Heavy precipitation in a changing climate: Does shortae faster?

Geophysical Research Letters 42, 1165-1172 DOI: 10.1002/2014gl062588

Citation Report

#	Article	IF	CITATIONS
1	Evidence for added value of convectionâ€permitting models for studying changes in extreme precipitation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12500-12513.	1.2	35
2	Precipitation Extremes Under Climate Change. Current Climate Change Reports, 2015, 1, 49-59.	2.8	480
3	A review on regional convectionâ€permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics, 2015, 53, 323-361.	9.0	907
4	A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environmental Research Letters, 2015, 10, 085001.	2.2	75
5	Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?. Hydrology and Earth System Sciences, 2016, 20, 3843-3857.	1.9	53
7	Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19. Geoscientific Model Development, 2016, 9, 3393-3412.	1.3	78
8	The characteristics of summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting model. Environmental Research Letters, 2016, 11, 094024.	2.2	30
9	Hazardous thunderstorm intensification over Lake Victoria. Nature Communications, 2016, 7, 12786.	5.8	87
10	Linkage Between Hourly Precipitation Events and Atmospheric Temperature Changes over China during the Warm Season. Scientific Reports, 2016, 6, 22543.	1.6	59
11	Spatial and Temporal Variability of Rainfall in the Alps–Mediterranean Euroregion. Journal of Applied Meteorology and Climatology, 2016, 55, 655-671.	0.6	13
12	Changes in the largeâ€scale thermodynamic instability and connection with rain shower frequency over Romania: verification of the Clausius–Clapeyron scaling. International Journal of Climatology, 2016, 36, 2015-2034.	1.5	30
13	Characterizing Uncertainty of the Hydrologic Impacts of Climate Change. Current Climate Change Reports, 2016, 2, 55-64.	2.8	159
14	Intensification of convective extremes driven by cloud–cloud interaction. Nature Geoscience, 2016, 9, 748-752.	5.4	65
15	Attribution of extreme weather and climate events overestimated by unreliable climate simulations. Geophysical Research Letters, 2016, 43, 2158-2164.	1.5	54
16	Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nature Geoscience, 2016, 9, 584-589.	5.4	197
17	Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 2016, 6, 986-991.	8.1	444
18	Rising Mediterranean Sea Surface Temperatures Amplify Extreme Summer Precipitation in Central Europe. Scientific Reports, 2016, 6, 32450.	1.6	72
19	Comparison between high-resolution climate simulations using single- and double-nesting approaches within the Big-Brother experimental protocol. Climate Dynamics, 2016, 47, 3613-3626.	1.7	14

#	Article	IF	CITATIONS
20	Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 2016, 137, 201-216.	1.7	197
21	Searching for Added Value in Simulating Climate Extremes with a High-Resolution Regional Climate Model over Western Canada. Atmosphere - Ocean, 2016, 54, 364-384.	0.6	6
22	Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models. Journal of Climate, 2016, 29, 3501-3518.	1.2	50
23	Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nature Geoscience, 2016, 9, 24-28.	5.4	112
24	How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics?. Climate Dynamics, 2016, 47, 3043-3061.	1.7	74
25	Climate change in the next 30Âyears: What can a convection-permitting model tell us that we did not already know?. Climate Dynamics, 2017, 48, 1987-2003.	1.7	43
26	Assessing the importance of spatioâ€ŧemporal <scp>RCM</scp> resolution when estimating subâ€daily extreme precipitation under current and future climate conditions. International Journal of Climatology, 2017, 37, 688-705.	1.5	19
27	The Alpine snow-albedo feedback in regional climate models. Climate Dynamics, 2017, 48, 1109-1124.	1.7	35
28	Extreme weather events over China: assessment of <scp>COSMO LM</scp> simulations and future scenarios. International Journal of Climatology, 2017, 37, 1578-1594.	1.5	31
29	Multidecadal convection permitting climate simulations over Belgium: sensitivity of future precipitation extremes. Atmospheric Science Letters, 2017, 18, 29-36.	0.8	20
30	Future increases in extreme precipitation exceed observed scaling rates. Nature Climate Change, 2017, 7, 128-132.	8.1	242
31	Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?. Bulletin of the American Meteorological Society, 2017, 98, 79-93.	1.7	253
32	The peak structure and future changes of the relationships between extreme precipitation and Atemperature. Nature Climate Change, 2017, 7, 268-274.	8.1	221
33	Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2714-2733.	1.2	93
34	Process-Driven Direction-Dependent Asymmetry: Identification and Quantification of Directional Dependence in Spatial Fields. Mathematical Geosciences, 2017, 49, 871-891.	1.4	9
35	The future intensification of hourly precipitation extremes. Nature Climate Change, 2017, 7, 48-52.	8.1	591
36	Bayesian multi-model projections of extreme hydroclimatic events under RCPs scenarios. Advances in Climate Change Research, 2017, 8, 80-92.	2.1	4
37	Impact of Climate Change on Disruption to Urban Transport Networks from Pluvial Flooding. Journal of Infrastructure Systems, 2017, 23, .	1.0	94

