Recent advances in electrochemiluminescence

Chemical Society Reviews 44, 3117-3142 DOI: 10.1039/c5cs00086f

Citation Report

#	Article	IF	CITATIONS
1	Transparent Carbon Nanotube Network for Efficient Electrochemiluminescence Devices. Chemistry - A European Journal, 2015, 21, 12640-12645.	1.7	50
3	Aqueous Synthesis of Tunable Highly Photoluminescent CdTe Quantum Dots Using Rongalite and Bioimaging Application. Chinese Journal of Analytical Chemistry, 2015, 43, e101-e107.	0.9	8
4	An electrochemiluminescence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer. Faraday Discussions, 2015, 185, 299-309.	1.6	45
5	Anodic electrogenerated chemiluminescence of self-assembled peptide nanotubes in an aqueous system. Chemical Communications, 2015, 51, 14720-14723.	2.2	2
6	Electrochemiluminescence DNA sensor array for multiplex detection of biowarfare agents. Analytical and Bioanalytical Chemistry, 2015, 407, 6657-6667.	1.9	19
7	3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. Chemical Science, 2015, 6, 4433-4437.	3.7	72
8	The determination of DNA methyltransferase activity by quenching of tris(2,2′-bipyridine)ruthenium electrogenerated chemiluminescence with ferrocene. Chemical Communications, 2015, 51, 9487-9490.	2.2	18
9	Reusable and Dual-Potential Responses Electrogenerated Chemiluminescence Biosensor for Synchronously Cytosensing and Dynamic Cell Surface N-Glycan Evaluation. Analytical Chemistry, 2015, 87, 9777-9785.	3.2	90
10	Numerical Simulation of Doped Silica Nanoparticle Electrochemiluminescence. Journal of Physical Chemistry C, 2015, 119, 26111-26118.	1.5	39
11	Ferrocyanide-Ferricyanide Redox Couple Induced Electrochemiluminescence Amplification of Carbon Dots for Ultrasensitive Sensing of Glutathione. Analytical Chemistry, 2015, 87, 11150-11156.	3.2	91
12	Enhanced sensing performance of supported graphitic carbon nitride nanosheets and the fabrication of electrochemiluminescent biosensors for IgG. Analyst, The, 2015, 140, 8172-8176.	1.7	16
13	A CdTe/CdS quantum dots amplified graphene quantum dots anodic electrochemiluminescence platform and the application for ascorbic acid detection in fruits. Electrochimica Acta, 2015, 178, 407-413.	2.6	42
14	Photoinduced electron transfer as a design concept for luminescent redox indicators. Analyst, The, 2015, 140, 7487-7495.	1.7	30
15	Potential-Modulated Electrochemiluminescence of Carbon Nitride Nanosheets for Dual-Signal Sensing of Metal Ions. ACS Applied Materials & amp; Interfaces, 2015, 7, 23672-23678.	4.0	86
16	Luminescent mononuclear mixed ligand complexes of copper(<scp>i</scp>) with 5-phenyl-2,2′-bipyridine and triphenylphosphine. Dalton Transactions, 2015, 44, 16824-16832.	1.6	43
17	xmlns:mml="http://www.w3.org/1998/Math/Math/MathML" altimg="si0002.gif" overflow="scroll"> <mml:mrow> <mml:msubsup <="" subscriptshift="90%" td=""><td></td><td></td></mml:msubsup></mml:mrow>		

#	Article	IF	CITATIONS
20	Aptasensors Based on Stripping Voltammetry. Chemosensors, 2016, 4, 12.	1.8	6
21	Analyzing Electrochemiluminescence Mechanisms of Thiophene–Triazole–Thiophene Luminophores with Inâ€Situ Spectroscopy. ChemElectroChem, 2016, 3, 2170-2178.	1.7	8
22	Electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive detection of lead(II) ions. Analytical and Bioanalytical Chemistry, 2016, 408, 7181-7191.	1.9	26
23	A triple-amplification SPR electrochemiluminescence assay for chloramphenicol based on polymer enzyme-linked nanotracers and exonuclease-assisted target recycling. Biosensors and Bioelectronics, 2016, 86, 477-483.	5.3	37
24	Double remote electrochemical addressing and optical readout of electrochemiluminescence at the tip of an optical fiber. Analyst, The, 2016, 141, 4299-4304.	1.7	11
25	Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. Analytical and Bioanalytical Chemistry, 2016, 408, 7003-7011.	1.9	73
26	Chemically Modulated Carbon Nitride Nanosheets for Highly Selective Electrochemiluminescent Detection of Multiple Metal-ions. Analytical Chemistry, 2016, 88, 6004-6010.	3.2	137
27	Dual Enzymatic Detection by Bulk Electrogenerated Chemiluminescence. Analytical Chemistry, 2016, 88, 6585-6592.	3.2	49
28	Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Analytical and Bioanalytical Chemistry, 2016, 408, 7085-7094.	1.9	49
29	Mononuclear heteroleptic complexes of copper(<scp>i</scp>) with 5-phenyl-2,2′-bipyridine and triphenylphosphine: crystal structures, Hirshfeld surface analysis and luminescence properties. New Journal of Chemistry, 2016, 40, 6156-6163.	1.4	24
30	New perspectives on the annihilation electrogenerated chemiluminescence of mixed metal complexes in solution. Chemical Science, 2016, 7, 5271-5279.	3.7	49
31	Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 2+. Analytical and Bioanalytical Chemistry, 2016, 408, 7105-7111.	1.9	17
32	Reagentless Electrochemiluminescence from a Nanoparticulate Polymer of Intrinsic Microporosity (PIMâ€1) Immobilized onto Tinâ€Doped Indium Oxide. ChemElectroChem, 2016, 3, 2160-2164.	1.7	7
33	Efficient electrochemiluminescence quenching of carbon-coated petalous CdS nanoparticles for an ultrasensitive tumor marker assay through coreactant consumption by G-quadruplex-hemin decorated Au nanorods. RSC Advances, 2016, 6, 86682-86687.	1.7	6
34	Building a Three-Dimensional Nano–Bio Interface for Aptasensing: An Analytical Methodology Based on Steric Hindrance Initiated Signal Amplification Effect. Analytical Chemistry, 2016, 88, 9622-9629.	3.2	51
35	Discrimination between 5-Hydroxymethylcytosine and 5-Methylcytosine in DNA via Selective Electrogenerated Chemiluminescence (ECL) Labeling. Analytical Chemistry, 2016, 88, 9934-9940.	3.2	44
36	Functionalization of indium tin oxide electrode with both of dendrimer-encapsulated Pt nanoparticles and chemically converted graphenes for enhanced electrochemiluminescence of luminol/H2O2. Analytical and Bioanalytical Chemistry, 2016, 408, 7165-7172.	1.9	11
37	Selective electrochemiluminescent sensing of saccharides using boronic acid-modified coreactant. Chemical Communications, 2016, 52, 12845-12848.	2.2	20

#	Article	IF	CITATIONS
38	Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films. Physical Chemistry Chemical Physics, 2016, 18, 32697-32702.	1.3	14
39	N-Hydroxysuccinimide as an effective chemiluminescence coreactant for highly selective and sensitive detection. Analytical and Bioanalytical Chemistry, 2016, 408, 8851-8857.	1.9	8
40	The progress of luminescent assay in clinical diagnosis and treatment of diabetes mellitus. Journal of Electroanalytical Chemistry, 2016, 781, 322-326.	1.9	2
41	Electrochemiluminescence of Acridines. Electroanalysis, 2016, 28, 2672-2679.	1.5	16
42	Competitive method-based electrochemiluminescent assay with protein–nucleotide conversion for ratio detection to efficiently monitor the drug resistance of cancer cells. Chemical Science, 2016, 7, 7094-7100.	3.7	27
43	Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ ion. Electrochimica Acta, 2016, 214, 94-102.	2.6	53
44	Electrogenerated Chemiluminescence Bioassay of Two Protein Kinases Incorporating Peptide Phosphorylation and Versatile Probe. Analytical Chemistry, 2016, 88, 8720-8727.	3.2	41
45	Temporal Sensing Platform Based on Bipolar Electrode for the Ultrasensitive Detection of Cancer Cells. Analytical Chemistry, 2016, 88, 8795-8801.	3.2	60
46	D-ï€-A polysulfones for blue electroluminescence. Journal of Polymer Science Part A, 2016, 54, 3454-3461.	2.5	6
47	Increasing Electrochemiluminescence Intensity of a Wireless Electrode Array Chip by Thousands of Times Using a Diode for Sensitive Visual Detection by a Digital Camera. Analytical Chemistry, 2016, 88, 1123-1127.	3.2	40
48	Bright Electrogenerated Chemiluminescence of a Bisâ€Donor Quadrupolar Spirofluorene Dye and Its Nanoparticles. Chemistry - A European Journal, 2016, 22, 12702-12714.	1.7	26
49	Structural Insight into Electrogenerated Chemiluminescence of Para-Substituted Aryl–Triazole–Thienyl Compounds. Journal of Physical Chemistry C, 2016, 120, 21778-21789.	1.5	8
50	Closed Bipolar Electrochemistry for the Detection of Human Immunodeficiency Virus Short Oligonucleotide. Electrochimica Acta, 2016, 222, 1483-1490.	2.6	11
51	Paper-Based Bipolar Electrode Electrochemiluminescence Switch for Label-Free and Sensitive Genetic Detection of Pathogenic Bacteria. Analytical Chemistry, 2016, 88, 10191-10197.	3.2	86
52	Ultrasensitive Glutathione Detection Based on Lucigenin Cathodic Electrochemiluminescence in the Presence of MnO ₂ Nanosheets. Analytical Chemistry, 2016, 88, 7654-7659.	3.2	146
53	Electrochemically tuneable multi-colour electrochemiluminescence using a single emitter. Chemical Science, 2016, 7, 6974-6980.	3.7	29
54	Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy) ₃ ²⁺ Core–Shell Silica Nanoparticles. Journal of the American Chemical Society, 2016, 138, 15935-15942.	6.6	98
55	Cu Nanoclusters: Novel Electrochemiluminescence Emitters for Bioanalysis. Analytical Chemistry, 2016, 88, 11527-11532.	3.2	94

#	Article	IF	CITATIONS
56	Co-reactant-on-Demand ECL: Electrogenerated Chemiluminescence by the in Situ Production of S ₂ O ₈ ^{2–} at Boron-Doped Diamond Electrodes. Journal of the American Chemical Society, 2016, 138, 15636-15641.	6.6	99
57	Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide. Analytical and Bioanalytical Chemistry, 2016, 408, 7203-7211.	1.9	17
58	Electrochemistry of the tris(2,2â€~-bipyridine) complex of iron(II) in ionic liquids and aprotic molecular solvents. Electrochimica Acta, 2016, 220, 347-353.	2.6	30
59	Evolution of 2, 3′-bipyridine class of cyclometalating ligands as efficient phosphorescent iridium(III) emitters for applications in organic light emitting diodes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, 29-47.	5.6	41
60	Synthesis of 1,2â€Dioxetanes as Thermochemiluminescent Labels for Ultrasensitive Bioassays: Rational Prediction of Olefin Photooxygenation Outcome by Using a Chemometric Approach. Chemistry - A European Journal, 2016, 22, 18156-18168.	1.7	30
61	Essential Role of Electrode Materials in Electrochemiluminescence Applications. ChemElectroChem, 2016, 3, 1990-1997.	1.7	126
62	Vertically Ordered Silica Mesochannel Modified Bipolar Electrode for Electrochemiluminescence Imaging Analysis. ChemElectroChem, 2016, 3, 480-486.	1.7	36
63	Dualâ€Color Electrogenerated Chemiluminescence from Dispersions of Conductive Microbeads Addressed by Bipolar Electrochemistry. ChemElectroChem, 2016, 3, 404-409.	1.7	22
64	Porous graphene containing immobilized Ru(II) tris-bipyridyl for use in electrochemiluminescence sensing of tripropylamine. Mikrochimica Acta, 2016, 183, 1211-1217.	2.5	8
65	Cyclometalated iridium(III) chelates—a new exceptional class of the electrochemiluminescent luminophores. Analytical and Bioanalytical Chemistry, 2016, 408, 7013-7033.	1.9	74
66	A novel "on-off―electrochemiluminescence sensor for the detection of concanavalin A based on Ag-doped g-C 3 N 4. Electrochimica Acta, 2016, 202, 90-99.	2.6	48
67	Electrochemical nucleic acid biosensors: from fabrication to application. Analytical Methods, 2016, 8, 5169-5189.	1.3	16
68	Comparison study of electrochemiluminescence of boron-dipyrromethene (BODIPY) dyes in aprotic and aqueous solutions. Journal of Electroanalytical Chemistry, 2016, 781, 181-189.	1.9	10
69	Why were alternating-current-driven electrochemiluminescence properties from Ru(bpy) ₃ ²⁺ dramatically improved by the addition of titanium dioxide nanoparticles?. Physical Chemistry Chemical Physics, 2016, 18, 16317-16324.	1.3	36
70	Dendrimers: New tool for enhancement of electrochemiluminescent signal. Journal of Organometallic Chemistry, 2016, 821, 78-90.	0.8	14
71	Enhancing Electrochemiluminescence of Chalcogenide Clusters by Means of Mn Replacement. Electrochimica Acta, 2016, 210, 79-86.	2.6	10
72	Chemiluminescence and electrochemiluminescence applications of metal nanoclusters. Science China Chemistry, 2016, 59, 794-801.	4.2	47
73	An iridium(III) complex as a versatile platform for molecular logic gates: an integrated full subtractor and 1:2 demultiplexer. Analytical and Bioanalytical Chemistry, 2016, 408, 7077-7083.	1.9	6

#	Article	IF	CITATIONS
74	Electrochemiluminescence Tuned by Electron–Hole Recombination from Symmetry-Breaking in Wurtzite ZnSe. Journal of the American Chemical Society, 2016, 138, 1154-1157.	6.6	96
75	Self-Enhanced Electrochemiluminescence Nanorods of Tris(bipyridine) Ruthenium(II) Derivative and Its Sensing Application for Detection of <i>N</i> -Acetyl-β- <scp>d</scp> -glucosaminidase. Analytical Chemistry, 2016, 88, 2258-2265.	3.2	95
76	Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews, 2016, 45, 715-752.	18.7	249
77	Efficient Enhancement of Electrochemiluminescence from Cadmium Sulfide Quantum Dots by Glucose Oxidase Mimicking Gold Nanoparticles for Highly Sensitive Assay of Methyltransferase Activity. Analytical Chemistry, 2016, 88, 2976-2983.	3.2	118
78	In-electrode vs. on-electrode: ultrasensitive Faraday cage-type electrochemiluminescence immunoassay. Chemical Communications, 2016, 52, 4621-4624.	2.2	42
79	Electrochemiluminescence of Luminol-Tripropylamine System. Electrochimica Acta, 2016, 196, 245-251.	2.6	16
80	Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant. Analytical and Bioanalytical Chemistry, 2016, 408, 7059-7065.	1.9	29
81	Dynamic evaluation of cell-secreted interferon gamma in response to drug stimulation via a sensitive electro-chemiluminescence immunosensor based on a glassy carbon electrode modified with graphene oxide, polyaniline nanofibers, magnetic beads, and gold nanoparticles. Mikrochimica Acta, 2016, 183, 1739-1748	2.5	31
82	Electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation and assay of the β-glucosyltransferase activity. Biosensors and Bioelectronics, 2016, 79, 92-97.	5.3	23
83	Highly sensitive electrochemiluminescence detection of p53 protein using functionalized Ru–silica nanoporous@gold nanocomposite. Biosensors and Bioelectronics, 2016, 80, 146-153.	5.3	88
84	Review—Electrogenerated Chemiluminescence: Light Years Ahead. Journal of the Electrochemical Society, 2016, 163, H3116-H3131.	1.3	202
85	Biomarker detection technologies and future directions. Analyst, The, 2016, 141, 740-755.	1.7	182
86	Two-dimensional MoS2: A promising building block for biosensors. Biosensors and Bioelectronics, 2017, 89, 56-71.	5.3	215
87	Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosensors and Bioelectronics, 2017, 89, 43-55.	5.3	221
88	Two-dimensional graphitic carbon nitride nanosheets for biosensing applications. Biosensors and Bioelectronics, 2017, 89, 212-223.	5.3	117
89	Multifunctional solid-state electrochemiluminescence sensing platform based on poly(ethylenimine) capped N-doped carbon dots as novel co-reactant. Biosensors and Bioelectronics, 2017, 89, 489-495.	5.3	76
90	Theory and Simulation for Optimising Electrogenerated Chemiluminescence from Tris(2,2′â€bipyridine)â€ruthenium(II)â€Doped Silica Nanoparticles and Tripropylamine. ChemElectroChem, 20 4, 1719-1730.	174,.7	29
91	Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today, 2017, 12, 98-115.	6.2	266

#	ARTICLE	IF	CITATIONS
92	Progress and challenges in electrochemiluminescent aptasensors. Biosensors and Bioelectronics, 2017, 92, 241-258.	5.3	66
93	Theoretical Insights in ECL. , 2017, , 215-256.		3
94	Applications of Electrogenerated Chemiluminescence in Analytical Chemistry. , 2017, , 257-291.		6
95	Electrochemically Driven Luminescence in Organometallic and Inorganic Systems. , 2017, , 293-326.		6
96	Color change of alternating copolymers with phenyl vinylethylene carbonate and N-phenylmaleimide in a solution and in the solid-state, depending on their structure. RSC Advances, 2017, 7, 9373-9380.	1.7	5
97	Probing Excimers of Pt(II) Compounds with Phenylâ€1,2,3â€Triazolyl and Pyridylâ€1,2,4â€Triazolyl Chelate Ligands by Means of Electrochemiluminescence. ChemElectroChem, 2017, 4, 1757-1762.	1.7	17
98	Electrochemical Generation of Excited Intramolecular Chargeâ€Transfer States. ChemElectroChem, 2017, 4, 1604-1638.	1.7	17
99	Quenched solid-state electrochemiluminescence of gold nanoclusters and the application in the ultrasensitive detection of concanavalin A. Electrochimica Acta, 2017, 228, 195-202.	2.6	18
100	Polymorph-Dependent Electrogenerated Chemiluminescence of Low-Dimensional Organic Semiconductor Structures for Sensing. ACS Applied Materials & Interfaces, 2017, 9, 8891-8899.	4.0	35
101	Recent advances in electrochemiluminescence devices for point-of-care testing. Current Opinion in Electrochemistry, 2017, 3, 4-10.	2.5	89
102	Recent Advances Based on Nanomaterials as Electrochemiluminescence Probes for the Fabrication of Sensors. ChemElectroChem, 2017, 4, 1639-1650.	1.7	84
103	Iridium(III)â€Doped Coreâ€Shell Silica Nanoparticles: Nearâ€IR Electrogenerated Chemiluminescence in Water. ChemElectroChem, 2017, 4, 1690-1696.	1.7	14
104	Spatially-resolved multicolor bipolar electrochemiluminescence. Electrochemistry Communications, 2017, 77, 10-13.	2.3	45
105	Ultrasensitive electrochemiluminescent salbutamol immunoassay with dual-signal amplification using CdSe@SiO2 as label and gold nanoparticles as substrate. Mikrochimica Acta, 2017, 184, 961-968.	2.5	17
106	Toward Broadband Reverse Saturable Absorption: Investigating the Impact of Cyclometalating Ligand Ĩ€-Conjugation on the Photophysics and Reverse Saturable Absorption of Cationic Heteroleptic Iridium Complexes. Journal of Physical Chemistry C, 2017, 121, 5719-5730.	1.5	28
107	Valence States Effect on Electrogenerated Chemiluminescence of Gold Nanocluster. ACS Applied Materials & Interfaces, 2017, 9, 14929-14934.	4.0	60
108	Novel Single-Cell Analysis Platform Based on a Solid-State Zinc-Coadsorbed Carbon Quantum Dots Electrochemiluminescence Probe for the Evaluation of CD44 Expression on Breast Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 16848-16856.	4.0	56
109	Synthesis and solidâ€state properties of crosslinked alternating copolymers of phenyl vinylethylene carbonate and <i>N</i> â€substituted maleimides. Journal of Applied Polymer Science, 2017, 134, 45247.	1.3	7

