183.	1.3	37
451	Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications. Macromolecular Bioscience, 2020, 20, e1900300.	2.1	31
452	Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. International Journal of Biological Macromolecules, 2020, 145, 64-76.	3.6	56
453	Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Materials Chemistry and Physics, 2020, 242, 122528.	2.0	69
454	Introduction to the state-of-the-art 3D bioprinting methods, design, and applications in orthopedics. Bioprinting, 2020, 18, e00070.	2.9	48
455	Development of 3D bioprinting: From printing methods to biomedical applications. Asian Journal of Pharmaceutical Sciences, 2020, 15, 529-557.	4.3	264
456	A review on 3D printed matrix polymer composites: its potential and future challenges. International Journal of Advanced Manufacturing Technology, 2020, 106, 1695-1721.	1.5	128
457	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	1.3	52
458	Complexâ€Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds. Advanced Functional Materials, 2020, 30, 1904127.	7.8	54
459	Opportunities and challenges of translational 3D bioprinting. Nature Biomedical Engineering, 2020, 4, 370-380.	11.6	309
460	Cellulose nanomaterials: new generation materials for solving global issues. Cellulose, 2020, 27, 1149-1194.	2.4	148
461	Polyvinyl alcohol/sulfated alginate nanofibers induced the neuronal differentiation of human bone marrow stem cells. International Journal of Biological Macromolecules, 2020, 147, 946-953.	3.6	31
462	Two‣tep 3 Dâ€Printing Approach toward Sustainable, Repairable, Fluorescent Shapeâ€Memory Thermoset Derived from Cellulose and Rosin. ChemSusChem, 2020, 13, 893-902.	^S 3.6	52
463	Mechanical Properties and Cytotoxicity of Differently Structured Nanocellulose-hydroxyapatite Based Composites for Bone Regeneration Application. Nanomaterials, 2020, 10, 25.	1.9	35
464	Yes-Associated Protein 1: Role and Treatment Prospects in Orthopedic Degenerative Diseases. Frontiers in Cell and Developmental Biology, 2020, 8, 573455.	1.8	14

#	Article	IF	CITATIONS
465	Enhancement of the Mechanical Properties of Hydrogels with Continuous Fibrous Reinforcement. ACS Biomaterials Science and Engineering, 2020, 6, 5453-5473.	2.6	37
466	Clinical Translational Potential in Skin Wound Regeneration for Adipose-Derived, Blood-Derived, and Cellulose Materials: Cells, Exosomes, and Hydrogels. Biomolecules, 2020, 10, 1373.	1.8	26
467	Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting. Materials Today Bio, 2020, 8, 100078.	2.6	32
468	New gellan gum-graft-poly(d,l-lactide-co-glycolide) copolymers as promising bioinks: Synthesis and characterization. International Journal of Biological Macromolecules, 2020, 162, 1653-1667.	3.6	13
469	Carboxymethyl cellulose-based materials for infection control and wound healing: A review. International Journal of Biological Macromolecules, 2020, 164, 963-975.	3.6	213
470	Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomaterialia, 2020, 106, 114-123.	4.1	219
471	3D biofabrication for soft tissue and cartilage engineering. Medical Engineering and Physics, 2020, 82, 13-39.	0.8	21
472	Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules, 2020, 21, 1875-1885.	2.6	75
473	3D Printing in Biomedical Engineering. Materials Horizons, 2020, , .	0.3	15
474	ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydrate Polymers, 2020, 248, 116776.	5.1	37
475	Biomedical Applications of Additive Manufacturing. , 2020, , 623-639.		5
476	3D Printing for Hip Implant Applications: A Review. Polymers, 2020, 12, 2682.	2.0	45
477	3D Bioprinting of Human Adipose-Derived Stem Cells and Their Tenogenic Differentiation in Clinical-Grade Medium. International Journal of Molecular Sciences, 2020, 21, 8694.	1.8	19
478	3D Printing of Dual-Physical Cross-linking Hydrogel with Ultrahigh Strength and Toughness. Chemistry of Materials, 2020, 32, 9983-9995.	3.2	89
479	Phase Inversion-Based Technique for Fabricating Bijels and Bijels-Derived Structures with Tunable Microstructures. Langmuir, 2020, 36, 14644-14655.	1.6	11
480	Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. ACS Biomaterials Science and Engineering, 2021, 7, 4009-4026.	2.6	30
481	Recent Progress on Polymer Materials for Additive Manufacturing. Advanced Functional Materials, 2020, 30, 2003062.	7.8	364
482	Electrospinning and <scp>3D</scp> bioprinting for intervertebral disc tissue engineering. JOR Spine, 2020, 3, e1117.	1.5	23

#	Article	IF	CITATIONS
483	A 3D-printable, glucose-sensitive and thermoresponsive hydrogel as sacrificial materials for constructs with vascular-like channels. Applied Materials Today, 2020, 20, 100778.	2.3	26
484	Multicomponent polysaccharide alginate-based bioinks. Journal of Materials Chemistry B, 2020, 8, 8171-8188.	2.9	88
485	Water-Redispersible Cellulose Nanofiber and Polyanionic Cellulose Hybrids for High-Performance Water-Based Drilling Fluids. Industrial & Engineering Chemistry Research, 2020, 59, 14352-14363.	1.8	36
486	3D-Printable and Enzymatically Active Composite Materials Based on Hydrogel-Filled High Internal Phase Emulsions. Frontiers in Bioengineering and Biotechnology, 2020, 8, 713.	2.0	22
487	Bioink Temperature Influence on Shear Stress, Pressure and Velocity Using Computational Simulation. Processes, 2020, 8, 865.	1.3	15
488	Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. Small, 2020, 16, e2002931.	5.2	157
489	Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules, 2020, 25, 3411.	1.7	101
490	Aspiration-assisted bioprinting of the osteochondral interface. Scientific Reports, 2020, 10, 13148.	1.6	45
491	3D Printing of Cytocompatible Gelatin elluloseâ€Alginate Blend Hydrogels. Macromolecular Bioscience, 2020, 20, e2000106.	2.1	48
492	3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. Science Advances, 2020, 6, eabb5093.	4.7	130
493	Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior. Frontiers in Bioengineering and Biotechnology, 2020, 8, 776.	2.0	93
494	Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydrate Polymers, 2020, 250, 116881.	5.1	76
495	An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting, 2020, 20, e00093.	2.9	109
496	Microfluidic Encapsulation of Single Cells by Alginate Microgels Using a Trigger-Gellified Strategy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 583065.	2.0	27
497	An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 1089-1104.	1.9	30
498	Hybrid Aerogel Nanocomposite of Dendritic Colloidal Silica and Hairy Nanocellulose: an Effective Dye Adsorbent. Langmuir, 2020, 36, 11963-11974.	1.6	32
499	Flow and hydrodynamic shear stress inside a printing needle during biofabrication. PLoS ONE, 2020, 15, e0236371.	1.1	32
500	Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels. ACS Applied Bio Materials, 2020, 3, 6510-6520.	2.3	10

#	Article	IF	CITATIONS
501	Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters. ACS Applied Bio Materials, 2020, 3, 6897-6907.	2.3	16
502	Recent Trends in Three-Dimensional Bioinks Based on Alginate for Biomedical Applications. Materials, 2020, 13, 3980.	1.3	49
503	Utilization of Carbon Nanotubes in Manufacturing of 3D Cartilage and Bone Scaffolds. Materials, 2020, 13, 4039.	1.3	26
504	Surface and Interface Engineering for Nanocellulosic Advanced Materials. Advanced Materials, 2021, 33, e2002264.	11.1	239
505	Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Chemical Reviews, 2020, 120, 10834-10886.	23.0	107
506	Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. Journal of Industrial Textiles, 2022, 51, 1886S-1915S.	1.1	21
507	<p>Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 9909-9937.	3.3	64
508	Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 586406.	2.0	66
509	Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering. Polymers, 2020, 12, 2958.	2.0	55
510	Engineered proteins and three-dimensional printing of living materials. MRS Bulletin, 2020, 45, 1034-1038.	1.7	10
511	Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 2021, 16, 280-306.	4.3	255
512	Recent Advances in Porous 3D Cellulose Aerogels for Tissue Engineering Applications: A Review. Journal of Composites Science, 2020, 4, 152.	1.4	29
513	Cellulose nanocomposites: Fabrication and biomedical applications. Journal of Bioresources and Bioproducts, 2020, 5, 223-237.	11.8	259
514	Porous Silk Fibroin/Cellulose Hydrogels for Bone Tissue Engineering via a Novel Combined Process Based on Sequential Regeneration and Porogen Leaching. Molecules, 2020, 25, 5097.	1.7	27
515	Printability Optimization of Gelatin-Alginate Bioinks by Cellulose Nanofiber Modification for Potential Meniscus Bioprinting. Journal of Nanomaterials, 2020, 2020, 1-13.	1.5	19
516	Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Biomedical Physics and Engineering Express, 2020, 6, 045009.	0.6	8
517	Low-Temperature Three-Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide. Tissue Engineering - Part C: Methods, 2020, 26, 306-316.	1.1	38
518	Bioâ€Based Antimicrobial Ionic Materials Fully Composed of Natural Products for Elevated Air Purification. Advanced Sustainable Systems, 2020, 4, 2000046.	2.7	10

#	Article	IF	Citations
519	Introduction of Hydrogen Bonds Improves the Shape Fidelity of Viscoelastic 3D Printed Scaffolds While Maintaining Their Low-Temperature Printability. Macromolecules, 2020, 53, 3690-3699.	2.2	21
520	Recent developments in nanocellulose and nanohydrogel matrices—towards stem cell research and development. , 2020, , 315-328.		2
521	3D Printing of Hemicellulosic Biopolymers Extracted from Lignocellulosic Agricultural Wastes. ACS Applied Polymer Materials, 2020, 2, 2622-2632.	2.0	30
522	Evaluation of Collagen Gel-Associated Human Nasal Septum-Derived Chondrocytes As a Clinically Applicable Injectable Therapeutic Agent for Cartilage Repair. Tissue Engineering and Regenerative Medicine, 2020, 17, 387-399.	1.6	7
523	Bioprinting: From Tissue and Organ Development to <i>in Vitro</i> Models. Chemical Reviews, 2020, 120, 10547-10607.	23.0	185
524	Microphysiological Systems: Design, Fabrication, and Applications. ACS Biomaterials Science and Engineering, 2020, 6, 3231-3257.	2.6	32
525	3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. Journal of Materials Chemistry B, 2020, 8, 5500-5514.	2.9	72
526	4D Printing of Hydrogels: A Review. Advanced Functional Materials, 2020, 30, 1910606.	7.8	224
527	Extrusion and Microfluidicâ€Based Bioprinting to Fabricate Biomimetic Tissues and Organs. Advanced Materials Technologies, 2020, 5, 1901044.	3.0	110
528	Regenerative medicine, organ bioengineering and transplantation. British Journal of Surgery, 2020, 107, 793-800.	0.1	104
529	Polymeric Systems for Bioprinting. Chemical Reviews, 2020, 120, 10744-10792.	23.0	161
530	Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing. Biomacromolecules, 2020, 21, 2949-2965.	2.6	17
531	Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611.	2.0	62
532	Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications. Folia Microbiologica, 2020, 65, 937-954.	1.1	19
533	Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 2020, 20, 100700.	2.3	86
534	Bioengineering models of female reproduction. Bio-Design and Manufacturing, 2020, 3, 237-251.	3.9	20
535	Artificial Biosystems by Printing Biology. Small, 2020, 16, e1907691.	5.2	21
536	Seaweed polysaccharides as sustainable building blocks for biomaterials in tissue engineering. , 2020, , 543-587.		6