			0
#	ARTICLE	IF	CITATIONS
38	Super-Clausius–Clapeyron Scaling of Extreme Hourly Convective Precipitation and Its Relation to Large-Scale Atmospheric Conditions. Journal of Climate, 2017, 30, 6037-6052.	1.2	179
39	Impact of Anthropogenic Climate Change on the East Asian Summer Monsoon. Journal of Climate, 2017, 30, 5205-5220.	1.2	44
40	Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 2017, 10, 255-259.	5.4	193
41	Automatic identification of rainfall in acoustic recordings. Ecological Indicators, 2017, 75, 95-100.	2.6	35
42	Do convection-permitting models improve the representation of the impact of LUC?. Climate Dynamics, 2017, 49, 2749-2763.	1.7	12
43	Climate goals and computing the future of clouds. Nature Climate Change, 2017, 7, 3-5.	8.1	177
44	Impact of Lateral Boundary Errors on the Simulation of Clouds with a Nonhydrostatic Regional Climate Model. Monthly Weather Review, 2017, 145, 5059-5082.	0.5	11
45	Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,773.	1.2	139
46	Estimates of Extreme Precipitation Frequency Derived from Spatially Dense Rain Gauge Observations: A Case Study of Two Urban Areas in the Colorado Front Range Region. Annals of the American Association of Geographers, 2017, 107, 1499-1518.	1.5	2
47	Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted Highâ€Resolution Simulations. Geophysical Research Letters, 2017, 44, 12,396.	1.5	197
48	Collective Impacts of Orography and Soil Moisture on the Soil Moistureâ€Precipitation Feedback. Geophysical Research Letters, 2017, 44, 11,682.	1.5	31
49	Seasonality of mean and heavy precipitation in the area of the Vosges Mountains: dependence on the selection criterion. International Journal of Climatology, 2017, 37, 2654-2666.	1.5	8
50	Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions. Climate Dynamics, 2017, 49, 563-574.	1.7	45
51	Assessing distributionâ€based climate model bias correction methods over an alpine domain: added value and limitations. International Journal of Climatology, 2017, 37, 2633-2653.	1.5	47
52	Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Climate Dynamics, 2017, 48, 3425-3440.	1.7	88
53	PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results. Bulletin of the American Meteorological Society, 2017, 98, 1185-1198.	1.7	116
54	Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASAâ€Unified WRF. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7371-7384.	1.2	22
55	Evaluation of the convectionâ€resolving climate modeling approach on continental scales. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5237-5258.	1.2	105

#	ARTICLE	IF	CITATIONS
56	Characteristics of rainfall events in regional climate model simulations for the Czech Republic. Hydrology and Earth System Sciences, 2017, 21, 963-980.	1.9	11
57	Comparison of IMERG Level-3 and TMPA 3B42V7 in Estimating Typhoon-Related Heavy Rain. Water (Switzerland), 2017, 9, 276.	1.2	30
58	Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change. Natural Hazards and Earth System Sciences, 2017, 17, 1177-1190.	1.5	51
59	An Extended Eddyâ€Diffusivity Massâ€Flux Scheme for Unified Representation of Subgridâ€Scale Turbulence and Convection. Journal of Advances in Modeling Earth Systems, 2018, 10, 770-800.	1.3	55
60	Climate Impacts in Europe Under +1.5°C Global Warming. Earth's Future, 2018, 6, 264-285.	2.4	130
61	The impact of climate change on extreme precipitation in Sicily, Italy. Hydrological Processes, 2018, 32, 332-348.	1.1	45
62	Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective. Climate Dynamics, 2018, 50, 3981-3994.	1.7	78
63	Alpine foreland running drier? Sensitivity of a drought vulnerable catchment to changes in climate, land use, and water management. Climatic Change, 2018, 147, 179-193.	1.7	20
64	Intensification of Convective Rain Cells at Warmer Temperatures Observed from High-Resolution Weather Radar Data. Journal of Hydrometeorology, 2018, 19, 715-726.	0.7	70
65	Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations. Theoretical and Applied Climatology, 2018, 132, 515-527.	1.3	22
66	Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models. Climate Dynamics, 2018, 50, 4455-4480.	1.7	46
67	Convection-permitting regional climate simulations for representing floods in small- and medium-sized catchments in the Eastern Alps. Natural Hazards and Earth System Sciences, 2018, 18, 2653-2674.	1.5	8
68	How intermittency affects the rate at which rainfall extremes respond to changes in temperature. Earth System Dynamics, 2018, 9, 955-968.	2.7	30
69	Mean and extreme precipitation over European river basins better simulated in a 25 km AGCM. Hydrology and Earth System Sciences, 2018, 22, 3933-3950.	1.9	21
70	The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models. Atmospheric Chemistry and Physics, 2018, 18, 5253-5264.	1.9	15
71	Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 CPUs with COSMO 5.0. Geoscientific Model Development, 2018, 11, 1665-1681.	1.3	110
72	Bias patterns and climate change signals in GCM-RCM model chains. Environmental Research Letters, 2018, 13, 074017.	2.2	98
73	Changing seasonality of moderate and extreme precipitation events in the Alps. Natural Hazards and Earth System Sciences, 2018, 18, 2047-2056.	1.5	40

