A Series of Simple Oligomer-like Small Molecules Based Solution-Processed Solar Cells with High Efficiency

Journal of the American Chemical Society 137, 3886-3893 DOI: 10.1021/jacs.5b00305

Citation Report

#	Article	IF	CITATIONS
6	Synthesis ofN,N'-dialkyl-6,6'-dibromoisoindigo derivatives by continuous flow. Journal of Flow Chemistry, 2015, 5, 201-209.	1.2	5
7	Solutionâ€Processable Platinumâ€Acetylideâ€based Small Molecular Bulk Heterojunction Solar Cells. Chinese Journal of Chemistry, 2015, 33, 917-924.	2.6	5
8	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	11.1	159
9	Continuous Flow Polymer Synthesis toward Reproducible Large cale Production for Efficient Bulk Heterojunction Organic Solar Cells. ChemSusChem, 2015, 8, 3228-3233.	3.6	48
10	Enhanced Performance of Organic Solar Cells with Increased End Group Dipole Moment in Indacenodithieno[3,2â€b]thiopheneâ€Based Molecules. Advanced Functional Materials, 2015, 25, 4889-4897.	7.8	61
11	Oligomeric Donor Material for Highâ€Efficiency Organic Solar Cells: Breaking Down a Polymer. Advanced Materials, 2015, 27, 4229-4233.	11.1	74
12	Highâ€Performance Organic Solar Cells Based on a Small Molecule with Alkylthioâ€Thienylâ€Conjugated Side Chains without Extra Treatments. Advanced Materials, 2015, 27, 7469-7475.	11.1	186
13	A low bandgap carbazole based small molecule for organic solar cells. Organic Electronics, 2015, 24, 89-95.	1.4	16
14	Squaraine dyes for organic photovoltaic cells. Journal of Materials Chemistry A, 2015, 3, 14517-14534.	5.2	201
15	A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 4698-4705.	2.7	180
16	Revealing the effect of donor/acceptor intermolecular arrangement on organic solar cells performance based on two-dimensional conjugated small molecule as electron donor. Organic Electronics, 2015, 24, 30-36.	1.4	16
17	Efficient Small-Molecule-Based Inverted Organic Solar Cells With Conjugated Polyelectrolyte as a Cathode Interlayer. IEEE Journal of Photovoltaics, 2015, 5, 1118-1124.	1.5	5
18	A conjugated low band gap diketopyrrolopyrrole and dibenzosilole-based polymer for organic solar cell. Synthetic Metals, 2015, 210, 201-207.	2.1	4
19	S,N-Heteropentacene based small molecules with A–D–A structure for solution processed organic bulk heterojunction solar cells. RSC Advances, 2015, 5, 102115-102125.	1.7	9
20	Improving Photovoltaic Performance of the Linear A-Ar-A-type Small Molecules with Diketopyrropyrrole Arms by Tuning the Linkage Position of the Anthracene Core. ACS Applied Materials & Interfaces, 2015, 7, 18292-18299.	4.0	25
21	Status and prospects for ternary organic photovoltaics. Nature Photonics, 2015, 9, 491-500.	15.6	527
22	Merocyanines for vacuum-deposited small-molecule organic solar cells. Organic Electronics, 2015, 26, 319-326.	1.4	15
23	Electronic properties and molecular distribution of a small molecule donor:acceptor mixture employing a processing additive. Synthetic Metals, 2015, 209, 200-205.	2.1	3

		REPORT	
#	Article	IF	CITATIONS
24	Efficient small molecular ternary solar cells by synergistically optimized photon harvesting and phase separation. Journal of Materials Chemistry A, 2015, 3, 16653-16662.	5.2	72
25	Efficient solution processed D1-A-D2-A-D1 small molecules bulk heterojunction solar cells based on alkoxy triphenylamine and benzo[1,2-b:4,5-b′]thiophene units. Organic Electronics, 2015, 26, 36-47.	1.4	17
26	Solvent vapor annealing on perylene-based organic solar cells. Journal of Materials Chemistry A, 2015, 3, 15700-15709.	5.2	29
27	A–Ĩ€â€"D–Ĩ€â€"A based porphyrin for solution processed small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 16287-16301.	5.2	47
28	Enhancing the photovoltaic performance of triphenylamine based star-shaped molecules by tuning the moiety sequence of their arms in organic solar cells. Journal of Materials Chemistry A, 2015, 3, 13568-13576.	5.2	35
29	D–π–A–π–D-type low band gap diketopyrrolopyrrole based small molecules containing an ethynyl-linkage: synthesis and photovoltaic properties. RSC Advances, 2015, 5, 31606-31614.	1.7	37
30	A high performance inverted organic solar cell with a low band gap small molecule (p-DTS(FBTTh ₂) ₂) using a fullerene derivative-doped zinc oxide nano-film modified with a fullerene-based self-assembled monolayer as the cathode. Journal of Materials Chemistry A, 2015, 3, 22599-22604.	5.2	23
31	Solution processed thick film organic solar cells. Polymer Chemistry, 2015, 6, 8081-8098.	1.9	86
32	Donor–acceptor–acceptor–donor small molecules for solution processed bulk heterojunction solar cells. Organic Electronics, 2015, 27, 72-83.	1.4	24
33	Marked Consequences of Systematic Oligothiophene Catenation in Thieno[3,4-c]pyrrole-4,6-dione and Bithiopheneimide Photovoltaic Copolymers. Journal of the American Chemical Society, 2015, 137, 12565-12579.	6.6	89
34	Large active layer thickness toleration of high-efficiency small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22274-22279.	5.2	19
35	Integrated molecular, morphological and interfacial engineering towards highly efficient and stable solution-processed small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22695-22707.	5.2	26
36	Influence of thermal and solvent annealing on the morphology and photovoltaic performance of solution processed, D–A–D type small molecule-based bulk heterojunction solar cells. RSC Advances, 2015, 5, 93579-93590.	1.7	13
37	New advances in non-fullerene acceptor based organic solar cells. RSC Advances, 2015, 5, 93002-93026.	1.7	157
38	Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content. ACS Applied Materials & Interfaces, 2015, 7, 24686-24693.	4.0	26
39	Direct C–H Bond Arylation of Thienyl Thioamides Catalyzed by Pd–Phenanthroline Complexes. Organic Letters, 2015, 17, 5392-5395.	2.4	37
40	The prediction of the morphology and PCE of small molecular organic solar cells. RSC Advances, 2015, 5, 70939-70948.	1.7	9
41	Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 19914-19922.	4.0	37

#	Article	IF	CITATIONS
42	Indoloquinoxaline as a terminal building block for the construction of π-conjugated small molecules relevant to organic electronics. Dyes and Pigments, 2015, 123, 139-146.	2.0	16
43	Branched and linear A2–D–A1–D–A2isoindigo-based solution-processable small molecules for organic field-effect transistors and solar cells. RSC Advances, 2015, 5, 85460-85469.	1.7	8
44	The role of photonics in energy. Journal of Photonics for Energy, 2015, 5, 050997.	0.8	18
45	Low-Bandgap Near-IR Conjugated Polymers/Molecules for Organic Electronics. Chemical Reviews, 2015, 115, 12633-12665.	23.0	1,029
46	A solution-processed high performance organic solar cell using a small molecule with the thieno[3,2-b]thiophene central unit. Chemical Communications, 2015, 51, 15268-15271.	2.2	48
47	Solvent Annealing Control of Bulk Heterojunction Organic Solar Cells with 6.6% Efficiency Based on a Benzodithiophene Donor Core and Dicyano Acceptor Units. Journal of Physical Chemistry C, 2015, 119, 20871-20879.	1.5	35
48	Dithienosilole-Based Small-Molecule Organic Solar Cells with an Efficiency over 8%: Investigation of the Relationship between the Molecular Structure and Photovoltaic Performance. Chemistry of Materials, 2015, 27, 6077-6084.	3.2	92
49	Solution-processed small molecules based on benzodithiophene and difluorobenzothiadiazole for inverted organic solar cells. Polymer Chemistry, 2015, 6, 7726-7736.	1.9	15
50	Investigating the crystalline nature, charge transport properties and photovoltaic performances of ladder-type donor based small molecules. RSC Advances, 2015, 5, 80677-80681.	1.7	5
51	Design, synthesis and electronic properties of push–pull–push type dye. RSC Advances, 2015, 5, 77460-77468.	1.7	15
52	Small molecular thienoquinoidal dyes as electron donors for solution processable organic photovoltaic cells. RSC Advances, 2015, 5, 76666-76669.	1.7	3
53	Bulk heterojunction organic solar cells based on carbazole–BODIPY conjugate small molecules as donors with high open circuit voltage. Physical Chemistry Chemical Physics, 2015, 17, 26580-26588.	1.3	53
54	One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules. ACS Applied Materials & Interfaces, 2015, 7, 27106-27114.	4.0	25
55	Small Molecules Based on Alkyl/Alkylthio-thieno[3,2- <i>b</i>]thiophene-Substituted Benzo[1,2- <i>b</i> :4,5-b′]dithiophene for Solution-Processed Solar Cells with High Performance. Chemistry of Materials, 2015, 27, 8414-8423.	3.2	71
56	Effect of the π-conjugation length on the properties and photovoltaic performance of A–π–D–π–A type oligothiophenes with a 4,8-bis(thienyl)benzo[1,2- <i>b</i> 4,5- <i>b</i> â€2]dithiophene core. Beilstein Journal of Organic Chemistry, 2016, 12, 1788-1797.	1.3	23
57	Star-shaped and linear π-conjugated oligomers consisting of a tetrathienoanthracene core and multiple diketopyrrolopyrrole arms for organic solar cells. Beilstein Journal of Organic Chemistry, 2016, 12, 1459-1466.	1.3	6
58	High performance p-type molecular electron donors for OPV applications via alkylthiophene catenation chromophore extension. Beilstein Journal of Organic Chemistry, 2016, 12, 2298-2314.	1.3	25
59	A High Efficiency Nonfullerene Organic Solar Cell with Optimized Crystalline Organizations. Advanced Materials, 2016, 28, 910-916.	11.1	179

#	Article	IF	CITATIONS
60	The Importance of End Groups for Solutionâ€Processed Smallâ€Molecule Bulkâ€Heterojunction Photovoltaic Cells. ChemSusChem, 2016, 9, 973-980.	3.6	8
61	Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers. Chinese Physics B, 2016, 25, 038402.	0.7	11
62	Fully Solutionâ€Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers. Advanced Functional Materials, 2016, 26, 4543-4550.	7.8	73
63	Evaluation of Small Molecules as Front Cell Donor Materials for Highâ€Efficiency Tandem Solar Cells. Advanced Materials, 2016, 28, 7008-7012.	11.1	43
64	Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Advanced Materials, 2016, 28, 8021-8028.	11.1	207
65	Understanding Open ircuit Voltage Loss through the Density of States in Organic Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2016, 6, 1501721.	10.2	80
66	Understanding Solvent Manipulation of Morphology in Bulkâ€Heterojunction Organic Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2620-2632.	1.7	24
67	Aâ€Ï€â€Dâ€Ï€â€A type Small Molecules Using Ethynylene Linkages for Organic Solar Cells with High Openâ€circu Voltages. Chinese Journal of Chemistry, 2016, 34, 353-358.	it2.6	8
68	Difluorobenzothiadiazoleâ€Based Smallâ€Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π onjugated Spacers and Solvent Vapor Annealing. Advanced Functional Materials, 2016, 26, 1803-1812.	7.8	100
69	Multiâ€Lengthâ€Scale Morphologies Driven by Mixed Additives in Porphyrinâ€Based Organic Photovoltaics. Advanced Materials, 2016, 28, 4727-4733.	11.1	251
70	Degradation of Sexithiophene Cascade Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1502432.	10.2	16
71	Electronic excitations in solution-processed oligothiophene small-molecules for organic solar cells. Journal of Chemical Physics, 2016, 144, 084310.	1.2	9
72	Thiophene dendrimer-based low donor content solar cells. Applied Physics Letters, 2016, 109, .	1.5	14
73	Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nature Communications, 2016, 7, 13740.	5.8	549
74	Terminal Modulation of Dâ~'π–A Small Molecule for Organic Photovoltaic Materials: A Theoretical Molecular Design. Journal of Physical Chemistry C, 2016, 120, 28939-28950.	1.5	41
75	Elucidating Batch-to-Batch Variation Caused by Homocoupled Side Products in Solution-Processable Organic Solar Cells. Chemistry of Materials, 2016, 28, 9088-9098.	3.2	25
76	Efficient light harvesting in inverted polymer solar cells using polymeric 2D-microstructures. Solar Energy Materials and Solar Cells, 2016, 151, 162-168.	3.0	21
77	Post-annealing to recover the reduced open-circuit voltage caused by solvent annealing in organic solar cells. Journal of Materials Chemistry A, 2016, 4, 6158-6166.	5.2	28

#	Article	IF	CITATIONS
78	Thiazole-based scaffolding for high performance solar cells. Journal of Materials Chemistry C, 2016, 4, 4296-4303.	2.7	45
79	Toward environmentally compatible molecular solar cells processed from halogen-free solvents. Journal of Materials Chemistry A, 2016, 4, 7341-7351.	5.2	23
80	Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. Journal of the American Chemical Society, 2016, 138, 7687-7697.	6.6	209
81	A "roller-wheel―Pt-containing small molecule that outperforms its polymer analogs in organic solar cells. Chemical Science, 2016, 7, 5798-5804.	3.7	20
82	Efficient organic ternary solar cells with the third component as energy acceptor. Nano Energy, 2016, 26, 180-191.	8.2	88
83	Synthesis of multi-armed small molecules with planar terminals and their application in organic solar cells. Dyes and Pigments, 2016, 133, 1-8.	2.0	9
84	Design, synthesis and photophysical properties of D1-A-D2-A-D1-type small molecules based on fluorobenzotriazole acceptor and dithienosilole core donor for solution processed organic solar cells. Dyes and Pigments, 2016, 132, 387-397.	2.0	7
85	Two different donor subunits substituted unsymmetrical squaraines for solution-processed small molecule organic solar cells. Organic Electronics, 2016, 32, 179-186.	1.4	13
86	Effects of electron-withdrawing group and electron-donating core combinations on physical properties and photovoltaic performance in D-Ï€-A star-shaped small molecules. Organic Electronics, 2016, 32, 157-168.	1.4	39
87	A D–ï€â€"A1–ï€â€"A2 push–pull small molecule donor for solution processed bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 13918-13926.	1.3	12
88	Edge-to-face stacking non-fullerene small molecule acceptor for bulk heterojunction solar cells. Dyes and Pigments, 2016, 132, 41-47.	2.0	15
89	Revealing the influence of the solvent evaporation rate and thermal annealing on the molecular packing and charge transport of DPP(TBFu) ₂ . Journal of Materials Chemistry C, 2016, 4, 4654-4661.	2.7	31
90	Influence of a π-bridge dependent molecular configuration on the optical and electrical characteristics of organic solar cells. Journal of Materials Chemistry A, 2016, 4, 8784-8792.	5.2	18
91	Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2,2′-Bithiophene Central Cores. ACS Applied Materials & Interfaces, 2016, 8, 11639-11648.	4.0	46
92	Effects of the charge-transfer reorganization energy on the open-circuit voltage in small-molecular bilayer organic photovoltaic devices: comparison of the influence of deposition rates of the donor. Physical Chemistry Chemical Physics, 2016, 18, 12651-12661.	1.3	5
93	Metallophthalocyanine derivatives utilized as cathode interlayers for polymer solar cells: a practical approach to prepare a uniform film. RSC Advances, 2016, 6, 40442-40449.	1.7	5
94	Small molecules based on tetrazine unit for efficient performance solution-processed organic solar cells. Solar Energy Materials and Solar Cells, 2016, 155, 30-37.	3.0	18
95	Perylenediimides as non-fullerene acceptors in bulk-heterojunction solar cells (BHJSCs). Journal of Materials Chemistry A, 2016, 4, 9336-9346.	5.2	172