#	Article	IF	CITATIONS
110	Pyrazolo[4,3â€h]quinoline Ligandâ€Based Iridium(III) Complexes for Electrochemiluminescence. Chemistry - an Asian Journal, 2017, 12, 1649-1658.	1.7	21
111	Novel Electrochemiluminescence-Sensing Platform for the Precise Analysis of Multiple Latent Tuberculosis Infection Markers. ACS Applied Materials & Interfaces, 2017, 9, 18493-18500.	4.0	29
112	Recent Advances in Electrochemiluminescence with Quantum Dots and Arrays of Nanoelectrodes. ChemElectroChem, 2017, 4, 1663-1676.	1.7	66
113	Highly Efficient Electrochemiluminescence Resonance Energy Transfer System in One Nanostructure: Its Application for Ultrasensitive Detection of MicroRNA in Cancer Cells. Analytical Chemistry, 2017, 89, 6029-6035.	3.2	81
114	Multi-Colored Light-Emitting Electrochemical Cells Based on Thermal Activated Delayed Fluorescence Host. Scientific Reports, 2017, 7, 1524.	1.6	34
115	A sensitive signal-off electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation based on glycosylation modification and signal quenching from ferroceneboronic acid. Talanta, 2017, 170, 546-551.	2.9	22
116	An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content. Biosensors and Bioelectronics, 2017, 97, 122-127.	5.3	29
117	Coâ€reactant Electrogenerated Chemiluminescence of Iridium(III) Complexes Containing an Acetylacetonate Ligand. ChemElectroChem, 2017, 4, 1797-1808.	1.7	31
118	Electrogenerated chemiluminescence biosensing method for highly sensitive detection of DNA hydroxymethylation: Combining glycosylation with Ru(phen) 3 2+ -assembled graphene oxide. Journal of Electroanalytical Chemistry, 2017, 795, 123-129.	1.9	18
119	A MWCNTs-Pt nanohybrids-based highly sensitive electrochemiluminescence sensor for flavonoids assay. Talanta, 2017, 171, 1-7.	2.9	13
120	Non-Doped Deep Blue and Doped White Electroluminescence Devices Based on Phenanthroimidazole Derivative. Journal of Fluorescence, 2017, 27, 451-461.	1.3	12
121	Recent Advances in Electrochemiluminescence Analysis. Analytical Chemistry, 2017, 89, 358-371.	3.2	465
122	DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor. Biosensors and Bioelectronics, 2017, 90, 251-257.	5.3	58
123	Highly selective Electrochemiluminescent probe to histidine. Journal of Electroanalytical Chemistry, 2017, 799, 122-125.	1.9	11
124	AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosensors and Bioelectronics, 2017, 97, 377-383.	5.3	105
125	Ratiometric electrochemiluminescence sensing platform for sensitive glucose detection based on in situ generation and conversion of coreactants. Sensors and Actuators B: Chemical, 2017, 251, 256-263.	4.0	41
126	Iridium (III)-Doped Core-Shell Silica Nanoparticles: Near-IR Electrogenerated Chemiluminescence in Water. ChemElectroChem, 2017, 4, 1570-1570.	1.7	0
127	AgNPs-3D nanostructure enhanced electrochemiluminescence of CdSe quantum dot coupled with strand displacement amplification for sensitive biosensing of DNA. Analytica Chimica Acta, 2017, 983, 166-172.	2.6	20

#	Article	IF	CITATIONS
128	Sudoku-like Lab-on-Paper Cyto-Device with Dual Enhancement of Electrochemiluminescence Intermediates Strategy. Analytical Chemistry, 2017, 89, 7511-7519.	3.2	49
129	Ru(bpy) ₃ ²⁺ Incorporated Luminescent Polymer Dots: Double-Enhanced Electrochemiluminescence for Detection of Single-Nucleotide Polymorphism. Analytical Chemistry, 2017, 89, 7659-7666.	3.2	77
130	Enhanced Electrochemiluminescence Behavior of Gold–Silver Bimetallic Nanoclusters and Its Sensing Application for Mercury(II). Analytical Chemistry, 2017, 89, 7788-7794.	3.2	136
131	Red-emitted electrochemiluminescence by yellow fluorescent thioglycol/glutathione dual thiolate co-coated Au nanoclusters. Nanoscale, 2017, 9, 9792-9796.	2.8	28
132	An ultrasensitive multi-walled carbon nanotube–platinum–luminol nanocomposite-based electrochemiluminescence immunosensor. Analyst, The, 2017, 142, 2253-2260.	1.7	36
133	Nanomaterials in Electrochemiluminescence Sensors. ChemElectroChem, 2017, 4, 1651-1662.	1.7	46
134	Development of a highly sensitive electrochemiluminescence sophoridine sensor using Ru(bpy)32+ integrated carbon quantum dots – polyvinyl alcohol composite film. Sensors and Actuators B: Chemical, 2017, 248, 402-410.	4.0	24
135	A sensitive immunosensor via in situ enzymatically generating efficient quencher for electrochemiluminescence of iridium complexes doped SiO2 nanoparticles. Biosensors and Bioelectronics, 2017, 94, 568-574.	5.3	33
136	A sensitive and selective electrochemiluminescent sensor for dopamine based on the inhibition of dual-stabilizer-capped CdS quantum dot electrochemiluminescence. Analytical Methods, 2017, 9, 2334-2341.	1.3	10
137	A Miniaturized Flow Injection Analysis System for Electrogenerated Chemiluminescenceâ^'Based Assays. ChemElectroChem, 2017, 4, 1686-1689.	1.7	9
138	Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence. Angewandte Chemie - International Edition, 2017, 56, 4757-4761.	7.2	201
139	Amineâ€Rich Nitrogenâ€Doped Carbon Nanodots as a Platform for Selfâ€Enhancing Electrochemiluminescence. Angewandte Chemie, 2017, 129, 4835-4839.	1.6	42
140	Electrochemiluminescence of Waterâ€6oluble Poly(amidoamine) Dendrimers Conjugated with Multiple Ru(II) Tris(bipyridine) Moieties. ChemElectroChem, 2017, 4, 1790-1796.	1.7	7
141	Application of Au based nanomaterials in analytical science. Nano Today, 2017, 12, 64-97.	6.2	68
142	Luminescence in Electrochemistry. , 2017, , .		9
143	Highly efficient electrochemiluminescence labels comprising iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2017, 46, 355-363.	1.6	31
144	Determination of copper(II) based on its inhibitory effect on the cathodic electrochemiluminescence of lucigenin. Mikrochimica Acta, 2017, 184, 693-697.	2.5	9
145	Oxygen-insensitive phosphorescence in water from a Pt-doped supramolecular array. Chemical Communications, 2017, 53, 11806-11809.	2.2	12

#	Article	IF	CITATIONS
146	A glassy carbon electrode modified with C-dots and silver nanoparticles for enzymatic electrochemiluminescent detection of glutamate enantiomers. Mikrochimica Acta, 2017, 184, 4679-4684.	2.5	17
147	Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species. Chemical Science, 2017, 8, 8025-8029.	3.7	54
148	A novel universal signal amplification probe-based electrochemiluminescence assay for sensitive detection of pathogenic bacteria. Electrochemistry Communications, 2017, 85, 11-14.	2.3	11
149	Dependence of color change of vinylethylene carbonate copolymers having N -substituted maleimides on chemical structure by acid-base switching in solution and solid state. Reactive and Functional Polymers, 2017, 120, 139-146.	2.0	6
150	Electrochemiluminescent Pb ²⁺ -Driven Circular Etching Sensor Coupled to a DNA Micronet-Carrier. ACS Applied Materials & Interfaces, 2017, 9, 39812-39820.	4.0	22
151	Novel sandwich-structured electrochemiluminescence immunosensing platform via CdTe quantum dots-embedded mesoporous silica nanospheres as enhanced signal labels and Fe 3 O 4 @SiO 2 @PS nanocomposites as magnetic separable carriers. Journal of Electroanalytical Chemistry, 2017, 806, 32-40.	1.9	20
152	Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis. Journal of the American Chemical Society, 2017, 139, 16830-16837.	6.6	221
153	Stainless Steel Electrode for Sensitive Luminol Electrochemiluminescent Detection of H ₂ O ₂ , Glucose, and Glucose Oxidase Activity. Analytical Chemistry, 2017, 89, 9864-9869.	3.2	165
154	Efficient Solid-State Electrochemiluminescence from High-Quality Perovskite Quantum Dot Films. Analytical Chemistry, 2017, 89, 8212-8216.	3.2	59
155	Solvent-mediated single-crystal-to-single-crystal transformation from a dimeric to tetrameric copper(<scp>i</scp>) complex based on a substituted pyridine derived from a Diels–Alder adduct. New Journal of Chemistry, 2017, 41, 7598-7604.	1.4	6
156	A sensitive electrochemiluminescence glucose biosensor based on graphene quantum dot prepared from graphene oxide sheets and hydrogen peroxide. Journal of Electroanalytical Chemistry, 2017, 801, 162-170.	1.9	31
157	Establishment of an electrochemiluminescence quenching method for ribavirin detection in Ru(bpy)32+/TEA system. Journal of Electroanalytical Chemistry, 2017, 801, 1-6.	1.9	10
158	Heteroleptic iridium(III) complex with N -heterocyclic carbene ligand: Synthesis, photophysics, theoretical calculations and electrochemiluminescence. Journal of Organometallic Chemistry, 2017, 846, 335-342.	0.8	3
159	Triggered hairpin switch and in situ nonlinear hybridization chain reaction enabling label-free electrochemiluminescent detection of BCR/ABL fusion gene. Journal of Electroanalytical Chemistry, 2017, 801, 192-197.	1.9	12
160	Study of highly efficient heterodinuclear Ir-Os ECL complexes. Journal of Organometallic Chemistry, 2017, 846, 367-371.	0.8	4
161	Ternary Electrochemiluminescence System Based on Rubrene Microrods as Luminophore and Pt Nanomaterials as Coreaction Accelerator for Ultrasensitive Detection of MicroRNA from Cancer Cells. Analytical Chemistry, 2017, 89, 9108-9115.	3.2	90
162	In situ generation of electrochemiluminescent DNA nanoflowers as a signal tag for mucin 1 detection based on a strategy of target and mimic target synchronous cycling amplification. Chemical Communications, 2017, 53, 9624-9627.	2.2	32
163	A Compatible Sensitivity Enhancement Strategy for Electrochemiluminescence Immunosensors Based on the Biomimetic Melanin-Like Deposition, Analytical Chemistry, 2017, 89, 13049-13053.	3.2	55

#	Article	IF	CITATIONS
164	Near-infrared electrochemiluminescence from non-toxic CuInS ₂ nanocrystals. Journal of Materials Chemistry C, 2017, 5, 12393-12399.	2.7	33
165	Oxygen Containing Functional Groups Dominate the Electrochemiluminescence of Pristine Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 27546-27554.	1.5	31
166	New electrochemiluminescence catalyst: Cu2O semiconductor crystal and the enhanced activity of octahedra synthesized by iodide ions coordination. Materials Research Express, 2017, 4, 115021.	0.8	3
167	Linear Ru(bpy) ₃ ²⁺ –Polymer as a Universal Probe for Sensitive Detection of Biomarkers with Controllable Electrochemiluminescence Signal-Amplifying Ratio. Analytical Chemistry, 2017, 89, 13016-13023.	3.2	22
168	Electrochemiluminescence: Fundamentals to Applications. ChemElectroChem, 2017, 4, 1571-1571.	1.7	7
169	A simple microdroplet chip consisting of silica nanochannel-assisted electrode and paper cover for highly sensitive electrochemiluminescent detection of drugs in human serum. Analytica Chimica Acta, 2017, 983, 96-102.	2.6	18
170	Exploring the electrochemiluminescent behavior of procaterol hydrochloride in the presence of Ru(bpy) ₃ ²⁺ and its analytical application in pharmaceutical preparation. Luminescence, 2017, 32, 745-750.	1.5	2
171	An efficient electrochemiluminescence amplification strategy via bis-co-reaction accelerator for sensitive detection of laminin to monitor overnutrition associated liver damage. Biosensors and Bioelectronics, 2017, 98, 317-324.	5.3	18
172	Highly sensitive electrochemiluminescence detection of a prostate cancer biomarker. Journal of Materials Chemistry B, 2017, 5, 6681-6687.	2.9	65
173	Ultrasensitive Electrochemiluminescence Biosensor for MicroRNA Detection by 3D DNA Walking Machine Based Target Conversion and Distance-Controllable Signal Quenching and Enhancing. Analytical Chemistry, 2017, 89, 8282-8287.	3.2	119
174	MoS ₂ Quantum Dots as New Electrochemiluminescence Emitters for Ultrasensitive Bioanalysis of Lipopolysaccharide. Analytical Chemistry, 2017, 89, 8335-8342.	3.2	94
175	Two-Dimensional Electrochemiluminescence: Light Emission Confined at the Oil–Water Interface in Emulsions Stabilized by Luminophore-Grafted Microgels. Langmuir, 2017, 33, 7231-7238.	1.6	16
176	Designed graphene-peptide nanocomposites for biosensor applications: A review. Analytica Chimica Acta, 2017, 985, 24-40.	2.6	133
177	Imaging Analysis Based on Electrogenerated Chemiluminescence. Journal of Analysis and Testing, 2017, 1, 1.	2.5	41
178	Electrogenerated chemiluminescence logic gate operations based on molecule-responsive organic microwires. Nanoscale, 2017, 9, 10397-10403.	2.8	19
179	Multienzyme decorated polysaccharide amplified electrogenerated chemiluminescence biosensor for cytosensing and cell surface carbohydrate profiling. Biosensors and Bioelectronics, 2017, 89, 1013-1019.	5.3	33
180	Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Mikrochimica Acta, 2017, 184, 1-44.	2.5	296
181	Optical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics, 2017, 92, 668-678.	5.3	48

#	Article	IF	CITATIONS
182	Detection of Sodium Dehydroacetate by Tris(2,2′â€bipyridine)ruthenium(II) Electrochemiluminescence. ChemElectroChem, 2017, 4, 1702-1707.	1.7	11
183	A Novel Solidâ€state Electrochemiluminescent Enantioselective Sensor for Ascorbic Acid and Isoascorbic Acid. Electroanalysis, 2017, 29, 466-471.	1.5	14
184	An ultrasensitive electrochemiluminescence immunosensor for NT-proBNP based on self-catalyzed luminescence emitter coupled with PdCu@carbon nanohorn hybrid. Biosensors and Bioelectronics, 2017, 87, 779-785.	5.3	52
185	Photophysical and electrochemical studies of highly fluorescent pyrazole and imidazole containing heterocycles. Dyes and Pigments, 2017, 136, 686-696.	2.0	8
186	Progress of Metal Nanoclusters-based Electrochemiluminescent Analysis. Chinese Journal of Analytical Chemistry, 2017, 45, 1776-1785.	0.9	16
187	Electrochemiluminescence of CdTe Quantum Dots and Sensitive Detection of Hemoglobin. International Journal of Electrochemical Science, 2017, 12, 3472-3482.	0.5	14
188	Chemiluminescence: Overview. , 2018, , 412-412.		1
189	Bimodal Electrochemiluminescence of G-CNQDs in the Presence of Double Coreactants for Ascorbic Acid Detection. Analytical Chemistry, 2018, 90, 4871-4877.	3.2	72
190	Proximity Hybridization-Regulated Immunoassay for Cell Surface Protein and Protein-Overexpressing Cancer Cells via Electrochemiluminescence. Analytical Chemistry, 2018, 90, 3013-3018.	3.2	68
191	The optical properties of adenine cation in different oligonucleotides: a PCM/TD-DFT study. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	3
192	Direct Electrochemiluminescence Imaging of a Single Cell on a Chitosan Film Modified Electrode. Analytical Chemistry, 2018, 90, 4801-4806.	3.2	73
193	Solid state electrochemiluminescence from homogeneous and patterned monolayers of bifunctional spirobifluorene. Chemical Communications, 2018, 54, 4999-5002.	2.2	31
194	Sensitive determination of bromhexine hydrochloride based on its quenching effect on luminol/H ₂ O ₂ electrochemiluminescence system. Luminescence, 2018, 33, 698-703.	1.5	7
195	Competitive Multiple-Mechanism-Driven Electrochemiluminescent Detection of 8-Hydroxy-2′-deoxyguanosine. Journal of the American Chemical Society, 2018, 140, 2801-2804.	6.6	162
196	Optical nano-biosensing interface <i>via</i> nucleic acid amplification strategy: construction and application. Chemical Society Reviews, 2018, 47, 1996-2019.	18.7	139
197	Near-infrared electrochemiluminescence from orange fluorescent Au nanoclusters in water. Chemical Communications, 2018, 54, 2838-2841.	2.2	54
198	Effect of ion migration in electro-generated chemiluminescence depending on the luminophore types and operating conditions. Chemical Science, 2018, 9, 2480-2488.	3.7	33
199	An electrochemiluminescence biosensing platform for Hg2+ determination based on host–guest interactions between l²-cyclodextrin functionalized Pd nanoparticles and ferrocene. Analytical Methods, 2018, 10, 767-774.	1.3	7