	CITATION REF	ORT	
#	Article	IF	CITATIONS
537	Lignocellulosic Materials for Biomedical Applications. , 2020, , 209-248.		2
538	A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials. Nano-Micro Letters, 2020, 12, 73.	14.4	152
539	Cell–cell interaction in a coculture system consisting of <scp>CRISPR</scp> /Cas9 mediated <scp>GFP</scp> knockâ€in <scp>HUVECs</scp> and <scp>MG</scp> â€63 cells in <scp>alginateâ€GelMA</scp> based nanocomposites hydrogel as a <scp>3D</scp> scaffold. Journal of Biomedical Materials Research - Part A, 2020, 108, 1596-1606.	2.1	12
540	Twoâ€Step 3 Dâ€Printing Approach toward Sustainable, Repairable, Fluorescent Shapeâ€Memory Thermoset Derived from Cellulose and Rosin. ChemSusChem, 2020, 13, 854-854.	⁵ 3.6	9
541	Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings: Influence of Surface Characteristics. Biomacromolecules, 2020, 21, 1560-1567.	2.6	27
542	Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review. Materials, 2020, 13, 1245.	1.3	49
543	Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science, 2020, 112, 100668.	16.0	113
544	History and Trends of 3D Bioprinting. Methods in Molecular Biology, 2020, 2140, 3-18.	0.4	29
545	Cellular, Mineralized, and Programmable Cellulose Composites Fabricated by 3D Printing of Aqueous Pastes Derived from Paper Wastes and Microfibrillated Cellulose. Macromolecular Materials and Engineering, 2020, 305, 1900740.	1.7	9
546	Fused Deposition Modeling 3D Printing of Novel Poly(vinyl alcohol)/Graphene Nanocomposite with Enhanced Mechanical and Electromagnetic Interference Shielding Properties. Industrial & Engineering Chemistry Research, 2020, 59, 8066-8077.	1.8	54
547	Bio-based composite hydrogels for biomedical applications. Multifunctional Materials, 2020, 3, 022001.	2.4	34
548	Characterization and Application of Carboxymethyl Chitosan-Based Bioink in Cartilage Tissue Engineering. Journal of Nanomaterials, 2020, 2020, 1-11.	1.5	33
549	Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Advanced Healthcare Materials, 2020, 9, e1901773.	3.9	63
550	Ligninâ€Based Direct Ink Printed Structural Scaffolds. Small, 2020, 16, e1907212.	5.2	45
551	Tissue engineering applications in otolaryngology—The state of translation. Laryngoscope Investigative Otolaryngology, 2020, 5, 630-648.	0.6	15
552	Biocompatibility of Biomaterials for Tissue Regeneration or Replacement. Biotechnology Journal, 2020, 15, e2000160.	1.8	55
553	Material aspects during additive manufacturing of nano-cellulose composites. , 2020, , 409-428.		2
554	Rapid Preparation of Cellulose Nanofibers from Energy Cane Bagasse and Their Application as Stabilizer and Rheological Modifiers in Magnetorheological Fluid. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4

#	Article	IF	CITATIONS
555	3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Biofabrication, 2020, 12, 025029.	3.7	49
556	A constitutive model of microfiber reinforced anisotropic hydrogels: With applications to wood-based hydrogels. Journal of the Mechanics and Physics of Solids, 2020, 138, 103893.	2.3	24
557	3DÂprinting for the future of medicine. Journal of 3D Printing in Medicine, 2020, 4, 45-67.	1.0	5
558	3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules, 2020, 21, 1037-1059.	2.6	61
559	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
560	Collagen 2A Type B Induction after 3D Bioprinting ChondrocytesIn Situinto Osteoarthritic Chondral Tibial Lesion. Cartilage, 2020, , 194760352090378.	1.4	19
561	Surface modified cellulose nanomaterials: a source of non-spherical nanoparticles for drug delivery. Materials Horizons, 2020, 7, 1727-1758.	6.4	80
562	A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs. ACS Applied Materials & Interfaces, 2020, 12, 12557-12572.	4.0	72
563	From Shape to Function: The Next Step in Bioprinting. Advanced Materials, 2020, 32, e1906423.	11.1	298
564	Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioengineering, 2020, 4, 010901.	3.3	28
565	Mussel-Inspired Naturally Derived Double-Network Hydrogels and Their Application in 3D Printing: From Soft, Injectable Bioadhesives to Mechanically Strong Hydrogels. ACS Biomaterials Science and Engineering, 2020, 6, 1798-1808.	2.6	34
566	Bioinks and bioprinting: A focused review. Bioprinting, 2020, 18, e00080.	2.9	146
567	Skin-Inspired Multifunctional Luminescent Hydrogel Containing Layered Rare-Earth Hydroxide with 3D Printability for Human Motion Sensing. ACS Applied Materials & Interfaces, 2020, 12, 6797-6805.	4.0	33
568	Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters. Applied Sciences (Switzerland), 2020, 10, 292.	1.3	73
569	3D printing biocompatible l-Arg/GNPs/PLA nanocomposites with enhanced mechanical property and thermal stability. Journal of Materials Science, 2020, 55, 5064-5078.	1.7	41
570	Assessment methodologies for extrusion-based bioink printability. Biofabrication, 2020, 12, 022003.	3.7	214
571	Generic Method for Designing Self-Standing and Dual Porous 3D Bioscaffolds from Cellulosic Nanomaterials for Tissue Engineering Applications. ACS Applied Bio Materials, 2020, 3, 1197-1209.	2.3	42
572	Dielectric properties of solution-processed BaTiO3–styrene butadiene styrene nanocomposite films. CrystEngComm, 2020, 22, 1261-1272.	1.3	7

		15	0
#	ARTICLE	lF	CITATIONS
573	Substitutes: A Pilot Study. Stem Cells International, 2020, 2020, 1-16.	1.2	25
574	Ambientâ€Dried, 3Dâ€Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers. Advanced Functional Materials, 2020, 30, 1909383.	7.8	92
575	Cell Encapsulation Systems Toward Modular Tissue Regeneration: From Immunoisolation to Multifunctional Devices. Advanced Functional Materials, 2020, 30, 1908061.	7.8	39
576	Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogelâ€Based Bioinks. Advanced Healthcare Materials, 2020, 9, e1901648.	3.9	190
577	Printing support hydrogels for creating vascular-like structures in stacked cell sheets. Artificial Life and Robotics, 2020, 25, 199-203.	0.7	3
578	Bioprintable tough hydrogels for tissue engineering applications. Advances in Colloid and Interface Science, 2020, 281, 102163.	7.0	73
579	Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration. Frontiers in Materials, 2020, 7, .	1.2	75
580	Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications—A Mini Review. Bioengineering, 2020, 7, 40.	1.6	77
581	Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottomâ€Up Fabrication. Advanced Materials, 2021, 33, e2000657.	11.1	139
582	Recent Progress on Celluloseâ€Based Ionic Compounds for Biomaterials. Advanced Materials, 2021, 33, e2000717.	11.1	70
583	Cellulosic materials as bioinks for 3D printing applications. , 2020, , 109-137.		3
584	A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Carbohydrate Polymers, 2020, 238, 116207.	5.1	69
585	Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 2020, 37, 126-141.	8.3	134
586	Bio-Fabrication: Convergence of 3D Bioprinting and Nano-Biomaterials in Tissue Engineering and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 326.	2.0	67
587	Cell-Laden Biomimetically Mineralized Shark-Skin-Collagen-Based 3D Printed Hydrogels for the Engineering of Hard Tissues. ACS Biomaterials Science and Engineering, 2020, 6, 3664-3672.	2.6	35
588	Effect of Fibril Length on the Ice Recrystallization Inhibition Activity of Nanocelluloses. Carbohydrate Polymers, 2020, 240, 116275.	5.1	22
589	Polysaccharide-Based Bioink Formulation for 3D Bioprinting of an In Vitro Model of the Human Dermis. Nanomaterials, 2020, 10, 733.	1.9	64
590	Novel bioinks from UV-responsive norbornene-functionalized carboxymethyl cellulose macromers. Bioprinting, 2020, 18, e00083.	2.9	22

#	Article	IF	Citations
591	Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chemical Reviews, 2020, 120, 10662-10694.	23.0	222
592	3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs. Bioengineering, 2020, 7, 32.	1.6	83
593	Processing of nanocellulose-based composites. , 2020, , 431-448.		3
594	<scp>3D</scp> bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 6-17.	2.1	22
595	Fabrications of cellulose nanocomposite for tailor-made applications. Polymers and Polymer Composites, 2021, 29, 814-826.	1.0	2
596	Longâ€ŧerm in vivo integrity and safety of <scp>3D</scp> â€bioprinted cartilaginous constructs. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 126-136.	1.6	15
597	Three-Dimensional Bioprinting of Articular Cartilage: A Systematic Review. Cartilage, 2021, 12, 76-92.	1.4	46
598	Tailoring of the rheological properties of bioinks to improve bioprinting and bioassembly for tissue replacement. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129782.	1.1	41
600	Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. Macromolecular Bioscience, 2021, 21, e2000179.	2.1	61
601	Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. Additive Manufacturing, 2021, 37, 101639.	1.7	29
602	The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique. Journal of Biomedical Materials Research - Part A, 2021, 109, 1209-1219.	2.1	22
603	Advanced hydrogels for the repair of cartilage defects and regeneration. Bioactive Materials, 2021, 6, 998-1011.	8.6	201
604	Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydrate Polymers, 2021, 252, 117159.	5.1	28
605	Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1669.	3.3	29
606	Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Materials Science and Engineering C, 2021, 118, 111388.	3.8	91
607	Extrusion bioprinting: Recent progress, challenges, and future opportunities. Bioprinting, 2021, 21, e00116.	2.9	87
608	3D printed agar/ calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties. Polymer, 2021, 214, 123238.	1.8	44
609	Development of hydroxyapatite reinforced alginate–chitosan based printable biomaterial-ink. Nano Structures Nano Objects, 2021, 25, 100630.	1.9	44

#	Article	IF	CITATIONS
610	Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Tissue Engineering - Part A, 2021, 27, 1168-1181.	1.6	49
611	Combating COVID-19 with tissue engineering: a review. Emergent Materials, 2021, 4, 329-349.	3.2	12
612	Image analysis as PAT-Tool for use in extrusion-based bioprinting. Bioprinting, 2021, 21, e00112.	2.9	8
613	Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. International Journal of Biological Macromolecules, 2021, 166, 1586-1616.	3.6	72
614	Evaluation of smart gelatin matrices for the development of scaffolds via 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104267.	1.5	3
615	Recent advances in 3D bioprinting of vascularized tissues. Materials and Design, 2021, 199, 109398.	3.3	65
616	Cationic Cross-Linked Nanocellulose-Based Matrices for the Growth and Recovery of Intestinal Organoids. Biomacromolecules, 2021, 22, 701-709.	2.6	20
617	Stem Cells and Extrusion 3D Printing for Hyaline Cartilage Engineering. Cells, 2021, 10, 2.	1.8	40
618	Photocross-linkable Methacrylated Polypeptides and Polysaccharides for Casting, Injecting, and 3D Fabrication. Biomacromolecules, 2021, 22, 481-493.	2.6	11
619	Cryoâ€3D Printing of Hierarchically Porous Polyhydroxymethylene Scaffolds for Hard Tissue Regeneration. Macromolecular Materials and Engineering, 2021, 306, 2000541.	1.7	9
620	Engineering Natural-Based Photocrosslinkable Hydrogels for Cartilage Applications. , 2021, , 111-138.		0
621	Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomaterials Science, 2021, 9, 535-573.	2.6	206
622	The Illustrative Book of Cartilage Repair. , 2021, , .		3
623	3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Cellulose, 2021, 28, 241-257.	2.4	39
624	Eco-friendly nanocellulose and its biomedical applications: current status and future prospect. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 112-149.	1.9	30
625	Lignocellulosic Biorefinery for Value-Added Products: The Emerging Bioeconomy. , 2021, , 291-321.		3
626	Three-Dimensional Printing of Nanocellulose-Based Hydrogels. Gels Horizons: From Science To Smart Materials, 2021, , 1-20.	0.3	0
627	Challenges of Bioplastics as Bioinks for 3D and 4D Bioprinting of Human Tissue-Engineered Structures. , 2021, , 703-730.		0