#	Article	IF	CITATIONS
96	A-D-A type conjugated oligomers based on benzothiadiazole and their photovoltaic applications. Synthetic Metals, 2016, 221, 127-133.	2.1	7
97	Diketopyrrolopyrrole-based conjugated small molecules bearing two different acceptor moieties for organic solar cells. Synthetic Metals, 2016, 221, 39-47.	2.1	5
98	Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Advanced Materials, 2016, 28, 10008-10015.	11.1	254
99	Novel D(A-Ar) 2 type small molecules with oligothiophene, diketopyrrolopyrrole and benzo[4,5]thieno [2,3- b]indole units: investigation on relationship between structure and property for organic solar cells. Tetrahedron, 2016, 72, 7430-7437.	1.0	6
100	Theoretical investigations of the small molecular acceptor materials based on oligothiophene – naphthalene diimide in organic solar cells. RSC Advances, 2016, 6, 102159-102171.	1.7	9
101	Synergistic effects of solvent and polymer additives on solar cell performance and stability of small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 18383-18391.	5.2	17
102	High performance A–D–A oligothiophene-based organic solar cells employing two-step annealing and solution-processable copper thiocyanate (CuSCN) as an interfacial hole transporting layer. Journal of Materials Chemistry A, 2016, 4, 17344-17353.	5.2	21
103	Thermally Stable Dibenzo[def,mno]chryseneâ€Based Polymer Solar Cells: Effect of Thermal Annealing on the Morphology and Photovoltaic Performances. Macromolecular Chemistry and Physics, 2016, 217, 2116-2124.	1.1	5
104	Properties of inverted polymer solar cells based on novel small molecular electrolytes as the cathode buffer layer. Organic Electronics, 2016, 39, 163-167.	1.4	15
105	Organic Optoelectronic Materials: Mechanisms and Applications. Chemical Reviews, 2016, 116, 13279-13412.	23.0	1,205
105 106	Organic Optoelectronic Materials: Mechanisms and Applications. Chemical Reviews, 2016, 116, 13279-13412. PTFE/MoO ₃ Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC ₇₁ BM Blend Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2016, 4, 6473-6479.	23.0 3.2	1,205 14
	13279-13412. PTFE/MoO ₃ Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC ₇₁ BM Blend Organic Solar Cells. ACS Sustainable Chemistry and Engineering,		
106	 13279-13412. PTFE/MoO₃ Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC₇₁BM Blend Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2016, 4, 6473-6479. Fullerene-linked tetrabenzoporphyrins for solution-processed organic photovoltaics: flexible vs. 	3.2	14
106 107	 13279-13412. PTFE/MoO₃ Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC₇₁BM Blend Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2016, 4, 6473-6479. Fullerene-linked tetrabenzoporphyrins for solution-processed organic photovoltaics: flexible vs. rigid linkers. Journal of Materials Chemistry A, 2016, 4, 15333-15342. An Azuleneâ€Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Openâ€Circuit 	3.2 5.2	14 15
106 107 108	 13279-13412. PTFE/MoO₃ Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC₇₁BM Blend Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2016, 4, 6473-6479. Fullerene-linked tetrabenzoporphyrins for solution-processed organic photovoltaics: flexible vs. rigid linkers. Journal of Materials Chemistry A, 2016, 4, 15333-15342. An Azuleneâ€Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Openâ€Circuit Voltage. Chemistry - A European Journal, 2016, 22, 14527-14530. All-thiophene-substituted N-heteroacene electron-donor materials for efficient organic solar cells. 	3.2 5.2 1.7	14 15 32
106 107 108 109	 13279-13412. PTFE/MoO₃ Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC₇₁BM Blend Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2016, 4, 6473-6479. Fullerene-linked tetrabenzoporphyrins for solution-processed organic photovoltaics: flexible vs. rigid linkers. Journal of Materials Chemistry A, 2016, 4, 15333-15342. An Azuleneâ€Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Openâ€Circuit Voltage. Chemistry - A European Journal, 2016, 22, 14527-14530. All-thiophene-substituted N-heteroacene electron-donor materials for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 13519-13524. Crystallization and Optical Compensation by Fluorinated Rod Liquid Crystals for Ternary Organic 	3.2 5.2 1.7 5.2	14 15 32 7
106 107 108 109 110	 13279-13412. PTFE/MoO < sub> 3 < /sub> Anode Bilayer Buffer Layers for Improved Performance in PCDTBT:PC < sub> 71 < /sub> BM Blend Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2016, 4, 6473-6479. Fullerene-linked tetrabenzoporphyrins for solution-processed organic photovoltaics: flexible vs. rigid linkers. Journal of Materials Chemistry A, 2016, 4, 15333-15342. An Azuleneâ€Containing Low Bandgap Small Molecule for Organic Photovoltaics with High Openâ€Circuit Voltage. Chemistry - A European Journal, 2016, 22, 14527-14530. All-thiophene-substituted N-heteroacene electron-donor materials for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 13519-13524. Crystallization and Optical Compensation by Fluorinated Rod Liquid Crystals for Ternary Organic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 18462-18472. Enhanced thermal stability of organic photovoltaics via incorporating triphenylamine derivatives as 	3.2 5.2 1.7 5.2 1.5	14 15 32 7 10

	CITATION RE	PORT	
#	Article	IF	Citations
114	New Insights into the Correlation between Morphology, Excited State Dynamics, and Device Performance of Small Molecule Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600961.	10.2	34
115	The effects of donor : acceptor intermolecular mixing and acceptor crystallization on the composition ratio of blended, spin coated organic thin films. Journal of Materials Chemistry C, 2016, 4, 7756-7765.	2.7	8
116	Synthesis of Thieno[3,4- <i>b</i>]thiophene-Based Donor Molecules with Phenyl Ester Pendants for Organic Solar Cells: Control of Photovoltaic Properties via Single Substituent Replacement. ChemistrySelect, 2016, 1, 703-709.	0.7	9
117	An Organic Dyad Composed of Diathiafulvaleneâ€Functionalized Diketopyrrolopyrrole–Fullerene for Singleâ€Component Highâ€Efficiency Organic Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 12334-12337.	7.2	56
118	Oligothiophene-based small molecules with 3,3′-difluoro-2,2′-bithiophene central unit for solution-processed organic solar cells. Organic Electronics, 2016, 38, 172-179.	1.4	8
119	From Isoindigo to Dibenzonaphthyridinedione: A Building Block for Wide-Bandgap Conjugated Polymers with High Power Conversion Efficiency. Chemistry of Materials, 2016, 28, 6196-6206.	3.2	18
120	High efficiency and stability small molecule solar cells developed by bulk microstructure fine-tuning. Nano Energy, 2016, 28, 241-249.	8.2	57
121	An Organic Dyad Composed of Diathiafulvaleneâ€Functionalized Diketopyrrolopyrrole–Fullerene for Singleâ€Component Highâ€Efficiency Organic Solar Cells. Angewandte Chemie, 2016, 128, 12522-12525.	1.6	9
122	Controlling Open-Circuit Voltage in Organic Solar Cells by Terminal Fluoro-Functionalization of Narrow-Bandgap π-Conjugated Molecules. Journal of Physical Chemistry C, 2016, 120, 21235-21241.	1.5	16
123	Benzothiadiazole building units in solution-processable small molecules for organic photovoltaics. Journal of Materials Chemistry A, 2016, 4, 15771-15787.	5.2	76
124	Donor and Acceptor Unit Sequences Influence Material Performance in Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> â€2]dithiophene–6,7â€Đifluoroquinoxaline Small Molecule Donors for BHJ Solar Cells. Advanced Functional Materials, 2016, 26, 7103-7114.	7.8	26
125	Solution-processed small molecules with ethynylene bridges for highly efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 14720-14728.	5.2	14
126	Nonfullerene Small Molecular Acceptors with a Three-Dimensional (3D) Structure for Organic Solar Cells. Chemistry of Materials, 2016, 28, 6770-6778.	3.2	57
127	Two Tâ€Shaped Donor–Acceptor Small Molecules Based on 4,9â€Di(thiophenâ€2â€yl)naphtho[2,3â€ <i>b</i>]thiophene for Solutionâ€Processed Organic Solar Cells. European Journal of Organic Chemistry, 2016, 2016, 5127-5135.	1.2	2
128	High performance all-small-molecule solar cells: engineering the nanomorphology via processing additives. Journal of Materials Chemistry A, 2016, 4, 14234-14240.	5.2	43
129	Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells. Journal of Materials Chemistry A, 2016, 4, 15688-15697.	5.2	16
130	Film morphology evolution during solvent vapor annealing of highly efficient small molecule donor/acceptor blends. Journal of Materials Chemistry A, 2016, 4, 15511-15521.	5.2	35
131	Following the TRMC Trail: Optimization of Photovoltaic Efficiency and Structure–Property Correlation of Thiophene Oligomers. ACS Applied Materials & Interfaces, 2016, 8, 25396-25404.	4.0	8

#	Article	IF	CITATIONS
132	Spirobifluorene-cored small molecules containing four diketopyrrolopyrrole arms for solution-processed organic solar cells. Journal of Materials Science, 2016, 51, 8018-8026.	1.7	10
133	Small molecule based N-phenyl carbazole substituted diketopyrrolopyrroles as donors for solution-processed bulk heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 22999-23005.	1.3	20
134	Enhancement of charge transport properties of small molecule semiconductors by controlling fluorine substitution and effects on photovoltaic properties of organic solar cells and perovskite solar cells. Chemical Science, 2016, 7, 6649-6661.	3.7	52
135	Facile preparation of small molecules for bulk heterojunction solar cells. RSC Advances, 2016, 6, 59218-59225.	1.7	4
136	Narrow band gap isoindigo-based small molecules for solution-processed organic solar cells with high open-circuit voltage. Synthetic Metals, 2016, 220, 448-454.	2.1	6
137	New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30176-30183.	4.0	61
138	Suppressing Subnanosecond Bimolecular Charge Recombination in a High-Performance Organic Photovoltaic Material. Journal of Physical Chemistry C, 2016, 120, 24002-24010.	1.5	32
139	A Simple Approach to Fabricate an Efficient Inverted Polymer Solar Cell with a Novel Small Molecular Electrolyte as the Cathode Buffer Layer. ACS Applied Materials & Interfaces, 2016, 8, 32992-32997.	4.0	21
140	Temperature-dependent device performance of organic photovoltaic cells based on a squaraine dye. Synthetic Metals, 2016, 222, 293-298.	2.1	13
141	Systematic Investigation of Benzodithiophene-Benzothiadiazole Isomers for Organic Photovoltaics. ACS Applied Materials & Interfaces, 2016, 8, 33025-33033.	4.0	16
142	An effective π-extended squaraine for solution-processed organic solar cells with high efficiency. Journal of Materials Chemistry A, 2016, 4, 18931-18941.	5.2	30
143	High Performance Small-Molecule Cathode Interlayer Materials with D-A-D Conjugated Central Skeletons and Side Flexible Alcohol/Water-Soluble Groups for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 32823-32832.	4.0	35
144	Side-chain Engineering of Benzo[1,2-b:4,5-b']dithiophene Core-structured Small Molecules for High-Performance Organic Solar Cells. Scientific Reports, 2016, 6, 25355.	1.6	18
145	A bipolar diketopyrrolopyrrole molecule end capped with thiophene-2,3-dicarboxylate used as both electron donor and acceptor for organic solar cells. Synthetic Metals, 2016, 222, 211-218.	2.1	4
146	N-Phenylfluorubine: one functional dye – chromophor, fluorophor, electron-acceptor and more. New Journal of Chemistry, 2016, 40, 10100-10107.	1.4	8
147	Conjugated Oligothiophene Derivatives Based on Bithiophene with Unsaturated Bonds as Building Blocks for Solutionâ€Processed Bulk Heterojunction Organic Solar Cells. Chemistry - an Asian Journal, 2016, 11, 3557-3567.	1.7	8
148	Manipulating the photovoltaic properties of small-molecule donor materials by tailoring end-capped alkylthio substitution. RSC Advances, 2016, 6, 108908-108916.	1.7	7
149	An oligothiophene chromophore with a macrocyclic side chain: synthesis, morphology, charge transport, and photovoltaic performance. RSC Advances, 2016, 6, 102043-102056.	1.7	3

ATION REI

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
150	High-performance alloy model-based ternary small molecule solar cells. Nano Energy, 2016, 30, 276-282.	8.2	60
151	An electron-rich 2-alkylthieno[3,4-b]thiophene building block with excellent electronic and morphological tunability for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2016, 4, 17354-17362.	5.2	35
152	Synthesis and photophysical properties of semiconductor molecules D1-A-D2-A-D1-type structure based on derivatives of quinoxaline and dithienosilole for organics solar cells. Organic Electronics, 2016, 39, 361-370.	1.4	3
153	Regimes of Exciton Transport in Molecular Crystals in the Presence of Dynamic Disorder. Advanced Functional Materials, 2016, 26, 2316-2325.	7.8	65
154	Acceptor End apped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2016, 28, 5980-5985.	11.1	87
155	Solutionâ€Processed Organic Solar Cells with 9.8% Efficiency Based on a New Small Molecule Containing a 2D Fluorinated Benzodithiophene Central Unit. Advanced Electronic Materials, 2016, 2, 1600061.	2.6	58
156	Timeâ€Dependent Morphology Evolution of Solutionâ€Processed Small Molecule Solar Cells during Solvent Vapor Annealing. Advanced Energy Materials, 2016, 6, 1502579.	10.2	96
157	Highâ€Performance Small Molecule via Tailoring Intermolecular Interactions and its Application in Largeâ€Area Organic Photovoltaic Modules. Advanced Energy Materials, 2016, 6, 1600228.	10.2	69
158	Impact of Dimerization on Phase Separation and Crystallinity in Bulk Heterojunction Films Containing Non-Fullerene Acceptors. Macromolecules, 2016, 49, 4404-4415.	2.2	23
159	Dithienogermole-based solution-processed molecular solar cells with efficiency over 9%. Chemical Communications, 2016, 52, 8596-8599.	2.2	49
160	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. Journal of Materials Chemistry A, 2016, 4, 10409-10413.	5.2	104
161	Dialkoxyphenyldithiophene-based small molecules with enhanced absorption for solution processed organic solar cells. RSC Advances, 2016, 6, 60595-60601.	1.7	9
162	The influence of alkyl side chains on molecular packing and solar cell performance of dithienopyrrole-based oligothiophenes. Journal of Materials Chemistry A, 2016, 4, 10514-10523.	5.2	21
163	Solvent Annealing Effects in Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole–5,6-Difluorobenzo[<i>c</i>][1,2,5]thiadiazole Small Molecu Donors for Bulk-Heterojunction Solar Cells. Chemistry of Materials, 2016, 28, 5415-5425.	ıle3.2	28
164	Employing inorganic/organic hybrid interface layer to improve electron transfer for inverted polymer solar cells. Electrochimica Acta, 2016, 210, 874-879.	2.6	4
165	Increasing H-aggregation of p-DTS(FBTTh2)2 to improve photovoltaic efficiency by solvent vapor annealing. Organic Electronics, 2016, 37, 6-13.	1.4	21
166	Impact of the alkyl side chain position on the photovoltaic properties of solution-processable organic molecule donor materials. Journal of Materials Chemistry A, 2016, 4, 11747-11753.	5.2	8
167	Multiscale description of molecular packing and electronic processes in small-molecule organic solar cells. Chinese Chemical Letters, 2016, 27, 1453-1463.	4.8	16

ARTICLE IF CITATIONS Improved photovoltaic performance of Dâ€"Aâ€"D-type small molecules with isoindigo and pyrene units 1.0 5 168 by inserting different l€-conjugated bridge. Tetrahedron, 2016, 72, 4543-4549. Ï€-Linkage effect of push-pull-structure organic small molecules for photovoltaic application. Science 169 3.5 China Materials, 2016, 59, 371-388. Synthesis of benzothiadiazole-based molecules via direct arylation: an eco-friendly way of obtaining 170 1.4 27 small semi-conducting organic molecules. New Journal of Chemistry, 2016, 40, 7326-7337. Synthesis and characterization of solution-processable diketopyrrolopyrrole (DPP) and tetrathienothiophene (TTA)-based small molecules for organic thin film transistors and organic photovoltaic cells. Dyes and Pigments, 2016, 133, 280-291. 171 2.0 Structureâ€"property relationships for bis-diketopyrrolopyrrole molecules in organic photovoltaics. 172 5.2 30 Journal of Materials Chemistry A, 2016, 4, 10532-10541. A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 10659-10665. 5.2 D–A–D–π–D–A–D type diketopyrrolopyrrole based small molecule electron donors for bulk 174 1.3 22 heterojunction organic solar cells. Physical Chemistry Chemical Physics, 2016, 18, 16950-16957. Easy Access to NO₂â€Containing Donorâ€"Acceptorâ€"Acceptor Electron Donors for High 3.6 Efficiency Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2016, 9, 1433-1441. Starburst Triphenylamineâ€Based Donor–Acceptorâ€Type Small Molecules for Solutionâ€Processed Organic 176 1.2 6 Solar Cells. Européan Journal of Organic Chemistry, 2016, 2016, 799-805. Effects of amorphous poly(3â€hexylthiophene) on activeâ€layer structure and solar cells performance. 2.4 Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 975-985. Influence of the positions of thiophenes and side chains on diketopyrrolopyrrole based narrow 178 2.0 5 band-gap small molecules for organic solar cells. Dyes and Pigments, 2016, 133, 100-108. Sideâ€Chain Engineering for Enhancing the Properties of Small Molecule Solar Cells: A Tradeâ€off Beyond 179 Efficiency. Advanced Energy Materials, 2016, 6, 1600515. Toward high performance indacenodithiophene-based small-molecule organic solar cells: investigation of the effect of fused aromatic bridges on the device performance. Journal of Materials 180 5.2 22 Chemistry A, 2016, 4, 2252-2262. Solution-processed bulk heterojunction solar cells based on porphyrin small molecules with very low energy losses comparable to perovskite solar cells and high quantum efficiencies. Journal of Materials Chemistry C, 2016, 4, 3843-3850. 2.7 Naphtho[1,2-<i>b</i>:5,6-<i>b</i>?]dithiophene-Based Small Molecules for Thick-Film Organic Solar 182 3.2 50 Cells with High Fill Factors. Chemistry of Materials, 2016, 28, 943-950. Benzo[1,2-<i>b</i>:4,5-<i>b</i>â€2]dithiopheneâ€"Pyrido[3,4-<i>b</i>]pyrazine Small-Molecule Donors for 3.2 Bulk Heterojunction Solar Cells. Chemistry of Materials, 2016, 28, 2058-2066. Hetero aromatic donors as effective terminal groups for DPP based organic solar cells. RSC Advances, 184 1.7 6 2016, 6, 9023-9036. Phthalimide end-capped thienoisoindigo and diketopyrrolopyrrole as non-fullerene molecular 5.2 69 acceptors for organic solar cells. Journal of Materials Chemistry A, 2016, 4, 250-256.