#	Article	IF	CITATIONS
200	Triethanolamine-Modified Gold Nanoparticles Synthesized by a One-Pot Method and Their Application in Electrochemiluminescent Immunoassy. Analytical Chemistry, 2018, 90, 2826-2832.	3.2	53
201	Promising Anodic Electrochemiluminescence of Nontoxic Core/Shell CuInS ₂ /ZnS Nanocrystals in Aqueous Medium and Its Biosensing Potential. Analytical Chemistry, 2018, 90, 3563-3569.	3.2	63
202	Detection of 1,3-dihydroxyacetone by tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence. Analytical and Bioanalytical Chemistry, 2018, 410, 2315-2320.	1.9	7
203	Functional electrospun nanofibers-based electrochemiluminescence immunosensor for detection of the TSP53 using RuAg/SiO2NPs as signal enhancers. Analytical Biochemistry, 2018, 548, 15-22.	1.1	24
204	Electrochemiluminescence evaluation for carbohydrate antigen 15-3 based on the dual-amplification of ferrocene derivative and Pt/BSA core/shell nanospheres. Biosensors and Bioelectronics, 2018, 103, 62-68.	5.3	29
205	Deactivation of the ruthenium excited state by enhanced homogeneous charge transport: Implications for electrochemiluminescent thin film sensors. Electrochemistry Communications, 2018, 86, 90-93.	2.3	9
206	Tuning Electrochemiluminescence in Multistimuli Responsive Hydrogel Films. Journal of Physical Chemistry Letters, 2018, 9, 340-345.	2.1	29
207	A novel electrochemiluminescent biosensor based on resonance energy transfer between poly(9,9-di-) Tj ETQq1 2 and Bioelectronics, 2018, 104, 65-71.	1 0.784314 5.3	rgBT /Overl 41
208	Coreactant electrochemiluminescence at nanoporous gold electrodes. Electrochimica Acta, 2018, 277, 168-175.	2.6	24
209	Electrochemical, spectroscopic and electrochemiluminescent characterization of self-assembled 3-aminopropyltriethoxysilane/CdTe quantum dots hybrids on screen-printed electrodes. Electrochimica Acta, 2018, 276, 64-72.	2.6	4
210	Simple Chip Electrophoresis Titration of Neutralization Boundary with EDTA Photocatalysis for Distance-Based Sensing of Melamine in Dairy Products. Analytical Chemistry, 2018, 90, 6710-6717.	3.2	23
211	Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coordination Chemistry Reviews, 2018, 367, 65-81.	9.5	110
212	Self-accelerated electrochemiluminescence emitters of Ag@SnO2 nanoflowers for sensitive detection of cardiac troponin T. Electrochimica Acta, 2018, 271, 464-471.	2.6	34
213	Dye-doped nanomaterials: Strategic design and role in electrochemiluminescence. Current Opinion in Electrochemistry, 2018, 7, 130-137.	2.5	20
214	Construction of Highly Efficient Resonance Energy Transfer Platform Inside a Nanosphere for Ultrasensitive Electrochemiluminescence Detection. Analytical Chemistry, 2018, 90, 5075-5081.	3.2	67
215	Versatile ruthenium(II) dye towards blue-light emitter and dye-sensitizer for solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 331-337.	2.0	2
216	Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for MicroRNA Detection with One-Step DNA Walker Amplification. Analytical Chemistry, 2018, 90, 5298-5305.	3.2	98
217	Electrogenerated chemiluminescence from the monomer of a tetradentate chelate Pt(II) compound. Electrochimica Acta, 2018, 271, 448-453.	2.6	5

#	Article	IF	Citations
218	A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chemical Science, 2018, 9, 3911-3916.	3.7	78
219	Investigation of electro-optical properties for electrochemical luminescence device with a new electrode structure. Optical Materials, 2018, 78, 226-234.	1.7	4
220	Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO2 nanomaterials as labels to release Ru(bpy)32+ fixed in 3D Cu/Ni oxalate for the detection of aflatoxin B1. Biosensors and Bioelectronics, 2018, 101, 290-296.	5.3	85
221	Perylenetetracarboxylic acid and carbon quantum dots assembled synergistic electrochemiluminescence nanomaterial for ultra-sensitive carcinoembryonic antigen detection. Biosensors and Bioelectronics, 2018, 103, 6-11.	5.3	64
222	Electrochemiluminescence resonance energy transfer system between GNRs and Ru(bpy)32+: Application in magnetic aptasensor for β-amyloid. Biosensors and Bioelectronics, 2018, 100, 266-273.	5.3	76
223	Light-Emitting Devices Based on Electrochemiluminescence: Comparison to Traditional Light-Emitting Electrochemical Cells. ACS Photonics, 2018, 5, 267-277.	3.2	55
224	Progress in electrochemistry and electrochemiluminescence of metal clusters. Current Opinion in Electrochemistry, 2018, 7, 109-117.	2.5	18
225	Highly Efficient Electrochemiluminescence of Cyanovinylene-Contained Polymer Dots in Aqueous Medium and Its Application in Imaging Analysis. Analytical Chemistry, 2018, 90, 1202-1208.	3.2	45
226	Synthesis and photophysical properties of cyclometalated heteroleptic iridium(III) complexes containing pyridyl/isoquinolyl-imino-isoindoline ancillary ligand. Supramolecular Chemistry, 2018, 30, 328-335.	1.5	5
227	Films of Transition Metal Complexes Including Ionic Liquids: Dramatic Effects of Processing Parameters and Substrate on the Film Morphology. Journal of Electronic Materials, 2018, 47, 402-408.	1.0	0
228	A novel electrochemiluminescence immunosensor based on functional β-cyclodextrin-ferrocene host-guest complex with multiple signal amplification. Sensors and Actuators B: Chemical, 2018, 258, 1146-1151.	4.0	25
230	The recognition and electrochemiluminescence response of benzo[6]urils to polycyclic aromatic hydrocarbons. New Journal of Chemistry, 2018, 42, 19893-19900.	1.4	3
231	Luminescence Immunoassays. , 2018, , 37-37.		0
232	A high precision MUA-spaced single-cell sensor for cellular receptor assay based on bifunctional Au@Cu-PbCQD nanoprobes. Nanoscale, 2018, 10, 18597-18605.	2.8	20
233	Electrogenerated Chemiluminescence with Peroxydisulfate as a Coreactant Using Boron Doped Diamond Electrodes. Analytical Chemistry, 2018, 90, 12959-12963.	3.2	37
234	New Signal Probe Integrated with ABEI as ECL Luminophore and Ag Nanoparticles Decorated CoS Nanoflowers as Bis-Co-Reaction Accelerator to Develop a Ultrasensitive cTnT Immunosensor. Journal of the Electrochemical Society, 2018, 165, B686-B693.	1.3	12
235	Direct Observation of C ₂ O ₄ ^{•–} and CO ₂ ^{•–} by Oxidation of Oxalate within Nanogap of Scanning Electrochemical Microscope. Journal of the American Chemical Society, 2018, 140, 16178-16183.	sup> 6.6	44
236	Surface-Confined Electrochemiluminescence Microscopy of Cell Membranes. Journal of the American Chemical Society, 2018, 140, 14753-14760.	6.6	221

ARTICLE IF CITATIONS # Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single 237 6.6 251 Sample. Journal of the American Chemical Society, 2018, 140, 15904-15915. Output voltage modulation in triboelectric nanogenerator by printed ion gel capacitors. Nano 8.2 Energy, 2018, 54, 367-374. Recent advances in sensors for tetracycline antibiotics and their applications. TrAC - Trends in 239 5.8 190 Analytical Chemistry, 2018, 109, 260-274. Novel N₆ trisbidentate ligand coordinated Ir(<scp>iii</scp>) complexes and their 240 Ru(<scp>ii</scp>) analogs. Dalton Transactions, 2018, 47, 13776-13780. Fabrication of Tris(bipyridine)ruthenium(II)-Functionalized Metal–Organic Framework Thin Films by Electrochemically Assisted Self-Assembly Technique for Electrochemiluminescent Immunoassay. 241 3.2 77 Analytical Chemistry, 2018, 90, 11622-11628. N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosensors 5.3 and Bioelectronics, 2018, 121, 250-256. Donorâ€"Acceptor Conjugated Polymer Dots for Tunable Electrochemiluminescence Activated by 243 2.1 83 Aggregation-Induced Emission-Active Moieties. Journal of Physical Chemistry Letters, 2018, 9, 5296-5302. Graphitic-phase carbon nitride-based electrochemiluminescence sensing analyses: recent advances and 244 1.7 perspectives. RSC Advances, 2018, 8, 19369-19380. Miniaturization and Combinatorial Approach in Organic Electrochemistry. Chemical Reviews, 2018, 118, 245 23.0 108 5985-5999. Electrochemiluminescent Imaging for Multi-immunoassay Sensitized by Dual DNA Amplification of 246 3.2 Polymer Dot Signal. Analytical Chemistry, 2018, 90, 7708-7714. A novel electrochemiluminescence biosensor based on S-doped yttrium oxide ultrathin nanosheets 247 4 1.7 for the detection of anti-Dig antibodies. Analyst, The, 2018, 143, 2997-3000. Mixed annihilation electrogenerated chemiluminescence of iridium(<scp>iii</scp>) complexes. 1.3 Physical Chemistry Chemical Physics, 2018, 20, 18995-19006. High-yield fabrication of Ti₃C₂T_x MXene quantum dots and their 249 2.8 93 electrochemiluminescence behavior. Nanoscale, 2018, 10, 14000-14004. MoS2 quantum dots-combined zirconium-metalloporphyrin frameworks: Synergistic effect on 4.0 electron transfer and application for bioassay. Sensors and Actuators B: Chemical, 2018, 273, 566-573. Tris(2,2â€2-bipyridyl)ruthenium(II) electrochemiluminescent determination of ethyl formate. Analytical 251 1.9 7 and Bioanalytical Chemistry, 2018, 410, 6779-6785. Balancing the Concentrations of Redox Species to Improve Electrochemiluminescence by Tailoring the Symmetry of the AC Voltage. ChemElectroChem, 2018, 5, 2836-2841. Ultrasensitive electrochemiluminescence detection of Staphylococcus aureus via enzyme-free 253 5.335 branched DNA signal amplification probe. Biosensors and Bioelectronics, 2018, 117, 830-837. 254 Trends and Advances in Electrochemiluminescence Nanobiosensors. Sensors, 2018, 18, 166. 2.1

#	Article	IF	CITATIONS
255	Aptamer-Modified Magnetic Beads in Biosensing. Sensors, 2018, 18, 1041.	2.1	40
256	An enzymatic calculation system based on electrochemiluminescence and fluorescence of luminol and cyclic voltammetry of ferrocene methanol. Biosensors and Bioelectronics, 2018, 118, 44-50.	5.3	17
257	Electrochemically, Spectrally, and Spatially Resolved Annihilationâ€Electrogenerated Chemiluminescence of Mixedâ€Metal Complexes at Working and Counter Electrodes. ChemElectroChem, 2018, 5, 1543-1547.	1.7	16
258	An electrochemiluminescence biosensor for detection of CdkN2A/p16 anti-oncogene based on functional electrospun nanofibers and core-shell luminescent composite nanoparticles. Talanta, 2018, 187, 179-187.	2.9	21
259	Electrochemiluminescence biosensor for hyaluronidase activity detection and inhibitor assay based on the electrostatic interaction between hyaluronic acid and Ru(bpy)32+. Sensors and Actuators B: Chemical, 2018, 275, 409-414.	4.0	18
260	An ultrasensitive electrochemiluminescence biosensor for multiple detection of microRNAs based on a novel dual circuit catalyzed hairpin assembly. Chemical Communications, 2018, 54, 10148-10151.	2.2	27
261	Development of quantum dot-based biosensors: principles and applications. Journal of Materials Chemistry B, 2018, 6, 6173-6190.	2.9	119
262	Precise mono-Cu ⁺ ion doping enhanced electrogenerated chemiluminescence from Cd–In–S supertetrahedral chalcogenide nanoclusters for dopamine detection. Nanoscale, 2018, 10, 15932-15937.	2.8	22
263	Coupled Fluorometer-Potentiostat System and Metal-Free Monochromatic Luminophores for High-Resolution Wavelength-Resolved Electrochemiluminescent Multiplex Bioassay. ACS Sensors, 2018, 3, 1362-1367.	4.0	47
264	Electrogenerated chemiluminescence at a 9,10-diphenylanthracene/polyvinyl butyral film modified electrode with a tetraphenylborate coreactant. Analyst, The, 2018, 143, 3425-3432.	1.7	8
265	A novel and sensitive electrogenerated chemiluminescence biosensor for detection of p16INK4a gene based on the functional paste-like nanofibers composites-modified screen-printed carbon electrode. Journal of Electroanalytical Chemistry, 2018, 823, 368-377.	1.9	14
266	Highly Sensitive and Multiplexed Protein Measurements. Chemical Reviews, 2019, 119, 293-321.	23.0	187
267	Au-Luminol-decorated porous carbon nanospheres for the electrochemiluminescence biosensing of MUC1. Nanoscale, 2019, 11, 16860-16867.	2.8	21
268	Quantitative detection of severe fever with thrombocytopenia syndrome virus <i>via</i> electrochemiluminescence immunoassay. Analytical Methods, 2019, 11, 4197-4203.	1.3	5
269	Triple-Helix Molecular Switch Electrochemiluminescence Nanoamplifier Based on a S-Doped Lu ₂ O ₃ /Ag ₂ S Pair for Sensitive MicroRNA Detection. Analytical Chemistry, 2019, 91, 12038-12045.	3.2	33
270	In situ H2O2 generation with gold nanoflowers as the coreactant accelerator for enzyme-free electrochemiluminescent immunosensing. Biosensors and Bioelectronics, 2019, 143, 111627.	5.3	54
271	Highly efficient low-oxidation-potential electrochemiluminescence of ruthenium(II) complex containing selone moiety. Inorganic Chemistry Communication, 2019, 106, 86-90.	1.8	5
272	Turn Off-On Electrochemiluminescence Sensor Based on MnO ₂ /Carboxylated Graphitic Carbon Nitride Nanocomposite for Ultrasensitive L-Cysteine Detection. Journal of the Electrochemical Society, 2019, 166, B994-B999.	1.3	15

ARTICLE IF CITATIONS Nanoengineered Metasurface Immunosensor with over 1000-Fold Electrochemiluminescence 273 1.9 31 Enhancement for Ultra-sensitive Bioassay. IScience, 2019, 17, 267-276. Promising Electrochemiluminescence from CuInS₂/ZnS Nanocrystals/Hydrazine via 274 3.2 Internal Ču(I)/Cu(II) Couple Cycling. Analytical Chemistry, 2019, 91, 10221-10226. Electrogenerated chemiluminescence on smartphone with graphene quantum dots nanocomposites 275 4.0 62 for Escherichia Coli detection. Sensors and Actuators B: Chemical, 2019, 297, 126811. An electrochemiluminescence biosensor for the detection of soybean agglutinin based on carboxylated graphitic carbon nitride as luminophore. Analytical and Bioanalytical Chemistry, 2019, 411, 6049-6056. Recent Advances in Aggregationâ€Induced Electrochemiluminescence. Chemistry - A European Journal, 277 1.7 80 2019, 25, 12671-12683. Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future 278 5.3 directions. Biosensors and Bioelectronics, 2019, 142, 111530. Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Accounts of 279 7.6 172 Chemical Research, 2019, 52, 2070-2079. A conceptual framework for the development of iridium(<scp>iii</scp>) complex-based 280 3.7 electrogenerated chemiluminescence labels. Chemical Science, 2019, 10, 8654-8667. Preâ€oxidation of Gold Nanoclusters Results in a 66 % Anodic Electrochemiluminescence Yield and 281 19 1.6 Drives Mechanistic Insights. Angewandte Chemie, 2019, 131, 11817-11820. Fe-Co-Co prussian blue analogues as a novel co-reaction accelerator for ultrasensitive electrochemiluminescent biosensor construction. Sensors and Actuators B: Chemical, 2019, 297, 126767. Homogeneous Electrochemiluminescence Biosensor for the Detection of RNase A Activity and Its 283 29 3.2 Inhibitor. Analytical Chemistry, 2019, 91, 14751-14756. Target-Induced 3D DNA Network Structure as a Novel Signal Amplifier for Ultrasensitive 284 3.2 Electrochemiluminescence Detection of MicroRNAs. Analytical Chemistry, 2019, 91, 14368-14374. Recent Progress in the Development of Fluorescent Probes for Thiophenol. Molecules, 2019, 24, 3716. 285 1.7 22 Recent advances in photofunctional polymorphs of molecular materials. Chinese Chemical Letters, 4.8 2019, 30, 1908-1922. Metallopolymers as Nanostructured Solidâ€State Platforms for Electrochemiluminescence 287 1.7 5 Applications. ChemElectroChem, 2019, 6, 5790-5796. Analysis of aqueous systems using all-inorganic perovskite CsPbBr3 quantum dots with stable electrochemiluminescence performance using a closed bipolar electrode. Electrochemistry 2.3 Communications, 2019, 108, 106559. Exploring taxonomic diversity and biogeography of the family Nemacheilinae (Cypriniformes). Ecology 289 0.8 7 and Evolution, 2019, 9, 10343-10353. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria 290 in an urban freshwater Lake. Science of the Total Environment, 2019, 661, 465-480.

#	Article	IF	CITATIONS
291	An Efficient Electrochemiluminescence Enhancement Strategy on Bipolar Electrode for Bioanalysis. Analytical Chemistry, 2019, 91, 12553-12559.	3.2	45
292	Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chemical Society Reviews, 2019, 48, 5140-5176.	18.7	150
293	Promising Mercaptobenzoic Acid-Bridged Charge Transfer for Electrochemiluminescence from CuInS2@ZnS Nanocrystals via Internal Cu+/Cu2+ Couple Cycling. Journal of Physical Chemistry Letters, 2019, 10, 5408-5413.	2.1	22
294	A novel light-electricity sensing method for PCSK9 detection based on s-PdNFs with multifunctional property. Biosensors and Bioelectronics, 2019, 144, 111575.	5.3	5
295	Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today, 2019, 28, 100767.	6.2	149
296	Triple-helix molecular switch-based versatile "off-on―electrochemiluminescence and fluorescence biosensing platform for ultrasensitive detection of lipopolysaccharide by multiple-amplification strategy. Biosensors and Bioelectronics, 2019, 143, 111602.	5.3	36
297	Tracking Magnetic Rotating Objects by Bipolar Electrochemiluminescence. Journal of Physical Chemistry Letters, 2019, 10, 5318-5324.	2.1	24
298	Expanding the scope of chemiluminescence in bioanalysis with functional nanomaterials. Journal of Materials Chemistry B, 2019, 7, 7257-7266.	2.9	21
299	Signal-on electrogenerated chemiluminescence biosensor for ultrasensitive detection of microRNA-21 based on isothermal strand-displacement polymerase reaction and bridge DNA-gold nanoparticles. Biosensors and Bioelectronics, 2019, 144, 111664.	5.3	35
300	Efficient Electrogenerated Chemiluminescence of Tris(2,2′-bipyridine)ruthenium(II) with <i>N</i> -Hydroxysulfosuccinimide as a Coreactant for Selective and Sensitive Detection of <scp>I</scp> -Proline and Mercury(II). Analytical Chemistry, 2019, 91, 12517-12524.	3.2	47
301	Utilization and prospects of electrochemiluminescence for characterization, sensing, imaging and devices. Materials Chemistry Frontiers, 2019, 3, 2246-2257.	3.2	41
302	Electrochemically triggered upconverted luminescence for light-emitting devices. Chemical Communications, 2019, 55, 12611-12614.	2.2	10
303	Electrochemiluminescent Chemosensors for Clinical Applications: A Review. Biochip Journal, 2019, 13, 203-216.	2.5	26
304	The Tandem Photoredox Catalysis Mechanism of [Ir(ppy) ₂ (dtb-bpy)] ⁺ Enabling Access to Energy Demanding Organic Substrates. Journal of the American Chemical Society, 2019, 141, 17646-17658.	6.6	102
305	Electrochemiluminescent functional nucleic acidsâ€based sensors for food analysis. Luminescence, 2019, 34, 308-315.	1.5	13
306	Aggregationâ€Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angewandte Chemie, 2019, 131, 3194-3198.	1.6	52
307	Aggregationâ€Induced Electrochemiluminescence of Carboranyl Carbazoles in Aqueous Media. Angewandte Chemie - International Edition, 2019, 58, 3162-3166.	7.2	170
308	Coupling O ₂ and K ₂ S ₂ O ₈ Dual Coâ€reactant with Feâ€N Modified Electrode for Ultrasensitive Electrochemiluminescence Signal Amplification. ChemistrySelect, 2019, 4, 1673-1680.	0.7	5