	Сіт.	ation Report	
# 628	ARTICLE Functional and eco-friendly polymers in medical and biomedical applications. , 2021, , 257-270.	IF	Citations 0
629	Pharmaceutical and biomedical applications of cellulose nanofibers: a review. Environmental Chemistry Letters, 2021, 19, 2043-2055.	8.3	63
630	Development of MOF Reinforcement for Structural Stability and Toughness Enhancement of Biodegradable Bioinks. Biomacromolecules, 2021, 22, 1053-1064.	2.6	22
631	Multifunctional Biopolymersâ€Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect, 2021, 6, 154-176.	0.7	15
632	Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environmental Science and Ecotechnology, 2021, 5, 100077.	6.7	112
633	3D Bioprinting in Medicine. Global Journal of Biotechnology and Biomaterial Science, 2021, , 001-005.	0.3	3
634	Modern Porous Polymer Implants: Synthesis, Properties, and Application. Polymer Science - Series C, 2021, 63, 29-46.	0.8	5
635	3D Printing Methods Applicable in Oral and Maxillofacial Surgery. , 2021, , 11-60.		1
636	An overview on additive manufacturing of biopolymer nanocomposites. , 2021, , 687-708.		0
637	LncRNA HOTTIP leads to osteoarthritis progression via regulating miR-663a/ Fyn-related kinase axis. BMC Musculoskeletal Disorders, 2021, 22, 67.	0.8	9
638	Nanocellulose: Preparation, Functionalization and Applications. , 2021, , 506-537.		7
639	A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization. Polymer Composites, 2021, 42, 1588-1630.	2.3	151
640	Additive Manufacturing of Polymer Matrix Composites. , 2021, , 1013-1028.		4
641	3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. Frontiers in Medical Technology, 2020, 2, 607648.	1.3	32
642	How the transplant landscape is changing in the regenerative medicine era. , 2021, , 273-284.		2
643	Direct Ink Writing of Hierarchically Porous Cellulose/Alginate Monolithic Hydrogel as a Highly Effective Adsorbent for Environmental Applications. ACS Applied Polymer Materials, 2021, 3, 699-709.	2.0	58
644	Cellulose-based biocomposites. , 2021, , 135-195.		1
645	3D Bioprinting in Oral and Maxillofacial Surgery. , 2021, , 61-79.		1

ARTICLE IF CITATIONS Polysaccharide-based 3D bioprinter inks for tissue engineering., 2021, , 207-242. 1 646 Additive manufacturing of functionalized nanomaterials for the modern health care industry. , 2021, , 647 55-85. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and 648 2.9 51 future perspectives. Journal of Materials Chemistry B, 2021, 9, 5385-5413. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. 649 Journal of Materials Chemistry B, 2021, 9, 6163-6175. 3D Bioprinting in Tissue Engineering and Regenerative Medicine: Current Landscape and Future 650 2 Prospects. , 2021, , 561-580. Biomaterials in Tissue Engineering and Regenerative Medicine: In Vitro Disease Models and Advances in Gene-Based Therapies. , 2021, , 485-504. 652 Bioprinting., 2021, , 45-96. 0 3D-Bioprinting. Learning Materials in Biosciences, 2021, , 201-232. 0.2 Development and Characterization of Roselle Nanocellulose and Its Potential in Reinforced 654 1 Nanocomposites., 2021, , 285-317. Applications of Polymers in Delivery of Biologics., 2021, , 449-534. Fused filament printing of specialized biomedical devices: a state-of-the art review of technological 656 1.6 20 feasibilities with PEEK. Rapid Prototyping Journal, 2021, 27, 592-616. Printability–A key issue in extrusion-based bioprinting. Journal of Pharmaceutical Analysis, 2021, 11, 2.4 100 564-579. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers, 2021, 13, 658 2.0 74 563. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue 659 0.6 Scaffolds. Current Stem Cell Research and Therapy, 2021, 16, 209-229. 660 Shape Fidelity of 3D-Bioprinted Biodegradable Patches. Micromachines, 2021, 12, 195. 1.4 14 Bioprinting of human nasoseptal chondrocytes″aden collagen hydrogel for cartilage tissue engineering. FASEB Journal, 2021, 35, e21191. Fiber-Filled Hybrid Hydrogel for Bio-Manufacturing. Journal of Manufacturing Science and 662 1.34 Engineering, Transactions of the ASME, 2021, 143, . Natural Biomaterials and Their Use as Bioinks for Printing Tissues. Bioengineering, 2021, 8, 27. 1.6

#	Article	IF	CITATIONS
664	A 3D Bioprinted Material That Recapitulates the Perivascular Bone Marrow Structure for Sustained Hematopoietic and Cancer Models. Polymers, 2021, 13, 480.	2.0	14
665	Biopolymer Nanoscale Assemblies as Building Blocks for New Materials: A Review. Advanced Functional Materials, 2021, 31, 2008552.	7.8	62
666	Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules, 2021, 22, 1027-1052.	2.6	138
667	How does counter-cation substitution influence inter- and intramolecular hydrogen bonding and electrospinnability of alginates. International Journal of Biological Macromolecules, 2021, 171, 234-241.	3.6	5
668	The use of cellulose in bio-derived formulations for 3D/4D printing: A review. Composites Part C: Open Access, 2021, 4, 100113.	1.5	47
669	Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Advanced NanoBiomed Research, 2021, 1, 2000088.	1.7	9
670	3D-Printed Objects for Multipurpose Applications. Journal of Materials Engineering and Performance, 2021, 30, 4756-4767.	1.2	20
671	Nanofibrillated Cellulose-Based Aerogels Functionalized with Tajuva (Maclura tinctoria) Heartwood Extract. Polymers, 2021, 13, 908.	2.0	5
672	Mechanical Stabilization of Alginate Hydrogel Fiber and 3D Constructs by Mussel-Inspired Catechol Modification. Polymers, 2021, 13, 892.	2.0	13
673	Microfluidic-assisted bioprinting of tissues and organoids at high cell concentrations. Biofabrication, 2021, 13, 025006.	3.7	15
674	3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations. Scientific Reports, 2021, 11, 6461.	1.6	23
675	Recent advances on polymeric hydrogels as wound dressings. APL Bioengineering, 2021, 5, 011504.	3.3	83
676	Bioactivity Experimental Studies of Composite Materials Promising for Use in Traumatology and Orthopedics: Review. Travmatologiâ I Ortopediâ Rossii, 2021, 27, 97-105.	0.1	0
677	3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. International Journal of Molecular Sciences, 2021, 22, 3971.	1.8	83
678	Printability in extrusion bioprinting. Biofabrication, 2021, 13, 033001.	3.7	74
679	Biomaterials and 3D printing techniques used in the medical field. Journal of Medical Engineering and Technology, 2021, 45, 290-302.	0.8	22
680	3D Bioprinted cancer models: Revolutionizing personalized cancer therapy. Translational Oncology, 2021, 14, 101015.	1.7	90
682	Role of in situ added cellulose nanocrystals as rheological modulator of novel waterborne polyurethane urea for 3D-printing technology. Cellulose, 2021, 28, 4729-4744.	2.4	17

#	ARTICLE	IF	CITATIONS
683	3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals, 2021, 14, 362.	1.7	32
684	Bioengineering of the Uterus. Reproductive Sciences, 2021, 28, 1596-1611.	1.1	26
685	Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. International Journal of Biological Macromolecules, 2021, 175, 495-515.	3.6	48
686	Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. Advanced Materials, 2021, 33, e2006052.	11.1	143
687	Microvascular Tissue Engineering—A Review. Biomedicines, 2021, 9, 589.	1.4	16
688	Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. Advanced NanoBiomed Research, 2021, 1, 2170053.	1.7	4
690	Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydrate Polymers, 2021, 260, 117793.	5.1	25
691	Controlled shape memory effects of magnetic polymer nanocomposites by induction heating. Green Materials, 0, , 1-15.	1.1	1
692	Hydrophobic functionalization reactions of structured cellulose nanomaterials: Mechanisms, kinetics and in silico multi-scale models. Carbohydrate Polymers, 2021, 259, 117742.	5.1	21
693	3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 2021, 259, 117716.	5.1	59
694	Sustainable Cellulose-Nanofiber-Based Hydrogels. ACS Nano, 2021, 15, 7889-7898.	7.3	84
695	3D bioprinting in tissue engineering and regenerative medicine. Cell and Tissue Banking, 2022, 23, 199-212.	0.5	6
696	Gelatin–alginate–hyaluronic acid inks for 3D printing: effects of bioglass addition on printability, rheology and scaffold tensile modulus. Journal of Materials Science, 2021, 56, 15327.	1.7	31
697	3D printing in biomedical engineering: Processes, materials, and applications. Applied Physics Reviews, 2021, 8, .	5.5	46
698	Fabrication of 3D-Printed Interpenetrating Hydrogel Scaffolds for Promoting Chondrogenic Differentiation. Polymers, 2021, 13, 2146.	2.0	12
699	Injectable hydrogels based on oxidized alginate-gelatin reinforced by carbon nitride quantum dots for tissue engineering. International Journal of Pharmaceutics, 2021, 602, 120660.	2.6	39
700	Development of a chitosan and hyaluronic acid hydrogel with potential for bioprinting utilization: A preliminary study. Journal of Biomaterials Applications, 2021, 36, 358-371.	1.2	9
701	3D bioprinting and microscale organization of vascularized tissue constructs using collagenâ€based bioink. Biotechnology and Bioengineering, 2021, 118, 3150-3163.	1.7	25

#	Article	IF	CITATIONS
702	Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine. Journal of Biomedical Nanotechnology, 2021, 17, 989-1006.	0.5	9
703	3D printed, mechanically tunable, composite sodium alginate, gelatin and Gum Arabic (SA-GEL-GA) scaffolds. Bioprinting, 2021, 22, e00133.	2.9	12
704	Cellulose-based biogenic supports, remarkably friendly biomaterials for proteins and biomolecules. Biosensors and Bioelectronics, 2021, 182, 113170.	5.3	22
705	Advances in 3D Printing for Tissue Engineering. Materials, 2021, 14, 3149.	1.3	55
706	3D printing to innovate biopolymer materials for demanding applications: A review. Materials Today Chemistry, 2021, 20, 100459.	1.7	58
707	Recent Advancement of Biopolymers and Their Potential Biomedical Applications. Journal of Polymers and the Environment, 2022, 30, 51-74.	2.4	53
708	Application of bone and cartilage extracellular matrices in articular cartilage regeneration. Biomedical Materials (Bristol), 2021, 16, 042014.	1.7	7
709	Photopolymerizable pullulan: Synthesis, self-assembly and inkjet printing. Journal of Colloid and Interface Science, 2021, 592, 430-439.	5.0	18
710	Design of a Waterborne Polyurethane–Urea Ink for Direct Ink Writing 3D Printing. Materials, 2021, 14, 3287.	1.3	17
711	Bioprinting: A promising approach for tissue regeneration. Bioprinting, 2021, 22, e00130.	2.9	11
712	A bibliometric indicators analysis of additive manufacturing research trends from 2010 to 2020. Rapid Prototyping Journal, 2021, 27, 1432-1454.	1.6	21
713	Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics – The Promises and Prospects of In Vitro Models. Advanced Healthcare Materials, 2021, 10, e2100961.	3.9	27
714	Threeâ€dimensional printing in oral and maxillofacial surgery: Current landscape and future directions. Oral Surgery, 2022, 15, 431-442.	0.1	3
715	Poly lactic acid (PLA) polymers: from properties to biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1117-1130.	1.8	47
716	Development, characterization and sterilisation of Nanocellulose-alginate-(hyaluronic acid)- bioinks and 3D bioprinted scaffolds for tissue engineering. Materials Science and Engineering C, 2021, 126, 112160.	3.8	38
717	Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Pharmaceutics, 2021, 13, 1125.	2.0	44
718	3D Bioprinting of Nature-Inspired Hydrogel Inks Based on Synthetic Polymers. ACS Applied Polymer Materials, 2021, 3, 3685-3701.	2.0	20
719	Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. ACS Biomaterials Science and Engineering, 2021, 7, 3618-3632.	2.6	12