#	Article	IF	CITATIONS
186	Understanding the effect of solvent vapor annealing on solution-processed A–D–A oligothiophene bulk-heterojunction solar cells: the role of alkyl side chains. Journal of Materials Chemistry A, 2016, 4, 2571-2580.	5.2	45
187	Benzodi(pyridothiophene): a novel acceptor unit for application in A ₁ –A–A ₁ type photovoltaic small molecules. Physical Chemistry Chemical Physics, 2016, 18, 1507-1515.	1.3	11
188	A direct arylation approach towards efficient small molecule organic solar cells. Journal of Materials Chemistry A, 2016, 4, 791-795.	5.2	22
189	Photon-absorbing charge-bridging states in organic bulk heterojunctions consisting of diketopyrrolopyrrole derivatives and PCBM. Physical Chemistry Chemical Physics, 2016, 18, 9514-9523.	1.3	8
190	Oligothiophene based small molecules with a new end group for solution processed organic photovoltaics. Organic Electronics, 2016, 33, 71-77.	1.4	5
191	Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chemical Science, 2016, 7, 4301-4307.	3.7	72
192	Solution processed bulk heterojunction solar cells based on A–D–A small molecules with a dihydroindoloindole (DINI) central donor and different acceptor end groups. Journal of Materials Chemistry C, 2016, 4, 3508-3516.	2.7	17
193	Impact of structure and homo-coupling of the central donor unit of small molecule organic semiconductors on solar cell performance. RSC Advances, 2016, 6, 32298-32307.	1.7	18
194	Diketopyrrolopyrrole based A2-D-A1-D-A2 type small molecules for organic solar cells: Effects of substitution of benzene with thiophene. Dyes and Pigments, 2016, 130, 282-290.	2.0	21
195	Dicyanoquinodimethane-substituted benzothiadiazole for efficient small-molecule solar cells. Physical Chemistry Chemical Physics, 2016, 18, 7235-7241.	1.3	22
196	Oligothiophene-linked D–ï€â€"A type phenothiazine dyes for dye-sensitized solar cells. Journal of Power Sources, 2016, 307, 866-874.	4.0	54
197	The end-capped group effect on dithienosilole trimer based small molecules for efficient organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 1972-1978.	2.7	17
198	Ï€-Bridge-Independent 2-(Benzo[<i>c</i>][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Bulk Heterojunction Solar Cells. Chemistry of Materials, 2016, 28, 2200-2208.	3.2	98
199	Fabrication of carbon nanotube hybrid films as transparent electrodes for small-molecule photovoltaic cells. RSC Advances, 2016, 6, 25062-25069.	1.7	10
200	Employing Easily Prepared Carbon Nanoparticles To Improve Performance of Inverted Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2016, 4, 2359-2365.	3.2	16
201	Solid-state Effects in the Cyclovoltammetric HOMO-LUMO Determination: The case of Dinitrophenyl-hydrazone α,Ͽ-substituted Oligothiophenes. Electrochimica Acta, 2016, 193, 261-267.	2.6	9
202	Structure–properties relationship in diketopyrrolopyrrole based small molecules using functional terminal side chains via direct arylation: a joint experimental and theoretical study. New Journal of Chemistry, 2016, 40, 3803-3811.	1.4	8
203	Photovoltaic poly(rod-coil) polymers based on benzodithiophene-centred A–D–A type conjugated segments and dicarboxylate-linked alkyl non-conjugated segments. RSC Advances, 2016, 6, 23300-23309.	1.7	9

#	Article	IF	CITATIONS
204	Incorporation of spirobifluorene regioisomers in electron-donating molecular systems for organic solar cells. RSC Advances, 2016, 6, 25952-25959.	1.7	17
205	A complementary absorption small molecule for efficient ternary organic solar cells. Journal of Materials Chemistry A, 2016, 4, 5288-5293.	5.2	56
206	Efficient polymer tandem modules and solar cells by doctor blading. Journal of Materials Chemistry A, 2016, 4, 4771-4775.	5.2	9
207	The effect of acceptor end groups on the physical and photovoltaic properties of A–π–D–π–A type oligomers with same S, N-heteropentacene central electron donor unit for solution processed organic solar cells. Dyes and Pigments, 2016, 129, 209-219.	2.0	23
208	Achieving a high fill factor for organic solar cells. Journal of Materials Chemistry A, 2016, 4, 5784-5801.	5.2	204
209	Low band gap diketopyrrolopyrrole-based small molecule bulk heterojunction solar cells: influence of terminal side chain on morphology and photovoltaic performance. RSC Advances, 2016, 6, 28658-28665.	1.7	10
210	Diketopyrrolopyrrole based small molecules with near infrared absorption for solution processed organic solar cells. Dyes and Pigments, 2016, 126, 173-178.	2.0	18
211	Decreasing Charge Losses in Perovskite Solar Cells Through mp-TiO ₂ /MAPI Interface Engineering. Chemistry of Materials, 2016, 28, 207-213.	3.2	77
212	Development of strongly absorbing S,N-heterohexacene-based donor materials for efficient vacuum-processed organic solar cells. Journal of Materials Chemistry C, 2016, 4, 3715-3725.	2.7	26
213	D-A-D-A-D push pull organic small molecules based on 5,10-dihydroindolo[3,2-b]indole (DINI) central core donor for solution processed bulk heterojunction solar cells. Organic Electronics, 2016, 30, 122-130.	1.4	28
214	A conformational locking strategy in linked-acceptor type polymers for organic solar cells. Polymer Chemistry, 2016, 7, 1323-1329.	1.9	37
215	Surface treatment by binary solvents induces the crystallization of a small molecular donor for enhanced photovoltaic performance. Physical Chemistry Chemical Physics, 2016, 18, 735-742.	1.3	13
216	Unsymmetrical squaraines with new linkage manner for high-performance solution-processed small-molecule organic photovoltaic cells. RSC Advances, 2016, 6, 1877-1884.	1.7	12
217	Alkylthio substituted thiophene modified benzodithiophene-based highly efficient photovoltaic small molecules. Organic Electronics, 2016, 28, 263-268.	1.4	12
218	Relation between morphology and performance parameters of poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester photovoltaic devices. Organic Electronics, 2016, 28, 189-196.	1.4	7
219	Structure property relationship for carbazole and benzothiadiazole based conjugated polymers. Solar Energy Materials and Solar Cells, 2016, 145, 412-417.	3.0	17
220	Low-Bandgap Small-Molecule Donor Material Containing Thieno[3,4- <i>b</i>]thiophene Moiety for High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3661-3668.	4.0	22
221	Synthesis and photovoltaic performance of DPP-based small molecules with tunable energy levels by altering the molecular terminals. Dyes and Pigments, 2016, 125, 151-158.	2.0	20

#	Article	IF	CITATIONS
222	Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. Chemical Communications, 2016, 52, 465-468.	2.2	79
223	Versatile ternary organic solar cells: a critical review. Energy and Environmental Science, 2016, 9, 281-322.	15.6	585
224	NIR absorbing D–π–A–π–D structured diketopyrrolopyrrole–dithiafulvalene based small molecule for solution processed organic solar cells. Chemical Communications, 2016, 52, 210-213.	2.2	38
225	Applying the heteroatom effect of chalcogen for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 3425-3433.	5.2	14
226	Development of quinoxaline based polymers for photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 1858-1879.	2.7	103
227	Small is Powerful: Recent Progress in Solutionâ€Processed Small Molecule Solar Cells. Advanced Energy Materials, 2017, 7, 1602242.	10.2	371
228	The A-D-A type small molecules with isomeric benzodithiophene cores: Synthesis and influence of isomers on photoelectronic properties. Tetrahedron, 2017, 73, 550-557.	1.0	8
229	Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). Journal of Materials Chemistry C, 2017, 5, 1275-1302.	2.7	375
230	Nematic liquid crystal materials as a morphology regulator for ternary small molecule solar cells with power conversion efficiency exceeding 10%. Journal of Materials Chemistry A, 2017, 5, 3589-3598.	5.2	173
231	Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics. Journal of Molecular Modeling, 2017, 23, 28.	0.8	16
232	Designing Small Molecule Organic Solar Cells with High Openâ€Circuit Voltage. ChemistrySelect, 2017, 2, 1253-1261.	0.7	12
233	Development of Spiro[cyclopenta[1,2- <i>b</i> :5,4- <i>b</i> â€2]dithiophene-4,9â€2-fluorene]-Based A-ï€-D-ï€-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 4614-4625.	4.0	49
234	New Wide Band Gap Donor for Efficient Fullerene-Free All-Small-Molecule Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 1958-1966.	6.6	260
235	Donor End-Capped Hexafluorinated Oligomers for Organic Solar Cells with 9.3% Efficiency by Engineering the Position of I€-Bridge and Sequence of Two-Step Annealing. Chemistry of Materials, 2017, 29, 1036-1046.	3.2	39
236	Study of ITO-free roll-to-roll compatible polymer solar cells using the one-step doctor blading technique. Journal of Materials Chemistry A, 2017, 5, 4093-4102.	5.2	36
237	A Theoretical Perspective on the Photovoltaic Performance of S,N-Heteroacenes: An Even–Odd Effect on the Charge Separation Dynamics. Journal of Physical Chemistry C, 2017, 121, 2574-2587.	1.5	56
238	High-Performance Ternary Organic Solar Cell Enabled by a Thick Active Layer Containing a Liquid Crystalline Small Molecule Donor. Journal of the American Chemical Society, 2017, 139, 2387-2395.	6.6	404
239	1,3-Bis(thieno[3,4- <i>b</i>]thiophen-6-yl)-4 <i>H</i> -thieno[3,4- <i>c</i>]pyrrole-4,6(5 <i>H</i>)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6213-6219.	4.0	20

#	Article	IF	CITATIONS
240	Tuning photovoltaic performance of DOBT-based dyes via molecular design with ethynyl-linker and terminal electron-donating segment. Dyes and Pigments, 2017, 140, 203-211.	2.0	24
241	Ferrocene-diketopyrrolopyrrole based small molecule donors for bulk heterojunction solar cells. Physical Chemistry Chemical Physics, 2017, 19, 7262-7269.	1.3	16
242	Triphenylamine-Based Push–Pull Molecule for Photovoltaic Applications: From Synthesis to Ultrafast Device Photophysics. Journal of Physical Chemistry C, 2017, 121, 6424-6435.	1.5	17
243	The Effect of H―and Jâ€Aggregation on the Photophysical and Photovoltaic Properties of Small Thiophene–Pyridine–DPP Molecules for Bulkâ€Heterojunction Solar Cells. Advanced Functional Materials, 2017, 27, 1605779.	7.8	234
244	Atomistic modelling – impact and opportunities in thin-film photovoltaic solar cell technologies. Molecular Simulation, 2017, 43, 774-796.	0.9	4
245	Tetrathienoanthracene-based π-Extended Narrow-band-gap Molecules: Synthesis, Physicochemical, and Photovoltaic Properties. Chemistry Letters, 2017, 46, 29-31.	0.7	2
246	A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells. Science China Chemistry, 2017, 60, 552-560.	4.2	16
247	Rhodanine-based dyes absorbing in the entire visible spectrum. Organic Chemistry Frontiers, 2017, 4, 1024-1028.	2.3	4
248	Vinazene end-capped acceptor-donor-acceptor type small molecule for solution-processed organic solar cells. Organic Electronics, 2017, 44, 11-19.	1.4	5
249	New donor polymer with tetrafluorinated blocks for enhanced performance in perylenediimide-based solar cells. Journal of Materials Chemistry A, 2017, 5, 5351-5361.	5.2	26
250	Effect of Heterocyclic Anchoring Sequence on the Properties of Dithienogermole-Based Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 7091-7099.	4.0	16
251	The influence of the central acceptor unit on the optoelectronic properties and photovoltaic performance of A–D–A–D–A-type co-oligomers. Organic Chemistry Frontiers, 2017, 4, 755-766.	2.3	8
252	Ultrafast Excitonâ€ŧoâ€₽olaron Conversion in Densely Packed Small Organic Semiconducting Molecules. Advanced Optical Materials, 2017, 5, 1700024.	3.6	16
253	A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells. Science China Chemistry, 2017, 60, 561-569.	4.2	15
254	Cyclopentadithiophene-based co-oligomers for solution-processed organic solar cells. Dyes and Pigments, 2017, 143, 112-122.	2.0	6
255	Conjugated D–A porphyrin dimers for solution-processed bulk-heterojunction organic solar cells. Chemical Communications, 2017, 53, 5113-5116.	2.2	32
256	Importance of side-chain anchoring atoms on electron donor/fullerene interfaces for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9316-9321.	5.2	34
257	New cyclopentadithiophene (CDT) linked porphyrin donors with different end-capping acceptors for efficient small molecule organic solar cells. Journal of Materials Chemistry C, 2017, 5, 4742-4751.	2.7	19

#	Article	IF	CITATIONS
258	The influence of intramolecular noncovalent interactions in unsymmetrical squaraines on material properties, film morphologyÂand photovoltaic performance. Dyes and Pigments, 2017, 145, 222-232.	2.0	19
259	Systematic evaluation of structure–property relationships in heteroacene – diketopyrrolopyrrole molecular donors for organic solar cells. Journal of Materials Chemistry A, 2017, 5, 9217-9232.	5.2	31
260	Terminal π–π stacking determines three-dimensional molecular packing and isotropic charge transport in an A–π–A electron acceptor for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2017, 5, 4852-4857.	2.7	192
261	Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel Figure of Merit. Advanced Energy Materials, 2017, 7, 1700465.	10.2	114
262	An Open ircuit Voltage and Power Conversion Efficiency Study of Fullerene Ternary Organic Solar Cells Based on Oligomer/Oligomer and Oligomer/Polymer. Macromolecular Rapid Communications, 2017, 38, 1700090.	2.0	7
263	Design of diblock co-oligomers as low bandgap small molecules for organic solar cells. Molecular Simulation, 2017, 43, 1496-1501.	0.9	3
264	Synthesis of Bioinspired Curcuminoid Small Molecules for Solution-Processed Organic Solar Cells with High Open-Circuit Voltage. ACS Energy Letters, 2017, 2, 1303-1307.	8.8	34
265	The influence of branched alkyl side chains in A–D–A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells. Organic Chemistry Frontiers, 2017, 4, 1561-1573.	2.3	24
266	Efficient small molecule photovoltaic donor based on 2,3-diphenyl-substituted quinoxaline core for solution-processed organic solar cells. RSC Advances, 2017, 7, 23779-23786.	1.7	9
267	Carbazole-based small molecules for vacuum-deposited organic photovoltaic devices with open-circuit voltage exceeding 1ÂV. Organic Electronics, 2017, 47, 162-173.	1.4	13
268	Triperylene Hexaimides Based Allâ€Smallâ€Molecule Solar Cells with an Efficiency over 6% and Open Circuit Voltage of 1.04 V. Advanced Energy Materials, 2017, 7, 1601664.	10.2	57
269	Optimized Phase Separation and Reduced Geminate Recombination in High Fill Factor Small-Molecule Organic Solar Cells. ACS Energy Letters, 2017, 2, 14-21.	8.8	41
270	Time evolution studies of dithieno[3,2-b:2′,3′-d]pyrrole-based A–D–A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation. Journal of Materials Chemistry A, 2017, 5, 1005-1013.	5.2	19
271	Comparative study on the photovoltaic characteristics of A–D–A and D–A–D molecules based on Zn-porphyrin; a D–A–D molecule with over 8.0% efficiency. Journal of Materials Chemistry A, 2017, 5, 1057-1065.	5.2	49
272	Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nature Photonics, 2017, 11, 85-90.	15.6	510
273	Poly(3,4â€Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties. Advanced Energy Materials, 2017, 7, 1601499.	10.2	50
274	An acrylated fullerene derivative for efficient and thermally stable polymer solar cells. Tetrahedron Letters, 2017, 58, 2695-2699.	0.7	4
275	Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer. Frontiers of Materials Science, 2017, 11, 233-240.	1.1	6

ARTICLE IF CITATIONS Smallâ€Molecule Solar Cells with Simultaneously Enhanced Shortâ€Circuit Current and Fill Factor to 276 11.1 87 Achieve 11% Efficiency. Advanced Materials, 2017, 29, 1700616. Strain-released method to enhance the photovoltaic performance in solution-processed organic solar cells. Dyes and Pigments, 2017, 145, 263-269. Photo-induced characteristic study of the smallest fullerene fragment, 278 1.4 8 1,6,7,10-tetramethylfluoranthene as an acceptor. New Journal of Chemistry, 2017, 41, 5836-5845. Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 19998-20009. 279 4.0 Understanding the Limiting Factors of Solventâ€Annealed Smallâ€Molecule Bulkâ€Heterojunction Organic 280 3.6 8 Solar Cells from a Chemical Perspective. ChemSusChem, 2017, 10, 3118-3134. Side-chain engineering in a thermal precursor approach for efficient photocurrent generation. Journal of Materials Chemistry A, 2017, 5, 14003-14011. 5.2 Small molecular PDI-functionalized 9,9â€2-bifluorenylidene acceptors for bulk heterojunction organic 282 1.4 13 solar cells. New Journal of Chemistry, 2017, 41, 6822-6827. Cooperative plasmon enhanced organic solar cells with thermal coevaporated Au and Ag 1.4 20 nanoparticles. Organic Electronics, 2017, 48, 336-341. Unprecedented low energy losses in organic solar cells with high external quantum efficiencies by 284 5.2 38 employing non-fullerene electron acceptors. Journal of Materials Chemistry A, 2017, 5, 14887-14897. Benzodichalcogenophene-diketopyrrolopyrrole small molecules as donors for efficient solution processable solar cells. Chemical Physics, 2017, 493, 77-84. Effect of Annealing on Exciton Diffusion in a High Performance Small Molecule Organic Photovoltaic 286 4.036 Material. ACS Applied Materials & amp; Interfaces, 2017, 9, 14945-14952. Odd–Even Effect of Thiophene Chain Lengths on Excited State Properties in Oligo(thienyl) Tj ETQq1 1 0.784314 қgBT /Oveқlock 10 Indenothiophene-based asymmetric small molecules for organic solar cells. RSC Advances, 2017, 7, 288 1.7 7 18144-18150. Light-induced generation of free radicals by fullerene derivatives: an important degradation pathway 289 5.2 46 in organic photovoltaics?. Journal of Materials Chemistry A, 2017, 5, 8044-8050. An H-shaped, small molecular non-fullerene acceptor for efficient organic solar cells with an 290 3.2 30 impressive open-circuit voltage of 1.17 V. Materials Chemistry Frontiers, 2017, 1, 1600-1606. A new polymer acceptor containing naphthalene diimide and 1,3,4â€thiadiazole for allâ€polymer solar 2.4 cells. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 990-996. Small Molecules with Asymmetric 4-Alkyl-8-alkoxybenzo[1,2-<i>b</i>i>i+3,5-<i>b</i>â€2] dithiophene as the Central Unit for High-Performance Solar Cells with High Fill Factors. Chemistry of Materials, 2017, 29, 292 3.228 3694-3703. Synergistic effect of processing additives and thermal annealing in organic solar cells: the 293 1.3 "Morphology of Magic― Physical Chemistry Chemical Physics, 2017, 19, 10581-10589.