#	Article	IF	CITATIONS
74	A 12â€year radarâ€based climatology of daily and subâ€daily extreme precipitation over the Swiss Alps. International Journal of Climatology, 2018, 38, 3749-3769.	1.5	41
75	Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C vs.Â2 °C warming scenarios. Earth System Dynamics, 2018, 9, 679-699.	2.7	25
76	Neural Network Forecasting of Precipitation Volumes Using Patterns. Pattern Recognition and Image Analysis, 2018, 28, 450-461.	0.6	3
77	Stationary and Non-Stationary Frameworks for Extreme Rainfall Time Series in Southern Italy. Water (Switzerland), 2018, 10, 1477.	1.2	22
78	Recent Progress and Emerging Topics on Weather and Climate Extremes Since the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Annual Review of Environment and Resources, 2018, 43, 35-59.	5.6	50
79	A new flood risk assessment framework for evaluating the effectiveness of policies to improve urban flood resilience. Urban Water Journal, 2018, 15, 427-436.	1.0	31
80	Intensified Cold Pool Dynamics Under Stronger Surface Heating. Geophysical Research Letters, 2018, 45, 6299-6310.	1.5	25
81	An hourlyâ€scale scenarioâ€neutral flood risk assessment in a mesoscale catchment under climate change. Hydrological Processes, 2018, 32, 3416-3430.	1.1	11
82	Dynamic amplification of extreme precipitation sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9467-9472.	3.3	85
83	Changes in the occurrence of extreme precipitation events at the Paleocene–Eocene thermal maximum. Earth and Planetary Science Letters, 2018, 501, 24-36.	1.8	49
84	The bridge between precipitation and temperature – Pressure Change Events: Modeling future non-stationary precipitation. Journal of Hydrology, 2018, 562, 346-357.	2.3	13
85	Pluvial flood risk and opportunities for resilience. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1302.	2.8	121
86	Can the Impact of Aerosols on Deep Convection be Isolated from Meteorological Effects in Atmospheric Observations?. Journals of the Atmospheric Sciences, 2018, 75, 3347-3363.	0.6	24
87	Physical Responses of Convective Heavy Rainfall to Future Warming Condition: Case Study of the Hiroshima Event. Frontiers in Earth Science, 2018, 6, .	0.8	23
88	Variability and Trends in Global Precipitable Water Vapor Retrieved from COSMIC Radio Occultation and Radiosonde Observations. Atmosphere, 2018, 9, 174.	1.0	26
89	Scale dependency of regional climate modeling of current and future climate extremes in Germany. Theoretical and Applied Climatology, 2018, 134, 829-848.	1.3	14
90	Strong Dependence of Extreme Convective Precipitation Intensities on Gauge Network Density. Geophysical Research Letters, 2018, 45, 8253-8263.	1.5	46
91	Intensification of the Daily Wet Day Rainfall Distribution Across Australia. Geophysical Research Letters, 2018, 45, 8568-8576.	1.5	24