#	Article	IF	CITATIONS
720	Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. International Journal of Biological Macromolecules, 2021, 183, 564-588.	3.6	63
721	Best of Both Worlds: Synergistically Derived Material Properties via Additive Manufacturing of Nanocomposites. Advanced Functional Materials, 2021, 31, 2103334.	7.8	8
722	3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Carbohydrate Polymers, 2021, 264, 118026.	5.1	43
723	Correlating rheology and printing performance of fiber-reinforced bioinks to assess predictive modelling for biofabrication. Journal of Materials Research, 2021, 36, 3821-3832.	1.2	13
724	3D Printed Nanocellulose Scaffolds as a Cancer Cell Culture Model System. Bioengineering, 2021, 8, 97.	1.6	13
725	Compressive Buckling Fabrication of 3D Cell‣aden Microstructures. Advanced Science, 2021, 8, e2101027.	5.6	2
726	Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing. Carbohydrate Polymers, 2021, 263, 117976.	5.1	40
727	Recent Advancements in 3D Printing of Polysaccharide Hydrogels in Cartilage Tissue Engineering. Materials, 2021, 14, 3977.	1.3	31
728	Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting. Nano Today, 2021, 39, 101180.	6.2	9
729	3D Bioprinting of Biosynthetic Nanocellulose-Filled GelMA Inks Highly Reliable for Soft Tissue-Oriented Constructs. Materials, 2021, 14, 4891.	1.3	11
730	Use of electroconductive biomaterials for engineering tissues by 3D printing and 3D bioprinting. Essays in Biochemistry, 2021, 65, 441-466.	2.1	20
731	A review on biomaterials for ovarian tissue engineering. Acta Biomaterialia, 2021, 135, 48-63.	4.1	33
732	Calculation of Mass Transfer and Cell-Specific Consumption Rates to Improve Cell Viability in Bioink Tissue Constructs. Materials, 2021, 14, 4387.	1.3	1
733	Key parameters and applications of extrusion-based bioprinting. Bioprinting, 2021, 23, e00156.	2.9	20
734	Nanocelluloseâ€Based Functional Materials: From Chiral Photonics to Soft Actuator and Energy Storage. Advanced Functional Materials, 2021, 31, 2104991.	7.8	128
735	Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Frontiers in Bioengineering and Biotechnology, 2021, 9, 736213.	2.0	14
736	Bioprinting of a Zonal-Specific Cell Density Scaffold: A Biomimetic Approach for Cartilage Tissue Engineering. Applied Sciences (Switzerland), 2021, 11, 7821.	1.3	12
737	3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Current Medical Imaging, 2021, 17, 832-842.	0.4	7

#	Article	IF	CITATIONS
738	An overview on the advantages and limitations of 3D printing of microneedles. Pharmaceutical Development and Technology, 2021, 26, 923-933.	1.1	6
739	Nanomaterials for bioprinting: functionalization of tissue-specific bioinks. Essays in Biochemistry, 2021, 65, 429-439.	2.1	9
740	Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication, 2021, 13, 042002.	3.7	42
741	3D Printing in Drug Delivery and Biomedical Applications: A State-of-the-Art Review. Compounds, 2021, 1, 94-115.	1.0	18
742	Extrusion-based 3D (Bio)Printed Tissue Engineering Scaffolds: Process–Structure–Quality Relationships. ACS Biomaterials Science and Engineering, 2021, 7, 4694-4717.	2.6	12
743	Vascularization of tissue engineered cartilage - Sequential in vivo MRI display functional blood circulation. Biomaterials, 2021, 276, 121002.	5.7	13
744	Nature-Based Biomaterials and Their Application in Biomedicine. Polymers, 2021, 13, 3321.	2.0	53
745	Microalgal nanocellulose – opportunities for a circular bioeconomy. Trends in Plant Science, 2021, 26, 924-939.	4.3	25
746	Nanocellulose: Production and Processing for Biomedical Applications. ChemNanoMat, 2021, 7, 1259-1272.	1.5	9
747	3â€Dimensional Printing of Hydrogelâ€Based Nanocomposites: A Comprehensive Review on the Technology Description, Properties, and Applications. Advanced Engineering Materials, 2021, 23, 2100477.	1.6	25
748	Ectopic models recapitulating morphological and functional features of articular cartilage. Annals of Anatomy, 2021, 237, 151721.	1.0	3
749	Knockdown of LINC01385 inhibits osteoarthritis progression by modulating the microRNA‑140‑3p/TLR4 axis. Experimental and Therapeutic Medicine, 2021, 22, 1244.	0.8	10
750	Rheological and Printability Assessments on Biomaterial Inks of Nanocellulose/Photo-Crosslinkable Biopolymer in Light-Aided 3D Printing. Frontiers in Chemical Engineering, 2021, 3, .	1.3	11
751	3D Bioprinting of Hydrogels for Cartilage Tissue Engineering. Gels, 2021, 7, 144.	2.1	50
752	Oxygenated Nanocellulose—A Material Platform for Antibacterial Wound Dressing Devices. ACS Applied Bio Materials, 2021, 4, 7554-7562.	2.3	5
753	Converging 2D Nanomaterials and 3D Bioprinting Technology: Stateâ€ofâ€theâ€Art, Challenges, and Potential Outlook in Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2101439.	3.9	9
754	Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels, 2021, 7, 148.	2.1	17
755	Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. Journal of Materials Research and Technology, 2021, 14, 2601-2623.	2.6	114

#	Article	IF	CITATIONS
756	3D Printing of Hydrogels for Stretchable Ionotronic Devices. Advanced Functional Materials, 2021, 31, 2107437.	7.8	70
757	Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability. Materials Science and Engineering C, 2021, 128, 112336.	3.8	15
758	Progress of 3D Bioprinting in Organ Manufacturing. Polymers, 2021, 13, 3178.	2.0	24
759	3D printing with particles as feedstock materials. Advanced Powder Technology, 2021, 32, 3324-3345.	2.0	14
760	3D printable self-healing hyaluronic acid/chitosan polycomplex hydrogels with drug release capability. International Journal of Biological Macromolecules, 2021, 188, 820-832.	3.6	38
761	Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohydrate Polymers, 2021, 270, 118342.	5.1	69
762	Characterization of κ arrageenan/methylcellulose/cellulose nanocrystal hydrogels for <scp>3D</scp> bioprinting. Polymer International, 2022, 71, 181-191.	1.6	14
763	Digital micro-mirror device -based light curing technology and its biological applications. Optics and Laser Technology, 2021, 143, 107344.	2.2	11
764	Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioactive Materials, 2021, 6, 3904-3923.	8.6	94
765	Promising eco-friendly biomaterials for future biomedicine: Cleaner production and applications of Nanocellulose. Environmental Technology and Innovation, 2021, 24, 101855.	3.0	10
766	Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing. Additive Manufacturing, 2021, 47, 102108.	1.7	8
767	Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing. Carbohydrate Polymers, 2021, 272, 118469.	5.1	26
768	Preparation, application and recycling of a catalytic microflow reactor based on polylactic acid. Applied Surface Science, 2021, 569, 151019.	3.1	7
769	Mechanical anisotropy and fracture mode of binder jetting 3D printed calcium sulfate moldings. Applied Materials Today, 2021, 25, 101160.	2.3	5
770	Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioactive Materials, 2021, 6, 4830-4855.	8.6	139
771	Challenges and recent trends with the development of hydrogel fiber for biomedical applications. Chemosphere, 2022, 287, 131956.	4.2	18
772	Three-dimensional bioprinting in medical surgery. , 2022, , 27-75.		0
773	Improving 3D/4D printing characteristics of natural food gels by novel additives: A review. Food Hydrocolloids, 2022, 123, 107160.	5.6	71

#	Article	IF	CITATIONS
774	Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chemistry, 2022, 366, 130574.	4.2	80
775	State-of-the-art strategies and future interventions in bone and cartilage repair for personalized regenerative therapy. , 2021, , 203-248.		1
776	3D Printing of Plant-Derived Compounds and a Proposed Nozzle Design for the More Effective 3D FDM Printing. IEEE Access, 2021, 9, 57107-57119.	2.6	20
777	3D-printed Soft Hydrogels for Cell Encapsulation. RSC Soft Matter, 2021, , 594-625.	0.2	0
778	3D Printing of Hydrogel Constructs Toward Targeted Development in Tissue Engineering. Gels Horizons: From Science To Smart Materials, 2021, , 79-127.	0.3	0
779	Biomedical Nanotechnology. , 2021, , 634-662.		0
780	3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech, 2021, 22, 49.	1.5	173
781	Biomaterials and Stem Cells in Tissue Engineering and Regenerative Medicine: Concepts, Methods, and Applications. , 2021, , 469-481.		0
782	Manufacture of complex heart tissues: technological advancements and future directions. AIMS Bioengineering, 2021, 8, 73-92.	0.6	0
783	Ultrashort Peptide Bioinks Support Automated Printing of Large-Scale Constructs Assuring Long-Term Survival of Printed Tissue Constructs. Nano Letters, 2021, 21, 2719-2729.	4.5	41
784	Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomaterials Science, 2021, 9, 6718-6736.	2.6	13
785	3D Bioprinting Hydrogel for Hard Tissue Regeneration. Biomaterials Science Series, 2021, , 316-338.	0.1	1
786	Clinical Application and Regulation of Bioprinting Biomaterials Focusing on Hydrogels. Biomaterials Science Series, 2021, , 409-438.	0.1	0
787	Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Scientific Reports, 2021, 11, 372.	1.6	45
788	Tissue engineering applications. , 2021, , 323-347.		0
789	Applications of Alginate-Based Bioinks in 3D Bioprinting. International Journal of Molecular Sciences, 2016, 17, 1976.	1.8	24
790	Bioprinting a cellâ€laden matrix for bone regeneration: A focused review. Journal of Applied Polymer Science, 2021, 138, 49888.	1.3	14
791	Extrusion-Based Bioprinting: Current Standards and Relevancy for Human-Sized Tissue Fabrication. Methods in Molecular Biology, 2020, 2140, 65-92.	0.4	13