ARTICLE IF CITATIONS # Optimized synthesis of π-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions. Organic and Biomolecular Chemistry, 2017, 15, 294 1.5 22 3310-3319. An easily prepared Ag 8 GeS 6 nanocrystal and its role on the performance enhancement of polymer solar cells. Organic Electronics, 2017, 45, 247-255. 1.4 Towards a bright future: polymer solar cells with power conversion efficiencies over 10%. Science 296 4.2 109 China Chemistry, 2017, 60, 571-582. Improving photovoltaic performance of the linear benzothienoindole-terminated molecules by tuning molecular framework and substituted position of terminals. Dyes and Pigments, 2017, 142, 406-415. Synthesis and Characterization of a Soluble A–D–A Molecule Containing a 2D Conjugated Selenopheneâ€Based Side Group for Organic Solar Cells. Macromolecular Rapid Communications, 2017, 298 2.0 8 38, 1700016. Design, synthesis, and structural characterization of the first dithienocyclopentacarbazole-based n-type organic semiconductor and its application in non-fullerene polymer solar cells. Journal of 5.2 Materials Chemistry A, 2017, 5, 7451-7461. Developing high-performance small molecule organic solar cells via a large planar structure and an 300 2.2 22 electron-withdrawing central unit. Chemical Communications, 2017, 53, 451-454. High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol. ACS Applied Materials & amp; 4.0 37 Interfaces, 2017, 9, 1446-1452. Cyclopentadithiophene organic core in small molecule organic solar cells: morphological control 302 1.3 8 of carrier recombination. Physical Chemistry Chemical Physics, 2017, 19, 3640-3648. Three dimensional multi-arm acceptors based on diketopyrrolopyrrole with (hetero)aromatic cores for non-fullerene organic solar cells without additional treatment. Dyes and Pigments, 2017, 139, 412-419. Influence of alkyl chains on photovoltaic properties of 3D rylene propeller electron acceptors. 304 5.2 51 Journal of Materials Chemistry A, 2017, 5, 3475-3482. A simple small molecule as the acceptor for fullerene-free organic solar cells. Science China 4.2 29 Chemistry, 2017, 60, 366-369. Triplet Excitons in Highly Efficient Solar Cells Based on the Soluble Small Molecule pâ€DTS(FBTTh 2) 2. 306 10.2 15 Advanced Energy Materials, 2017, 7, 1602016. Assessing the stability of high performance solution processed small molecule solar cells. Solar Energy Materials and Solar Cells, 2017, 161, 368-376. Improving photovoltaic properties of the linear A-Ar-A type small molecules with rhodanine by 308 2.0 6 extending arylene core. Dyes and Pigments, 2017, 139, 42-49. Molecular electron acceptors for efficient fullerene-free organic solar cells. Physical Chemistry 309 1.3 Chemical Physics, 2017, 19, 3440-3458. Organic and Hybrid Solar Cells Based on Well-Defined Organic Semiconductors and Morphologies. 311 0.4 1 Advances in Polymer Science, 2017, , 25-49. Searching proper oligothiophene segment as centre donor moiety for isoindigo-based small 1.4 molecular photovoltaic materials. Organic Electronics, 2017, 42, 93-101.

#	Article	IF	CITATIONS
313	A-D-A-type small molecular acceptor with one hexyl-substituted thiophene as π bridge for fullerene-free organic solar cells. Science China Materials, 2017, 60, 49-56.	3.5	10
314	Thiophene-Based Organic Semiconductors. Topics in Current Chemistry, 2017, 375, 84.	3.0	88
315	Novel thienoisoindigo-based dyes for near-infrared organic photovoltaics - A combination of theoretical and experimental study. Organic Electronics, 2017, 51, 410-421.	1.4	5
316	A–Ĩ€â€"D–Ĩ€â€"A Electronâ€Đonating Small Molecules for Solutionâ€Processed Organic Solar Cells: A Reviev Macromolecular Rapid Communications, 2017, 38, 1700470.	^{v.} 2.0	70
317	Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells. Solar Rrl, 2017, 1, 1700127.	3.1	62
318	Improved Domain Size and Purity Enables Efficient All‣mallâ€Molecule Ternary Solar Cells. Advanced Materials, 2017, 29, 1703777.	11.1	94
319	Junction diodes in organic solar cells. Nano Energy, 2017, 41, 717-730.	8.2	20
320	Dissymmetrization of Benzothiadiazole by Direct C–H Arylation: A Way to Symmetrical and Unsymmetrical Elongated Ï€â€Conjugated Molecules. European Journal of Organic Chemistry, 2017, 2017, 6872-6877.	1.2	3
321	Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method. ACS Applied Materials & Interfaces, 2017, 9, 39519-39525.	4.0	25
322	Thick Film Polymer Solar Cells Based on Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c</i>]bis[1,2,5]thiadiazole Conjugated Polymers with Efficiency over 11%. Advanced Energy Materials, 2017, 7, 1700944.	10.2	136
323	Enhanced Photovoltaic Performance of Tetrazine-Based Small Molecules with Conjugated Side Chains. ACS Sustainable Chemistry and Engineering, 2017, 5, 8684-8692.	3.2	10
324	The effect of end-capping groups in A-D-A type non-fullerene acceptors on device performance of organic solar cells. Science China Chemistry, 2017, 60, 1458-1467.	4.2	32
325	Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 22707-22719.	1.5	19
326	Highly soluble and thermally stable alkyl-free star-shaped D-Ï€-A oligomer with electron-withdrawing phenyldicyanovinyl groups for organic photovoltaics. Organic Electronics, 2017, 51, 180-189.	1.4	15
327	Preparation of efficient oligomer-based bulk-heterojunction solar cells from eco-friendly solvents. Journal of Materials Chemistry C, 2017, 5, 9920-9928.	2.7	17
328	Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm_2. Science China Materials, 2017, 60, 819-828.	3.5	29
329	D-A structural protean small molecule donor materials for solution-processed organic solar cells. Chinese Chemical Letters, 2017, 28, 2065-2077.	4.8	19
330	Intermediate-Sized Conjugated Donor Molecules for Organic Solar Cells: Comparison of Benzodithiophene and Benzobisthiazole-Based Cores. Chemistry of Materials, 2017, 29, 7880-7887.	3.2	17

#	Article	IF	CITATIONS
331	Donor–acceptor–acceptor-based non-fullerene acceptors comprising terminal chromen-2-one functionality for efficient bulk-heterojunction devices. Dyes and Pigments, 2017, 146, 502-511.	2.0	22
332	Two Regioisomeric π onjugated Small Molecules: Synthesis, Photophysical, Packing, and Optoelectronic Properties. Advanced Functional Materials, 2017, 27, 1701942.	7.8	27
333	Multichromophore Donor Materials Derived from Diketopyrrolopyrrole and Phenoxazine: Design, Synthesis, and Photovoltaic Performance. European Journal of Organic Chemistry, 2017, 2017, 4896-4904.	1.2	7
334	Precise Characterization of Performance Metrics of Organic Solar Cells. Small Methods, 2017, 1, 1700159.	4.6	11
335	Effect of intermolecular interaction with phenothiazine core on inverted organic photovoltaics by using different acceptor moiety. Dyes and Pigments, 2017, 146, 374-385.	2.0	8
336	3-Dimensional non-fullerene acceptors based on triptycene and perylene diimide for organic solar cells. Organic Electronics, 2017, 50, 458-465.	1.4	11
337	Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]Dithiophene–6,7â€Difluoroquinoxaline Small Molecule Donors with >8% BHJ Solar Cell Efficiency. Advanced Energy Materials, 2017, 7, 1602804.	10.2	11
338	New small-molecule acceptors based on hexacyclic naphthalene(cyclopentadithiophene) for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 17204-17210.	5.2	75
339	Ternary small molecule solar cells exhibiting power conversion efficiency of 10.3%. Nano Energy, 2017, 39, 571-581.	8.2	83
340	Impact of end-capped groups on the properties of dithienosilole-based small molecules for solution-processed organic solar cells. Dyes and Pigments, 2017, 147, 183-189.	2.0	20
341	High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2017, 9, 26928-26936.	4.0	44
342	Improved performance for polymer solar cells using CTAB-modified MoO3 as an anode buffer layer. Solar Energy Materials and Solar Cells, 2017, 171, 72-84.	3.0	27
343	Morphological studies of small-molecule solar cells: nanostructural engineering via solvent vapor annealing treatments. Journal of Materials Science, 2017, 52, 13173-13182.	1.7	4
344	Morphology stabilization strategies for small-molecule bulk heterojunction photovoltaics. Journal of Materials Chemistry A, 2017, 5, 17517-17524.	5.2	16
345	An organic semiconductor as an anode-buffer for the improvement of small molecular photovoltaic cells. RSC Advances, 2017, 7, 38204-38209.	1.7	4
346	Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process. ACS Applied Materials & Interfaces, 2017, 9, 29917-29923.	4.0	45
347	A Threeâ€dimensional Nonâ€fullerene Small Molecule Acceptor for Solutionâ€processed Organic Solar Cells. Chinese Journal of Chemistry, 2017, 35, 1687-1692.	2.6	30
348	Synergistic effect of halogenation on molecular energy level and photovoltaic performance modulations of highly efficient small molecular materials. Nano Energy, 2017, 40, 214-223.	8.2	39

	CITATION REF	PORT	
#	Article	IF	CITATIONS
349	A triptycene-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor. New Journal of Chemistry, 2017, 41, 10237-10244.	1.4	6
350	Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 18101-18110.	5.2	50
351	All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%. Chemistry of Materials, 2017, 29, 7543-7553.	3.2	184
352	Low-Band-Gap Small Molecule for Efficient Organic Solar Cells with a Low Energy Loss below 0.6 eV and a High Open-Circuit Voltage of over 0.9 V. ACS Energy Letters, 2017, 2, 2021-2025.	8.8	61
353	Light absorption spectra in oligothiophene molecules. AIP Conference Proceedings, 2017, , .	0.3	0
354	Structural optimization of large acceptor–donor–acceptor-type molecules for improved performance of fullerene-free polymer solar cells. RSC Advances, 2017, 7, 38773-38779.	1.7	12
355	All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors: Synthesis and Full Characterization. ACS Applied Materials & amp; Interfaces, 2017, 9, 44667-44677.	4.0	29
356	A visible-near-infrared absorbing A–ï€ ₂ –D–ï€ ₁ –D–ï€ ₂ –A type dimeric-porphyrin donor for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25460-25468.	5.2	45
357	A Designed Ladderâ€Type Heteroarene Benzodi(Thienopyran) for Highâ€Performance Fullereneâ€Free Organic Solar Cells. Solar Rrl, 2017, 1, 1700165.	3.1	25
358	Investigation of the effect of 2,6-pyridinedimethanol as the cathode buffer layer on the photovoltaic properties. Molecular Crystals and Liquid Crystals, 2017, 653, 44-49.	0.4	1
359	Synthesis and characterization conjugated oligomer based on phenothiazine derivative. Molecular Crystals and Liquid Crystals, 2017, 653, 78-83.	0.4	1
360	A simple fluorene core-based non-fullerene acceptor for high performance organic solar cells. Chemical Communications, 2017, 53, 12790-12793.	2.2	33
361	Toward Over 15% Power Conversion Efficiency for Organic Solar Cells: Current Status and Perspectives. Small Methods, 2017, 1, 1700258.	4.6	130
362	Photoinduced Electron Transfer in Naphthalene Diimide End-Capped Thiophene Oligomers. Journal of Physical Chemistry A, 2017, 121, 9579-9588.	1.1	29
363	Effects of morphology evolution on solution-processed small molecule photovoltaics via a solvent additive. Journal of Materials Chemistry C, 2017, 5, 7837-7844.	2.7	16
364	Spiro-Shaped <i>cis</i> -Stilbene/Fluorene Hybrid Template for the Fabrication of Small-Molecule Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2017, 121, 15943-15948.	1.5	6
365	Isomeric small molecule acceptors based on perylene diimide and spirobifluorene for non-fullerene organic solar cells. Dyes and Pigments, 2017, 146, 151-158.	2.0	17
366	Novel A-D-A type small molecules with β-alkynylated BODIPY flanks for bulk heterojunction solar cells. Organic Electronics, 2017, 49, 321-333.	1.4	31

#	Article		CITATIONS
367	Oligothiophene-Bridged Conjugated Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8194-8199.	6.6	121
368	Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering. Energy and Environmental Science, 2017, 10, 1739-1745.	15.6	285
369	Design of Diketopyrrolopyrrole (DPP)â€Based Small Molecules for Organicâ€Solarâ€Cell Applications. Advanced Materials, 2017, 29, 1600013.	11.1	290
370	Acceptor manipulation of bisalkylthiothienyl benzo[1,2-b:4,5-b']dithiophene core-structured oligomers for efficient organic photovoltaics. Dyes and Pigments, 2017, 140, 512-519.	2.0	8
371	Donor–acceptor–acceptor (D–A–A) type 1,8-naphthalimides as non-fullerene small molecule acceptors for bulk heterojunction solar cells. Chemical Science, 2017, 8, 2017-2024.	3.7	65
372	Organic functional materials based buffer layers for efficient perovskite solar cells. Chinese Chemical Letters, 2017, 28, 503-511.	4.8	24
373	Unsymmetrical donor–acceptor–donor–acceptor type indoline based organic semiconductors with benzothiadiazole cores for solution-processed bulk heterojunction solar cells. Green Energy and Environment, 2017, 2, 428-435.	4.7	4
374	Efficient molecular solar cells processed from green solvent mixtures. Journal of Materials Chemistry A, 2017, 5, 571-582.	5.2	34
375	Rational design of ï€-bridges for ambipolar DPP-RH-based small molecules in organic photovoltaic cells. Journal of Industrial and Engineering Chemistry, 2017, 45, 338-348.	2.9	19
376	Investigation of supramolecular interactions between liquid crystals and PCBM for improved morphological stability in solar cells. Materials Chemistry Frontiers, 2017, 1, 683-692.	3.2	8
377	A novel D2-A-D1-A-D2-type donor–acceptor conjugated small molecule based on a benzo[1,2-b:4,5-bâ€2]dithiophene core for solution processed organic photovoltaic cells. Chemical Physics Letters, 2017, 667, 254-259.	1.2	8
378	Balancing intermolecular interactions by variation of pendent alkyl chains for high performance organic photovoltaics. Dyes and Pigments, 2017, 137, 445-455.	2.0	6
379	Molecular geometry regulation of bay -phenyl substituted perylenediimide derivatives with bulky alkyl chain for use in organic solar cells as the electron acceptor. Dyes and Pigments, 2017, 136, 335-346.	2.0	14
380	Diethynylbenzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiopheneâ€based small molecule and crossâ€conjugated copolymers for organic solar cells. Journal of Polymer Science Part A, 2017, 55, 660-671.	2.5	3
381	A1-A-A1 type small molecules terminated with naphthalimide building blocks for efficient non-fullerene organic solar cells. Dyes and Pigments, 2017, 137, 43-49.	2.0	18
382	Enhancing the efficiency of solution-processable bulk-heterojunction devices via a three-dimensional molecular architecture comprising triphenylamine and cyanopyridone. Dyes and Pigments, 2017, 137, 126-134.	2.0	10
383	A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for Highâ€Performance Organic Solar Cells. Advanced Materials, 2017, 29, 1604964.	11.1	289
384	A-ï€-D-ï€-A type oligomer based on carbazole and benzothiadiazole for organic solar cells. Molecular Crystals and Liquid Crystals, 2017, 655, 166-172.	0.4	1