#	Article	IF	CITATIONS
92	Projected changes in extreme precipitation at sub-daily and daily time scales. Global and Planetary Change, 2019, 182, 103004.	1.6	22
93	Bulk and structural convergence at convectionâ€resolving scales in realâ€case simulations of summertime moist convection over land. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1427-1443.	1.0	24
94	Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network. Hydrology and Earth System Sciences, 2019, 23, 2863-2875.	1.9	20
95	Projections of Alpine Snow-Cover in a High-Resolution Climate Simulation. Atmosphere, 2019, 10, 463.	1.0	24
96	Regionalization of anthropogenically forced changes in 3 hourly extreme precipitation over Europe. Environmental Research Letters, 2019, 14, 124031.	2.2	14
97	Changing climate both increases and decreases European river floods. Nature, 2019, 573, 108-111.	13.7	639
98	Extraction and Visual Analysis of Potential Vorticity Banners around the Alps. IEEE Transactions on Visualization and Computer Graphics, 2019, 26, 1-1.	2.9	7
99	Observed and Simulated Precipitation over Northeastern North America: How Do Daily and Subdaily Extremes Scale in Space and Time?. Journal of Climate, 2019, 32, 8563-8582.	1.2	11
100	Nature-based solutions for hydro-meteorological hazards: Revised concepts, classification schemes and databases. Environmental Research, 2019, 179, 108799.	3.7	101
101	Summertime precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution. Natural Hazards and Earth System Sciences, 2019, 19, 957-971.	1.5	50
102	The Diurnal Nature of Future Extreme Precipitation Intensification. Geophysical Research Letters, 2019, 46, 7680-7689.	1.5	25
103	Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permitting climate model. Environmental Research Letters, 2019, 14, 074012.	2.2	30
104	Separating Dynamic and Thermodynamic Impacts of Climate Change on Daytime Convective Development over Land. Journal of Climate, 2019, 32, 5213-5234.	1.2	9
105	Assessment of the Representation of West African Storm Lifecycles in Convectionâ€Permitting Simulations. Earth and Space Science, 2019, 6, 818-835.	1.1	47
106	Crossing Multiple Gray Zones in the Transition from Mesoscale to Microscale Simulation over Complex Terrain. Atmosphere, 2019, 10, 274.	1.0	66
107	Seasonal Surface Runoff Characteristics in the Semiarid Region of Western Heilongjiang Province in Northeast China—A Case of the Alun River Basin. Water (Switzerland), 2019, 11, 557.	1.2	2
108	Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nature Communications, 2019, 10, 1794.	5.8	165
109	Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy). Water (Switzerland), 2019, 11, 605.	1.2	27

#	Article	IF	CITATIONS
110	The role of topography on projected rainfall change in mid-latitude mountain regions. Climate Dynamics, 2019, 53, 3675-3690.	1.7	24
111	Recent and future trends in sea surface temperature across the Persian Gulf and Gulf of Oman. PLoS ONE, 2019, 14, e0212790.	1.1	55
112	Clouds in Convectionâ€Resolving Climate Simulations Over Europe. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3849-3870.	1.2	42
113	Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall. Hydrology and Earth System Sciences, 2019, 23, 93-105.	1.9	13
114	Modification of the convective adjustment timeâ€scale in the Kain–Fritsch eta scheme for the case of weakly forced deep convection over the Tibetan Plateau region. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1915-1932.	1.0	4
115	Can We Constrain Uncertainty in Hydrologic Cycle Projections?. Geophysical Research Letters, 2019, 46, 3911-3916.	1.5	23
116	Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle–lower reaches of the Yangtze River Basin. Climate Dynamics, 2019, 53, 3109-3129.	1.7	18
117	Credibility of Convection-Permitting Modeling to Improve Seasonal Precipitation Forecasting in the Southwestern United States. Frontiers in Earth Science, 2019, 7, .	0.8	17
118	Intensification of summer precipitation with shorter time-scales in Europe. Environmental Research Letters, 2019, 14, 124050.	2.2	31
119	Improving ECMWF-based 6-hours maximum rain using instability indices and neural networks. Atmospheric Research, 2019, 217, 184-197.	1.8	11
120	The influence of convection-permitting regional climate modeling on future projections of extreme precipitation: dependency on topography and timescale. Climate Dynamics, 2019, 52, 5303-5324.	1.7	37
121	Challenges to link climate change data provision and user needs: Perspective from the COSTâ€action VALUE. International Journal of Climatology, 2019, 39, 3704-3716.	1.5	23
122	Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dynamics, 2020, 55, 383-408.	1.7	110
123	A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dynamics, 2020, 55, 343-368.	1.7	84
124	A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics, 2020, 55, 3-34.	1.7	176
125	Analysis of Alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Climate Dynamics, 2020, 55, 61-75.	1.7	42
126	Simulating the convective precipitation diurnal cycle in North America's current and future climate. Climate Dynamics, 2020, 55, 369-382.	1.7	33
127	Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe. Climate Dynamics, 2020, 55, 325-341.	1.7	59