#	Article	IF	Citations
792	Bioinks and Their Applications in Tissue Engineering. , 2019, , 187-218.		5
793	Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization. , 2020, , 647-676.		9
794	3D Bioprinting. , 2021, , 215-232.		4
795	Extrusion-Based Biofabrication in Tissue Engineering and Regenerative Medicine. , 2016, , 1-27.		7
796	Fabrication and Printing of Multi-material Hydrogels. , 2016, , 1-34.		3
797	Development of Nanocellulose-Based Bioinks for 3D Bioprinting of Soft Tissue. , 2016, , 1-23.		7
798	The Use of Nano-Polysaccharides in Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2019, , 171-219.	0.7	3
799	Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. ACS Applied Bio Materials, 2021, 4, 325-369.	2.3	87
800	3D Bioprinting of osteochondral tissue substitutes – in vitro-chondrogenesis in multi-layered mineralized constructs. Scientific Reports, 2020, 10, 8277.	1.6	86
801	Extrusion-based Bioprinting. Biomaterials Science Series, 2019, , 22-48.	0.1	2
802	Study on 3D printing technology and mechanical properties of a nanoâ€enhanced composite hydrogel bioâ€ink. Micro and Nano Letters, 2020, 15, 964-968.	0.6	6
803	Biomedical nanomaterials: applications, toxicological concerns, and regulatory needs. Nanotoxicology, 2021, 15, 331-351.	1.6	20
804	The use of antifreeze proteins to modify pore structure in directionally frozen alginate sponges for cartilage tissue engineering. Biomedical Physics and Engineering Express, 2020, 6, 055016.	0.6	6
805	Controllability Over Wall Thickness of Tubular Structures and Encapsulation During Co-Axial Extrusion of a Thermal-Crosslinking Hydrogel. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, .	1.3	4
806	Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems. PLoS ONE, 2017, 12, e0183487.	1.1	26
807	An Experimental Study on the Mechanical and Biological Properties of Bio-Printed Alginate/Halloysite Nanotube/Methylcellulose/Russian Olive-Based Scaffolds. Advanced Pharmaceutical Bulletin, 2018, 8, 643-655.	0.6	19
808	Emergence of Bioprinting in Tissue Engineering: A Mini Review. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2016, 1, .	0.1	2
809	Bioprinting and stem cells: the new frontier of tissue engineering and regenerative medicine. Journal	0.1	2

#	Article	IF	CITATIONS
810	3D Bioprinting: An attractive alternative to traditional organ transplantation. Archive of Biomedical Science and Engineering, 2019, 5, 007-018.	0.3	12
811	A dual crosslinking strategy to tailor rheological properties of gelatin methacryloylÂ. International Journal of Bioprinting, 2017, 3, 130.	1.7	41
812	3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. International Journal of Bioprinting, 2018, 4, 126.	1.7	159
813	Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. International Journal of Bioprinting, 2019, 6, 211.	1.7	73
814	Extrusion-Based Bioprinting through Glucose-Mediated Enzymatic Hydrogelation. International Journal of Bioprinting, 2019, 6, 250.	1.7	20
815	Three-Dimensional Bioprinting in Orthopaedics. JBJS Reviews, 2020, 8, e0204-e0204.	0.8	10
816	Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges. Current Medicinal Chemistry, 2020, 27, 4622-4646.	1.2	16
817	An Update on the Use of Alginate in Additive Biofabrication Techniques. Current Pharmaceutical Design, 2019, 25, 1249-1264.	0.9	9
818	Checkered Films of Multiaxis Oriented Nanocelluloses by Liquid-Phase Three-Dimensional Patterning. Nanomaterials, 2020, 10, 958.	1.9	8
819	Synthesis of Alginate/Nanocellulose bionanocomposite for in vitro delivery of Ampicillin. International Journal of Drug Delivery, 2018, 9, 107.	0.2	2
820	Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers, 2021, 13, 3365.	2.0	67
821	Synthetic chemistry of cellulose hydrogels-A review. Materials Today: Proceedings, 2022, 48, 1431-1438.	0.9	8
822	Candidate Bioinks for Extrusion 3D Bioprinting—A Systematic Review of the Literature. Frontiers in Bioengineering and Biotechnology, 2021, 9, 616753.	2.0	28
823	Integrated Perspective of Scaffold Designing and Multiscale Mechanics in Cardiac Bioengineering. Advanced NanoBiomed Research, 2021, 1, 2100075.	1.7	8
824	Bioink design for extrusion-based bioprinting. Applied Materials Today, 2021, 25, 101227.	2.3	15
825	Cellulose Nanofibers for Biomedical Applications. , 2016, , 213-232.		1
826	Introduction to 3D-bioprinting: the history, principles and stages. Genes and Cells, 2018, 13, 38-45.	0.2	4
827	Shear Thinning Hydrogel-based 3D Tissue Modelling. Biomaterials Science Series, 2019, , 94-118.	0.1	1

ARTICLE IF CITATIONS Complex Shapes Prosthetics Process: An Application of Fused Deposition Modeling Technology. 829 0.3 0 Materials Horizons, 2020, , 251-268. Biomedical Nanotechnology. Advances in Bioinformatics and Biomedical Engineering Book Series, 0.2 2020, , 30-65. 831 Pharmaceutical application of cellulose derivatives., 2020, , 305-328. 0 Recent advances in three-dimensional bioprinted nanocellulose-based hydrogel scaffolds for 1.2 biomedical applications. Korean Journal of Chemical Engineering, 2021, 38, 2171-2194. Bioprinting Au Natural: The Biologics of Bioinks. Biomolecules, 2021, 11, 1593. 834 1.8 17 Plant-Based Polymeric Nanomaterials for Biomedical Applications., 2020, , 129-158. Review on 3d Printing of Biological Tissues and the Materialization. IOP Conference Series: Materials 836 0.3 1 Science and Engineering, 0, 988, 012128. Extrusion-Based Bioprinting of Multilayered Nanocellulose Constructs for Cell Cultivation Using 1.6 <i>In Situ</i> Freezing and Preprint CaCl₂ Cross-Linking. ACS Omega, 2021, 6, 569-578. Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds 838 for bone regeneration and tumour treatment. Composites Part A: Applied Science and Manufacturing, 3.8 31 2022, 152, 106672. 3D Printing of Microbial Polysaccharides., 2021, , 1-34. Alginate-Based Interpenetrating Network Carriers for Biomedical Applications., 2020, , 79-118. 840 1 TEMPO-Oxidized Cellulose Nanofiber-Alginate Hydrogel as a Bioink for Human Meniscus Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 766399. Use of 3D printing in head and neck surgery. Annales Academiae Medicae Silesiensis, 2020, 74, 99-115. 842 0.1 0 Developments and Opportunities for 3D Bioprinted Organoids. International Journal of Bioprinting, 844 1.7 2021, 7, 364. Organic Acid Crosslinked 3D Printed Cellulose Nanocomposite Bioscaffolds With Controlled 845 0.4 0 Porosity, Mechanical Strength and Biocompatibility. SSRN Electronic Journal, 0, , . 846 Interface tissue engineering., 2022, , 683-726. Geometrical control of degradation and cell delivery in 3D printed nanocellulose hydrogels. 847 0.9 5 Materials Today Communications, 2022, 30, 103023. Harnessing shear stress preconditioning to improve cell viability in 3D post-printed biostructures 848 using extrusion bioprinting. Bioprinting, 2022, 25, e00184.

#	Article	IF	CITATIONS
849	Developments and Opportunities for 3D Bioprinted OrganoidsÂ. International Journal of Bioprinting, 2021, 7, 364.	1.7	46
850	4D printing of patterned multimaterial magnetic hydrogel actuators. Additive Manufacturing, 2022, 49, 102506.	1.7	24
851	Cellulose–Silver Composites Materials: Preparation and Applications. Biomolecules, 2021, 11, 1684.	1.8	31
852	3D extrusion bioprinting. Nature Reviews Methods Primers, 2021, 1, .	11.8	127
853	The Application Status of Nanoscale Cellulose-Based Hydrogels in Tissue Engineering and Regenerative Biomedicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732513.	2.0	28
854	3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732689.	2.0	19
856	Recent progress in surgical adhesives for biomedical applications. Smart Materials in Medicine, 2022, 3, 41-65.	3.7	32
858	Supplementation of GelMA With Minimally Processed Tissue Promotes the Formation of Densely Packed Skeletal Muscle-Like Tissue. SSRN Electronic Journal, 0, , .	0.4	0
859	3D bioprinted tumor model with extracellular matrix enhanced bioinks for nanoparticle evaluation. Biofabrication, 2022, 14, 025002.	3.7	18
860	Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3Dâ€printed constructs for regenerative medicine. Biotechnology and Bioengineering, 2022, 119, 762-783.	1.7	11
861	Dual-charge bacterial cellulose as a potential 3D printable material for soft tissue engineering. Composites Part B: Engineering, 2022, 231, 109598.	5.9	19
862	Multi-axis 3D printing of gelatin methacryloyl hydrogels on a non-planar surface obtained from magnetic resonance imaging. Additive Manufacturing, 2022, 50, 102566.	1.7	10
863	Fiber Filled Hybrid Hydrogel for Bio-Manufacturing. , 2020, , .		1
864	3D bioprinting of cell-laden constructs for regenerative medicine. Engineered Regeneration, 2021, 2, 195-205.	3.0	20
865	Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 735090.	2.0	19
866	Additive manufacturing with biodegradable polymers. , 2022, , 611-679.		2
867	A Study of the Printability of Alginate-Based Bioinks by 3D Bioprinting for Articular Cartilage Tissue Engineering. Polymers, 2022, 14, 354.	2.0	20
868	Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. Journal of Tissue Engineering, 2022, 13, 204173142110658.	2.3	28

		CITATION RE	PORT	
#	Article		IF	Citations
869	3D printed cellulose based product applications. Materials Chemistry Frontiers, 2022,	6, 254-279.	3.2	25
870	Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Biotechnology, 2022, 40, 891-902.	Trends in	4.9	35
871	Preparation and Characterisation of Cellulose Nanocrystal/Alginate/Polyethylene Glyco (CNC/Alg/PEGDA) Hydrogel Using Double Network Crosslinking Technique for Bioprint Applied Sciences (Switzerland), 2022, 12, 771.	l Diacrylate ing Application.	1.3	6
872	(Bio)manufactured Solutions for Treatment of Bone Defects with an Emphasis on USa Science Perspective. Advanced NanoBiomed Research, 2022, 2, .	€FDA Regulatory	1.7	12
873	Surface Modification of Bacterial Cellulose for Biomedical Applications. International Jo Molecular Sciences, 2022, 23, 610.	ournal of	1.8	43
874	Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regenerati Macromolecular Bioscience, 2022, 22, e2100435.	on.	2.1	20
875	Study on parameter optimization of 3D bioprinting of hybrid bio-inks. International Jou Advanced Manufacturing Technology, 2022, 119, 7063-7074.	rnal of	1.5	3
876	Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration International Journal of Molecular Sciences, 2022, 23, 1147.		1.8	39
877	Environmental, legal, health, and safety issue of nanocellulose. , 2022, , 265-288.			1
878	A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fid cytocompatibility for 3D bioprinting. Biofabrication, 2022, 14, 025005.	elity and	3.7	5
879	Responsive biomaterials for 3D bioprinting: A review. Materials Today, 2022, 52, 112-1	32.	8.3	64
880	Polymer-based bionanomaterials for targeted drug delivery. , 2022, , 241-271.			3
881	Dynamic and reconfigurable materials from reversible network interactions. Nature Rev Materials, 2022, 7, 541-556.	views	23.3	105
882	Three-Dimensional Printing Strategies for Irregularly Shaped Cartilage Tissue Engineeri State and Challenges. Frontiers in Bioengineering and Biotechnology, 2021, 9, 777039	ng: Current).	2.0	4
883	3D printing of a tough double-network hydrogel and its use as a scaffold to construct hydrogel composite. Journal of Materials Chemistry B, 2022, 10, 468-476.	a tissue-like	2.9	22
884	Tissue engineered products—Translational avenues. , 2022, , 575-625.			0
885	3D bioprinting of hydrogel/ceramic composites with hierarchical porosity. Journal of M Science, 2022, 57, 3662-3677.	aterials	1.7	5
886	Nanocomposite scaffolds based on gelatin and alginate reinforced by Zn2SiO4 with er mechanical and chemical properties for tissue engineering. Arabian Journal of Chemistr 103730.	hanced 7y, 2022, 15,	2.3	6