	Сітатіо	n Report	
# 385	ARTICLE Thin film organic photodetectors for indirect X-ray detection demonstrating low dose rate sensitivity at low voltage operation. Journal of Applied Physics, 2017, 122, 225502.	IF 1.1	Citations
387	Self-Assembled Organic Materials for Photovoltaic Application. Polymers, 2017, 9, 112.	2.0	23
388	High performance molecular donors for organic solar cells, materials design and device optimization. , 2017, , .		0
389	Influence of the Crystalline Nature of Small Donors Molecules on the Efficiency and Stability of Organic Photovoltaic Devices. Solar Rrl, 2018, 2, 1700235.	3.1	11
390	Triphenylamine cored electron-donors for solution-processed organic solar cells: From tri-armed molecules. Dyes and Pigments, 2018, 153, 291-299.	2.0	6
391	Central dicyanomethylene-substituted unsymmetrical squaraines and their application in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 5797-5806.	5.2	25
392	Novel N-heteroacene small molecules as electron donors for organic bulk heterojunction photovoltaics. Organic Electronics, 2018, 57, 93-97.	1.4	7
393	Benzothiadiazole Substituted Semiconductor Molecules for Organic Solar Cells: The Effect of the Solvent Annealing Over the Thin Film Hole Mobility Values. Journal of Physical Chemistry C, 2018, 122, 13782-13789.	1.5	14
394	Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 9587-9594.	4.0	25
395	Wide Bandgap Molecular Acceptors with a Truxene Core for Efficient Nonfullerene Polymer Solar Cells: Linkage Position on Molecular Configuration and Photovoltaic Properties. Advanced Functional Materials, 2018, 28, 1707493.	7.8	83
396	Triphenylamine-Based Push–Pull σ–C ₆₀ Dyad As Photoactive Molecular Material for Single-Component Organic Solar Cells: Synthesis, Characterizations, and Photophysical Properties. Chemistry of Materials, 2018, 30, 3474-3485.	3.2	58
397	π–π stacking induced high current density and improved efficiency in ternary organic solar cells. Nanoscale, 2018, 10, 9971-9980.	2.8	12
398	End-group tuning of DTBDT-based small molecules for organic photovoltaics. Dyes and Pigments, 2018, 157, 93-100.	2.0	15
399	n-Type core effect on perylene diimide based acceptors for panchromatic fullerene-free organic solar cells. Dyes and Pigments, 2018, 156, 318-325.	2.0	12
400	A non-fullerene all small molecule solar cell constructed with a diketopyrrolopyrrole-based acceptor having a power conversion efficiency higher than 9% and an energy loss of 0.54 eV. Journal of Materials Chemistry A, 2018, 6, 11714-11724.	5.2	49
401	Carrier Transport and Recombination in Efficient "Allâ€&mallâ€Molecule―Solar Cells with the Nonfullerene Acceptor IDTBR. Advanced Energy Materials, 2018, 8, 1800264.	10.2	63
402	Mixed Domains Enhance Charge Generation and Extraction in Bulkâ€Heterojunction Solar Cells with Smallâ€Molecule Donors. Advanced Energy Materials, 2018, 8, 1702941.	10.2	43
403	Fine-tuning the side-chains of non-fullerene small molecule acceptors to match with appropriate polymer donors. Journal of Materials Chemistry A, 2018, 6, 8586-8594.	5.2	38

#	Article		CITATIONS
404	A Highly Planar Nonfullerene Acceptor with Multiple Noncovalent Conformational Locks for Efficient Organic Solar Cells. Small Methods, 2018, 2, 1700330.		35
405	Effect of electron-withdrawing terminal group on BDT-based donor materials for organic solar cells: a theoretical investigation. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	17
406	Bulk Heterojunction Solar Cells: The Role of Alkyl Side Chain on Nanoscale Morphology of Sulfur Over-rich Regioregular Polythiophene/Fullerene Blends. Journal of Physical Chemistry C, 2018, 122, 4156-4164.	1.5	16
407	Postâ€Treatmentâ€Free Main Chain Donor and Side Chain Acceptor (Dâ€ <i>s</i> â€A) Copolymer for Efficient Nonfullerene Solar Cells with a Small Voltage Loss. Macromolecular Rapid Communications, 2018, 39, e1700706.	2.0	11
408	Charge transfer induced by MoO3 at boron subphthalocyanine chloride($\hat{l}\pm$ -sexithiophene heterojunction interface. Japanese Journal of Applied Physics, 2018, 57, 03EE01.	0.8	2
409	Efficient carbazole-based small-molecule organic solar cells with an improved fill factor. RSC Advances, 2018, 8, 4867-4871.	1.7	11
410	A Halogenation Strategy for over 12% Efficiency Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702870.	10.2	159
411	Diketopyrrolopyrrole based organic semiconductors with different numbers of thiophene units: symmetry tuning effect on electronic devices. New Journal of Chemistry, 2018, 42, 4017-4028.	1.4	19
412	Drigin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon olvent Vapor Annealing. ACS Applied Materials & Interfaces, 2018, 10, 8141-8147.		26
413	Tuning the performance of the non-fullerene organic solar cells by the polarizability. RSC Advances, 2018, 8, 3809-3815.	1.7	10
414	Enhanced Photovoltaic Performance of Amorphous Donor–Acceptor Copolymers Based on Fluorine‣ubstituted Benzodioxocyclohexeneâ€Annelated Thiophene. Advanced Energy Materials, 2018, 8, 1702506.		9
415	Fused pentacyclic electron acceptors with four <i>cis</i> -arranged alkyl side chains for efficient polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 3724-3729.	5.2	27
416	Developing Highâ€Performance Electronâ€Rich Unit Endâ€Capped Wide Bandgap Oligomeric Donor by Weak Electronâ€Deficient Central Core Strategy. Solar Rrl, 2018, 2, 1700212.	3.1	11
417	Ultralong 20 Milliseconds Charge Separation Lifetime for Photoilluminated Oligophenylenevinylene–Azafullerene Systems. Advanced Functional Materials, 2018, 28, 1702278.	7.8	8
418	Two Thieno[3,2―b]thiopheneâ€Based Small Molecules as Bifunctional Photoactive Materials for Organic Solar Cells. Solar Rrl, 2018, 2, 1700179.	3.1	12
419	Tuning the central donor core via intramolecular noncovalent interactions based on D(A-Ar)2 type small molecules for high performance organic solar cells. Solar Energy, 2018, 161, 138-147.	2.9	20
420	D1-A-D2-A-D1-type constitutional π-conjugated small molecular isomers bearing benzodithiophene, benzothiadiazole, and thiophene. Dyes and Pigments, 2018, 151, 54-63.	2.0	5
421	Additiveâ€Morphology Interplay and Loss Channels in "Allâ€&mallâ€Molecule―Bulkâ€heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM. Advanced Functional Materials, 2018, 28, 1705464.	7.8	40

#	Article		CITATIONS
422	Carbazole and rhodanine based donor molecule with improved processability for high performance organic photovoltaics. Dyes and Pigments, 2018, 151, 272-278.	2.0	12
424	Simple donor-acceptor molecule with long exciton diffusion length for organic photovoltaics. Organic Electronics, 2018, 53, 185-190.	1.4	19
425	A Simple but Efficient Small Molecule with a High Open Circuit Voltage of 1.07â€V in Solutionâ€₽rocessable Organic Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 558-562.	1.3	3
426	Effects of bridging atom in donor units and nature of acceptor groups on physical and photovoltaic properties of A-ï€-D-ï€-A oligomers. Organic Electronics, 2018, 55, 42-49.	1.4	12
427	Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 1939-1947.	4.0	18
428	Towards predicting the power conversion efficiencies of organic solar cells from donor and acceptor molecule structures. Journal of Materials Chemistry C, 2018, 6, 3276-3287.	2.7	17
429	A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 2406-2431.	5.2	179
430	Effect of solvent-induced phase separation on performance of carboxylic indoline-based small-molecule organic solar cells. Dyes and Pigments, 2018, 151, 110-115.	2.0	11
431	All-Small-Molecule Organic Solar Cells Based on Pentathiophene Donor and Alkylated Indacenodithiophene-Based Acceptors with Efficiency over 8%. ACS Applied Energy Materials, 2018, 1, 2150-2156.	2.5	29
432	Synthesis and enhanced electron transfer of supramolecular nano-composite containing dendritic dye and surface-modified ZnO nano-rods. Dyes and Pigments, 2018, 157, 179-189.	2.0	4
433	Organic solar cells based on graphene derivatives and eutectic alloys vacuum-free deposited as top electrodes. Carbon, 2018, 134, 301-309.	5.4	35
434	Small molecule donors based on benzodithiophene and diketopyrrolopyrrole compatible with both fullerene and non-fullerene acceptors. Journal of Materials Chemistry C, 2018, 6, 5843-5848.	2.7	22
435	Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors. Dyes and Pigments, 2018, 155, 241-248.	2.0	18
436	Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 12913-12920.	4.0	21
437	Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 30, e1707508.	11.1	184
438	A fluorene-core-based electron acceptor for fullerene-free BHJ organic solar cells—towards power conversion efficiencies over 10%. Chemical Communications, 2018, 54, 4001-4004.	2.2	26
439	Oligothiophene–Indandione-Linked Narrow-Band Gap Molecules: Impact of π-Conjugated Chain Length on Photovoltaic Performance. ACS Applied Materials & Interfaces, 2018, 10, 11083-11093.	4.0	21
440	A star-shaped photovoltaic organic molecule based on 1,3-diethyl-2-thiobarbituric acid reaches a power conversion efficiency of 3.07%. Thin Solid Films, 2018, 645, 129-133.	0.8	4

#	Article	IF	Citations
441	Solutionâ€processed Small Molecular Materials: Bulk Heterojunction Organic Photovoltaic Materials, Host Materials for Phosphorescence Organic Lightâ€emitting Diodes, and Nondopant Thermally Activated Delayed Fluorescence Materials. Journal of the Chinese Chemical Society, 2018, 65, 87-106.	0.8	5
442	Small Molecule Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 1-43.	0.4	4
443	Polymer Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 45-108.	0.4	1
444	The effect of alkylthio side chains in oligothiophene-based donor materials for organic solar cells. Molecular Systems Design and Engineering, 2018, 3, 131-141.	1.7	13
445	Triplet Telluropheneâ€Based Acceptors for Organic Solar Cells. Angewandte Chemie, 2018, 130, 1108-1114.	1.6	26
446	Photovoltaic molecules based on vinylene-bridged oligothiophene applied for bulk-heterojunction organic solar cells. Journal of Energy Chemistry, 2018, 27, 426-431.	7.1	0
447	Simulations of absorption spectra of conjugated oligomers: role of planar conformation and aggregation in condensed phase. Molecular Physics, 2018, 116, 910-926.	0.8	1
448	Dimeric Porphyrin Small Molecules for Efficient Organic Solar Cells with High Photoelectron Response in the Near-Infrared Region. ACS Applied Materials & Interfaces, 2018, 10, 668-675.	4.0	32
449	Tunable Electron Donating and Accepting Properties Achieved by Modulating the Steric Hindrance of Side Chains in A-D-A Small-Molecule Photovoltaic Materials. Chemistry of Materials, 2018, 30, 619-628.	3.2	49
450	Synthesis of organic semiconductor bearing Bâ†ℕ bridged thienylthiazole and diketopyrrolopyrrole for the applicaton of high open-circuit voltage organic photovoltaics. Dyes and Pigments, 2018, 149, 858-866.	2.0	1
451	Triplet Telluropheneâ€Based Acceptors for Organic Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 1096-1102.	7.2	125
452	Diketopyrrolopyrroleâ€Based and Tetracyanoâ€Bridged Small Molecules for Bulk Heterojunction Organic Solar Cells. Chemistry - an Asian Journal, 2018, 13, 220-229.	1.7	49
453	Photovoltaic Properties of a Porphyrinâ€Containing Polymer as Donor in Bulk Heterojunction Solar Cells With Low Energy Loss. Solar Rrl, 2018, 2, 1700168.	3.1	13
454	High-performance organic solar cells based on a small molecule with thieno[3,2-b]thiophene as Ï€-bridge. Organic Electronics, 2018, 53, 273-279.	1.4	30
455	A novel thiazole based acceptor for fullerene-free organic solar cells. Dyes and Pigments, 2018, 149, 470-474.	2.0	81
456	A novel small molecule based on naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene benefits both fullerene and non-fullerene solar cells. Materials Chemistry Frontiers, 2018, 2, 143-148.	3.2	14
457	Recent Advances in Nonfullerene Acceptors for Organic Solar Cells. Macromolecular Rapid Communications, 2018, 39, 1700555.	2.0	51
458	Fluorination effects of A-D-A-type small molecules on physical property and the performance of organic solar cell. Organic Electronics, 2018, 52, 342-349.	1.4	18

		CITATION REPORT		
#	Article		IF	CITATIONS
459	Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor w Cascading Energy Level and Complementary Absorption. Advanced Materials, 2018, 30, 170300		11.1	182
460	An investigation of the role acceptor side chains play in the processibility and efficiency of organ solar cells fabricated from small molecular donors featuring 3,4-ethylenedioxythiophene cores. Advances, 2018, 8, 39231-39240.	nic RSC	1.7	5
461	Unveiling the Molecular Symmetry Dependence of Exciton Dissociation Processes in Small-Mole Heterojunctions. Journal of Physical Chemistry C, 2018, 122, 26851-26856.	cular	1.5	5
462	High-Crystallinity π-Conjugated Small Molecules Based on Thienylene–Vinylene–Thienylene Role of Self-Organization in Photovoltaic, Charge-Transport, and Morphological Properties. ACS Applied Materials & Interfaces, 2018, 10, 42756-42765.		4.0	8
463	Effects of solvent vapor annealing on organic photovoltaics with a new type of solution-process oligothiophene-based electronic donor material. Japanese Journal of Applied Physics, 2018, 57, 0	able)8REO9.	0.8	5
464	Ni-Porphyrin-based small molecule for efficient organic solar cells (>9.0%) with a high open circuit voltage of over 1.0 V and low energy loss. Chemical Communications, 2018, 54, 14144-1	.4147.	2.2	19
465	Effects of different types of unsymmetrical squaraines on the material properties and Coulomb interactions in organic photovoltaic devices. Materials Chemistry Frontiers, 2018, 2, 2116-2123		3.2	4
466	Theoretical Approach Towards Rational Design and Characterization of Benzo[1,2-b:5-B']dit (BDT)-Based (A-D-A) Small Molecules of Relevance for High Performance Solar Cells. Journal of Material Science & Engineering, 2018, 07, .		0.2	Ο
467	Highâ€Performance Allâ€Smallâ€Molecule Solar Cells Based on a New Type of Small Molecule A with Chlorinated End Groups. Advanced Energy Materials, 2018, 8, 1802021.	cceptors	10.2	76
468	Improved performance of non-fullerene polymer solar cells by simple structural change of asymmetric acceptor based on indenothiophene. Synthetic Metals, 2018, 246, 164-171.		2.1	5
469	Effective Molecular Engineering Approach for Employing a Halogen-Free Solvent for the Fabricat of Solution-Processed Small-Molecule Solar Cells. ACS Applied Materials & Interfaces, 2018 39107-39115.	ion , 10,	4.0	13
470	Dâ~'Ĩ€â€"Aâ^'Ĩ€â€"D Structured Diketopyrrolopyrrole-Based Electron Donors for Solution-Proces Organic Solar Cells. ACS Omega, 2018, 3, 13365-13373.	ssed	1.6	19
471	Dual-Accepting-Unit Design of Donor Material for All-Small-Molecule Organic Solar Cells with Efficiency Approaching 11%. Chemistry of Materials, 2018, 30, 8661-8668.	:	3.2	101
472	Impact of Terminal End-Group of Acceptor–Donor–Acceptor-type Small Molecules on Molec Packing and Photovoltaic Properties. ACS Applied Materials & Interfaces, 2018, 10, 39952-		4.0	17
473	Molecular orientation control of semiconducting molecules using a metal layer formed by wet processing. Organic Electronics, 2018, 63, 47-51.	:	1.4	11
474	Dual interfacial modifications by conjugated small-molecules and lanthanides doping for full functional perovskite solar cells. Nano Energy, 2018, 53, 849-862.		8.2	59
475	Reduced Energy Offsets and Low Energy Losses Lead to Efficient (â^1⁄410% at 1 sun) Ternary Or Cells. ACS Energy Letters, 2018, 3, 2418-2424.	ganic Solar	8.8	20
476	Atomistic Insight Into Donor/Acceptor Interfaces in Highâ€Efficiency Nonfullerene Organic Solar Solar Rrl, 2018, 2, 1800190.	⁻ Cells.	3.1	47