#	Article	IF	CITATIONS
309	Enhancing Luminol Electrochemiluminescence by Combined Use of Cobalt-Based Metal Organic Frameworks and Silver Nanoparticles and Its Application in Ultrasensitive Detection of Cardiac Troponin I. Analytical Chemistry, 2019, 91, 3048-3054.	3.2	113
310	Novel Ru(bpy) ₂ (cpaphen) ²⁺ /TPrA/TiO ₂ Ternary ECL System: An Efficient Platform for the Detection of Glutathione with Mn ²⁺ as Substitute Target. Analytical Chemistry, 2019, 91, 3681-3686.	3.2	69
311	Graphitic Carbon Nitride Nanosheets as Coâ€reactants for Tris(2,2′â€bipyridine)ruthenium(II) Electrochemiluminescence. ChemElectroChem, 2019, 6, 1673-1677.	1.7	8
312	Construction of a flexible electrochemiluminescence platform for sweat detection. Chemical Science, 2019, 10, 6295-6303.	3.7	49
313	Synthesis and electrochemiluminescence of a new iridium(III) complex. Inorganic Chemistry Communication, 2019, 105, 163-165.	1.8	3
314	Electrochemiluminescence "turn-off―detection of curcumin via energy transfer using luminol-doped silica nanoparticles. Mikrochimica Acta, 2019, 186, 409.	2.5	8
315	Nucleic Acid Amplification Strategy-Based Electrochemiluminescence Research. , 2019, , 67-83.		1
316	Preâ€oxidation of Gold Nanoclusters Results in a 66 % Anodic Electrochemiluminescence Yield and Drives Mechanistic Insights. Angewandte Chemie - International Edition, 2019, 58, 11691-11694.	7.2	128
317	Luminol-based ternary electrochemiluminescence nanospheres as signal tags and target-triggered strand displacement reaction as signal amplification for highly sensitive detection of Helicobacter pylori DNA. Sensors and Actuators B: Chemical, 2019, 293, 304-311.	4.0	23
318	Enhanced electrochemiluminescence of Ru(bpy)32+ by Sm2O3 nanoparticles decorated graphitic carbon nitride nano-sheets for pyridoxine analysis. Inorganic Chemistry Communication, 2019, 106, 240-247.	1.8	16
319	Electrochemiluminescence of 3,4,9,10-perylenetetracarboxylic acid/oxamic hydrazide and its application in the detection of tannic acid. Analyst, The, 2019, 144, 4493-4498.	1.7	6
320	Substituent-Induced Aggregated State Electrochemiluminescence of Tetraphenylethene Derivatives. Analytical Chemistry, 2019, 91, 8676-8682.	3.2	67
321	Sustainable and Selfâ€Enhanced Electrochemiluminescent Ternary Suprastructures Derived from CsPbBr ₃ Perovskite Quantum Dots. Advanced Functional Materials, 2019, 29, 1902533.	7.8	50
322	Highly sensitive biosensor based on target induced dual signal amplification to electrochemiluminescent nanoneedles of Ru(II) complex. Biosensors and Bioelectronics, 2019, 140, 111344.	5.3	12
323	Electrochemiluminescence resonance energy transfer between methylene blue and Ru(bpy) ₃ ²⁺ -doped silica nanoparticles and its application in the "turn-on― detection of glucose. New Journal of Chemistry, 2019, 43, 9226-9231.	1.4	3
324	Towards Determining Kinetics of Annihilation Electrogenerated Chemiluminescence by Concentration-Dependent Luminescent Intensity. Journal of Analysis and Testing, 2019, 3, 160-165.	2.5	5
325	Advances in DNA/RNA detection using nanotechnology. Advances in Clinical Chemistry, 2019, 91, 31-98.	1.8	16
326	Bifunctional S, N-Codoped carbon dots-based novel electrochemiluminescent bioassay for ultrasensitive detection of atrazine using activated mesoporous biocarbon as enzyme nanocarriers. Analytica Chimica Acta, 2019, 1073, 45-53.	2.6	20

#	Article	IF	CITATIONS
327	Electrochemiluminescence as emerging microscopy techniques. Analytical and Bioanalytical Chemistry, 2019, 411, 4375-4382.	1.9	73
328	<i>In Situ</i> Imaging Facet-Induced Spatial Heterogeneity of Electrocatalytic Reaction Activity at the Subparticle Level via Electrochemiluminescence Microscopy. Analytical Chemistry, 2019, 91, 6829-6835.	3.2	35
329	Progress on the application of electrochemiluminescence biosensor based on nanomaterials. Chinese Chemical Letters, 2019, 30, 1600-1606.	4.8	41
330	A portable wireless single-electrode system for electrochemiluminescent analysis. Electrochimica Acta, 2019, 308, 20-24.	2.6	28
331	A highly sensitive self-enhanced aptasensor based on a stable ultrathin 2D metal–organic layer with outstanding electrochemiluminescence property. Nanoscale, 2019, 11, 10056-10063.	2.8	36
332	Construction of ultrasensitive label-free aptasensor for thrombin detection using palladium nanocones boosted electrochemiluminescence system. Electrochimica Acta, 2019, 310, 195-202.	2.6	29
333	Electrochemiluminescence Platforms Based on Small Waterâ€Insoluble Organic Molecules for Ultrasensitive Aqueousâ€Phase Detection. Angewandte Chemie - International Edition, 2019, 58, 5915-5919.	7.2	108
334	Electrogenerated Chemiluminescence for Chronopotentiometric Sensors. Analytical Chemistry, 2019, 91, 4889-4895.	3.2	32
335	Unveiling Adsorption of Boron Dipyrromethene Conjugated PbS Nanocrystals on Pt Electrode Surface: An Approach Using Electrogenerated Chemiluminescence Spooling Spectra and Multivariate Analysis. Journal of Physical Chemistry A, 2019, 123, 2171-2177.	1.1	2
336	Electrochemiluminescence Platforms Based on Small Waterâ€Insoluble Organic Molecules for Ultrasensitive Aqueousâ€Phase Detection. Angewandte Chemie, 2019, 131, 5976-5980.	1.6	30
337	Circularlyâ€Polarized Electrochemiluminescence from a Chiral Bispyrene Organic Macrocycle. Angewandte Chemie - International Edition, 2019, 58, 6952-6956.	7.2	105
338	DNAzyme-based Y-shaped label-free electrochemiluminescent biosensor for lead using electrically heated indium-tin-oxide electrode for in situ temperature control. Sensors and Actuators B: Chemical, 2019, 289, 78-84.	4.0	19
339	A novel ultrasensitive electrochemiluminescence biosensor for glutathione detection based on poly-L-lysine as co-reactant and graphene-based poly(luminol/aniline) as nanoprobes. Biosensors and Bioelectronics, 2019, 133, 154-159.	5.3	47
340	Highly stable Ru-complex-grafted 2D metal-organic layer with superior electrochemiluminescent efficiency as a sensing platform for simple and ultrasensitive detection of mucin 1. Biosensors and Bioelectronics, 2019, 135, 95-101.	5.3	55
341	Efficient and Monochromatic Electrochemiluminescence of Aqueous‣oluble Au Nanoclusters via Host–Guest Recognition. Angewandte Chemie, 2019, 131, 6975-6979.	1.6	19
342	Circularlyâ€Polarized Electrochemiluminescence from a Chiral Bispyrene Organic Macrocycle. Angewandte Chemie, 2019, 131, 7026-7030.	1.6	32
343	Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection using enzymatically generated hydrogen peroxide as a quencher. Mikrochimica Acta, 2019, 186, 276.	2.5	16
344	Silver-based metal-organic gels as novel coreactant for enhancing electrochemiluminescence and its biosensing potential. Biosensors and Bioelectronics, 2019, 134, 29-35.	5.3	32

# 345	ARTICLE Efficient and Monochromatic Electrochemiluminescence of Aqueousâ€Soluble Au Nanoclusters via Host–Guest Recognition. Angewandte Chemie - International Edition, 2019, 58, 6901-6905.	IF 7.2	CITATIONS
346	Aggregationâ€Induced Electrochemiluminescence by Metalâ€Binding Protein Responsive Hydrogel Scaffolds. Small, 2019, 15, e1901170.	5.2	45
347	Versatile Electrochemiluminescence and Electrochemical "On–Off―Assays of Methyltransferases and Aflatoxin B1 Based on a Novel Multifunctional DNA Nanotube. Analytical Chemistry, 2019, 91, 3546-3554.	3.2	86
348	Neutral Dye-Doped Silica Nanoparticles for Electrogenerated Chemiluminescence Signal Amplification. Journal of Physical Chemistry C, 2019, 123, 5686-5691.	1.5	18
349	A Sensitive Electrochemiluminescence Sensor for Brilliant Blue FCF Using Ru(bpy)32+ Immobilized Zn-MOF. Analytical Sciences, 2019, 35, 639-644.	0.8	10
350	Engineering of CdTe/SiO2 nanocomposites: Enhanced signal amplification and biocompatibility for electrochemiluminescent immunoassay of alpha-fetoprotein. Biosensors and Bioelectronics, 2019, 131, 178-184.	5.3	49
351	Ultrasensitive Electrochemiluminescent Sensor for MicroRNA with Multinary Zn–Ag–In–S/ZnS Nanocrystals as Tags. Analytical Chemistry, 2019, 91, 3754-3758.	3.2	39
352	Perturbation Electrochemiluminescence Imaging to Observe the Fluctuation of Charge-Transfer Resistance in Individual Graphene Microsheets with Redox-Induced Defects. ACS Applied Materials & Interfaces, 2019, 11, 46666-46670.	4.0	12
353	Communication—Screen-Printed Silver Electrodes for Enhanced Performance in Light-Emitting Devices Based on Electrochemiluminescence. ECS Journal of Solid State Science and Technology, 2019, 8, R146-R148.	0.9	1
354	6. Biochemical sensing based on bipolar electrochemistry. , 2019, , 101-120.		1
355	An Electrochemiluminescent Sensor for Epinephrine Detection Based on Graphitic Carbon Nitride Nanosheet/Multi-walled Carbon Nanotubes Nanohybrids. Chemistry Letters, 2019, 48, 215-218.	0.7	14
356	Single nanostructured gold amalgam microelectrode electrochemiluminescence: From arrays to a single point. Sensors and Actuators B: Chemical, 2019, 286, 282-288.	4.0	7
357	Nearâ€Infrared Photoluminescence and Electrochemiluminescence from a Remarkably Simple Boron Difluoride Formazanate Dye. Angewandte Chemie - International Edition, 2019, 58, 1052-1056.	7.2	116
358	Silver coordination complex amplified electrochemiluminescence sensor for sensitive detection of coenzyme A and histone acetyltransferase activity. Biosensors and Bioelectronics, 2019, 126, 535-542.	5.3	18
359	Light enhanced electrochemistry and electrochemiluminescence of luminol at glassy carbon electrodes. Electrochemistry Communications, 2019, 98, 47-52.	2.3	7
360	Ultrasensitive detection of protein kinase activity based on the Au NPs mediated electrochemiluminescence amplification of S2O82â~–O2 system. Journal of Electroanalytical Chemistry, 2019, 833, 449-453.	1.9	8
361	Dual Enhanced Electrochemiluminescence of Aminated Au@SiO ₂ /CdS Quantum Dot Superstructures: Electromagnetic Field Enhancement and Chemical Enhancement. ACS Applied Materials & Interfaces, 2019, 11, 4488-4499.	4.0	38
362	Simultaneous Electrochemical and Emission Monitoring of Electrogenerated Chemiluminescence through Instrument Hyphenation. Analytical Chemistry, 2019, 91, 2312-2318.	3.2	5

#	Article	IF	Citations
363	Electrochemiluminescent detection of <i>Escherichia coli</i> O157:H7 based on Ru(bpy) ₃ ²⁺ /ZnO nanorod arrays. Nanotechnology, 2019, 30, 025501.	1.3	12
364	Green synthesis of Pd nanocones as a novel and effective electrochemiluminescence illuminant for highly sensitive detection of dopamine. Sensors and Actuators B: Chemical, 2019, 281, 588-594.	4.0	28
365	Dual-Wavelength Ratiometric Electrochemiluminescence Immunosensor for Cardiac Troponin I Detection. Analytical Chemistry, 2019, 91, 1524-1531.	3.2	105
366	Steady-State Electrochemiluminescence at Single Semiconductive Titanium Dioxide Nanoparticles for Local Sensing of Single Cells. Analytical Chemistry, 2019, 91, 1121-1125.	3.2	42
367	Nearâ€Infrared Photoluminescence and Electrochemiluminescence from a Remarkably Simple Boron Difluoride Formazanate Dye. Angewandte Chemie, 2019, 131, 1064-1068.	1.6	39
368	Homoleptic cyclometalated iridium(III) complex nanowires electrogenerated chemiluminescence sensors for high-performance discrimination of proline enantiomers based on the difference of electron-transfer capability. Talanta, 2019, 194, 98-104.	2.9	22
369	Microfluidics application for detection of biological warfare agents. , 2020, , 103-131.		3
370	Distance-dependent plasmon-enhanced electrochemiluminescence biosensor based on MoS2 nanosheets. Biosensors and Bioelectronics, 2020, 148, 111823.	5.3	53
371	2-(Dibutylamino)ethyl acrylate as a highly efficient co-reactant of Ru(bpy)32+ electrochemiluminescence for selective detection of cysteine. Electrochimica Acta, 2020, 329, 135117.	2.6	19
372	Red-shifted electrochemiluminescence of CdTe nanocrystals via Co2+-Doping and its spectral sensing application in near-infrared region. Biosensors and Bioelectronics, 2020, 150, 111880.	5.3	36
373	Dual Enhancement of Gold Nanocluster Electrochemiluminescence: Electrocatalytic Excitation and Aggregationâ€Induced Emission. Angewandte Chemie, 2020, 132, 10068-10071.	1.6	8
374	Introducing graphitic carbon nitride nanosheets as supersandwich-type assembly on porous electrode for ultrasensitive electrochemiluminescence immunosensing. Analytica Chimica Acta, 2020, 1097, 62-70.	2.6	18
375	An ultrasensitive sensing platform for microRNA-155 based on H2O2 quenched hydroxide-dependent ECL emission of PFO Pdots. Biosensors and Bioelectronics, 2020, 150, 111872.	5.3	33
376	Ultrafast Condensation of Carbon Nitride on Electrodes with Exceptional Boosted Photocurrent and Electrochemiluminescence. Angewandte Chemie, 2020, 132, 1155-1159.	1.6	35
377	Dual Enhancement of Gold Nanocluster Electrochemiluminescence: Electrocatalytic Excitation and Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2020, 59, 9982-9985.	7.2	143
378	Recent Progress in Electrochemiluminescence Sensing and Imaging. Analytical Chemistry, 2020, 92, 431-454.	3.2	339
379	Ultrafast Condensation of Carbon Nitride on Electrodes with Exceptional Boosted Photocurrent and Electrochemiluminescence. Angewandte Chemie - International Edition, 2020, 59, 1139-1143.	7.2	129
380	Sensitive Detection of Caffeic Acid and Rutin via the Enhanced Anodic Electrochemiluminescence Signal of Luminol. Analytical Sciences, 2020, 36, 311-316.	0.8	3

#	Article	IF	CITATIONS
381	High-efficiency cathodic electrochemiluminescence of the tris(2,2′-bipyridine)ruthenium(<scp>ii</scp>)/ <i>N</i> +hydroxy compound system and its use for sensitive "turn-on―detection of mercury(<scp>ii</scp>) and methyl blue. Chemical Communications, 2020, 56, 1827-1830.	2.2	12
382	Electrogenerated Chemiluminescence by in Situ Production of Coreactant Hydrogen Peroxide in Carbonate Aqueous Solution at a Boron-Doped Diamond Electrode. Journal of the American Chemical Society, 2020, 142, 1518-1525.	6.6	70
383	Singleâ€Atom Iron Boosts Electrochemiluminescence. Angewandte Chemie, 2020, 132, 3562-3566.	1.6	20
384	Singleâ€Atom Iron Boosts Electrochemiluminescence. Angewandte Chemie - International Edition, 2020, 59, 3534-3538.	7.2	167
385	Screen printed bipolar electrode for sensitive electrochemiluminescence detection of aflatoxin B1 in agricultural products. Biosensors and Bioelectronics, 2020, 150, 111873.	5.3	56
386	A molecularly engineered near-infrared-light-emitting electrochemical cell (NIR-LEC). New Journal of Chemistry, 2020, 44, 1881-1887.	1.4	12
387	Carbon-based dots for electrochemiluminescence sensing. Materials Chemistry Frontiers, 2020, 4, 369-385.	3.2	72
388	Electrogenerated Chemiluminescence Biosensing. Analytical Chemistry, 2020, 92, 524-534.	3.2	247
389	Tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence using rongalite as coreactant and its application in detection of foodstuff adulteration. Journal of Electroanalytical Chemistry, 2020, 857, 113752.	1.9	11
390	Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets. TrAC - Trends in Analytical Chemistry, 2020, 123, 115767.	5.8	95
391	Novel Ce(III)-Metal Organic Framework with a Luminescent Property To Fabricate an Electrochemiluminescence Immunosensor. ACS Applied Materials & Interfaces, 2020, 12, 338-346.	4.0	48
392	Superoxide-Triggered Luminol Electrochemiluminescence for Detection of Oxygen Vacancy in Oxides. Analytical Chemistry, 2020, 92, 1628-1634.	3.2	30
393	Electrochemiluminescence methods using CdS quantum dots in aptamer-based thrombin biosensors: a comparative study. Mikrochimica Acta, 2020, 187, 25.	2.5	39
394	Electrogenerated Chemiluminescence in Submicrometer Wells for Very High-Density Biosensing. Analytical Chemistry, 2020, 92, 578-582.	3.2	18
395	Anodic Electrochemiluminescence of Carbon Dots Promoted by Nitrogen Doping and Application to Rapid Cancer Cell Detection. Analytical Chemistry, 2020, 92, 1379-1385.	3.2	88
396	Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosensors and Bioelectronics, 2020, 150, 111926.	5.3	48
397	Electrochemiluminescence biosensor for DNA hydroxymethylation detection based on enzyme-catalytic covalent bonding reaction of –CH2OH and thiol functionalized Fe3O4 magnetic beads. Biosensors and Bioelectronics, 2020, 150, 111908.	5.3	23
398	Electrochemiluminescence of Ru(bpy) ₃ ²⁺ /Oxamic Hydrazide and its Application for Selective Detection of 4â€Nitrobenzaldehyde. ChemElectroChem, 2020, 7, 4239-4244.	1.7	7