ARTICLE IF CITATIONS # Additive Manufacturing Approaches toward the Fabrication of Biomaterials. Advanced Materials 887 1.9 3 Interfaces, 2022, 9, . Evolution of 3D bioprinting-from the perspectives of bioprinting companies. Bioprinting, 2022, 25, e00193. Nanocellulose-Based Biomedical Scaffolds in Future Bioeconomy: A Techno-Legal Assessment of the 889 2.0 6 State-of-the-Art. Frontiers in Bioengineering and Biotechnology, 2021, 9, 789603. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Biomacromolecules, 2022, 23, 877-888. Functionalization of nanocellulose applied with biological molecules for biomedical application: A 891 5.1 35 review. Carbohydrate Polymers, 2022, 285, 119208. Colloidal multiscale porous adhesive (bio)inks facilitate scaffold integration. Applied Physics 5.5 Reviews, 2021, 8, 041415. 893 Nanocelluloses for Tissue Engineering Application., 2021, , 1-30. 0 Hydrogel-Nanofiber Composites for Tissue Reconstruction Applications: A State of the Art Review., 894 2022,,. 895 Bioink Printability Methodologies for Cell-Based Extrusion Bioprinting., 2022, 153-183. 2 896 Cellulose and Tissue Engineering., 2022, , 1161-1186. Advances in Nanoenabled 3D Matrices for Cartilage Repair. SSRN Electronic Journal, 0, , . 897 0 0.4 Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. Journal of Materials Chemistry B, 2022, 10, 3199-3241. Nanocellulose hydrogels., 2022, , 263-287. 899 1 In vitro maturation and in vivo stability of bioprinted human nasal cartilage. Journal of Tissue 2.3 Engineering, 2022, 13, 204173142210863. Bioprinting of Biomimetic Tissue Models for Disease Modeling and Drug Screening., 2022, , 33-70. 901 2 The Promise and Challenge of Microbial Alginate Production: A Product with Novel Applications. , 2022, , 79-98. 3D Printing of Microbial Polysaccharides., 2022, 1213-1245. 903 0 An assessment of ultrasound transmission gel as trial bioink by pneumatic extrusion-based 3D 904 0.1 bio-printer. Transactions of the JSME (in Japanese), 2022, 88, 21-00151-21-00151.

#	ARTICLE	IF	CITATIONS
905	Nanocellulose nanocomposites for biomedical applications. , 2022, , 337-352.		0
906	Hydrogels for Bioprinting. , 2022, , 185-211.		2
907	3D Printing of Cartilage and Subchondral Bone. , 2022, , 371-395.		0
908	Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 2022, 23, 2662.	1.8	23
909	Hierarchical Nanocelluloseâ€Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries. Small, 2022, 18, e2107183.	5.2	35
910	Advanced Nanocomposite Hydrogels for Cartilage Tissue Engineering. Gels, 2022, 8, 138.	2.1	18
911	Melt electrowriting to produce microfiber fragments. Polymers for Advanced Technologies, 2022, 33, 1989-1992.	1.6	4
912	Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We?. Frontiers in Immunology, 2022, 13, 802440.	2.2	6
913	Additive Manufacturing in Orthopedics: A Review. ACS Biomaterials Science and Engineering, 2022, 8, 1367-1380.	2.6	10
914	Building gut from scratch — progress and update of intestinal tissue engineering. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 417-431.	8.2	12
915	Research Progress on Hydrogel–Elastomer Adhesion. Materials, 2022, 15, 2548.	1.3	6
916	Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels, 2022, 8, 179.	2.1	89
917	From Biomedical Applications of Alginate towards CVD Implications Linked to COVID-19. Pharmaceuticals, 2022, 15, 318.	1.7	4
918	Three-dimensional scaffolds for tissue bioengineering cartilages. Biocybernetics and Biomedical Engineering, 2022, , .	3.3	3
919	A bioprinted complex tissue model for myotendinous junction with biochemical and biophysical cues. Bioengineering and Translational Medicine, 2022, 7, .	3.9	8
920	Enabling direct ink write edible 3D printing of food purees with cellulose nanocrystals. Journal of Food Engineering, 2022, 330, 111086.	2.7	24
921	A two-stage in vivo approach for implanting a 3D printed tissue-engineered tracheal replacement graft: A proof of concept. International Journal of Pediatric Otorhinolaryngology, 2022, 155, 111066.	0.4	8
922	Hybprinting for musculoskeletal tissue engineering. IScience, 2022, 25, 104229.	1.9	1

#	Article	IF	CITATIONS
923	Three-Dimensional Printing of Highly Crosslinked and Concentrated Nanocellulose for Environmentally Friendly Structural Applications. ACS Applied Nano Materials, 2022, 5, 5680-5687.	2.4	8
924	One-pot biofabrication and characterization of Tara gum/Riceberry phenolics–silver nanogel: A cytocompatible and green nanoplatform with multifaceted biological applications. International Journal of Biological Macromolecules, 2022, 206, 521-533.	3.6	8
925	Synthesis and investigation of physicochemical properties of alginate dialdehyde/gelatin/ZnO nanocomposites as injectable hydrogels. Polymer Testing, 2022, 110, 107562.	2.3	18
926	Design and biofabrication of a leaf-inspired vascularized cell-delivery device. Bioprinting, 2022, 26, e00199.	2.9	4
927	Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. International Journal of Biological Macromolecules, 2022, 209, 9-30.	3.6	42
928	Alginate and tunicate nanocellulose composite microbeads – Preparation, characterization and cell encapsulation. Carbohydrate Polymers, 2022, 286, 119284.	5.1	6
929	Three-Dimensional Cell Culture Models of Hepatocellular Carcinoma — a Review. Journal of Gastrointestinal Cancer, 2021, 52, 1294-1308.	0.6	6
930	Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks. Marine Drugs, 2021, 19, 708.	2.2	43
931	3D bioprinting for meniscus tissue engineering: a review of key components, recent developments and future opportunities. Journal of 3D Printing in Medicine, 2021, 5, 213-233.	1.0	6
932	Optimized Cell Mixing Facilitates the Reproducible Bioprinting of Constructs with High Cell Viability. Applied Sciences (Switzerland), 2022, 12, 326.	1.3	2
933	Strengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers. Polymers, 2022, 14, 78.	2.0	4
934	Hybridizing gellan/alginate and thixotropic magnesium phosphate-based hydrogel scaffolds for enhanced osteochondral repair. Materials Today Bio, 2022, 14, 100261.	2.6	15
935	High-cytocompatible semi-IPN bio-ink with wide molecular weight distribution for extrusion 3D bioprinting. Scientific Reports, 2022, 12, 6349.	1.6	0
936	Alginate: Enhancement Strategies for Advanced Applications. International Journal of Molecular Sciences, 2022, 23, 4486.	1.8	50
937	Non-destructive mechanical assessment for optimization of 3D bioprinted soft tissue scaffolds. IScience, 2022, 25, 104251.	1.9	8
938	Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibility. IScience, 2022, 25, 104263.	1.9	12
939	Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views. Journal of Functional Biomaterials, 2022, 13, 40.	1.8	55
940	Recent advances in 3D printing of tough hydrogels: A review. Composites Part B: Engineering, 2022, 238, 109895.	5.9	69

#	Article	IF	CITATIONS
942	Cell-Laden Nanocomposite Bioinks for 3D Bioprinting. SSRN Electronic Journal, 0, , .	0.4	0
943	Regeneratively speaking: Reflections on organ transplantation and beta cell replacement in the regenerative medicine era. , 2022, , 199-209.		0
944	LIGNIN VALORIZATION PROBLEMS. Khimiya Rastitel'nogo Syr'ya, 2022, , 11-33.	0.0	3
945	3D Printing of Calcium Phosphate/Calcium Sulfate with Alginate/Cellulose-Based Scaffolds for Bone Regeneration: Multilayer Fabrication and Characterization. Journal of Functional Biomaterials, 2022, 13, 47.	1.8	9
946	Genotoxicity of Three Micro/Nanocelluloses with Different Physicochemical Characteristics in MG-63 and V79 Cells. Journal of Xenobiotics, 2022, 12, 91-108.	2.9	4
947	Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance. International Journal of Molecular Sciences, 2022, 23, 4750.	1.8	6
948	Design and Implementation of Anatomically Inspired Mesenteric and Intestinal Vascular Patterns for Personalized 3D Bioprinting. Applied Sciences (Switzerland), 2022, 12, 4430.	1.3	2
949	Molecular and Colloidal Transport in Bacterial Cellulose Hydrogels. Biomacromolecules, 2022, 23, 2404-2414.	2.6	8
950	A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. Journal of Biomaterials Applications, 2022, 37, 355-372.	1.2	16
951	Extrusion 3D bioprinting of functional self-supporting neural constructs using a photoclickable gelatin bioink. Biofabrication, 2022, 14, 035014.	3.7	8
952	Cellulose-Based Nanomaterials Advance Biomedicine: A Review. International Journal of Molecular Sciences, 2022, 23, 5405.	1.8	45
953	High Content Nanocellulose 3Dâ€Printed and Esterified Structures with Strong Interfacial Adhesion, High Mechanical Properties, and Shape Fidelity. Advanced Materials Interfaces, 2022, 9, .	1.9	14
954	Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication, 2022, 14, 034105.	3.7	41
955	Biomaterial and biocompatibility evaluation of tunicate nanocellulose for tissue engineering. , 2022, 137, 212828.		7
956	Bioprinting technologies: an overview. , 2022, , 19-49.		4
957	Latest Advances in 3D Bioprinting of Cardiac Tissues. Advanced Materials Technologies, 2022, 7, .	3.0	17
958	Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	18
959	Nanocelluloses – Nanotoxicology, Safety Aspects and 3D Bioprinting. Advances in Experimental Medicine and Biology, 2022, 1357, 155-177.	0.8	4

#	ARTICLE	IF	CITATIONS
960	3D printing of bio-instructive materials: Toward directing the cell. Bioactive Materials, 2023, 19, 292-327.	8.6	31
963	Computational Fluid Dynamics Assessment of the Effect of Bioprinting Parameters in Extrusion Bioprinting. International Journal of Bioprinting, 2022, 8, 545.	1.7	17
964	Additive manufacturing technologies: Industrial and medical applications. Sustainable Operations and Computers, 2022, 3, 258-274.	6.3	50
965	Parametric visco-hyperelastic constitutive modeling of functionally graded 3D printed polymers. International Journal of Mechanical Sciences, 2022, 226, 107335.	3.6	9
966	Crosslinked alginateâ€xanthan gum blends as effective hydrogels for <scp>3D</scp> bioprinting of biological tissues. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
967	Polymer nanocomposites for biomedical applications. , 2022, , 171-204.		2
968	Optimization of the Rheological Properties of Self-Assembled Tripeptide/Alginate/Cellulose Hydrogels for 3D Printing. Polymers, 2022, 14, 2229.	2.0	19
970	Development and characterization of pluronic F127 and methylcellulose based hydrogels for 3D bioprinting. Polymer Bulletin, 2023, 80, 4555-4572.	1.7	5
971	Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink. Polymers, 2022, 14, 2260.	2.0	10
972	Synthesis of biocompatible Konjac glucomannan stabilized silver nanoparticles, with Asystasia gangetica phenolic extract for colorimetric detection of mercury (II) ion. Scientific Reports, 2022, 12, .	1.6	14
973	An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Engineering and Regenerative Medicine, 0, , .	1.6	8
974	3D-Printing Assisted SF-SA Based MgP Hybrid Hydrogel Scaffold for Bone Tissue Engineering. Frontiers in Materials, 2022, 9, .	1.2	1
975	Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydrate Polymers, 2022, 291, 119670.	5.1	13
976	Biomimetic Nanocomposites for Biomedical Applications. ACS Symposium Series, 0, , 163-196.	0.5	2
977	Sustainable polymers. Nature Reviews Methods Primers, 2022, 2, .	11.8	78
978	Cellulose Nanomaterials Based Flexible Electrodes for All-Solid-State Supercapacitors. Current Chinese Science, 2022, 2, 460-471.	0.2	2
979	Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 2022, 287, 121639.	5.7	67
980	Programmable construction of vasculature by printing in cementitious materials for self-healing application. Composites Part B: Engineering, 2022, 242, 110056.	5.9	6