#	Article		CITATIONS
477	Performance, Morphology, and Charge Recombination Correlations in Ternary Squaraine Solar Cells. Chemistry of Materials, 2018, 30, 6810-6820.	3.2	22
478	Molecular modeling of low bandgap diblock co-oligomers with ï€-bridges for applications in photovoltaics. Computational Materials Science, 2018, 152, 12-19.	1.4	7
479	Dual-grating-induced light harvesting enhancement in organic solar cells. Journal of Materials Chemistry A, 2018, 6, 11830-11837.	5.2	11
480	Synthesis and photophysical characterization of isoindigo building blocks as molecular acceptors for organic photovoltaics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 196-206.	2.0	5
481	Panchromatic ternary organic solar cells with 9.44% efficiency incorporating porphyrin-based donors. Nanoscale, 2018, 10, 12100-12108.	2.8	18
482	Highâ€Efficiency Allâ€5mallâ€Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilylâ€Thienyl Conjugated Side Chains. Advanced Materials, 2018, 30, e1706361.	11.1	154
483	A Chlorinated π-Conjugated Polymer Donor for Efficient Organic Solar Cells. Joule, 2018, 2, 1623-1634.	11.7	166
484	Electronic and structural properties of fluorene–thiophene copolymers as function of the composition ratio between the moieties: a theoretical study. Physical Chemistry Chemical Physics, 2018, 20, 20447-20458.	1.3	6
485	A novel bifunctional A–D–A type small molecule for efficient organic solar cells. Materials Chemistry Frontiers, 2018, 2, 1626-1630.	3.2	12
486	Fluorination Triggered New Small Molecule Donor Materials for Efficient As ast Organic Solar Cells. Small, 2018, 14, e1801542.	5.2	22
487	Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Applied Energy Materials, 2018, 1, 4686-4694.	2.5	9
488	Role of Structure in Ultrafast Charge Separation and Recombination in Naphthalene Diimide End-Capped Thiophene Oligomers. Journal of Physical Chemistry C, 2018, 122, 18802-18808.	1.5	12
489	Walking the Emission Tightrope: Spectral and Computational Analysis of Some Dual-Emitting Benzothiadiazole Donor–Acceptor Dyes. Journal of Physical Chemistry A, 2018, 122, 7991-8006.	1.1	14
490	A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss. Journal of Materials Chemistry A, 2018, 6, 18469-18478.	5.2	40
491	Efficient Non-polymeric Heterojunctions in Ternary Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 4203-4210.	2.5	7
492	Synthesis and photoelectric performance of D-A-A′ type small molecule based on triphenylamine. Materials Research Express, 2018, 5, 075101.	0.8	2
493	Enhanced Organic Solar Cell Performance by Lateral Side Chain Engineering on Benzodithiophene-Based Small Molecules. ACS Applied Energy Materials, 2018, 1, 3684-3692.	2.5	12
494	Activation Energies and Diffusion Coefficients of Polarons and Bipolarons in Organic Conductors. Journal of Physical Chemistry A, 2018, 122, 5925-5930.	1.1	4

#	ARTICLE	IF	CITATIONS
495	Density Functional Theory Investigations of D-A-D' Structural Molecules as Donor Materials in Organic Solar Cell. Frontiers in Chemistry, 2018, 6, 200.	1.8	12
496	Low Energy Gap Triphenylamine–Heteropentacene–Dicyanovinyl Triad for Solution-Processed Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2018, 122, 11262-11269.	1.5	8
497	Rationalizing Smallâ€Molecule Donor Design toward Highâ€Performance Organic Solar Cells: Perspective from Molecular Architectures. Advanced Theory and Simulations, 2018, 1, 1800091.	1.3	29
498	Corrole-BODIPY Dyad as Small-Molecule Donor for Bulk Heterojunction Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 31462-31471.	4.0	36
499	BODIPY-based panchromatic chromophore for efficient organic solar cell. Organic Electronics, 2018, 61, 215-222.	1.4	26
500	Branched 2â€Ethylhexyl Substituted Indacenodithieno[3,2â€b]Thiophene Core Enabling Wideâ€Bandgap Small Molecule for Fullereneâ€Based Organic Solar Cells with 9.15% Efficiency: Effect of Length and Position of Fused Polycyclic Aromatic Units. Solar Rrl, 2018, 2, 1800108.	3.1	8
501	Synthesis and optoelectronic property manipulation of conjugated polymer photovoltaic materials based on benzo[d]-dithieno[3,2-b;2′,3′-f]azepine. Polymer, 2018, 147, 184-195.	1.8	3
502	Synthesis of Thiopheneâ€Based Ï€â€Conjugated Oligomers via Ligandâ€Enabled Pdâ€Catalyzed Suzuki–Miyaur Coupling of Haloterthienyls. Chemistry - an Asian Journal, 2018, 13, 1660-1663.	^a 1.7	3
503	Aromatic end-capped acceptor effects on molecular stacking and the photovoltaic performance of solution-processable small molecules. Journal of Materials Chemistry A, 2018, 6, 22077-22085.	5.2	19
504	Origin of Different Photovoltaic Activities in Regioisomeric Small Organic Molecule Solar Cells: The Intrinsic Role of Charge Transfer Processes. Journal of Physical Chemistry C, 2018, 122, 14296-14303.	1.5	18
505	Distinguishing limits on the fill factor in organic solar cells processed from different solvents: Charge recombination kinetics vs. charge extraction. Organic Electronics, 2018, 59, 427-431.	1.4	9
506	Electronic, optical, and charge transport properties of A-ï€-A electron acceptors for organic solar cells: Impact of anti-aromatic ï€ structures. Chinese Chemical Letters, 2019, 30, 211-216.	4.8	7
507	An easily and environmentally friendly accessible small-molecule acetylenic donor for organic solar cells. Dyes and Pigments, 2019, 160, 983-988.	2.0	6
508	Tuning the morphology of the active layer of organic solar cells by spin 1/2 radicals. New Journal of Chemistry, 2019, 43, 13998-14008.	1.4	4
509	Charge Transfer State in the Composite DTS(FBTTh2)2:PC71BM: Dynamics of Electron–Hole Distance Distribution After Light Absorption. Applied Magnetic Resonance, 2019, 50, 1277-1290.	0.6	5
510	Designing dithienothiophene (DTT)-based donor materials with efficient photovoltaic parameters for organic solar cells. Journal of Molecular Modeling, 2019, 25, 222.	0.8	58
511	Side chain engineering in DTBDT-based small molecules for efficient organic photovoltaics. Nanoscale, 2019, 11, 13845-13852.	2.8	2
512	Improving the efficiencies of small molecule solar cells by solvent vapor annealing to enhance J-aggregation. Journal of Materials Chemistry C, 2019, 7, 9618-9624.	2.7	15

#	Article	IF	CITATIONS
513	Improving optoelectronic and charge transport properties of D–̀–D type diketopyrrolopyrrole-pyrene derivatives as multifunctional materials for organic solar cell applications. RSC Advances, 2019, 9, 22597-22603.	1.7	9
514	Rhodanine-based nonfullerene acceptors for organic solar cells. Science China Materials, 2019, 62, 1574-1596.	3.5	19
515	Even–Odd Alkyl Chain-Length Alternation Regulates Oligothiophene Crystal Structure. Chemistry of Materials, 2019, 31, 6900-6907.	3.2	22
516	Electrochemical Studies of New Donorâ€Acceptor Oligothiophenes. ChemElectroChem, 2019, 6, 4016-4021.	1.7	5
517	A New Smallâ€Molecule Donor Containing Nonâ€Fused Ring Ï€â€Bridge Enables Efficient Organic Solar Cells with High Open Circuit Voltage and Low Acceptor Content. ChemPhysChem, 2019, 20, 2674-2682.	1.0	5
518	Effects of the length and steric hindrance of π-bridge on molecular configuration and optoelectronic properties of diindole[3,2-b:4,5-b′]pyrrole-based small molecules. Dyes and Pigments, 2019, 171, 107687.	2.0	6
519	Nonfullerene organic photovoltaic cells exhibiting 13.76% efficiency by employing upsideâ€down solvent vapor annealing. International Journal of Energy Research, 2019, 43, 8716.	2.2	5
520	Enhanced photovoltaic performance of quinoxaline-based small molecules through incorporating trifluoromethyl substituents. Molecular Crystals and Liquid Crystals, 2019, 685, 22-28.	0.4	1
521	Donor Derivative Incorporation: An Effective Strategy toward High Performance All‧mallâ€Molecule Ternary Organic Solar Cells. Advanced Science, 2019, 6, 1901613.	5.6	93
522	Single-step access to a series of D–A π-conjugated oligomers with 3–10 nm chain lengths. Polymer Chemistry, 2019, 10, 325-330.	1.9	15
523	Improved Efficiency in All-Small-Molecule Organic Solar Cells with Ternary Blend of Nonfullerene Acceptor and Chlorinated and Nonchlorinated Donors. ACS Applied Materials & Interfaces, 2019, 11, 44528-44535.	4.0	43
524	A medium-bandgap small molecule donor compatible with both fullerene and unfused-ring nonfullerene acceptors for efficient organic solar cells. Journal of Materials Chemistry C, 2019, 7, 13396-13401.	2.7	13
525	High Performance Thickâ€Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm. Advanced Energy Materials, 2019, 9, 1902688.	10.2	69
526	Conjugationâ€Curtailing of Benzodithionopyranâ€Cored Molecular Acceptor Enables Efficient Airâ€Processed Small Molecule Solar Cells. Small, 2019, 15, e1902656.	5.2	11
527	Atom- and step-economic synthesis of π-conjugated large oligomers via C H activated oligomerization. Dyes and Pigments, 2019, 162, 640-646.	2.0	18
528	Improving the photovoltaic performance of fluorinated 2,2′-bithiophene core-based D(A–Ar) ₂ type small molecules <i>via</i> strategically end-capped heteroaromatic substitution. Journal of Materials Chemistry C, 2019, 7, 12217-12230.	2.7	9
529	Molecular origin of efficient hole transfer from non-fullerene acceptors: insights from first-principles calculations. Journal of Materials Chemistry C, 2019, 7, 12180-12193.	2.7	28
530	Side Chain and Solvent Direction of Film Morphology in Small-Molecule Organic Solar Materials. Chemistry of Materials, 2019, 31, 8308-8319.	3.2	9

ARTICLE IF CITATIONS # Wide band-gap organic molecules containing benzodithiophene and difluoroquinoxaline derivatives 531 0.4 2 for solar cell applications. Molecular Crystals and Liquid Crystals, 2019, 685, 29-39. Conjugated materials containing dithieno[3,2-<i>b</i>:2â€²,3â€²-<i>d</i>]pyrrole and its derivatives for 5.2 133 organic and hybrid solar cell applications. Journal of Materials Chemistry A, 2019, 7, 64-96. Design of organic small molecules for photovoltaic application with high open-circuit voltage 533 2.7 57 (<i>V</i>_{oc}). Journal of Materials Chemistry C, 2019, 7, 2487-2521. Near-IR Absorbing D–A–D Zn-Porphyrin-Based Small-Molecule Donors for Organic Solar Cells with 534 4.0 Low-Voltage Loss. ACS Applied Materials & amp; Interfaces, 2019, 11, 7216-7225. A small molecule donor containing a non-fused ring core for all-small-molecule organic solar cells 535 5.2 39 with high efficiency over 11%. Journal of Materials Chemistry A, 2019, 7, 3682-3690. Constructing a donor $\hat{a} \in \hat{a}$ cceptor linear-conjugation structure for heterologous perylene diimides to greatly improve the photovoltaic performance. Journal of Materials Chemistry C, 2019, 7, 835-842. 2.7 Influence of backbone modification of difluoroquinoxaline-based copolymers on the interchain packing, blend morphology and photovoltaic properties of nonfullerené organic solar cells. Journal of Materials Chemistry C, 2019, 7, 1681-1689. 537 2.7 25 Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 538 1.7 2019, 25, 12316-12324. Improvement of the optoelectronic and photovoltaic properties of a cyanopyrid-2,6-dione-based donor 539 2.0 3 via molecular engineering. Dyes and Pigments, 2019, 170, 107661. Tuning electronic properties of molecular acceptor-π-porphyrin-π-acceptor donors via π-linkage 540 1.4 structural engineering. Organic Electronics, 2019, 73, 146-151. Strategic end-halogenation of Ĩ€-conjugated small molecules enabling fine morphological control and enhanced performance of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 541 5.2 21 14806-14815. Solutionâ€Processed Semitransparent Organic Photovoltaics: From Molecular Design to Device Performance. Advanced Materials, 2019, 31, e1900904. 11.1 168 Fusedâ€Ring Core Engineering for Small Molecule Acceptors Enable Highâ€Performance Nonfullerene 543 4.6 17 Polymer Solar Cells. Small Methods, 2019, 3, 1900280. Cathode interfacial layer-free all small-molecule solar cells with efficiency over 12%. Journal of Materials Chemistry A, 2019, 7, 15944-15950. 544 5.2 36 Miscibility Tuning for Optimizing Phase Separation and Vertical Distribution toward Highly Efficient 545 5.6 87 Organic Śolar Cells. Advanced Science, 2019, 6, 1900565. Influence of the backbone structure of the donor material and device processing conditions on the 546 photovoltaic properties of small molecular BHJSCs. Solar Energy, 2019, 186, 84-93. BODIPY derivatives with near infra-red absorption as small molecule donors for bulk heterojunction 547 1.7 16 solar cells. RSC Advances, 2019, 9, 15410-15423. Rhodanine-based light-harvesting sensitizers: a rational comparison between 548 2-(1,1-dicyanomethylene)rhodanine and rhodanine-3-acetic acid. New Journal of Chemistry, 2019, 43, 1.4 8781-8787.

#	Article	IF	CITATIONS
549	Förster resonance energy transfer in p-DTS(FBTTh2)2- p-SIDT(FBTTh2)2 small molecule ternary blend bulk-heterojunction solar cells for enhanced power conversion efficiency. Materials Letters, 2019, 251, 122-125.	1.3	8
550	An Octylrhodanine-endcapped Thiophene as a Nonfused Nonfullerene Acceptor for Organic Solar Cells. Chemistry Letters, 2019, 48, 529-532.	0.7	1
551	New dithienosilole- and dithienogermole-based BODIPY for solar cell applications. New Journal of Chemistry, 2019, 43, 8735-8740.	1.4	23
552	Rational Design of Low-Band Gap Star-Shaped Molecules With 2,4,6-Triphenyl-1,3,5-triazine as Core and Diketopyrrolopyrrole Derivatives as Arms for Organic Solar Cells Applications. Frontiers in Chemistry, 2019, 7, 122.	1.8	8
553	Constructing Highâ€Performance All‣mallâ€Molecule Ternary Solar Cells with the Same Third Component but Different Mechanisms for Fullerene and Nonâ€fullerene Systems. Advanced Energy Materials, 2019, 9, 1900190.	10.2	37
554	Simple Bithiophene–Rhodanineâ€Based Small Molecule Acceptor for Use in Additiveâ€Free Nonfullerene OPVs with Low Energy Loss of 0.51 eV. Advanced Energy Materials, 2019, 9, 1804021.	10.2	58
555	Fluorene-fused ladder-type non-fullerene small molecule acceptors for high-performance polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 709-715.	3.2	11
556	Isomers of Dithienocyclopentapyreneâ€Based Nonâ€Fullerene Electron Acceptors: Configuration Effect on Photoelectronic Properties. Chemistry - A European Journal, 2019, 25, 6385-6391.	1.7	10
557	Thin-film transistors of rhodanine end-capped oligothiophene. Japanese Journal of Applied Physics, 2019, 58, SBBC09.	0.8	1
558	Nano silver embedded starch hybrid graphene oxide sandwiched poly(ethylmethacrylate) for packaging application. Nano Structures Nano Objects, 2019, 18, 100300.	1.9	31
559	Effects of optical interference and optimized crystallinity in organic photovoltaic cells with a low-bandgap small molecule fabricated by dry process. Japanese Journal of Applied Physics, 2019, 58, SBBG12.	0.8	0
560	Increase in efficiency on using selenophene instead of thiophene in π-bridges for D-π-DPP-π-D organic solar cells. Journal of Materials Chemistry A, 2019, 7, 11886-11894.	5.2	29
561	An A2–ï€â€"A1–ï€â€"A2-type small molecule donor for high-performance organic solar cells. Journal of Materials Chemistry C, 2019, 7, 5381-5384.	2.7	12
562	Negligible Energy Loss During Charge Generation in Small-Molecule/Fullerene Bulk-Heterojunction Solar Cells Leads to Open-Circuit Voltage over 1.10 V. ACS Applied Energy Materials, 2019, 2, 2717-2722.	2.5	27
563	Designation and Match of Nonâ€Fullerene Acceptors with Xâ€Shaped Donors toward Organic Solar Cells. ChemistrySelect, 2019, 4, 3654-3664.	0.7	10
564	Molecular engineering of benzodithiophene and diketopyrrolopyrrole-contained push-pull small molecules for efficient solution-processed organic solar cells. Dyes and Pigments, 2019, 166, 480-489.	2.0	2
565	An easily available near-infrared absorbing non-fullerene photovoltaic electron acceptor with indeno[1,2-b]indole as the central core. Dyes and Pigments, 2019, 166, 467-472.	2.0	8
566	Dependence of substrate work function on the energy-level alignment at organic–organic heterojunction interface. Japanese Journal of Applied Physics, 2019, 58, SBBG06.	0.8	3