ARTICLE IF CITATIONS Monitoring casein kinase II at subcellular level via bio-bar-code-based electrochemiluminescence 399 4.8 13 biosensing method. Chinese Chemical Letters, 2020, 31, 2520-2524. Electrochemistryâ∈Based Lightâ∈Emitting Mobile Systems. ChemElectroChem, 2020, 7, 4853-4862. 1.7 "Black body―effect of carbon nanospheres: A broadband energy acceptor in constructing 401 electrochemiluminescence resonance energy transfer for biosensing. Journal of Electroanalytical 1.9 3 Chemistry, 2020, 877, 114727. Biochar as an alternative sustainable platform for sensing applications: A review. Microchemical Journal, 2020, 159, 105506. Simultaneous Electrochemiluminescence Determination of Sinomenine, Cepharanthine and Tetrahydropalmatine in Stephania epigaea by Capillary Electrophoresis Coupled with 403 0.5 3 Ultrasonic-Assisted Aqueous Two-Phase Extraction. International Journal of Electrochemical Science, 2020, 5002-5017. Coupling a Wireless Bipolar Ultramicroelectrode with Nanoâ€electrospray Ionization Mass Spectrometry: Insights into the Ultrafast Initial Step of Electrochemical Reactions. Angewandte Chemie, 2020, 132, 18401-18405. 404 1.6 Quantum Nuts: Two Shells Are Better than One to Achieve Highly Efficient Electrochemiluminescence. 405 5.3 6 ACS Central Science, 2020, 6, 1043-1045. Electrogenerated chemiluminescence of Ru(bpy)32+ at MoS2 nanosheets modified electrode and its application in the sensitive detection of dopamine. Spectrochimica Acta - Part A: Molecular and 406 2.0 16 Biomolecular Spectroscopy, 2020, 240, 118607. Electrochemiluminescence of Bare Glassy Carbon with Benzoyl Peroxide as the Coreactant in 407 2.5 2 N,N-Dimethylformamide. Journal of Analysis and Testing, 2020, 4, 257-263. Coupling a Wireless Bipolar Ultramicroelectrode with Nanoâ€electrospray Ionization Mass 408 Spectrometry: Insights into the Ultrafast Initial Step of Electrochemical Reactions. Angewandte 44 Chemie - Intérnational Edition, 2020, 59, 18244-18248. Development of Miniaturized Electrochemiluminescence Instrument using Multiâ€pixel Photon Counter 409 1.5 6 as the Optical Detector. Electroanalysis, 2020, 32, 2018-2026. Postsynthesis Ligand Exchange Induced Porphyrin Hybrid Crystalloid Reconstruction for 3.2 Self-Enhanced Electrochemiluminescence. Analytical Chemistry, 2020, 92, 15270-15274. Water-Soluble Iridium(III) Complexes Containing Tetraethylene-Glycol-Derivatized Bipyridine Ligands 411 1.8 9 for Electrogenerated Chémiluminescence Detection. Frontiers in Chemistry, 2020, 8, 583631. Ultra-sensitive Electrochemiluminescence Platform Based on Magnetic Metal-Organic Framework for the Highly Efficient Enrichment. Sensors and Actuators B: Chemical, 2020, 324, 128700. Recent advances in co-reaction accelerators for sensitive electrochemiluminescence analysis. 413 2.2 60 Chemical Communications, 2020, 56, 10989-10999. Near-infrared electrochemiluminescence in water through regioselective sulfonation of diaza [4] and 414 2.2 [6]helicene dyes. Chemical Communications, 2020, 56, 9771-9774. Study of ethosuximide detection using a novel molecularly imprinted electrochemiluminescence 415 sensor based on tris(2,2â€2-bipyridyl) ruthenium(II)@nitrogen doped graphene quantum dots. Journal of 1.9 5 Electroanalytical Chemistry, 2020, 874, 114455. Aptamer based recognition of cancer cells: Recent progress and challenges in bioanalysis. Talanta, 49 2020, 220, 121436.

#	Article	IF	CITATIONS
417	Immobilization of Tris(1,10â€phenanthroline)ruthenium on Acetylene Carbon Black for Regenerable Electrochemiluminescence Sensors Free from Ionic Exchanger. ChemElectroChem, 2020, 7, 3761-3766.	1.7	4
418	An L012@PAni-PAAm hydrogel composite based-electrochemiluminescence biosensor for in situ detection of H2O2 released from cardiomyocytes. Electrochimica Acta, 2020, 354, 136763.	2.6	28
419	Surface-enhanced electrochemiluminescence combined with resonance energy transfer for sensitive carcinoembryonic antigen detection in exhaled breath condensates. Analyst, The, 2020, 145, 6524-6531.	1.7	9
420	Unraveling the reaction mechanism of co-reactant free in-situ cathodic solid state ECL of Ru(bpy)32+ molecule immobilized on Nafion coated nanoporous gold electrode. Electrochimica Acta, 2020, 358, 136920.	2.6	10
421	Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angewandte Chemie - International Edition, 2020, 59, 23261-23267.	7.2	63
422	Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. TrAC - Trends in Analytical Chemistry, 2020, 132, 116054.	5.8	56
423	Spatially resolved electrochemiluminescence through a chemical lens. Chemical Science, 2020, 11, 10496-10500.	3.7	56
424	Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angewandte Chemie, 2020, 132, 23461-23467.	1.6	5
425	Electrogenerated Chemiluminescence and Electroluminescence of Nâ€Doped Graphene Quantum Dots Fabricated from an Electrochemical Exfoliation Process in Nitrogenâ€Containing Electrolytes. Chemistry - A European Journal, 2020, 26, 15892-15900.	1.7	27
426	An off/on thrombin activated energy driven molecular machine for sensitive detection of human thrombin <i>via</i> non-enzymatic catalyst recycling amplification. Analyst, The, 2020, 145, 6868-6874.	1.7	3
427	Physico-chemically functionalized hybrid graphene derivatives for miniaturized microfluidics and biotransducer platform. Comprehensive Analytical Chemistry, 2020, , 125-148.	0.7	0
428	Reprint of "Tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence using rongalite as coreactant and its application in detection of foodstuff adulteration". Journal of Electroanalytical Chemistry, 2020, 872, 114649.	1.9	5
429	Facile Determination of Anesthetic Drug Propofol Based on Electrochemiluminescence Quenching. Chinese Journal of Analytical Chemistry, 2020, 48, e20056-e20060.	0.9	4
430	Ir(III) Cyclometalated Complexes Containing Phenylphenanthridine Ligands with Different Substitutions: Effects on the Electrochemiluminescence Properties. Inorganic Chemistry, 2020, 59, 7435-7443.	1.9	14
431	Photophysics, Electrochemistry and Efficient Electrochemiluminescence of Trigonal Truxeneâ€Core Dyes. Chemistry - A European Journal, 2020, 26, 8407-8416.	1.7	4
432	Molecularly Engineered Nearâ€Infrared Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1908103.	7.8	33
433	Paper-Based Constant Potential Electrochemiluminescence Sensing Platform with Black Phosphorus as a Luminophore Enabled by a Perovskite Solar Cell. Analytical Chemistry, 2020, 92, 6822-6826.	3.2	32
434	Electrochemiluminescence immunosensor based on signal probe CuFeS2 quantum Dots for ultrasensitive detection of cyclin D1. Journal of Electroanalytical Chemistry, 2020, 871, 114269.	1.9	11

#	Article	IF	CITATIONS
435	Quantum Dots with Highly Efficient, Stable, and Multicolor Electrochemiluminescence. ACS Central Science, 2020, 6, 1129-1137.	5.3	107
436	Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance. Nature Communications, 2020, 11, 2668.	5.8	198
437	Flower-like metal-organic framework microsphere as a novel enhanced ECL luminophore to construct the coreactant-free biosensor for ultrasensitive detection of breast cancer 1 gene. Sensors and Actuators B: Chemical, 2020, 320, 128395.	4.0	29
438	An Ultrasensitive ECL Sensor Based on Conducting Polymer/Electrochemically Reduced Graphene Oxide for Nonâ€Enzymatic Detection in Biological Samples. ChemistrySelect, 2020, 5, 5330-5336.	0.7	17
439	Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosensors and Bioelectronics, 2020, 164, 112332.	5.3	99
440	CRISPR/Cas13a Powered Portable Electrochemiluminescence Chip for Ultrasensitive and Specific MiRNA Detection. Advanced Science, 2020, 7, 1903661.	5.6	177
441	Ultrasensitive electrochemiluminescent immunosensing based on trimetallic Au–Pd–Pt/MoS2 nanosheet as coreaction accelerator and self-enhanced ABEI-centric complex. Analytica Chimica Acta, 2020, 1125, 86-93.	2.6	17
442	Electrochemiluminescence Imaging for the Morphological and Quantitative Analysis of Living Cells under External Stimulation. Analytical Chemistry, 2020, 92, 8278-8284.	3.2	42
443	Multimodal Imaging Iridium(III) Complex for Hypochlorous Acid in Living Systems. Analytical Chemistry, 2020, 92, 8285-8291.	3.2	32
444	Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications. Nanoscale, 2020, 12, 13879-13898.	2.8	81
445	Recent Advances of Electrochemiluminescent System in Bioassay. Journal of Analysis and Testing, 2020, 4, 57-75.	2.5	30
446	Homogeneous detection of 5-hydroxymethylcytosine based on electrochemiluminescence quenching of g-C3N4/MoS2 nanosheets by ferrocenedicarboxylic acid polymer. Talanta, 2020, 219, 121211.	2.9	7
447	Simple and rapid nicotine analysis using a disposable silica nanochannel-assisted electrochemiluminescence sensor. Analyst, The, 2020, 145, 4806-4814.	1.7	11
448	Electrochemiluminescent detection of glucose in human serum by BODIPY-based chemodosimeters for hydrogen peroxide using accelerated self-immolation of boronates. Chemical Communications, 2020, 56, 7577-7580.	2.2	18
449	Recent Advances in Electrochemiluminescence-Based Systems for Mammalian Cell Analysis. Micromachines, 2020, 11, 530.	1.4	39
450	Facile Preparation of WO _{3â^'<i>x</i>} Dots with Remarkably Low Toxicity and Uncompromised Activity as Coâ€reactants for Clinical Diagnosis by Electrochemiluminescence. Angewandte Chemie - International Edition, 2020, 59, 16747-16754.	7.2	77
451	Facile Preparation of WO 3â^' x Dots with Remarkably Low Toxicity and Uncompromised Activity as Coâ€reactants for Clinical Diagnosis by Electrochemiluminescence. Angewandte Chemie, 2020, 132, 16890.	1.6	1
452	Electrochemiluminescence in Thermo-Responsive Hydrogel Films with Tunable Thickness. Journal of Analysis and Testing, 2020, 4, 107-113.	2.5	0

#	Article	IF	CITATIONS
453	Electroactive Metal–Organic Frameworks as Emitters for Selfâ€Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie - International Edition, 2020, 59, 10446-10450.	7.2	96
454	Electrochemiluminescence analysis of tryptophan in aqueous solutions based on its reaction with tetraphenylborate anions. Analyst, The, 2020, 145, 3364-3369.	1.7	2
455	Emerging graphitic carbon nitride-based materials for biomedical applications. Progress in Materials Science, 2020, 112, 100666.	16.0	197
456	Depolymerization-Induced Electrochemiluminescence of Insoluble Porphyrin in Aqueous Phase. Analytical Chemistry, 2020, 92, 5464-5472.	3.2	41
457	A mass-amplifying electrochemiluminescence film (MAEF) for the visual detection of dopamine in aqueous media. Nanoscale, 2020, 12, 8828-8835.	2.8	25
458	Electrochemically Lighting Up Luminophores at Similar Low Triggering Potentials with Mechanistic Insights. Analytical Chemistry, 2020, 92, 6144-6149.	3.2	28
459	Acridine orange as a coreactant for efficient electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) and its use in selective and sensitive detection of thiourea. Chemical Communications, 2020, 56, 5154-5157.	2.2	10
460	Coâ€Reactant and Annihilation Electrogenerated Chemiluminescence of [Ir(dfâ€ppy) ₂ (ptb)] ⁺ Derivatives. ChemElectroChem, 2020, 7, 1889-1896.	1.7	7
461	TiO2 Nanomaterials in Photoelectrochemical and Electrochemiluminescent Biosensing. Topics in Current Chemistry, 2020, 378, 28.	3.0	30
462	Integrating Highly Efficient Recognition and Signal Transition of g-C ₃ N ₄ Embellished Ti ₃ C ₂ MXene Hybrid Nanosheets for Electrogenerated Chemiluminescence Analysis of Protein Kinase Activity. Analytical Chemistry, 2020, 92, 10668-10676.	3.2	80
463	3D Flower-Like MoS ₂ Nanomaterial as Signal-Promoter of PTC-PEI/S ₂ O ₈ ^{2â^'} System for Fabricating a Sensitive Electrochemiluminescence Methotrexate Sensor. Journal of the Electrochemical Society, 2020, 167, 107505.	1.3	9
464	Emerging nanosensing technologies for the detection of β-agonists. Food Chemistry, 2020, 332, 127431.	4.2	36
465	Double-site DNA walker based ternary electrochemiluminescent biosensor. Talanta, 2020, 219, 121274.	2.9	10
466	Electrochemical plasmonic optical fiber probe for real-time insight into coreactant electrochemiluminescence. Sensors and Actuators B: Chemical, 2020, 321, 128469.	4.0	7
467	Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - A review. Analytica Chimica Acta, 2020, 1114, 74-84.	2.6	88
468	Lightâ€Emitting Devices Based on Electrochemiluminescence Gels. Advanced Functional Materials, 2020, 30, 1907936.	7.8	62
469	Trace Ir(III) complex enhanced electrochemiluminescence of AIE-active Pdots in aqueous media. Science China Chemistry, 2020, 63, 715-721.	4.2	34
470	A highly sensitive and stable electrochemiluminescence immunosensor for alpha-fetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers. Sensors and Actuators B: Chemical, 2020, 311, 127919.	4.0	44

#	Article	IF	CITATIONS
471	A closed bipolar electrochemiluminescence sensing platform based on quantum dots: A practical solution for biochemical analysis and detection. Sensors and Actuators B: Chemical, 2020, 311, 127930.	4.0	20
472	DNA Structure Transition-Induced Affinity Switch for Biosensing Based on the Strong Electrochemiluminescence Platform from Organic Microcrystals. Analytical Chemistry, 2020, 92, 3940-3948.	3.2	18
473	Host–guest recognition coupled with triple signal amplification endows an electrochemiluminescent biosensor with enhanced sensitivity. Chemical Communications, 2020, 56, 2971-2974.	2.2	11
474	A robust and efficient aqueous electrochemiluminescence emitter constructed by sulfonate porphyrin-based metal–organic frameworks and its application in ascorbic acid detection. Analyst, The, 2020, 145, 2758-2766.	1.7	10
475	Advances in functional nucleic acid based paper sensors. Journal of Materials Chemistry B, 2020, 8, 3213-3230.	2.9	45
476	Matrix Coordination-Induced Electrochemiluminescence Enhancement of Tetraphenylethylene-Based Hafnium Metal–Organic Framework: An Electrochemiluminescence Chromophore for Ultrasensitive Electrochemiluminescence Sensor Construction. Analytical Chemistry, 2020, 92, 3380-3387.	3.2	112
477	Photophysical and Electrochemiluminescence of Coumarinâ€Based Oxazaborines. ChemElectroChem, 2020, 7, 1550-1557.	1.7	9
478	Dinuclear metal complexes: multifunctional properties and applications. Chemical Society Reviews, 2020, 49, 765-838.	18.7	148
479	Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Analytical Chemistry, 2020, 92, 3324-3331.	3.2	58
480	Electrochemiluminescence of Glutathioneâ€6tabilized Au Nanoclusters Fractionated by Gel Electrophoresis in Water. ChemElectroChem, 2020, 7, 1092-1096.	1.7	11
481	Data-Driven Modeling of Smartphone-Based Electrochemiluminescence Sensor Data Using Artificial Intelligence. Sensors, 2020, 20, 625.	2.1	20
482	Signal-off/on electrogenerated chemiluminescence deoxyribosensors for assay of early lung cancer biomarker (NAP2) based on target-caused DNA charge transfer. Analytica Chimica Acta, 2020, 1103, 67-74.	2.6	13
483	A novel signal amplification strategy for highly specific and nonenzymatic isothermal electrochemiluminescence detection of tumour markers. Analytical Methods, 2020, 12, 938-942.	1.3	2
484	Electrochemiluminescence Imaging Techniques for Analysis and Visualizing. Journal of Analysis and Testing, 2020, 4, 76-91.	2.5	29
485	Electroactive Metal–Organic Frameworks as Emitters for Selfâ€Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie, 2020, 132, 10532-10536.	1.6	13
486	Chiroptical detection of a model ruthenium dye in water by circularly polarized-electrochemiluminescence. Chemical Communications, 2020, 56, 5989-5992.	2.2	10
487	Electrochemiluminescence reaction pathways in nanofluidic devices. Analytical and Bioanalytical Chemistry, 2020, 412, 4067-4075.	1.9	6
488	Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity. Analytical Chemistry, 2020, 92, 7354-7362.	3.2	79

#	Article	IF	CITATIONS
489	Simple, fast, and ultrasensitive method for textile dye determination based on luminol electrochemiluminescence (ECL) inhibition. Journal of Solid State Electrochemistry, 2020, 24, 1927-1933.	1.2	9
490	A novel high efficient electrochemiluminescence sensor based on reductive Cu(I) particles catalyzed Zn-doped MoS2 QDs for HPV 16 DNA determination. Biosensors and Bioelectronics, 2020, 160, 112217.	5.3	65
491	Self-enhanced multicolor electrochemiluminescence by competitive electron-transfer processes. Chemical Science, 2020, 11, 4508-4515.	3.7	47
492	Two-dimensional black phosphorus nanoflakes: A coreactant-free electrochemiluminescence luminophors for selective Pb2+ detection based on resonance energy transfer. Journal of Hazardous Materials, 2021, 403, 123601.	6.5	34
493	An "on-off―electrochemiluminescence biosensor based on DNA nanotweezer probe coupled with tripod capture DNA for high sensitive detection of Pb2+. Sensors and Actuators B: Chemical, 2021, 326, 128985.	4.0	35
494	A highly sensitive electrochemiluminescence immunosensor for h-FABP determination based on self-enhanced luminophore coupled with ultrathin 2D nickel metal-organic framework nanosheets. Biosensors and Bioelectronics, 2021, 171, 112735.	5.3	43
495	Amplified anodic electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) for ultrasensitive detection of bambuterol: Application to content uniformity testing. Journal of Electroanalytical Chemistry, 2021, 880, 114881.	1.9	3
496	Electrochemiluminescence nanoimmunosensor for CD63 protein using a carbon nanochips/iron oxide/nafion-nanocomposite modified mesoporous carbon interface. Measurement: Journal of the International Measurement Confederation, 2021, 170, 108755.	2.5	8
497	Proximity binding-triggered multipedal DNA walker for the electrochemiluminescence detection of telomerase activity. Analytica Chimica Acta, 2021, 1144, 68-75.	2.6	19
498	Electrochemiluminescent Transistors: A New Strategy toward Lightâ€Emitting Switching Devices. Advanced Materials, 2021, 33, e2005456.	11.1	17
499	A ratiometric nanoprobe based on carboxylated graphitic carbon nitride nanosheets and Eu ³⁺ for the detection of tetracyclines. Analyst, The, 2021, 146, 1065-1073.	1.7	30
500	Development of portable CdS QDs screen-printed carbon electrode platform for electrochemiluminescence measurements and bioanalytical applications. Talanta, 2021, 225, 122029.	2.9	13
501	Electrogenerated Chemiluminescence of Luminol Mediated by Carbonate Electrochemical Oxidation at a Boron-Doped Diamond. Analytical Chemistry, 2021, 93, 2336-2341.	3.2	34
503	Recent advances on TMDCs for medical diagnosis. Biomaterials, 2021, 269, 120471.	5.7	30
504	Direct-readout photoelectrochemical lab-on-paper biosensing platform based on coupled electricity generating system and paper supercapacitors. Talanta, 2021, 222, 121517.	2.9	5
505	Sensitive and selective detection of Hg2+ in tap and canal water via self-enhanced ECL aptasensor based on NH2–Ru@SiO2-NGQDs. Talanta, 2021, 222, 121579.	2.9	33
506	An electrochemiluminescence energy resonance transfer system for highly sensitive detection of brombuterol. Talanta, 2021, 223, 121687.	2.9	10
507	Upconverted blue electrochemiluminescence of 9,10-diphenylanthracene with ultrafast response on photo-electro functional DNA/Ru(bpy)32+ hybrid electrode. Journal of Materials Chemistry C, 2021, 9, 2252-2257.	2.7	1