#	Article	IF	CITATIONS
981	Hydrogels for Treatment of Different Degrees of Osteoarthritis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	11
982	3D printable fully biomass-based composite using poly(furfuryl alcohol) as binder and cellulose as a filler. Carbohydrate Polymers, 2022, 293, 119716.	5.1	7
983	Algae-based biomaterials in 3D printing for applications in medical, environmental remediation, and commercial products. , 2022, , 185-202.		2
984	Electrospun Nanofibrous Scaffolds for Neural Tissue Engineering. Advances in Polymer Science, 2022, , .	0.4	0
985	Nanocelluloses for Tissue Engineering Application. , 2022, , 543-572.		0
986	Polymers for 3D bioprinting. , 2022, , 337-349.		0
987	In vitro Cartilage Regeneration Regulated by a Hydrostatic Pressure Bioreactor Based on Hybrid Photocrosslinkable Hydrogels. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
988	Virtual Reality as Tool for Bioprinting Quality Inspection: A Proof of Principle. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
989	Preparation of an Active Dressing by In Situ Biosynthesis of a Bacterial Cellulose–Graphene Oxide Composite. Polymers, 2022, 14, 2864.	2.0	9
990	Non-Invasive Three-Dimensional Cell Analysis in Bioinks by Raman Imaging. ACS Applied Materials & Interfaces, 2022, 14, 30455-30465.	4.0	11
991	Bacterial exopolysaccharides in drug delivery applications. Journal of Drug Delivery Science and Technology, 2022, 74, 103557.	1.4	9
992	Recent advances in bioprinting using silk protein-based bioinks. Biomaterials, 2022, 287, 121672.	5.7	36
993	Study on bioactive PEGDA/ECM hybrid bi-layered hydrogel scaffolds fabricated by electro-writing for cartilage regeneration. Applied Materials Today, 2022, 28, 101547.	2.3	8
994	The role of computer aided design/computer assisted manufacturing (CAD/CAM) and 3- dimensional printing in head and neck oncologic surgery: A review and future directions. Oral Oncology, 2022, 132, 105976.	0.8	22
995	3D Printing of Skin Equivalents with Hair Follicle Structures and Epidermalâ€Papillaryâ€Dermal Layers Using Gelatin/Hyaluronic Acid Hydrogels. Chemistry - an Asian Journal, 2022, 17, .	1.7	16
996	High-performance ene-thiol-acrylate photoresins suited for fabrication lightweight battery compartments of electric vehicles. Reactive and Functional Polymers, 2022, 178, 105337.	2.0	2
997	Advances in nanoenabled 3D matrices for cartilage repair. Acta Biomaterialia, 2022, 150, 1-21.	4.1	6
998	A multidisciplinary perspective on the latest trends in artificial cartilage fabrication to mimic real tissue. Applied Materials Today, 2022, 29, 101603.	2.3	2

C	E A 751	DEDC	NDT.
			ו גוו
\sim		ICLI C	

#	Article	IF	CITATIONS
999	Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Biofabrication, 2022, 14, 045012.	3.7	18
1000	Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with in situ delivery of osteogenic peptide and mesenchymal stem cells. Biofabrication, 2022, 14, 045006.	3.7	17
1001	Designing an Interchangeable Multi-Material Nozzle System for the 3D Bioprinting Process. Journal of Medical Devices, Transactions of the ASME, 2022, , .	0.4	1
1002	Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources. Journal of Functional Biomaterials, 2022, 13, 118.	1.8	18
1003	Nanocomposite bioinks for 3D bioprinting. Acta Biomaterialia, 2022, 151, 45-69.	4.1	28
1004	Self-Healing Injectable Hydrogels for Tissue Regeneration. Chemical Reviews, 2023, 123, 834-873.	23.0	190
1005	Bioprinting: from Technique to Application in Tissue Engineering and Regenerative Medicine. Current Molecular Medicine, 2022, 23, .	0.6	2
1006	Formulation and characterization of an interpenetrating network hydrogel of locust bean gum and cellulose microfibrils for 3D printing. Innovative Food Science and Emerging Technologies, 2022, 80, 103086.	2.7	4
1007	Perspective Chapter: Design and Characterization of Natural and Synthetic Soft Polymeric Materials with Biomimetic 3D Microarchitecture for Tissue Engineering and Medical Applications. , 0, , .		0
1008	3D bioprinting for the repair of articular cartilage and osteochondral tissue. Bioprinting, 2022, 28, e00239.	2.9	11
1009	Auricular reconstruction via 3D bioprinting strategies: An update. Journal of Oral Biology and Craniofacial Research, 2022, 12, 580-588.	0.8	1
1010	Extrusion-Based Three-Dimensional Bioprinting Technology. , 2022, , 1-7.		0
1011	3D printing of natural fiber and composites: A state-of-the-art review. Materials and Design, 2022, 222, 111065.	3.3	37
1012	3D bioprinted silk-reinforced Alginate-Gellan Gum constructs for cartilage regeneration. Bioprinting, 2022, 28, e00232.	2.9	16
1013	Cell-laden bioink circulation-assisted inkjet-based bioprinting to mitigate cell sedimentation and aggregation. Biofabrication, 2022, 14, 045020.	3.7	14
1014	Keratin/alginate hybrid hydrogels filled with halloysite clay nanotubes for protective treatment of human hair. International Journal of Biological Macromolecules, 2022, 222, 228-238.	3.6	17
1015	3D and 4D Nanoprinting for Tissue Regeneration. , 2022, , 67-86.		0
1016	Microbial Exopolysaccharides in Additive Manufacturing. , 2022, , 1-11.		1

#	Article	IF	CITATIONS
1017	Bioprinting-Associated Shear Stress and Hydrostatic Pressure Affect the Angiogenic Potential of Human Umbilical Vein Endothelial Cells. International Journal of Bioprinting, 2022, 8, 606.	1.7	4
1018	Bioprinting and its Use in Tumor-On-A-Chip Technology for Cancer Drug Screening: A Review. International Journal of Bioprinting, 2022, 8, 603.	1.7	7
1019	Lithography-based 3D printed hydrogels: From bioresin designing to biomedical application. Colloids and Interface Science Communications, 2022, 50, 100667.	2.0	9
1020	A Review on Bioinks and their Application in Plant Bioprinting. International Journal of Bioprinting, 2022, 8, 612.	1.7	6
1021	A Tissue Engineering Acoustophoretic (TEA) Set-up for the Enhanced Osteogenic Differentiation of Murine Mesenchymal Stromal Cells (mMSCs). International Journal of Molecular Sciences, 2022, 23, 11473.	1.8	2
1022	Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges. Journal of Experimental Orthopaedics, 2022, 9, .	0.8	10
1024	Synthesis and characterization of curcumin/MMT-clay-treated bacterial cellulose as an antistatic and ultraviolet-resistive bioscaffold. Journal of Polymer Research, 2022, 29, .	1.2	8
1025	3D printing of alginate/thymoquinone/halloysite nanotube bio-scaffolds for cartilage repairs: experimental and numerical study. Medical and Biological Engineering and Computing, 2022, 60, 3069-3080.	1.6	7
1026	Tissues and organ printing: An evolution of technology and materials. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, 236, 1695-1710.	1.0	6
1027	Guiding mesenchymal stem cells differentiation into chondrocytes using sulfated alginate/cold atmospheric plasma modified polycaprolactone nanofibrous scaffold. Polymer Bulletin, 0, , .	1.7	0
1028	Three-dimensional (3D) printing of hydroxyapatite-based scaffolds: A review. Bioprinting, 2022, 28, e00244.	2.9	7
1029	Effect of Cellulose Nanofibers' Structure and Incorporation Route in Waterborne Polyurethane–Urea Based Nanocomposite Inks. Polymers, 2022, 14, 4516.	2.0	5
1030	Swellingâ€Dependent Shapeâ€Based Transformation of a Human Mesenchymal Stromal Cellsâ€Laden 4D Bioprinted Construct for Cartilage Tissue Engineering. Advanced Healthcare Materials, 2023, 12, .	3.9	17
1031	Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage. International Journal of Bioprinting, 2022, 9, 631.	1.7	6
1032	Rheological and viscoelastic properties of collagens and their role in bioprinting by micro-extrusion. Biomedical Materials (Bristol), 2022, 17, 062005.	1.7	5
1033	Formulation and evaluation of a bioink composed of alginate, gelatin, and nanocellulose for meniscal tissue engineering. International Journal of Bioprinting, 2022, 9, 621.	1.7	5
1034	Effect of ionic crosslinking on morphology and thermostability of biomimetic supercritical fluids-decellularized dermal-based composite bioscaffolds for bioprinting applicationsÂ. International Journal of Bioprinting, 2022, 9, 625.	1.7	0
1035	Algal polysaccharides for 3D printing: A review. Carbohydrate Polymers, 2023, 300, 120267.	5.1	30

#	Article	IF	Citations
1036	One-Pot Hierarchical Structuring of Nanocellulose by Electrophoretic Deposition. ACS Nano, 2022, 16, 18390-18397.	7.3	11
1037	Synthesis, properties, and applications of polylactic <scp>acidâ€based</scp> polymers. Polymer Engineering and Science, 2023, 63, 22-43.	1.5	29
1038	Biomedical Applications of Nanocellulose. Nanoscience and Technology, 2023, , 367-406.	1.5	0
1039	Frameworks for total ear reconstruction: past, present and future directions. Journal of 3D Printing in Medicine, 2022, 6, 195-211.	1.0	3
1040	Tuning of water resistance and protein adsorption capacity of porous cellulose nanofiber particles prepared by spray drying with cross-linking reaction. Journal of Colloid and Interface Science, 2023, 630, 134-143.	5.0	5
1041	A novel Nanocellulose-Gelatin-AS-IV external stent resists EndMT by activating autophagy to prevent restenosis of grafts. Bioactive Materials, 2023, 22, 466-481.	8.6	6
1042	Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering. Materials, 2022, 15, 7945.	1.3	16
1043	iPSC-neural crest derived cells embedded in 3D printable bio-ink promote cranial bone defect repair. Scientific Reports, 2022, 12, .	1.6	5
1044	Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. International Journal of Bioprinting, 2022, 9, 637.	1.7	12
1045	3D bioprinting of articular cartilage: Recent advances and perspectives. Bioprinting, 2022, 28, e00253.	2.9	4
1046	Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration. , 2023, 145, 213239.		11
1047	Bioinspired polymeric heart valves derived from polyurethane and natural cellulose fibers. Journal of Materials Science and Technology, 2023, 144, 178-187.	5.6	3
1048	Multiscale cellulose-based fireproof and thermal insulation gel materials with water-regulated forms. Nano Research, 0, , .	5.8	0
1049	Microscale 3D Printing and Tuning of Cellulose Nanocrystals Reinforced Polymer Nanocomposites. Small, 2023, 19, .	5.2	11
1050	3D bioprinting and its innovative approach for biomedical applications. MedComm, 2023, 4, .	3.1	15
1051	Biomaterial inks for extrusion-based 3D bioprinting: Property, classification, modification, and selection. International Journal of Bioprinting, 2022, 9, 649.	1.7	6
1053	Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells. International Journal of Biological Macromolecules, 2023, 229, 849-860.	3.6	12
1054	Polymer-Modified Cellulose Nanofibrils Cross-Linked with Cobalt Iron Oxide Nanoparticles as a Gel Ink for 3D Printing Objects with Magnetic and Electrochemical Properties. Fibers, 2023, 11, 2.	1.8	3