#	Article	IF	CITATIONS
567	Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials. Science China Chemistry, 2019, 62, 767-774.	4.2	16
568	Photovoltaic Materials. , 2019, , 1033-1054.		Ο
569	Effects of Fluorination on Exciton Binding Energy and Charge Transport of π-Conjugated Donor Polymers and the ITIC Molecular Acceptor: A Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 6395-6406.	1.5	43
570	Terminal Modulation in Search of a Balance between Hole Transport and Electron Transfer at the Interface for BODIPY-Based Organic Solar Cells. Journal of Physical Chemistry C, 2019, 123, 6407-6415.	1.5	10
571	A probe into underlying factors affecting utrafast charge transfer at Donor/IDIC interface of all-small-molecule nonfullerene organic solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 1-8.	2.0	11
572	New Anthraceneâ€Fused Nonfullerene Acceptors for Highâ€Efficiency Organic Solar Cells: Energy Level Modulations Enabling Match of Donor and Acceptor. Advanced Energy Materials, 2019, 9, 1803541.	10.2	95
573	Synthesis and characterization of new asymmetric thieno[3,4-b]pyrazine-based Dâ^'ï€â^'Aâ^'A type small molecular donors with near-infrared absorption and their photovoltaic applications. Organic Electronics, 2019, 68, 159-167.	1.4	11
574	The Positive Function of Incorporation of Small Molecules into Perovskite Materials for Highâ€Efficient Stable Solar Cells. Solar Rrl, 2019, 3, 1800327.	3.1	16
575	Synthesis and characterization of new D–Ĩ€-A and A–Ĩ€-D–Ĩ€-A type oligothiophene derivatives. Organic and Biomolecular Chemistry, 2019, 17, 3018-3025.	1.5	16
576	Carrier Dynamics and Morphology Regulated by 1,8-Diiodooctane in Chlorinated Nonfullerene Polymer Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 936-942.	2.1	15
577	1. Design Principles for Organic Semiconductors. , 2019, , 1-50.		0
578	A Quarterthiophene-Based Dye as an Efficient Interface Modifier for Hybrid Titanium Dioxide/Poly(3-hexylthiophene)(P3HT) Solar Cells. Polymers, 2019, 11, 1752.	2.0	9
579	"Twisted―conjugated molecules as donor materials for efficient all-small-molecule organic solar cells processed with tetrahydrofuran. Journal of Materials Chemistry A, 2019, 7, 23008-23018.	5.2	37
580	A 9,9′-bifluorenylidene derivative containing four 1,1-dicyanomethylene-3-indanone end-capped groups as an electron acceptor for organic photovoltaic cells. New Journal of Chemistry, 2019, 43, 18110-18119.	1.4	4
581	Functionalizing tetraphenylpyrazine with perylene diimides (PDIs) as high-performance nonfullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 14563-14570.	2.7	9
582	Perylene Monoimide Dimers Enhance Ternary Organic Solar Cells Efficiency by Induced D–A Crystallinity. ACS Applied Energy Materials, 2019, 2, 305-311.	2.5	16
583	Synthesis of new conjugated small-molecule-dyes based on 2-(2-methyl-4H-chromen-4-ylidene)malononitrile as the electron-withdrawing group and their application in photovoltaic devices. Dyes and Pigments, 2019, 163, 660-666.	2.0	10
584	Diketopyrrolopyrrole based small molecular semiconductors containing thiazole units for solution-processed n-channel thin-film transistors. Dyes and Pigments, 2019, 163, 707-714.	2.0	10

#	Article	IF	CITATIONS
585	Higher Mobility and Carrier Lifetimes in Solutionâ€Processable Smallâ€Molecule Ternary Solar Cells with 11% Efficiency. Advanced Energy Materials, 2019, 9, 1802836.	10.2	65
586	Fullerene-Free Molecular Acceptors for Organic Photovoltaics. Energy, Environment, and Sustainability, 2019, , 221-279.	0.6	2
587	A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Science China Chemistry, 2019, 62, 238-244.	4.2	29
588	Synthesis and Photovoltaic Performance of Anthraceneâ€Based Small Molecules for Solutionâ€Processed Organic Solar Cells. ChemistrySelect, 2019, 4, 752-758.	0.7	5
589	An all-small-molecule organic solar cell derived from naphthalimide for solution-processed high-efficiency nonfullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 709-717.	2.7	15
590	New indolo carbazole-based non-fullerene n-type semiconductors for organic solar cell applications. Journal of Materials Chemistry C, 2019, 7, 543-552.	2.7	26
591	Highly Efficient Benzo-Furan-Based Electron Acceptor Derived from One-Pot Synthesis for High-Performance Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2019, 2, 1019-1025.	2.5	3
592	Synthesis of organic molecule donor for efficient organic solar cells with low acceptor content. Organic Electronics, 2019, 64, 54-61.	1.4	8
593	Modulating the morphology and molecular arrangement via the well-compatible polymer donor in multiple working mechanisms interwined ternary organic solar cells. Organic Electronics, 2019, 66, 13-23.	1.4	12
594	Regioisomeric wide-band-gap polymers with different fluorine topologies for non-fullerene organic solar cells. Polymer Chemistry, 2019, 10, 395-402.	1.9	22
595	Theoretical characterisation and design of D–π–A star-shaped molecules with triphenylamine as core and diketopyrrolopyrroles as arms for organic solar cells. Molecular Physics, 2019, 117, 1825-1832.	0.8	4
596	Thermally Induced Fullerene Domain Coarsening Process in Organic Solar Cells. IEEE Transactions on Electron Devices, 2019, 66, 678-688.	1.6	16
597	lsomeryâ€Dependent Miscibility Enables Highâ€Performance Allâ€&mallâ€Molecule Solar Cells. Small, 2019, 15, 1804271.	5.2	50
598	The Dawn of Single Material Organic Solar Cells. Advanced Science, 2019, 6, 1801026.	5.6	119
599	Asymmetric push-pull small molecules with auxiliary electron-accepting unit for bulk heterojunction organic solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112139.	2.0	4
600	Novel swivel-cruciform 5,5′-bibenzothiadiazole based small molecule donors for efficient organic solar cells. Organic Electronics, 2020, 77, 105521.	1.4	3
601	One-pot synthesis of long-chain monodisperse π-conjugated oligomers terminated by C–H or C–Br bonds. Dyes and Pigments, 2020, 172, 107819.	2.0	7
602	Molecular Acceptors Based on a Triarylborane Core Unit for Organic Solar Cells. Chemistry - A European Journal, 2020, 26, 873-880.	1.7	21

#	Article	IF	CITATIONS
603	Ternary organic solar cells. , 2020, , 59-106.		0
604	Hole transport dithiophene-benzene copolymer for electroluminescence devices. Japanese Journal of Applied Physics, 2020, 59, SCCA01.	0.8	1
605	Exploring oddâ€even effects of simple oligomerâ€like DRCNnT series: a study based on density functional theory/timeâ€dependent density functional theory calculations. International Journal of Quantum Chemistry, 2020, 120, e26066.	1.0	2
606	Challenges to the Stability of Active Layer Materials in Organic Solar Cells. Macromolecular Rapid Communications, 2020, 41, e1900437.	2.0	55
607	Efficient as-cast thick film small-molecule organic solar cell with less fluorination on the donor. Materials Chemistry Frontiers, 2020, 4, 206-212.	3.2	9
608	Tuning of optoelectronic and charge transport properties of D–π–A diketopyrrolopyrrole-triphenylamine derivatives for organic solar cells application. Optik, 2020, 208, 164085.	1.4	6
609	One-pot synthesis of cyclopentadithiophene-isoindigo based low bandgap long-chain π-conjugated oligomers. Materials Today Communications, 2020, 22, 100850.	0.9	3
610	Energy Transfer to a Stable Donor Suppresses Degradation in Organic Solar Cells. Advanced Functional Materials, 2020, 30, 1907432.	7.8	32
611	Boosted photovoltaic performance of indenothiophene-based molecular acceptor <i>via</i> fusing a thiophene. Journal of Materials Chemistry C, 2020, 8, 630-636.	2.7	5
612	A structural study of p-type A–D–A oligothiophenes: effects of regioregular alkyl sidechains on annealing processes and photovoltaic performances. Journal of Materials Chemistry C, 2020, 8, 567-580.	2.7	4
613	The influence of driving force on intramolecular electron transfer: A theoretical study of subphthalocyanineâ€AzaBODIPY ₆₀ supramolecular triad. International Journal of Quantum Chemistry, 2020, 120, e26131.	1.0	4
614	Difluorinated Oligothiophenes for Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells: Positional Isomeric Effect of Fluorine Substitution on Performance Variations. Solar Rrl, 2020, 4, 1900472.	3.1	11
615	Designing new donor materials based on functionalized DCCnT with different electronâ€donating groups: A density functional theory (DFT) and time dependent density functional theory (TDDFT)â€based study. International Journal of Quantum Chemistry, 2020, 120, e26112.	1.0	5
616	Chalcogenâ€Fused Perylene Diimidesâ€Based Nonfullerene Acceptors for Highâ€Performance Organic Solar Cells: Insight into the Effect of O, S, and Se. Solar Rrl, 2020, 4, 1900453.	3.1	21
617	Impact of self-assembly on the photovoltaic properties of a small molecule oligothiophene donor. Solar Energy, 2020, 195, 223-229.	2.9	7
618	Deciphering the Role of Fluorination: Morphological Manipulation Prompts Charge Separation and Reduces Carrier Recombination in Allâ€Smallâ€Molecule Photovoltaics. Solar Rrl, 2020, 4, 1900528.	3.1	27
619	Material perceptions and advances in molecular heteroacenes for organic solar cells. Energy and Environmental Science, 2020, 13, 4738-4793.	15.6	50
620	Elimination of Charge Transfer Energy Loss by Introducing a Small-Molecule Secondary Donor into Fullerene-Based Polymer Solar Cells. ACS Applied Energy Materials, 2020, 3, 8375-8382.	2.5	8

#	Article	IF	CITATIONS
621	Synthesis of Selenium Based DIIâ€Aâ€DIâ€Aâ€DII Type Small Molecular eâ€Donors Employing Stille Coupling and Their Thermal, Electrochemical and Photovoltaic Properties. ChemistrySelect, 2020, 5, 13800-13806.	0.7	3
622	Optimization of the Bulk Heterojunction of All-Small-Molecule Organic Photovoltaics Using Design of Experiment and Machine Learning Approaches. ACS Applied Materials & Interfaces, 2020, 12, 54596-54607.	4.0	22
623	On the relations between backbone thiophene functionalization and charge carrier mobility of A–D–A type small molecules. New Journal of Chemistry, 2020, 44, 15177-15185.	1.4	6
624	PDI-Based Hexapod-Shaped Nonfullerene Acceptors for the High-Performance As-Cast Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 37409-37417.	4.0	16
625	Hole (donor) and electron (acceptor) transporting organic semiconductors for bulk-heterojunction solar cells. EnergyChem, 2020, 2, 100042.	10.1	55
626	Fluorescent Charge-Transfer Excited States in Acceptor Derivatized Thiophene Oligomers. Journal of Physical Chemistry A, 2020, 124, 7001-7013.	1.1	14
627	Integrated linker-regulation and ring-fusion engineering for efficient additive-free non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12516-12526.	2.7	18
628	Spectroscopic Studies on Intramolecular Charge-Transfer Characteristics in Small-Molecule Organic Solar Cell Donors: A Case Study on ADA and DAD Triad Donors. Journal of Physical Chemistry C, 2020, 124, 18502-18512.	1.5	24
629	Improving photovoltaic performance of benzothiadiazole-based small molecules: A synergistic effect of non-covalent interaction and aryl terminal group. Journal of Materials Research, 2020, 35, 2967-2975.	1.2	1
630	Photoisomerization of dicyanorhodanine-functionalized thiophenes. Chemical Science, 2020, 11, 10190-10197.	3.7	11
631	Brush-Painted Solar Cells from Pre-Crystallized Components in a Nonhalogenated Solvent System Prepared by a Simple Stirring Technique. Macromolecules, 2020, 53, 8276-8285.	2.2	1
632	Synthesis, Optical and Electrochemical Properties of Two Series Electron-Donor Polymers with Diphenylpyranylidene Side Chain. Journal of Physics: Conference Series, 2020, 1549, 032096.	0.3	Ο
633	Designing of near-infrared sensitive asymmetric small molecular donors for high-efficiency organic solar cells. Journal of Theoretical and Computational Chemistry, 2020, 19, 2050034.	1.8	67
634	Nonfullerene All‣mallâ€Molecule Organic Solar Cells: Prospect and Limitation. Solar Rrl, 2020, 4, 2000258.	3.1	43
635	The impact of thermal treatment on the performance of benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran-based organic solar cells. RSC Advances, 2020, 10, 39916-39921.	1.7	3
636	Improving the Photostability of Small-Molecule-Based Organic Photovoltaics by Providing a Charge Percolation Pathway of Crystalline Conjugated Polymer. Polymers, 2020, 12, 2598.	2.0	4
637	Benzodithiophene-Based Small-Molecule Donors for Next-Generation All-Small-Molecule Organic Photovoltaics. Matter, 2020, 3, 1403-1432.	5.0	72
638	Free radicals in organic semiconductors during photooxidation: Thin films of polymers P3HT and PCDTBT vs small molecules DRCN5T and BTR. Chemical Physics Letters, 2020, 754, 137647.	1.2	3

#	Article	IF	CITATIONS
639	Characterization and simulation study of organic solar cells based on donor–acceptor (D–Ĩ€â€"A) molecular materials. RSC Advances, 2020, 10, 18816-18823.	1.7	4
640	n-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications. Journal of the American Chemical Society, 2020, 142, 11613-11628.	6.6	215
641	New Dâ€Aâ€A'â€Configured Small Molecule Donors Employing Conjugation to Redâ€shift the Absorption for Photovoltaics. Chemistry - an Asian Journal, 2020, 15, 2520-2531.	1.7	4
642	Driving Force for Exciton Dissociation in Organic Solar Cells: The Influence of Donor and Acceptor Relative Orientation. Journal of Physical Chemistry C, 2020, 124, 13580-13591.	1.5	16
643	Effect of low temperature synthesis of carbon nanotube nanocomposite on the photovoltaic performance of anode buffer layer in polymer solar cells. IOP Conference Series: Materials Science and Engineering, 2020, 805, 012026.	0.3	6
644	Two dimensional semiconducting polymers. Materials Chemistry Frontiers, 2020, 4, 3472-3486.	3.2	2
645	Acceptor–donor–acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism. Chemical Society Reviews, 2020, 49, 2828-2842.	18.7	326
646	Carbazole-based green and blue-BODIPY dyads and triads as donors for bulk heterojunction organic solar cells. Dalton Transactions, 2020, 49, 5606-5617.	1.6	34
647	A novel wide-bandgap small molecule donor for high efficiency all-small-molecule organic solar cells with small non-radiative energy losses. Energy and Environmental Science, 2020, 13, 1309-1317.	15.6	99
648	Cardanol- and Guaiacol-Sourced Solution-Processable Green Small Molecule-Based Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 5891-5902.	3.2	14
649	Alkyl side-chain dependent self-organization of small molecule and its application in high-performance organic and perovskite solar cells. Nano Energy, 2020, 72, 104708.	8.2	20
650	Interfacial Energetic Level Mapping and Nano-Ordering of Small Molecule/Fullerene Organic Solar Cells by Scanning Tunneling Microscopy and Spectroscopy. Nanomaterials, 2020, 10, 427.	1.9	6
652	Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency. Journal of Materials Chemistry A, 2020, 8, 5927-5935.	5.2	39
653	Synthesis and Photophysical Properties of Bromination the Small-Molecule Acceptor for Organic Solar Cells. IOP Conference Series: Earth and Environmental Science, 2020, 508, 012218.	0.2	0
654	Underlying effects of diiodooctane as additive on the performance of bulk heterojunction organic solar cells based small organic molecule of isatin-core moiety. Synthetic Metals, 2020, 261, 116304.	2.1	7
655	Degradation of electrical characteristics in low-bandgap polymer solar cells associated with light-induced aging. Organic Electronics, 2020, 81, 105686.	1.4	7
656	The influence of the terminal acceptor and oligomer length on the photovoltaic properties of A–D–A small molecule donors. Journal of Materials Chemistry C, 2020, 8, 4763-4770.	2.7	15
657	Strategic Halogen Substitution to Enable Highâ€Performance Smallâ€Moleculeâ€Based Tandem Solar Cell with over 15% Efficiency. Advanced Energy Materials, 2020, 10, 1903846.	10.2	14