#	Article	IF	CITATIONS
508	Solvent-assisted strongly enhanced light-emitting electrochemiluminescent devices for lighting applications. RSC Advances, 2021, 11, 4682-4687.	1.7	3
509	Enhanced electrochemiluminescence of Au–Ag bimetallic nanocluster@CNTs–TiO ₂ nanocomposite and its use in ultra-sensitive immunosensing for CEA. New Journal of Chemistry, 2021, 45, 13064-13069.	1.4	7
510	A Host–Guest Interaction-Based and Metal–Organic Gel-Based Biosensor with Aggregation-Induced Electrochemiluminescence Enhancement for Methyltransferase Assay. Analytical Chemistry, 2021, 93, 2974-2981.	3.2	35
511	Two-Dimensional Metalloporphyrinic Framework Nanosheet-Based Dual-Mechanism-Driven Ratiometric Electrochemiluminescent Biosensing of Protein Kinase Activity. ACS Applied Bio Materials, 2021, 4, 1616-1623.	2.3	24
512	Fiber bundle-based chemiluminescence array detection. Analytical Methods, 2021, 13, 2459-2465.	1.3	4
513	Dual-signal ratiometric platforms: Construction principles and electrochemical biosensing applications at the live cell and small animal levels. TrAC - Trends in Analytical Chemistry, 2021, 134, 116124.	5.8	31
514	Electrochemiluminescence of Ru(bpy) ₃ ²⁺ /thioacetamide and its application for the sensitive determination of hepatotoxic thioacetamide. Analyst, The, 2021, 146, 5198-5203.	1.7	5
515	Catalytic route electrochemiluminescence microscopy of cell membranes with nitrogen-doped carbon dots as nano-coreactants. Chemical Communications, 2021, 57, 2168-2171.	2.2	37
516	Photonic Crystal of Polystyrene Nanomembrane: Signal Amplification and Low Triggered Potential Electrochemiluminescence for Tetracycline Detection. Analytical Chemistry, 2021, 93, 2959-2967.	3.2	41
517	Electrochemiluminescence Loss in Photobleaching. Angewandte Chemie, 2021, 133, 7764-7768.	1.6	14
518	Optimizing the Electrochemiluminescence of Readily Accessible Pyrido[1,2â€Î±]pyrimidines through "Green―Substituent Regulation. ChemElectroChem, 2021, 8, 547-557.	1.7	7
519	Swing Arm Location-Controllable DNA Walker for Electrochemiluminescence Biosensing. Analytical Chemistry, 2021, 93, 4051-4058.	3.2	53
520	Electrochemiluminescence Loss in Photobleaching. Angewandte Chemie - International Edition, 2021, 60, 7686-7690.	7.2	41
521	Silicon Nanocrystals Functionalized with Photoactive Units for Dual-Potential Electrochemiluminescence. Journal of Physical Chemistry C, 2021, 125, 5708-5714.	1.5	3
522	Polymer Electrochemiluminescence Featuring Thermally Activated Delayed Fluorescence. ChemPhysChem, 2021, 22, 726-732.	1.0	12
523	Spooling electrochemiluminescence spectroscopy: development, applications and beyond. Nature Protocols, 2021, 16, 2109-2130.	5.5	40
524	Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosensors and Bioelectronics, 2021, 176, 112954.	5.3	84
525	Reciprocating-flowing on-a-chip enables ultra-fast immunobinding for multiplexed rapid ELISA detection of SARS-CoV-2 antibody. Biosensors and Bioelectronics, 2021, 176, 112920.	5.3	30

#	Article	IF	CITATIONS
526	Ruthenium(II) Complex-Grafted Hollow Hierarchical Metal–Organic Frameworks with Superior Electrochemiluminescence Performance for Sensitive Assay of Thrombin. Analytical Chemistry, 2021, 93, 6239-6245.	3.2	53
527	Recent advances in electrochemiluminescence luminophores. Analytical and Bioanalytical Chemistry, 2022, 414, 131-146.	1.9	47
528	Split-type electrochemiluminescent gene assay platform based on gold nanocluster probe for human papillomavirus diagnosis. Biosensors and Bioelectronics, 2021, 178, 113044.	5.3	19
529	Ultrasensitive bioassaying of HER-2 protein for diagnosis of breast cancer using reduced graphene oxide/chitosan as nanobiocompatible platform. Cancer Nanotechnology, 2021, 12, .	1.9	36
530	Lighting up the Electrochemiluminescence of Carbon Dots through Pre―and Post‧ynthetic Design. Advanced Science, 2021, 8, 2100125.	5.6	49
531	A Solid‧tate Electrochemiluminescence Sensor Based on Novel Twoâ€Dimensional Ti ₃ C ₂ MXene. ChemElectroChem, 2021, 8, 1858-1863.	1.7	11
532	Highly potential-resolved anodic electrochemiluminescence multiplexing immunoassay with CulnS2@ZnS nanocrystals and [Ru(bpy)2(dcbpy)]2+ as emitters. Journal of Electroanalytical Chemistry, 2021, 888, 115173.	1.9	6
533	Ruthenium-Tris-Bipyridine Derivatives as a Divine Complex for Electrochemiluminescence Based Biosensor Applications. , 0, , .		1
534	A Synergistic Coreactant for Single-Cell Electrochemiluminescence Imaging: Guanine-Rich ssDNA-Loaded High-Index Faceted Gold Nanoflowers. Analytical Chemistry, 2021, 93, 7682-7689.	3.2	35
535	Rational Fabrication of a Smart Electrochemiluminescent Sensor: Synergistic Effect of a Self-Luminous Faraday Cage and Biomimetic Magnetic Vesicles. Analytical Chemistry, 2021, 93, 7508-7515.	3.2	10
536	Bipolar Electrochemiluminescence Imaging: A Way to Investigate the Passivation of Silicon Surfaces. ChemPhysChem, 2021, 22, 1094-1100.	1.0	6
537	Direct-laser-writing of electrochemiluminescent electrode on glassy carbon for iodide sensing in aqueous solution. Sensors and Actuators B: Chemical, 2021, 337, 129766.	4.0	10
538	Aggregation-Induced Emission in Electrochemiluminescence: Advances and Perspectives. Topics in Current Chemistry, 2021, 379, 31.	3.0	19
539	Rational Design of Electrochemiluminescent Devices. Accounts of Chemical Research, 2021, 54, 2936-2945.	7.6	109
540	Photoinduced electrochemiluminescence at nanostructured hematite electrodes. Electrochimica Acta, 2021, 381, 138238.	2.6	12
541	Development and application of several fluorescent probes in near infrared region. Dyes and Pigments, 2021, 190, 109284.	2.0	28
542	Bipolar (Bio)electroanalysis. Annual Review of Analytical Chemistry, 2021, 14, 65-86.	2.8	34
543	Application of MXene in Electrochemical Sensors: A Review. Electroanalysis, 2021, 33, 1827-1851.	1.5	86

#	Article	IF	CITATIONS
544	Bipolar Aggregation-Induced Electrochemiluminescence of Thiophene-Fused Conjugated Microporous Polymers. ACS Applied Materials & Interfaces, 2021, 13, 28782-28789.	4.0	23
545	Electrogenerated chemiluminescence method for sensitive detection of hydroxylated double-stranded DNA through multifunctional polyadenine probe and hybridization chain reaction. Sensors and Actuators B: Chemical, 2021, 336, 129722.	4.0	5
546	Modulating Oxygen Reduction Behaviors on Nickel Single-Atom Catalysts to Probe the Electrochemiluminescence Mechanism at the Atomic Level. Analytical Chemistry, 2021, 93, 8663-8670.	3.2	48
547	Electrochemiluminescent immunoassay for the determination of CA15-3 and CA72-4 using graphene oxide nanocomposite modified with CdSe quantum dots and Ru(bpy)3 complex. Mikrochimica Acta, 2021, 188, 238.	2.5	10
548	Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angewandte Chemie - International Edition, 2021, 60, 18742-18749.	7.2	63
549	Atom-Anchoring Strategy with Metal–Organic Frameworks for Highly Efficient Solid-State Electrochemiluminescence. Analytical Chemistry, 2021, 93, 9628-9633.	3.2	14
550	Research status and prospect of MOF composites in the field of electrochemical sensing. International Journal of Nanomaterials Nanotechnology and Nanomedicine, 2021, , 045-046.	0.2	0
551	Enhanced light-emission efficiency of multi-color electrochemiluminescence displays using electrochemical Au nanoparticle catalysts with three dimensional ZnO nanorod electrodes. Chemical Engineering Journal, 2021, 416, 129202.	6.6	10
552	CRISPR/Cas13-Based Approaches for Ultrasensitive and Specific Detection of microRNAs. Cells, 2021, 10, 1655.	1.8	33
553	Two-Dimensional-Plasmon-Boosted Iron Single-Atom Electrochemiluminescence for the Ultrasensitive Detection of Dopamine, Hemin, and Mercury. Analytical Chemistry, 2021, 93, 9949-9957.	3.2	42
554	Electrochemical sensors for Tetracycline antibiotics detection based on carbon electrode materials modified by biological and chemical compounds: A review. International Journal of Environmental Analytical Chemistry, 0, , 1-23.	1.8	4
555	Enzyme Free Electrochemiluminescence Sensor of Histamine Based on Graphite arbon Nitride Nanosheets. Electroanalysis, 2022, 34, 659-666.	1.5	5
556	Highly Sensitive Homogeneous Electrochemiluminescence Biosensor for Alkaline Phosphatase Detection Based on Click Chemistry-Triggered Branched Hybridization Chain Reaction. Analytical Chemistry, 2021, 93, 10351-10357.	3.2	15
557	Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angewandte Chemie, 2021, 133, 18890-18897.	1.6	11
558	A microscopy technique that images single reaction events in total darkness. Nature, 2021, 596, 194-195.	13.7	13
559	Electrochemiluminescence Biosensor Based on Entropy-Driven Amplification and a Tetrahedral DNA Nanostructure for miRNA-133a Detection. Analytical Chemistry, 2021, 93, 11809-11815.	3.2	61
560	Nano-structured materials for the electrochemiluminescence signal enhancement. Electrochimica Acta, 2021, 388, 138586.	2.6	23
561	Low-Triggering-Potential Electrochemiluminescence from Surface-Confined CuInS ₂ @ZnS Nanocrystals and their Biosensing Applications. Analytical Chemistry, 2021, 93, 12250-12256.	3.2	12

#	Article	IF	CITATIONS
562	Absolute Electrochemiluminescence Efficiency Quantification Strategy Exemplified with Ru(bpy) ₃ ²⁺ in the Annihilation Pathway. Analytical Chemistry, 2021, 93, 11626-11633.	3.2	42
563	Overcoming Aggregation-Induced Quenching by Metalâ^'Organic Framework for Electrochemiluminescence (ECL) Enhancement: Zn-PTC as a New ECL Emitter for Ultrasensitive MicroRNAs Detection. ACS Applied Materials & Interfaces, 2021, 13, 44079-44085.	4.0	53
564	Deciphering the Mechanisms of Electrochemiluminescence by Spatially Resolved Measurements. Analysis & Sensing, 2021, 1, 148-155.	1.1	9
566	A dual signal-amplified electrochemiluminescence immunosensor based on core-shell CeO2-Au@Pt nanosphere for procalcitonin detection. Mikrochimica Acta, 2021, 188, 344.	2.5	10
567	Cathodic Electrochemiluminescence from Rhodamine B in Aqueous Media Using Peroxydisulfate as Co-reactant. Chemistry Letters, 2021, 50, 1659-1661.	0.7	3
568	Electrogenerated chemiluminescence of luminol on wireless conducting polymer films. Electrochimica Acta, 2021, 389, 138718.	2.6	18
569	Iridium(â¢) complex-based phosphorescent and electrochemiluminescent dual sensor for selective detection of glutathione. Sensors and Actuators B: Chemical, 2021, 342, 129868.	4.0	13
570	Electrochemiluminescence Immunoassay Platform with Immunoglobulin G-Encapsulated Gold Nanoclusters as a "Two-In-One―Probe. Analytical Chemistry, 2021, 93, 13022-13028.	3.2	18
571	Recent advances in colorimetry/fluorimetry-based dual-modal sensing technologies. Biosensors and Bioelectronics, 2021, 190, 113386.	5.3	53
572	Highly sensitive electrochemiluminescence biosensor for Dam methyltransferase based on target-response DNA hydrogel. Journal of Luminescence, 2021, 238, 118250.	1.5	3
573	Three kinds of porphyrin dots as near-infrared electrochemiluminescence luminophores: Facile synthesis and biosensing. Chemical Engineering Journal, 2021, 421, 129761.	6.6	20
574	Dual-signal electrochemiluminescence immunosensor for Neuron-specific enolase detection based on "dual-potential―emitter Ru(bpy)32+ functionalized zinc-based metal-organic frameworks. Biosensors and Bioelectronics, 2021, 192, 113505.	5.3	37
575	Optical imaging of nanoscale electrochemical interfaces in energy applications. Nano Energy, 2021, 90, 106539.	8.2	19
576	Enhanced Near-Infrared Electrochemiluminescence from Trinary Ag–In–S to Multinary Ag–Ga–In–S Nanocrystals via Doping-in-Growth and Its Immunosensing Applications. Analytical Chemistry, 2021, 93, 2160-2165.	3.2	30
577	Electrospun nanomaterials as biosensors in diagnostics and beyond. , 2021, , 157-182.		0
578	Mass spectrometric detection of fleeting neutral intermediates generated in electrochemical reactions. Chemical Science, 2021, 12, 9494-9499.	3.7	11
579	Electrodeposition immobilized molybdenum disulfide quantum dots and their electrochemiluminescence application in the detection of melamine residues in milk powder. Analytical Methods, 2021, 13, 2196-2203.	1.3	5
580	Film Electrochemiluminescence Controlled by Interfacial Reactions Along with Aggregationâ€; Matrixâ€Coordinationâ€; and Crystallizationâ€induced Emissions. ChemPlusChem, 2021, 86, 155-165.	1.3	12

#	Article	IF	CITATIONS
581	Two Birds with One Stone: Surface Functionalization and Delamination of Multilayered Ti ₃ C ₂ T _{<i>x</i>} MXene by Grafting a Ruthenium(II) Complex to Achieve Conductivity-Enhanced Electrochemiluminescence. Analytical Chemistry, 2021, 93, 1834-1841.	3.2	39
582	A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination. Analytical and Bioanalytical Chemistry, 2018, 410, 5165-5172.	1.9	14
583	CdZnSeS quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells. Electrochimica Acta, 2020, 362, 137107.	2.6	19
584	Ultrasensitive Nucleic Acid Assay Based on Cyclometalated Iridium(III) Complex with High Electrochemiluminescence Efficiency. Analytical Chemistry, 2021, 93, 1686-1692.	3.2	41
585	Electrochemiluminescence Microscopy of Cells: Essential Role of Surface Regeneration. Analytical Chemistry, 2021, 93, 1652-1657.	3.2	35
586	Facile nanoâ€free electrochemiluminescence biosensor for detection of sulphamethoxazole via tris(2,2′â€bipyridyl)ruthenium(II) and N â€methyl pyrrolidone recognition. IET Nanobiotechnology, 2020, 14, 167-171.	1.9	2
587	Wireless Enhanced Electrochemiluminescence at a Bipolar Microelectrode in a Solid-State Micropore. Journal of the Electrochemical Society, 2020, 167, 137509.	1.3	7
588	Ultrasensitive Materials for Electrochemical Biosensor Labels. Sensors, 2021, 21, 89.	2.1	24
589	Vertically oriented mesoporous silica film modified fluorine-doped tin oxide electrode for enhanced electrochemiluminescence detection of lidocaine in serum. RSC Advances, 2021, 11, 34669-34675.	1.7	19
590	Copper-Doped Terbium Luminescent Metal Organic Framework as an Emitter and a Co-reaction Promoter for Amplified Electrochemiluminescence Immunoassay. Analytical Chemistry, 2021, 93, 14878-14884.	3.2	44
591	Recent advances in DNA glycosylase assays. Chinese Chemical Letters, 2022, 33, 3603-3612.	4.8	5
592	Coâ€Quenching Effect between Lanthanum Metal–Organic Frameworks Luminophore and Crystal Violet for Enhanced Electrochemiluminescence Gene Detection. Small, 2021, 17, e2103424.	5.2	18
593	Quantum dots for electrochemiluminescence bioanalysis - A review. Analytica Chimica Acta, 2022, 1209, 339140.	2.6	37
594	A Three-Dimensional Cd(II)-Coordination Polymer: Crystal Structure, Electrochemiluminescent Property and Novel Topology. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1.	1.9	0
595	Microarray of programmable electrochemically active elements. , 2016, , .		0
596	Apparatus "Spark" for luminescent and electrochemiluminescent measurements. Przeglad Elektrotechniczny, 2018, 1, 40-44.	0.1	1
597	Design of Metal-free Nanocatalysts. RSC Catalysis Series, 2019, , 163-183.	0.1	0
598	Noncovalent Immobilization of Catalysts on Electrode Surfaces. RSC Catalysis Series, 2019, , 324-349.	0.1	0