# 1055	ARTICLE Microbial Exopolysaccharides in Additive Manufacturing. , 2023, , 1-11.	IF	CITATIONS
1056	Nanocellulose: An amazing nanomaterial with diverse applications in food science. Carbohydrate Polymers, 2023, 304, 120497.	5.1	11
1057	Sustainability in Wood Products: A New Perspective for Handling Natural Diversity. Chemical Reviews, 2023, 123, 1889-1924.	23.0	15
1058	Hep3Gel: A Shape-Shifting Extracellular Matrix-Based, Three-Dimensional Liver Model Adaptable to Different Culture Systems. ACS Biomaterials Science and Engineering, 2023, 9, 211-229.	2.6	8
1059	A propitious role of marine sourced polysaccharides: Drug delivery and biomedical applications. Carbohydrate Polymers, 2023, 308, 120448.	5.1	15
1060	Wood Plastic Composites (WPCs): Applications of Nanomaterials. , 2023, , 97-133.		2
1062	Growing Skin-Like Tissue. Springer Briefs in Molecular Science, 2023, , 45-102.	0.1	0
1063	The Colloidal Properties of Nanocellulose. ChemSusChem, 2023, 16, .	3.6	23
1064	Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks. ACS Applied Materials & Interfaces, 2023, 15, 2564-2577.	4.0	4
1065	Functional acellular matrix for tissue repair. Materials Today Bio, 2023, 18, 100530.	2.6	17
1066	Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications. European Polymer Journal, 2023, 184, 111806.	2.6	15
1067	Low-Cost Light-Based GelMA 3D Bioprinting via Retrofitting: Manufacturability Test and Cell Culture Assessment. Micromachines, 2023, 14, 55.	1.4	6
1068	Aqueous Twoâ€Phase Enabled Low Viscosity 3D (LoV3D) Bioprinting of Living Matter. Advanced Science, 2023, 10, .	5.6	8
1069	Utilization of a Commercial 3D Printer for the Construction of a Bio-Hybrid Device Based on Bioink and Adult Human Mesenchymal Cells. Energies, 2023, 16, 374.	1.6	1
1070	Considerations of bioprinting. , 2023, , 13-67.		0
1071	Three-dimensional printable nanocomposite biomaterials as bone scaffolds and grafts. , 2023, , 579-594.		0
1072	Bioprinting of cartilage. , 2023, , 69-94.		0
1073	Hydrogel Based on Alginate as an Ink in Additive Manufacturing Technology—Processing Methods and Printability Enhancement. , 2023, , 209-232.		1

		CITATION REPORT		
#	Article		IF	CITATIONS
1074	Nanocomposite Bioprinting for Tissue Engineering Applications. Gels, 2023, 9, 103.		2.1	15
1075	Bioprinting of hydrogels for tissue engineering and drug screening applications. , 2023	8, , 183-221.		0
1076	Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials 2023, 123, 2200-2241.	. Chemical Reviews,	23.0	26
1077	Advances in mechanically robust and biomimetic polysaccharide-based constructs for engineering. Carbohydrate Polymers, 2023, 308, 120650.	cartilage tissue	5.1	5
1078	Advanced applications of biomass nanocellulose-reinforced polymer composites. , 202	3, , 349-385.		0
1079	Applicability of machine learning in three-dimensionally (3D) printed dosage forms. , 2	023, , 259-299.		0
1080	Magnetic bioprinting of stem cell-based tissues. Bioprinting, 2023, 30, e00265.		2.9	7
1081	Current advancements in bio-ink technology for cartilage and bone tissue engineering 116746.	. Bone, 2023, 171,	1.4	8
1082	Modification, 3D printing process and application of sodium alginate based hydrogels engineering: A review. International Journal of Biological Macromolecules, 2023, 232,	in soft tissue 123450.	3.6	40
1083	Classification, processing, and applications of bioink and 3D bioprinting: A detailed rev International Journal of Biological Macromolecules, 2023, 232, 123476.	view.	3.6	27
1084	Progressive use of nanocomposite hydrogels materials for regeneration of damaged ca their tribological mechanical properties. Proceedings of the Institution of Mechanical B Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 0, , 239779142	artilage and Ingineers, 311514.	0.5	2
1085	Understanding Nanocellulose–Water Interactions: Turning a Detriment into an Asse Reviews, 2023, 123, 1925-2015.	t. Chemical	23.0	61
1086	Egg white improves the biological properties of an alginate-methylcellulose bioink for of volumetric bone constructs. Biofabrication, 2023, 15, 025013.	3D bioprinting	3.7	9
1087	Biomass-derived fiber materials for biomedical applications. Frontiers in Materials, 0, 1	0,.	1.2	3
1088	3Dâ€Printed Anisotropic Nanofiber Composites with Gradual Mechanical Properties. A Technologies, 2023, 8, .	dvanced Materials	3.0	5
1089	Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioen 10, 218.	gineering, 2023,	1.6	17
1090	Development of a bioink using exopolysaccharide from Rhizobium sp. PRIM17. Interna Biological Macromolecules, 2023, 234, 123608.	tional Journal of	3.6	0
1091	Cartilage <scp>3D</scp> bioprinting for rhinoplasty using adiposeâ€derived stem cell Review and recent advances. Cell Proliferation, 2023, 56, .	s as seed cells:	2.4	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1092	Advanced Flexible Materials from Nanocellulose. Advanced Functional Materials, 2023,	, 33, .	7.8	24
1093	Organized mineralized cellulose nanostructures for biomedical applications. Journal of Chemistry B, 2023, 11, 5321-5349.	Materials	2.9	2
1094	Advances in Mechanical Properties of Hydrogels for Cartilage Tissue Defect Repair. Ma Bioscience, 2023, 23, .	cromolecular	2.1	10
1095	<scp>3D</scp> printed wound constructs for skin tissue engineering: A systematic revexperimental animal models. Journal of Biomedical Materials Research - Part B Applied 2023, 111, 1419-1433.	view in Biomaterials,	1.6	1
1096	3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineering. Pharmac 15, 763.	ceutics, 2023,	2.0	13
1097	Novel biomaterials for stem cell engineering and bone regeneration. , 2023, , 169-204.			Ο
1098	Development of double network polyurethane–chitosan composite bioinks for soft n engineering. Journal of Materials Chemistry B, 2023, 11, 3592-3606.	neural tissue	2.9	5
1099	Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecu 2766.	les, 2023, 28,	1.7	14
1100	Polysaccharideâ€based biomaterials in a journey from <scp>3D</scp> to <scp>4DBioengineering and Translational Medicine, 2023, 8, .</scp>	:p> printing.	3.9	6
1101	3D Bioprinting of Hyaline Cartilage Using Nasal Chondrocytes. Annals of Biomedical Er	ngineering, 0, , .	1.3	3
1102	Plant-Fiber and Wood-Based Functional Materials. Springer Handbooks, 2023, , 1645-1	1693.	0.3	2
1103	Future solutions for osteoarthritis using 3D bioprinting of articular cartilage. , 2023, , 3	335-369.		0
1104	3D Printing of Green and Renewable Polymeric Materials: Toward Greener Additive Ma ACS Applied Polymer Materials, 2023, 5, 3201-3229.	nufacturing.	2.0	9
1105	Marine collagen-chitosan-fucoidan/chondroitin sulfate cryo-biomaterials loaded with p cells envisaging cartilage tissue engineering. International Journal of Biological Macron 2023, 241, 124510.	rimary human nolecules,	3.6	9
1106	A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Eng Vitro Assessment and In Vivo Animal Studies. International Journal of Molecular Scienc 7611.	ineering: In es, 2023, 24,	1.8	4
1107	Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphe Nanotubes and Nanocellulose. Tissue Engineering and Regenerative Medicine, 2023, 2	ne, Carbon 0, 411-433.	1.6	4
1131	3D printing of biopolymer-based hydrogels. , 2023, , 65-100.			0
1139	An Overview on the Pharmaceutical Applications of Nanocellulose. Composites Science Technology, 2023, , 395-411.	e and	0.4	0

#	Article	IF	CITATIONS
1144	Advances in Hydrogels for Cartilage Regeneration. , 2023, , 289-306.		0
1153	Natural biopolymers in tissue engineering—role, challenges, and clinical applications. , 2023, , 409-434.		0
1156	When nanocellulose meets hydrogels: the exciting story of nanocellulose hydrogels taking flight. Green Chemistry, 2023, 25, 8349-8384.	4.6	1
1164	The prospects for bioprinting tumor models: recent advances in their applications. Bio-Design and Manufacturing, 2023, 6, 661-675.	3.9	1
1167	Development of three-dimensional printed biocompatible materials for cartilage replacement. , 2024, , 425-452.		2
1168	Polysaccharide-Based Materials for Skeletal Tissue Repair. , 2023, , 1-25.		0
1172	Cellulose in tissue engineering. , 2023, , 481-500.		0
1174	Hydrogels for development of bioinks. , 2024, , 509-523.		0
1176	3D Bioprinting of Cellulosic Structures for Versatile Applications. Springer Tracts in Additive Manufacturing, 2024, , 79-102.	0.2	0
1183	3D Bioprinting in Conjunction with Bone Marrow Mesenchymal Stem Cells for the Treatment of Bone Defects. , 2023, , 1-28.		0
1185	Developments of additive manufacturing and 5D printing in tissue engineering. Journal of Materials Research, 2023, 38, 4692-4725.	1.2	2
1186	Integrating bioprinting, cell therapies and drug delivery towards in vivo regeneration of cartilage, bone and osteochondral tissue. Drug Delivery and Translational Research, 0, , .	3.0	0
1194	Advanced Tissue Engineering with Novel Engineered Biomaterials. Engineering Materials, 2023, , 361-395.	0.3	0
1201	An overview of the development status and applications of cellulose-based functional materials. Cellulose, 0, , .	2.4	0
1207	Bio-based Polymers: a Review on Processing and 3D Printing. Polymer Science - Series A, O, , .	0.4	0
1208	Semisolid Extrusion Printing and 3D Bioprinting. AAPS Advances in the Pharmaceutical Sciences Series, 2024, , 195-233.	0.2	0
1215	Three-dimensional bioprinting of articular cartilage using silk fibroin–gelatin bioink. , 2024, , 513-548.		0
1220	Three-dimensional printing for personalized medicine and targeted drug delivery. , 2024, , 97-125.		0

		CITATION REPORT	
#	Article	IF	Citations
1221	A review: polysaccharide-based hydrogels and their biomedical applications. Polymer Bulletin, 0, , .	1.7	1
1225	Physical processes of obtaining gels and hydrogels from natural polymers. , 2024, , 41-73.		0