#	ARTICLE	IF	CITATIONS
658	Three-Dimensional Spirothienoquinoline-Based Small Molecules for Organic Photovoltaic and Organic Resistive Memory Applications. ACS Applied Materials & Interfaces, 2020, 12, 11865-11875.	4.0	6
659	Recent advances in defect passivation of perovskite active layer via additive engineering: a review. Journal Physics D: Applied Physics, 2020, 53, 183002.	1.3	15
660	An all small molecule organic solar cell based on a porphyrin donor and a non-fullerene acceptor with complementary and broad absorption. Dyes and Pigments, 2020, 176, 108250.	2.0	20
661	Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing. Zeitschrift Fur Kristallographie - Crystalline Materials, 2020, 235, 15-28.	0.4	6
662	All-Small-Molecule Organic Solar Cells Based on a Fluorinated Small Molecule Donor With High Open-Circuit Voltage of 1.07 V. Frontiers in Chemistry, 2020, 8, 329.	1.8	15
663	Fluorinated oligothiophene donors for high-performance nonfullerene small-molecule organic solar cells. Sustainable Energy and Fuels, 2020, 4, 2680-2685.	2.5	12
664	Carborane bridged ferrocenyl conjugated molecules: synthesis, structure, electrochemistry and photophysical properties. New Journal of Chemistry, 2020, 44, 7569-7576.	1.4	3
665	A 3D nonfullerene electron acceptor with a 9,9′-bicarbazole backbone for high-efficiency organic solar cells. Organic Electronics, 2020, 84, 105784.	1.4	5
666	Recent advances and prospects of D ₁ :D ₂ :A non-fullerene ternary polymer solar cells. Journal of Materials Chemistry C, 2021, 9, 41-66.	2.7	23
667	Recent progress on <scp>allâ€small</scp> molecule organic solar cells using <scp>smallâ€molecule</scp> nonfullerene acceptors. InformaÄnÃ-Materiály, 2021, 3, 175-200.	8.5	113
668	Energy-level modulation of coumarin-based molecular donors for efficient all small molecule fullerene-free organic solar cells. Journal of Materials Chemistry A, 2021, 9, 1563-1573.	5.2	18
669	Small Molecules for Vacuum-Processed Organic Photovoltaics: Past, Current Status, and Prospect. Bulletin of the Chemical Society of Japan, 2021, 94, 812-838.	2.0	29
670	Review and perspective of materials for flexible solar cells. Materials Reports Energy, 2021, 1, 100001.	1.7	54
671	Effect of Alkyl Chain Lengths of Highly Crystalline Nonfullerene Acceptors on Open-Circuit Voltage of All-Small-Molecule Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 259-267.	2.5	4
672	Theoretical investigations about the effect of electron-withdrawing groups on proprieties of A-ï€-D-ï€-A type small molecules donor for organic solar cells. Journal of Molecular Modeling, 2021, 27, 54.	0.8	10
673	14.7% all-small-molecule organic solar cells enabled by fullerene derivative incorporation. Sustainable Energy and Fuels, 2021, 5, 3593-3597.	2.5	10
674	New thiophene-based conjugated macrocycles for optoelectronic applications. Journal of Materials Chemistry C, 2021, 9, 16257-16271.	2.7	14
675	Solvatochromic behaviour of new donor–acceptor oligothiophenes. New Journal of Chemistry, 2021, 45, 11636-11643.	1.4	1

ARTICLE IF CITATIONS Advances in Organic Photovoltaics. Acta Chimica Sinica, 2021, 79, 257. 0.5 28 676 Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Advanced Energy Materials, 2021, 11, 10.2 2003457. 678 Flexible organic solar cells for biomedical devices. Nano Research, 2021, 14, 2891-2903. 5.8 19 Molecular design and performance improvement in organic solar cells guided by highâ€throughput 679 screening and machine learning. Nano Select, 2021, 2, 1629-1641. Influence of alkyne spacers on the performance of thiophene-based donors in bulk-heterojunction 680 2.0 9 organic photovoltaic cells. Dyes and Pigments, 2021, 188, 109152. Morphology Evolution Induced by Sequential Annealing Enabling Enhanced Efficiency in All-Small Molecule Solar Cells. ACS Applied Energy Materials, 2021, 4, 4234-4241. 2.5 Solvent Annealing Enables 15.39% Efficiency Allâ€Smallâ€Molecule Solar Cells through Improved 682 Molecule Interconnection and Reduced Nonâ€Radiative Loss. Advanced Energy Materials, 2021, 11, 10.2 86 2100800. Structural optimization of acceptor molecules guided by a semi-empirical model for organic solar 3.5 cells with efficiency over 15%. Science China Materials, 2021, 64, 2388-2396. Triplet Charge Annihilation in a Small Molecule Donor: Acceptor Blend as a Major Loss Mechanism in 684 10.2 16 Organic Photovoltaics. Advanced Energy Materials, 2021, 11, 2100539. Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785. Fullerene–non-fullerene hybrid acceptors for enhanced light absorption and electrical properties in 686 7 2.5 organic solar cells. Materials Today Energy, 2021, 20, 100651. Wide-Band Gap Small-Molecule Donors with Diester-Terthiophene Bridged Units for High-Efficiency 2.5 All-Small-Molecule Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 5868-5876. Influence of the dipole moment on the photovoltaic performance of polymer solar cells employing 688 2.9 13 non-fullerene small molecule acceptor. Solar Energy, 2021, 221, 393-401. Halogenation of the Side Chains in Donorâ€Acceptor Based Small Molecules for Photovoltaic Applications: Energetics and Chargeâ€Transfer Properties from DFT/TDDFT Studies. ChemistrySelect, 2021, 6, 5254-5265. Human Serum Albumin–Oligothiophene Bioconjugate: A Phototheranostic Platform for Localized 690 19 3.6 Killing of Cancer Cells by Precise Light Activation. Jacs Au, 2021, 1, 925-935. Highly Efficient Ternary Solar Cells with Efficient Förster Resonance Energy Transfer for 691 30 Simultaneously Enhanced Photovoltaic Parameters. Advanced Functional Materials, 2021, 31, 2105304. Two-Pronged Effect of Warm Solution and Solvent-Vapor Annealing for Efficient and Stable 692 8.8 50 All-Small-Molecule Organic Solar Cells. ACS Energy Letters, 2021, 6, 2898-2906. Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chinese Journal of Chemistry, 2021, 39, 2607-2625.

#	Article	IF	CITATIONS
694	Reconciling the Driving Force and the Barrier to Charge Separation in Donor–Nonfullerene Acceptor Films. ACS Energy Letters, 2021, 6, 3572-3581.	8.8	10
695	Exploring the hole mobility of oligothiophene based donors with different spatial symmetry and conjugation length of backbone: A theoretical insight. International Journal of Quantum Chemistry, 2022, 122, e26820.	1.0	Ο
696	Effects of electron-withdrawing group and π-conjugation length in donor-acceptor oligothiophenes on their properties and performance in non-fullerene organic solar cells. Dyes and Pigments, 2021, 194, 109592.	2.0	7
697	V enhancement of thienobenzofuran and benzotriazole backboned photovoltaic polymer by side chain sulfuration or fluoridation. Dyes and Pigments, 2021, 184, 108775.	2.0	3
698	Hyperbranched conjugated polymers based on 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole for ternary organic solar cells. Dyes and Pigments, 2020, 181, 108524.	2.0	8
699	Achieving the highest efficiency using a BODIPY core decorated with dithiafulvalene wings for small molecule based solution-processed organic solar cells. Chemical Communications, 2017, 53, 6953-6956.	2.2	33
700	From flat to tilted: gradual interfaces in organic thin film growth. Nanoscale, 2020, 12, 3834-3845.	2.8	4
701	Simple organic donors based on halogenated oligothiophenes for all small molecule solar cells with efficiency over 11%. Journal of Materials Chemistry A, 2020, 8, 5843-5847.	5.2	43
702	p-Flurophenyldicyanovinyl as electron-withdrawing group for highly soluble and thermally stable donor–acceptor small molecules. Journal of Photonics for Energy, 2018, 8, 1.	0.8	4
703	ZnO-free Inverted Polymer Solar Cells Based on New Viologen Derivative as a Cathode Buffer Layer. Applied Chemistry for Engineering, 2016, 27, 512-515.	0.2	3
704	Quinoxaline-Based Small Molecules: Synthesis and Investigation on Their Optoelectronic Properties. Materials Science-Poland, 2018, 36, 167-176.	0.4	3
705	A computational study on a series of phenanthrene and phenanthroline based potential organic photovoltaics. Macedonian Journal of Chemistry and Chemical Engineering, 2017, 36, 239.	0.2	7
706	Highly Regioselective Direct C-H Arylation: Facile Construction of Symmetrical Dithienophthalimide-Based <i>Ï€</i> -Conjugated Molecules for Optoelectronics. Research, 2020, 2020, 9075697.	2.8	6
707	Efficient 3D charge transport in planar triazatruxene-based dumbbell-shaped molecules forming a bridged columnar phase. Journal of Materials Chemistry A, O, , .	5.2	6
708	Photovoltaic Materials. , 2018, , 1-22.		0
709	Review of Organic Solar Cell Active Layer Materials. Material Sciences, 2018, 08, 286-300.	0.0	Ο
710	Effect of thermal annealing on the structure of the small molecule (electro-donor) DRCN5T: tunneling spectroscopies analysis. , 2018, , .		0
711	Direct Functionalizations of Carbon-Hydrogen Bonds Catalyzed by Palladium/Bidentate Nitrogen-based Ligand Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 776-790.	0.0	0

#	Article	IF	CITATIONS
713	Decoupling Complex Multi‣engthâ€Scale Morphology in Nonâ€Fullerene Photovoltaics with Nitrogen Kâ€Edge Resonant Soft Xâ€ray Scattering. Advanced Materials, 2022, 34, e2107316.	11.1	16
714	Exploration of promising optical and electronic properties of (non-polymer) small donor molecules for organic solar cells. Scientific Reports, 2021, 11, 21540.	1.6	46
715	Exploiting Novel Unfusedâ€Ring Acceptor for Efficient Organic Solar Cells with Record Openâ€Circuit Voltage and Fill Factor. ChemSusChem, 2022, 15, .	3.6	9
716	Scale-up fabrication and characteristic study of oligomer-like small-molecule solar cells by ambient halogen-free sheet-to-sheet and roll-to-roll slot-die coating. Solar Energy, 2022, 231, 536-545.	2.9	6
717	Materials, assemblies and reaction systems under rotation. Nature Reviews Materials, 2022, 7, 338-354.	23.3	13
718	Chirality inversion in hydrogen-bonded rhodanine–oligothiophene derivatives by solvent and temperature. Chemical Communications, 2022, 58, 529-532.	2.2	5
719	Simple thiazole-centered oligothiophene donor enables 15.4% efficiency all small molecule organic solar cells. Journal of Materials Chemistry A, 2022, 10, 3009-3017.	5.2	28
720	Design and synthesis of benzothiadiazole-based molecular systems: self-assembly, optical and electronic properties. New Journal of Chemistry, 2022, 46, 4992-5001.	1.4	6
721	Simulation of the performance of organic solar cells based on D1-BT-EDOT-BT-D2-A/PCBM structures. E3S Web of Conferences, 2022, 336, 00063.	0.2	1
722	Recent progress in all-small-molecule organic photovoltaics. Journal of Materials Chemistry A, 2022, 10, 6291-6329.	5.2	58
723	Designing Potential Donor Materials Based on DRCN5T with Halogen Substitutions: A DFT/TDDFT Study. International Journal of Molecular Sciences, 2021, 22, 13498.	1.8	2
726	Extended photo-absorption properties of novel push-pull diphenylpyranylidene molecules and their photovoltaic performance. , 2022, , .		0
727	Roles of Interfacial Modifiers in Inorganic Titania/Organic Poly(3-hexylthiophene) Heterojunction Hybrid Solar Cells. Nanomaterials, 2022, 12, 820.	1.9	0
728	Tuning the Phase Separation by Thermal Annealing Enables High-Performance All-Small-Molecule Organic Solar Cells. Chemistry of Materials, 2022, 34, 3168-3177.	3.2	12
729	Novel A-Ï€-A-D type perylene diimide acceptor for high-performance fullerene-free organic solar cells. Synthetic Metals, 2022, 286, 117054.	2.1	5
730	Hermetic Seal of Organic Light Emitting Diode with Glass Frit. Molecules, 2022, 27, 76.	1.7	1
731	Green-Solvent-Processable Organic Photovoltaics with High Performances Enabled by Asymmetric Non-Fullerene Acceptors. ACS Applied Materials & Interfaces, 2021, 13, 59043-59050.	4.0	19
732	The Syntheses, Characterization and Field Effect Transistor Performance of Thiazoleâ€Based Dicyanomethyleneâ€Endcapped Quinoidal Compounds. ChemistrySelect, 2021, 6, 13034-13040.	0.7	0

#	Article	IF	CITATIONS
733	CHAPTER 4. p-Type Molecular Materials for Organic Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 109-153.	0.2	0
737	The effects of the side-chain length of non-fullerene acceptors on their performance in all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8719-8727.	2.7	7
738	Donor-acceptor-donor π-conjugated material derived from merocyanine-diketopyrrolopyrrole: design, synthesis and photovoltaic applications. Journal of Electroanalytical Chemistry, 2022, 915, 116341.	1.9	3
739	Asymmetric Substitution of Endâ€Groups Triggers 16.34% Efficiency for Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Materials, 2022, 34, .	11.1	59
740	Self-assembled nanostructures of a series of linear oligothiophene derivatives adsorbed on surfaces. Chinese Chemical Letters, 2023, 34, 107568.	4.8	3
741	Crystallinity and Molecular Packing of Small Molecules in Bulk-Heterojunction Organic Solar Cells. Applied Sciences (Switzerland), 2022, 12, 5683.	1.3	3
742	Complex multilength-scale morphology in organic photovoltaics. Trends in Chemistry, 2022, 4, 699-713.	4.4	13
743	Tailoring the charge transport characteristics in ordered small-molecule organic semiconductors by side-chain engineering and fluorine substitution. Physical Chemistry Chemical Physics, 2022, 24, 16041-16049.	1.3	5
744	Thermodynamic and kinetic insights for regulating molecular orientation in nonfullerene allâ€smallâ€molecule solar cells. , 2022, 1, .		11
745	Oligothiophene-based photovoltaic materials for organic solar cells: rise, plateau, and revival. Trends in Chemistry, 2022, 4, 773-791.	4.4	17
746	Recent advances of nonâ€fullerene organic solar cells: From materials and morphology to devices and applications. EcoMat, 2023, 5, .	6.8	25
747	Improvement of charge mobility and photovoltaic performance of small molecule oligothiophene donors through self-assembly. Dyes and Pigments, 2022, 207, 110718.	2.0	1
748	BODIPY Dyes in Solar Energy. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 119-142.	0.4	0
749	Acidochromic organic photovoltaic integrated device. Chemical Engineering Journal, 2023, 452, 139479.	6.6	2
750	Tetracyanobutadiene Bridged Pushâ€Pull Chromophores: Development of New Generation Optoelectronic Materials. Chemical Record, 2023, 23, .	2.9	8
751	Solvent annealing for morphology control to realize high efficiency all-small-molecule organic solar cells. Sustainable Energy and Fuels, 2022, 6, 5256-5260.	2.5	2
752	Symmetry-Induced Ordered Assembly of a Naphthobisthiadiazole-Based Nonfused-Ring Electron Acceptor Enables Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 52233-52243.	4.0	4
753	Recent Progress in Allâ€&mallâ€Molecule Organic Solar Cells. Small, 2023, 19, .	5.2	30

#	Article	IF	CITATIONS
754	Carbazole and Diketopyrrolopyrrole-Based D-A π-Conjugated Oligomers Accessed via Direct C–H Arylation for Opto-Electronic Property and Performance Study. Molecules, 2022, 27, 9031.	1.7	5
755	A Volatile Solid Additive Enables Oligothiophene All‣mallâ€Molecule Organic Solar Cells with Excellent Commercial Viability. Advanced Functional Materials, 2023, 33, .	7.8	23
756	Organic Photovoltaics Utilizing Smallâ€Molecule Donors and Yâ€Series Nonfullerene Acceptors. Advanced Materials, 2023, 35, .	11.1	14
757	Ternary Organic Solar Cells: Recent Insight on Structure–Processing–Property–Performance Relationships. Energy Technology, 2023, 11, .	1.8	8
758	Selenophene-containing benzodithiophene based donors with different alkyl chains in terminal groups for high-performance all-small-molecule organic solar cells. New Journal of Chemistry, 2023, 47, 2840-2846.	1.4	3
759	Photoactive donor-acceptor conjugated macrocycles: New opportunities for supramolecular chemistry. Chinese Chemical Letters, 2023, 34, 108124.	4.8	3
760	Organic Conjugated Trimers with Donor–Acceptor–Donor Structures for Photocatalytic Hydrogen Generation Application. Advanced Functional Materials, 2023, 33, .	7.8	10
761	Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications: a review. Molecular Diversity, 2024, 28, 271-307.	2.1	9
762	Linear-Shaped Low-Bandgap Asymmetric Conjugated Donor Molecule for Fabrication of Bulk Heterojunction Small-Molecule Organic Solar Cells. Molecules, 2023, 28, 1538.	1.7	1
763	Solvent Effect on Small-Molecule Thin Film Formation Deposited Using the Doctor Blade Technique. Coatings, 2023, 13, 425.	1.2	1
764	Terthiophene based low-cost fully non-fused electron acceptors for high-efficiency as-cast organic solar cells. Journal of Materials Chemistry A, 2023, 11, 7498-7504.	5.2	8
765	Porphyrin Acceptors Improve the Crystallization of Y6 and the Exciton Dissociation in Ternary Organic Solar Cells. ACS Applied Energy Materials, 2023, 6, 3844-3853.	2.5	0