#	Article	IF	CITATIONS
599	Nanoparticle Enhanced Optical Biosensing Technologies for Prostate Specific Antigen Biomarker Detection. IEEE Reviews in Biomedical Engineering, 2022, 15, 122-137.	13.1	4
600	An in situ quenching electrochemiluminescence biosensor amplified with aptamer recognition-induced multi-DNA release for sensitive detection of pathogenic bacteria. Biosensors and Bioelectronics, 2022, 196, 113744.	5.3	23
601	A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots. Progress in Materials Science, 2022, 124, 100884.	16.0	59
602	Electrogenerated chemiluminescence (ECL). , 2020, , 285-314.		0
603	Plasmon-Boosted Cu-Doped TiO ₂ Oxygen Vacancy-Rich Luminol Electrochemiluminescence for Highly Sensitive Detection of Alkaline Phosphatase. Analytical Chemistry, 2021, 93, 15183-15191.	3.2	25
604	Chemiluminescence and Its Biomedical Applications. , 2021, , 143-195.		1
605	Psychoactive Substances and How to Find Them: Electrochemiluminescence as a Strategy for Identification and Differentiation of Drug Species. Journal of the Electrochemical Society, 2020, 167, 166502.	1.3	5
606	Sensitive and selective "signal-off―electrochemiluminescence sensing of prostate-specific antigen based on an aptamer and molecularly imprinted polymer. Analyst, The, 2021, 146, 7693-7701.	1.7	21
607	Disposable biosensor based on novel ternary Ru-PEI@PCN-333(Al) self-enhanced electrochemiluminescence system for on-site determination of caspase-3 activity. Talanta, 2022, 239, 123083.	2.9	9
608	Vertically Ordered Mesoporous Silica-Nanochannel Film-Equipped Three-Dimensional Macroporous Graphene as Sensitive Electrochemiluminescence Platform. Frontiers in Chemistry, 2021, 9, 770512.	1.8	11
609	Gel-Based Luminescent Conductive Materials and Their Applications in Biosensors and Bioelectronics. Materials, 2021, 14, 6759.	1.3	4
610	Highly sensitive analysis strategies of microRNAs based on electrochemiluminescence. Current Opinion in Electrochemistry, 2022, 32, 100901.	2.5	5
611	Highly Active Electrochemiluminescence of Ruthenium Complex Co-assembled Chalcogenide Nanoclusters and the Application for Label-Free Detection of Alkaline Phosphatase. Analytical Chemistry, 2021, 93, 15794-15801.	3.2	20
612	Highly selective and sensitive detection of mercury (II) and dopamine based on the efficient electrochemiluminescence of Ru(bpy)32+ with acridine orange as a coreactant. Journal of Electroanalytical Chemistry, 2022, 906, 115896.	1.9	8
613	Electrochemiluminescence of [Ru(bpy)3]2+/tripropylamine at glassy carbon, platinum, and palladium electrodes. Sensors and Actuators Reports, 2021, 3, 100062.	2.3	2
614	Enhanced Cathodic Electrochemiluminescence of Luminol on Iron Electrodes. Analytical Chemistry, 2021, 93, 16425-16431.	3.2	29
615	Photoelectrochemistry at semiconductor/liquid interfaces triggered by electrochemiluminescence. Cell Reports Physical Science, 2021, 2, 100670.	2.8	7
616	Assessment of [Ru(bpy)2]3+and [Os(diars)2(bthp)]2+ for the electrochemiluminescence detection of gemcitabine and leucovorin toward diagnostic point-of-care sensors within precision medicine. Sensors and Actuators Reports, 2021, 3, 100065.	2.3	2

#	Article	IF	CITATIONS
617	Surface Enhanced Electrochemiluminescence of the Ru(Bpy) ₃ ²⁺ /tripropylamine System by Au@sio ₂ Nanoparticles for Highly Sensitive and Selective Detection of Dopamine. SSRN Electronic Journal, 0, , .	0.4	0
618	A Dual-Mechanism-Driven Electrochemiluminescence Aptasensor for Sensitive Detection of <i>$\hat{I}^2 < /i$>-Amyloid Peptide. SSRN Electronic Journal, 0, , .</i>	0.4	0
619	Dynamic Electrochemiluminescence Imaging of Single Giant Liposome Opening at Polarized Electrodes. Analytical Chemistry, 2022, 94, 1686-1696.	3.2	14
621	Electrogenerated chemiluminescence of a Ru(bpy) ₃ ²⁺ /arginine system: a specific and sensitive detection of acetaminophen. RSC Advances, 2022, 12, 3157-3164.	1.7	14
622	A redox-mediator pathway for enhanced multi-colour electrochemiluminescence in aqueous solution. Chemical Science, 2022, 13, 469-477.	3.7	21
623	Sensitive electrochemiluminescence biosensing of polynucleotide kinase using the versatility of two-dimensional Ti3C2TX MXene nanomaterials. Analytica Chimica Acta, 2022, 1191, 339346.	2.6	25
624	Shared-cathode closed bipolar electrochemiluminescence cloth-based chip for multiplex detection. Analytica Chimica Acta, 2022, 1206, 339446.	2.6	9
625	Single-Electrode Electrochemical System for the Visual and High-Throughput Electrochemiluminescence Immunoassay. Analytical Chemistry, 2022, 94, 2189-2194.	3.2	37
626	Surfaceâ€Bondingâ€Enhanced Selfâ€Coâ€Reactant Electrogenerated Chemiluminescence for Sensitive and Selective Detection of Thioglycolic Acid in Cosmetics. Chemistry - A European Journal, 2022, 28, .	1.7	2
627	Cysteine Modification of Glutathione-Stabilized Au Nanoclusters to Red-Shift and Enhance the Electrochemiluminescence for Sensitive Bioanalysis. Analytical Chemistry, 2022, 94, 2313-2320.	3.2	26
628	Development of Ru(bpy)32+ electrochemiluminescence sensor for highly sensitive detection of carcinogenic and mutagenic hexamethylphosphoramide. Journal of Electroanalytical Chemistry, 2022, 904, 115954.	1.9	4
629	High-Entropy Oxide for Highly Efficient Luminol–Dissolved Oxygen Electrochemiluminescence and Biosensing Applications. Analytical Chemistry, 2022, 94, 2958-2965.	3.2	22
630	Research advances on surface plasmon resonance biosensors. Nanoscale, 2022, 14, 564-591.	2.8	83
631	Electrochemiluminescence with semiconductor (nano)materials. Chemical Science, 2022, 13, 2528-2550.	3.7	94
632	Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosensors and Bioelectronics, 2022, 201, 113932.	5.3	79
633	Surface enhanced electrochemiluminescence of the Ru(bpy)32+/tripropylamine system by Au@SiO2 nanoparticles for highly sensitive and selective detection of dopamine. Microchemical Journal, 2022, 176, 107224.	2.3	10
634	Photoluminescence and electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters containing diphenylphosphine chalcogenide-substituted carbazole donors. Journal of Materials Chemistry C, 2022, 10, 4646-4667.	2.7	20
635	A new anodic electrochemiluminescence of tris(2,2′- bipyridine)ruthenium(II) with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as a coreactant for determination of hydrogen peroxide. Microchemical Journal, 2022, 177, 107256.	2.3	5

#	Article	IF	CITATIONS
636	Plasmon-Enhanced Nitrogen Vacancy-Rich Carbon Nitride Electrochemiluminescence Aptasensor for Highly Sensitive Detection of miRNA. Analytical Chemistry, 2022, 94, 1406-1414.	3.2	23
637	Preparation of a disposable electrochemiluminescence sensor chip based on an MXene-loaded ruthenium luminescent agent and its application in the detection of carcinoembryonic antigens. Analyst, The, 2022, 147, 1986-1994.	1.7	12
638	Electrochemiluminescence enhanced by isolating ACQphores in pyrene-based porous organic polymer: A novel ECL emitter for the construction of biosensing platform. Analytica Chimica Acta, 2022, 1206, 339648.	2.6	16
639	Electrochemiluminescence sensors and forensic investigations: a viable technique for drug detection?. Pure and Applied Chemistry, 2022, 94, 535-545.	0.9	1
640	Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. Environmental Pollution, 2022, 305, 119218.	3.7	23
641	Metalâ€Insulatorâ€Semiconductor Anodes for Ultrastable and Siteâ€Selective Upconversion Photoinduced Electrochemiluminescence. Angewandte Chemie, 0, , .	1.6	1
642	MXenes Quantum Dots for Biomedical Applications: Recent Advances and Challenges. Chemical Record, 2022, 22, e202200019.	2.9	7
643	MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF–N-(4-aminobutyl)-N-ethylisoluminol/Ti3C2Tx composite and duplex-specific nuclease-assisted signal amplification. Mikrochimica Acta, 2022, 189, 129.	2.5	10
644	Ultrasensitive Immunosensor for Prostate-Specific Antigen Based on Enhanced Electrochemiluminescence by Vertically Ordered Mesoporous Silica-Nanochannel Film. Frontiers in Chemistry, 2022, 10, 851178.	1.8	35
645	The Effect of Ionic Strength on the Electrochemiluminescence Generation by Tris(2,2′-bipyridyl)ruthenium(II)/Tri-n-propylamine. Chemical Research in Chinese Universities, 2022, 38, 816-822.	1.3	3
646	Metalâ€Insulatorâ€Semiconductor Anodes for Ultrastable and Siteâ€Selective Upconversion Photoinduced Electrochemiluminescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
647	Low-Triggering-Potential Electrochemiluminescence from a Luminol Analogue Functionalized Semiconducting Polymer Dots for Imaging Detection of Blood Glucose. Analytical Chemistry, 2022, 94, 5615-5623.	3.2	13
648	Polythionine-mediated AgNWs-AuNPs aggregation conductive network: Fabrication of molecularly imprinted electrochemiluminescence sensors for selective capture of kanamycin. Journal of Hazardous Materials, 2022, 434, 128882.	6.5	12
649	G-quadruplex-selective iridium(III) complex as a novel electrochemiluminescence probe for switch-on assay of double-stranded DNA. Analytical and Bioanalytical Chemistry, 2022, 414, 3755-3763.	1.9	2
650	Aromaticity-Enhanced pH-Responsive Electrochemiluminescence of Cyclopentadienols. Analytical Chemistry, 2022, 94, 6036-6043.	3.2	10
651	A novel electrochemiluminescent immunosensor for the detection of NT-proBNP based on a Au/ZIF-67 nanocomposite. Journal of Electroanalytical Chemistry, 2022, 912, 116260.	1.9	9
652	Efficient Electrochemiluminescence devices using Pd Nanoparticle-Anchored TiO2 nanorod electrodes with high catalytic activity. Applied Surface Science, 2022, 586, 152864.	3.1	3
653	A simple, low-cost instrument for electrochemiluminescence immunoassays based on a Raspberry Pi and screen-printed electrodes. Bioelectrochemistry, 2022, 146, 108107.	2.4	8

#	Article	IF	Citations
654	MXene-Derived Quantum Dot@Gold Nanobones Heterostructure-Based Electrochemiluminescence Sensor for Triple-Negative Breast Cancer Diagnosis. Analytical Chemistry, 2021, 93, 17086-17093.	3.2	29
655	Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments?. Analytical Chemistry, 2022, 94, 349-365.	3.2	34
656	Coreactant-Free and Direct Electrochemiluminescence from Dual-Stabilizer-Capped InP/ZnS Nanocrystals: A New Route Involving n-Type Luminophore. Analytical Chemistry, 2022, 94, 1350-1356.	3.2	23
657	Dual-potential electrochemiluminescent film constructed from single AIE luminogens for the sensitive detection of malachite green. Nanoscale, 2022, 14, 7711-7719.	2.8	5
658	Unveiling the reaction mechanism of co-reactant electrochemiluminescence behavior of alloxan molecule using tris(2,2′-bipyridine)ruthenium(II) as a luminophore and its potential of sensing application. Electrochimica Acta, 2022, 419, 140355.	2.6	1
659	CeO2/MXene heterojunction-based ultrasensitive electrochemiluminescence biosensing for BCR-ABL fusion gene detection combined with dual-toehold strand displacement reaction for signal amplification. Biosensors and Bioelectronics, 2022, 210, 114287.	5.3	16
660	One-Step Fabrication of Highly Sensitive Tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Graphene-Titania-Nafion Composite Film. Sensors, 2022, 22, 3064.	2.1	0
661	Identifying Luminol Electrochemiluminescence at the Cathode via Single-Atom Catalysts Tuned Oxygen Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 7741-7749.	6.6	90
662	Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection. Analytical Chemistry, 2022, 94, 7035-7040.	3.2	25
664	Insights into electrochemiluminescence dynamics by synchronizing real-time electrical, luminescence, and mass spectrometric measurements. Chemical Science, 2022, 13, 6244-6253.	3.7	9
665	Ctni Diagnosis in Myocardial Infarction Using G-Quadruplex Selective Ir(Iii) Complex as Effective Electrochemiluminescence Probe. SSRN Electronic Journal, 0, , .	0.4	0
666	Electrogenerated Chemiluminescence in Functional Redox Chemistry. RSC Green Chemistry, 2022, , 359-374.	0.0	0
667	Novel Electrolytic Processes. RSC Green Chemistry, 2022, , 60-79.	0.0	0
668	Dual-Emissive, Coreactant-Free Electrochemiluminescence of a Self-Assembled Luminol/Porphyrin System in Aqueous Phase. SSRN Electronic Journal, 0, , .	0.4	0
669	Highly sensitive competitive electrochemiluminescence immunosensor based on ABEI-H2O2 system with cobalt hydroxide nanosheets and bimetal PdAg as co-enhancer for detection of florfenicol. Mikrochimica Acta, 2022, 189, 214.	2.5	6
670	Gold Nanowires Array-Based Closed Bipolar Nanoelectrode System for Electrochemiluminescence Detection of α-Fetoprotein on Cell Surface. Analytical Chemistry, 2022, 94, 7350-7357.	3.2	25
671	An ultrasensitive CH3NH3PbBr3 quantum dots@SiO2-based electrochemiluminescence sensing platform using an organic electrolyte for aflatoxin B1 detection in corn oil. Food Chemistry, 2022, 390, 133200.	4.2	17
672	Quenching of tungsten-based polyoxometalate nanoclusters on electrochemiluminescence emission of luminol loaded CeVO4/Au for immunoassay of protein. Analytica Chimica Acta, 2022, 1210, 339883.	2.6	6

#	Article	IF	CITATIONS
	The combination of highly efficient resonance energy transfer in one nanocomposite and		
673	ferrocene-quenching for ultrasensitive electrochemiluminescence bioanalysis. Biosensors and Bioelectronics, 2022, 210, 114347.	5.3	9
	A fully integrated and handhold electrochemiluminescence device for detection of denamine in		
674	bio-samples. Sensors and Actuators B: Chemical, 2022, 366, 131972.	4.0	16
675	Electrochemiluminescence Sensors in Bioanalysis. , 2023, , 317-340.		5
	Anti-Stokes photoinduced electrochemiluminescence at a photocathode. Chemical Communications.		
676	2022, 58, 6686-6688.	2.2	6
	MXene-based aptasensors: Advances, challenges, and prospects. Progress in Materials Science, 2022,		
677	129, 100967.	16.0	46
	Descrit Dragness in Floring shows is unique to Missesser whether a Circle Calle Analysis of Circle Calle	1.5	10
678	Recent Progress in Electrochemiluminescence Microscopy Analysis of Single Cells. Analyst, The, U, , .	1.7	19
	Surface Plasmon-Enhanced Electrochemiluminescence of P, N-Doped Carbon Dots for Ultrasensitive	0.4	0
679	Detection of Braf Gene. SSRN Electronic Journal, 0, , .	0.4	0
690	Tetraphenylethylene-Functionalized Metalâ€"Organic Frameworks with Strong Aggregation-Induced	0.0	9.0
680	Energy Transfer System. Analytical Chemistry, 2022, 94, 7861-7867.	٥.۷	28
691	Construction of an ECL Detection Platform for Sensitive Detection of Carbaryl Based on an	1.0	9
081	Eu3+-Functionalized Metal–Organic Framework Encapsulated with Nanogold. Foods, 2022, 11, 1487.	1,9	2
682	Electrochemiluminescence sensor for point-of-care detection of pyrrolizidine alkaloids. Talanta,	2 0	7
002	2022, 249, 123645.	2.7	
683	Controlled synthesis of zinc-metal organic framework microflower with high efficiency	5.3	20
000	electrochemiluminescence for miR-21 detection. Biosensors and Bioelectronics, 2022, 213, 114443.	0.0	
684	Electrochemiluminescence. Springer Handbooks. 2022. , 1777-1809.	0.3	1
	, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,		
685	Construction of Carbon Dots with Color-Tunable Electrochemiluminescence and Enhanced Efficiency	0.4	0
	Enabled by Shadow Trapping States and Intramolecular Charge Transfer. SSRN Electronic Journal, O, , .		-
686	Efficient ABEI–Dissolved O ₂ –Ce(III, IV)-MOF Ternary Electrochemiluminescent System Combined with Self-Assembled Microfluidic Chips for Bioanalysis. Analytical Chemistry, 2022, 94,	3.2	11
	9363-9371.		
687	Plasmon-Boosted Fe, Co Dual Single-Atom Catalysts for Ultrasensitive Luminol-Dissolved O ₂ Electrochemiluminescence Detection of Prostate-Specific Antigen. Analytical	3.2	35
	Chemistry, 2022, 94, 9758-9765.		
688	Single-Atom Iron Enables Strong Low-Triggering-Potential Luminol Cathodic	3.2	37
	Lieutochemiuminescence. Analytical chemistry, 2022, 94, 9439-9403.		
689	O-Fluorobenzoic Acid-Mediated Construction of Porous Graphitic Carbon Nitride with Nitrogen Defects for Multicolor Electrochemiluminescence Imaging Sensing. Analytical Chemistry, 2022, 94,	3.2	11
	9306-9315.		
690	Wireless Anti-Stokes Photoinduced Electrochemiluminescence at Closed Semiconducting Bipolar	2.1	9

#	Article	IF	CITATIONS
691	A highly sensitive homogeneous electrochemiluminescence biosensor for flap endonuclease 1 based on branched hybridization chain reaction amplification and ultrafiltration separation. Bioelectrochemistry, 2022, 147, 108189.	2.4	6
692	Acidic pH and thiol-driven homogeneous cathodic electrochemiluminescence strategy for determining the residue of organophosphorus pesticide in Chinese cabbage. Food Chemistry, 2022, 393, 133349.	4.2	8
693	Metal–organic frameworks as a therapeutic strategy for lung diseases. Journal of Materials Chemistry B, 2022, 10, 5666-5695.	2.9	9
694	Progress and Prospects of Electrochemiluminescence Biosensors Based on Porous Nanomaterials. Biosensors, 2022, 12, 508.	2.3	10
695	Imaging electrochemiluminescence layer to dissect concentration-dependent light intensity for accurate quantitative analysis. , 2022, 1, 100028.		6
696	Enhancing Electrochemiluminescence Efficiency through Introducing Atomically Dispersed Ruthenium in Nickel-Based Metal–Organic Frameworks. Analytical Chemistry, 2022, 94, 10557-10566.	3.2	24
697	Research trends in biomedical applications of two-dimensional nanomaterials over the last decade – A bibliometric analysis. Advanced Drug Delivery Reviews, 2022, 188, 114420.	6.6	25
698	Rigid-induced aggregated annihilation electrochemiluminescence of 1,2,3-triaryl-substituted indoles in aqueous phase. Journal of Electroanalytical Chemistry, 2022, 920, 116569.	1.9	1
699	Surface plasmon-enhanced electrochemiluminescence of P, N-doped carbon dots for ultrasensitive detection of BRAF gene. Sensors and Actuators B: Chemical, 2022, 369, 132288.	4.0	8
700	Efficient Au nanocluster@Ti3C2 heterostructure luminophore combined with Cas12a for electrochemiluminescence detection of miRNA. Sensors and Actuators B: Chemical, 2022, 370, 132428.	4.0	14
701	Recent Advances in Single Cell Analysis by Electrochemiluminescence. ChemistryOpen, 2023, 12, .	0.9	9
702	Electrocatalytic Generation of Cathodic Luminol Electrochemiluminescence with Carbonized Polydopamine Nanotubes at a Low Positive Potential. ACS Sustainable Chemistry and Engineering, 2022, 10, 10361-10368.	3.2	10
703	Tio2 Nanoparticles Modified Graphitic Carbon Nitride with Potential-Resolved Multicolor Electrochemiluminescence and Application for Imaging Sensing of Rutin. SSRN Electronic Journal, 0, , .	0.4	0
704	Nano-hybrid luminophores of Ti3C2TX quantum dots-gold nanoparticles based on in situ generation for sensitive electrochemiluminescence biosensing. Analytical and Bioanalytical Chemistry, 2022, 414, 6753-6760.	1.9	8
705	Versatile Electrochemiluminescence Biosensing Platform Based on DNA Nanostructures and Catalytic Hairpin Assembly Signal Amplification. Analytical Chemistry, 2022, 94, 11368-11374.	3.2	15
706	Low-Triggering-Potential Single-Color Electrochemiluminescence from Bovine Serum Albumin-Stabilized Unary Au Nanocrystals for Immunoassays. Analytical Chemistry, 2022, 94, 11688-11694.	3.2	3
707	Surface Defect-Involved and Single-Color Electrochemiluminescence of Gold Nanoclusters for Immunoassay. Analytical Chemistry, 2022, 94, 12070-12077.	3.2	18
708	Highly Efficient PTCA/Co ₃ O ₄ /CuO/S ₂ O ₈ ^{2–} Ternary Electrochemiluminescence System Combined with a Portable Chip for Bioanalysis. ACS Sensors, 2022, 7, 2273-2280	4.0	15

#	Article	IF	Citations
709	Shellâ€Isolated Nanoparticleâ€Enhanced Electrochemiluminescence. Small, 2022, 18, .	5.2	8
710	Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coordination Chemistry Reviews, 2022, 471, 214723.	9.5	25
711	The role of doping strategy in nanoparticle-based electrochemiluminescence biosensing. Bioelectrochemistry, 2022, 148, 108249.	2.4	4
712	CRISPR/Cas Systemsâ€Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. Small Methods, 2022, 6, .	4.6	24
713	Insights into enhanced electrochemiluminescence of a multiresonance thermally activated delayed fluorescence molecule. SmartMat, 2023, 4, .	6.4	6
714	Efficient catalytic-activity-driven extremely low-voltage operatable multicolor electrochemiluminescence displays using Pt nanoparticles anchored on CuO nanorod electrodes. Applied Surface Science, 2022, 605, 154835.	3.1	2
715	Novel electrochemiluminescence luminophore based on flower-like binuclear coordination polymer for high-sensitivity detection of tetracycline in food products. Food Chemistry, 2023, 403, 134376.	4.2	10
716	Recent advances and future prospects of the potential-resolved strategy in ratiometric, multiplex, and multicolor electrochemiluminescence analysis. Theranostics, 2022, 12, 6779-6808.	4.6	14
717	Facile synthesis of nitrogen-doped graphene quantum dots as nanocarbon emitters for sensitive detection of catechol. RSC Advances, 2022, 12, 25778-25785.	1.7	7
718	Micropatterning of electrochemiluminescent polymers based on multipolar Ru-complex two-photon initiators. Chemical Communications, 2022, 58, 9678-9681.	2.2	2
719	Efficient Catalytic-Activity-Driven Extremely Low-Voltage Operatable Multicolor Electrochemiluminescence Displays Using Pt Nanoparticles Anchored on Cuo Nanorod Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
720	Water-soluble dinuclear iridium(<scp>iii</scp>) and ruthenium(<scp>ii</scp>) bis-terdentate complexes: photophysics and electrochemiluminescence. Dalton Transactions, 2022, 51, 13858-13866.	1.6	2
721	A Portable Microfluidic-Based Electrochemiluminescence Sensor for Trace Detection of Trenbolone in Natural Water. Analytical Chemistry, 2022, 94, 12531-12537.	3.2	10
722	Co-Reactant-Mediated Low-Potential Anodic Electrochemiluminescence Platform and Its Immunosensing Application. Analytical Chemistry, 2022, 94, 12500-12506.	3.2	13
723	Flow Injection Analysis-Based Electrochemiluminescence: An Overview of Experimental Design and Its Biosensing Applications. , 2022, 1, 031604.		11
724	Strategies for Enhancing the Sensitivity of Electrochemiluminescence Biosensors. Biosensors, 2022, 12, 750.	2.3	11
725	Recent Advances in <scp>Realâ€Time</scp> Analysis of Electrochemical Reactions by Electrochemical Mass Spectrometry ^{â€} . Chinese Journal of Chemistry, 2023, 41, 214-224.	2.6	6
726	Highâ€Efficiency Electrogenerated Chemiluminescence of Novel Zrâ€Based Metal–Organic Frameworks through Organic Linkers Regulation. ChemElectroChem, 2022, 9,	1.7	4

#	Article	IF	CITATIONS
727	Electrochemiluminescence Systems for the Detection of Biomarkers: Strategical and Technological Advances. Biosensors, 2022, 12, 738.	2.3	9
728	Recent Advances in CRISPR/Cas-Based Biosensors for Protein Detection. Bioengineering, 2022, 9, 512.	1.6	10
729	Design of portable electrochemiluminescence sensing systems for point-of-care-testing applications. Chinese Chemical Letters, 2023, 34, 107799.	4.8	8
730	Rigid Enhanced Electrochemiluminescence of 1,2,3-Triaryl Indenes as an Ultrasensitive Sensor for D ₂ 0 in H ₂ 0. Analytical Chemistry, 2022, 94, 13607-13615.	3.2	5
731	An Electrocatalysis and Self-Enrichment Strategy for Signal Amplification of Luminol Electrochemiluminescence Systems. Analytical Chemistry, 2022, 94, 13181-13188.	3.2	12
732	Benzothioxanthene Dicarboximide as a Tuneable Electrogenerated Chemiluminescence Dye. ChemElectroChem, 2022, 9, .	1.7	2
733	Nanoluminophores Composed of 1,1′-Ferrocenedicarboxylic Acid and Tetrakis-(4-carboxyphenyl) Porphyrin for Electrochemiluminescence Sensing. ACS Applied Nano Materials, 2022, 5, 16278-16288.	2.4	1
734	Structural characterization of excited state transition metal complexes by x-ray transient absorption spectroscopies. , 2022, , .		0
735	Closed Bipolar Electrode Array for Optical Reporting Reaction oupled Electrochemical Sensing and Imaging. Chemistry - A European Journal, 2023, 29, .	1.7	4
736	Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Science China Chemistry, 2022, 65, 2417-2436.	4.2	26
737	Recent progress in CRISPR-based microfluidic assays and applications. TrAC - Trends in Analytical Chemistry, 2022, 157, 116812.	5.8	10
738	TiO2 nanoparticles modified graphitic carbon nitride with potential-resolved multicolor electrochemiluminescence and application for sensitive sensing of rutin. Analytical and Bioanalytical Chemistry, 2023, 415, 221-233.	1.9	5
739	In situ growth of metal-organic layer on ultrathin Ti3C2T MXene nanosheet boosting fast electron/ion transport for electrochemiluminescence enhancement. Biosensors and Bioelectronics, 2023, 220, 114886.	5.3	10
740	Propeller-like structure-stabilized phosphole and its aromaticity-promoted electrochemiluminescence. Sensors and Actuators B: Chemical, 2023, 375, 132977.	4.0	0
741	Metal-organic layers-catalyzed amplification of electrochemiluminescence signal and its application for immunosensor construction. Sensors and Actuators B: Chemical, 2023, 376, 133004.	4.0	8
742	Construction of Carbon Dots with Wavelength-Tunable Electrochemiluminescence and Enhanced Efficiency. Analytical Chemistry, 2022, 94, 16510-16518.	3.2	10
743	Derivatization-free Ru(bpy)32+ electrochemiluminescence detection of gramine. Journal of Electroanalytical Chemistry, 2022, 927, 116989.	1.9	0
744	Spectrum-Resolved Electrochemiluminescence to Multiplex the Immunoassay and DNA Probe Assay. Analytical Chemistry, 2022, 94, 15801-15808.	3.2	5

#	Article	IF	CITATIONS
745	Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coordination Chemistry Reviews, 2023, 476, 214927.	9.5	26
746	Wireless electrochemical light emission in ultrathin 2D nanoconfinements. Chemical Science, 2022, 13, 14277-14284.	3.7	2
747	Advances in electrochemiluminescence for single-cell analysis. Analyst, The, 2022, 148, 9-25.	1.7	8
748	A flow-drop electrochemiluminescent design for portable detection of soil and skin 2,4,6-trinitrotoluene. Microchemical Journal, 2023, 185, 108309.	2.3	0
749	Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosensors and Bioelectronics, 2023, 223, 115031.	5.3	19
750	Nanomaterials-Based Electrochemiluminescence Biosensors for Food Analysis: Recent Developments and Future Directions. Biosensors, 2022, 12, 1046.	2.3	9
751	Valence-State-Engineered Electrochemiluminescence from Au Nanoclusters. ACS Nano, 2023, 17, 355-362.	7.3	25
752	Luminol electrochemiluminescence by combining cathodic reduction and anodic oxidation at regenerable cobalt phthalocyanine modified carbon paste electrode for dopamine detection. Electrochimica Acta, 2023, 441, 141774.	2.6	5
753	Voltammetric Study and Modeling of the Electrochemical Oxidation Process and the Adsorption Effects of Luminol and Luminol Derivatives on Glassy Carbon Electrodes. Analytical Chemistry, 2022, 94, 17625-17633.	3.2	11
754	Study on the Electrochemiluminescence of Pentaphenylpyrrole in the Aqueous Phase Based on Structure-Regulated Strategy. Analytical Chemistry, 2022, 94, 17709-17715.	3.2	4
755	CRISPR/Casâ€Based MicroRNA Biosensors. Chemistry - A European Journal, 2023, 29, .	1.7	4
756	Cascadeâ€Gates Guarded Asymmetrical Nanochannel Membrane: An Interferenceâ€Free Device for Straightforward Detection of Trace Biomarker in Undiluted Serum. Small, 2023, 19, .	5.2	9
757	High-Intensity Focused Ultrasound Combined with Ti ₃ C ₂ –TiO ₂ to Enhance Electrochemiluminescence of Luminol for the Sensitive Detection of Polynucleotide Kinase. ACS Applied Materials & Interfaces, 2023, 15, 3804-3811.	4.0	8
758	Sandwich-Type Electrochemiluminescence Immunosensor Based on CDs@dSiO2 Nanoparticles as Nanoprobe and Co-Reactant. Biosensors, 2023, 13, 133.	2.3	5
759	Cathodic Electrochemiluminesence Microscopy for Imaging of Single Carbon Nanotube and Nucleolin at Single Tumor Cell. Analytical Chemistry, 0, , .	3.2	2
760	Ultrasensitive Electrochemiluminescence Biosensor with Silver Nanoclusters as a Novel Signal Probe and α-Fe ₂ O ₃ –Pt as an Efficient Co-reaction Accelerator for Procalcitonin Immunoassay. Analytical Chemistry, 0, , .	3.2	3
761	Efficient annihilation electrochemiluminescence of [Ru(bpy)3]2+ within a deep eutectic solvent as green electrolyte. Dyes and Pigments, 2023, 211, 111052.	2.0	1
762	Signal amplification strategies in biosensing of extracellular vesicles (EVs). Talanta, 2023, 256, 124244.	2.9	2

#	Article	IF	CITATIONS
763	An electrochemiluminescence sensor based on hydrophilic CsPbBr3/TDPA nanocrystals for sensitive detection of nitrobenzene. Sensors & Diagnostics, 0, , .	1.9	0
764	Graphitic carbon nitride-based materials for biomedical applications. , 2023, , 377-404.		0
765	Surface Plasmon Resonance (SPR) Combined Technology: A Powerful Tool for Investigating Interface Phenomena. Advanced Materials Interfaces, 2023, 10, .	1.9	7
766	Electrochemiluminescence Distance and Reactivity of Coreactants Determine the Sensitivity of Beadâ€Based Immunoassays. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
767	An "off-on―electrochemical luminescence biosensor with aggregation-induced emission for ultrasensitive detection of aflatoxin B1. Sensors and Actuators B: Chemical, 2023, 380, 133407.	4.0	10
768	Facial Preparation of Cyclometalated Iridium (III) Nanowires as Highly Efficient Electrochemiluminescence Luminophores for Biosensing. Biosensors, 2023, 13, 459.	2.3	0
769	Understanding role of microstructures of nanomaterials in electrochemiluminescence properties and their applications. TrAC - Trends in Analytical Chemistry, 2023, 162, 117030.	5.8	9
770	A novel bimetallic MXene derivative QD-based ECL sensor for miRNA-27a-3p detection. Biosensors and Bioelectronics, 2023, 228, 115225.	5.3	8
771	Enhanced electrochemiluminescence immunoassay: 2. Enabling signal detection at an early stage of incubation for rapid point-of-care testing. Journal of Electroanalytical Chemistry, 2023, 937, 117413.	1.9	0
772	Recent progress on nanozymes in electrochemical sensing. Journal of Electroanalytical Chemistry, 2023, 936, 117391.	1.9	3
773	Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application. Biosensors and Bioelectronics, 2023, 227, 115157.	5.3	11
774	Nanomaterials-driven innovative electrochemiluminescence aptasensors in reporting food pollutants. Coordination Chemistry Reviews, 2023, 485, 215136.	9.5	23
775	CuS quantum dots activated DNAzyme for ratiometric electrochemical detection of telomerase activity. Analytica Chimica Acta, 2023, 1248, 340884.	2.6	4
776	Upconversion photoinduced electrochemiluminescence of luminol-H2O2 at Si/SiOx/Ni photoanodes. Electrochimica Acta, 2023, 444, 142013.	2.6	5
777	Structural DNA tetrahedra and its electrochemical-related surface sensing. TrAC - Trends in Analytical Chemistry, 2023, 160, 116979.	5.8	6
778	Elucidation of an Aggregate Excited State in the Electrochemiluminescence and Chemiluminescence of a Thermally Activated Delayed Fluorescence (TADF) Emitter. Langmuir, 2023, 39, 2829-2837.	1.6	6
779	Smartphone-based 3D-printed electrochemiluminescence enzyme biosensor for reagentless glucose quantification in real matrices. Biosensors and Bioelectronics, 2023, 227, 115146.	5.3	10
780	Zwitterionic Electrochemiluminescence Biointerface Contributes to Labelâ€Free Monitoring of Exosomes Dynamics in a Fluidic Microreaction Device. Advanced Functional Materials, 2023, 33, .	7.8	3

#	Article	IF	CITATIONS
781	Metal–organic framework-derived photoelectrochemical sensors: structural design and biosensing technology. Journal of Materials Chemistry C, 2023, 11, 3692-3709.	2.7	17
782	Cathodic co-reactant electrogenerated chemiluminescence of water-soluble heteroleptic iridium(III) complexes bearing N-methyl(pyridyl)pyridinium cyclometalating ligands. Journal of Electroanalytical Chemistry, 2023, 933, 117273.	1.9	0
783	Electrochemiluminescence Distance and Reactivity of Coreactants Determine the Sensitivity of Beadâ€Based Immunoassays. Angewandte Chemie, 2023, 135, .	1.6	1
784	Electrochemiluminescence Imaging of Liposome Permeabilization by an Antimicrobial Peptide: Melittin. , 2023, 1, 58-65.		8
785	A Close Look at Mechanism, Application, and Opportunities of Electrochemiluminescence Microscopy. , 2023, 1, 414-433.		12
786	Lewisâ€Pairingâ€Induced Electrochemiluminescence Enhancement from Electron Donorâ€Acceptor Diads Decorated with Tris(pentafluorophenyl)borane as an Electrochemical Protector. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
787	Lewisâ€Pairingâ€Induced Electrochemiluminescence Enhancement from Electron Donorâ€Acceptor Diads Decorated with Tris(pentafluorophenyl)borane as an Electrochemical Protector. Angewandte Chemie, 2023, 135, .	1.6	0
788	Water Activation for Boosting Electrochemiluminescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
789	Water Activation for Boosting Electrochemiluminescence. Angewandte Chemie, 2023, 135, .	1.6	0
790	Integration of High-Entropy Oxide with Nitrogen-Doped Graphene for the Ultrasensitive Electrochemiluminescence Detection of Trolox and Dopamine. ACS Applied Nano Materials, 2023, 6, 4747-4753.	2.4	5
791	Selfâ€assembly Induced Enhanced Electrochemiluminescence of Copper Nanoclusters Using DNA Nanoribbon Templates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
792	Selfâ€assembly Induced Enhanced Electrochemiluminescence of Copper Nanoclusters Using DNA Nanoribbon Templates. Angewandte Chemie, 2023, 135, .	1.6	0
793	Crystallization Regulation Engineering in the Carbon Nitride Nanoflower for Strong and Stable Electrochemiluminescence. ACS Applied Materials & Interfaces, 2023, 15, 16723-16731.	4.0	7
794	Electrochemiluminescent Biosensors Based on II–VI Quantum Dots. , 2023, , 531-549.		0
795	Controlled Growth of MoS ₂ on Dendritic Ferric Oxide to Enhance Electrochemiluminescence of Nitrogen-Doped Carbon Quantum Dots for Sensitive Immunoassay. Analytical Chemistry, 2023, 95, 6655-6663.	3.2	7
796	Luminophore-Surface-Engineering-Enabled Low-Triggering-Potential and Coreactant-Free Electrochemiluminescence for Protein Determination. Analytical Chemistry, 2023, 95, 6948-6954.	3.2	5
797	Two–dimensional metal–organic framework nanosheets: An efficient two–electron oxygen reduction reaction electrocatalyst for boosting cathodic luminol electrochemiluminescence. Chemical Engineering Journal, 2023, 466, 143156.	6.6	9
801	Encapsulation of Tetraphenylethylene Derivative in Liposome Vesicles as Promising Aggregation-Induced Electrochemiluminescence Emitter for Detection of Human Epidermal Growth Factor Receptor 2. Analytical Chemistry, 2023, 95, 9139-9144.	3.2	15

#	Article	IF	CITATIONS
820	Electrochemiluminescence of carbon-based quantum dots. , 2023, , 304-337.		0
832	Design of target response wettability switchable core–shell–shell electrochemiluminescence nanoprobes for sensitive hyaluronidase detection. Chemical Communications, 2023, 59, 12621-12624.	2.2	0
854	Technology of Electrochemiluminescence Sensors Based on Langmuir-Blodgett Films with Polycyclic Organic Phosphors. , 2023, , .		0
858	Pt Dendrimer-Encapsulated Nanoparticles Modified UMEAs for Electrochemiluminescence Heterogeneous Immunoassay. , 2023, , .		0
875	Recent progress on the CRISPR/Cas system in optical biosensors. Analytical Methods, 2024, 16, 798-816.	1.3	0
878	Mxenes-based hybrid electrochemical sensors. , 2024, , 417-450.		0