#	Article	IF	CITATIONS
128	The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales. Climate Dynamics, 2020, 55, 131-151.	1.7	73
129	Global and Regional Projected Changes in 100-yr Subdaily, Daily, and Multiday Precipitation Extremes Estimated from Three Large Ensembles of Climate Simulations. Journal of Climate, 2020, 33, 1089-1103.	1.2	38
130	Extreme rainfall in Mediterranean France during the fall: added value of the CNRM-AROME Convection-Permitting Regional Climate Model. Climate Dynamics, 2020, 55, 77-91.	1.7	45
131	Statistical downscaling to project extreme hourly precipitation over the United Kingdom. International Journal of Climatology, 2020, 40, 1805-1823.	1.5	13
132	Consistent scale-dependency of future increases in hourly extreme precipitation in two convection-permitting climate models. Climate Dynamics, 2020, 54, 1267-1280.	1.7	21
133	Legacy effects of precipitation amount and frequency on the aboveground plant biomass of a semi-arid grassland. Science of the Total Environment, 2020, 705, 135899.	3.9	22
134	Climate Models Permit Convection at Much Coarser Resolutions Than Previously Considered. Journal of Climate, 2020, 33, 1915-1933.	1.2	54
135	Changes in climate extremes in observations and climate model simulations. From the past to the future. , 2020, , 31-57.		11
136	Optimal configuration and resolution for the first convectionâ€permitting ensemble of climate projections over the United Kingdom. International Journal of Climatology, 2020, 40, 3585-3606.	1.5	20
137	Analyzing Internal Variability and Forced Response of Subdaily and Daily Extreme Precipitation Over Europe. Geophysical Research Letters, 2020, 47, e2020GL089300.	1.5	19
138	An Improved Covariate for Projecting Future Rainfall Extremes?. Water Resources Research, 2020, 56, e2019WR026924.	1.7	32
139	Atmospheric Forcing of the High and Low Extremes in the Sea Surface Temperature over the Red Sea and Associated Chlorophyll-a Concentration. Remote Sensing, 2020, 12, 2227.	1.8	6
140	Variations in sub-daily precipitation at centennial scale. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	12
141	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	2.4	69
142	A Transient Stochastic Rainfall Generator for Climate Changes Analysis at Hydrological Scales in Central Italy. Atmosphere, 2020, 11, 1292.	1.0	26
143	Bias Correction of RCM Precipitation by TIN-Copula Method: A Case Study for Historical and Future Simulations in Cyprus. Climate, 2020, 8, 85.	1.2	7
144	Pseudo-global warming projections of extreme wave storms in complex coastal regions: the case of the Adriatic Sea. Climate Dynamics, 2020, 55, 2483-2509.	1.7	23
145	Europe-wide precipitation projections at convection permitting scale with the Unified Model. Climate Dynamics, 2020, 55, 409-428.	1.7	48

	Сітя	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
146	Atmospheric convection, dynamics and topography shape the scaling pattern of hourly rainfall extremes with temperature globally. Communications Earth & Environment, 2020, 1, .	2.6	31
147	Physiological response of Swiss ecosystems to 2018 drought across plant types and elevation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190521.	1.8	42
148	On the role of increased CO2 concentrations in enhancing the temporal clustering of heavy precipitation events across Europe. Climatic Change, 2020, 162, 1455-1472.	1.7	1
149	Diametrically Opposite Scaling of Extreme Precipitation and Streamflow to Temperature in South and Central Asia. Geophysical Research Letters, 2020, 47, e2020GL089386.	1.5	19
150	Diurnal self-aggregation. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	15
151	Towards an operationalisation of nature-based solutions for natural hazards. Science of the Total Environment, 2020, 731, 138855.	3.9	105
152	Observed Climatological Relationships of Extreme Daily Precipitation Events With Precipitable Water and Vertical Velocity in the Contiguous United States. Geophysical Research Letters, 2020, 47, e2019GL086721.	1.5	31
153	Global Land Monsoon Precipitation Changes in CMIP6 Projections. Geophysical Research Letters, 2020, 47, e2019GL086902.	1.5	115
154	Relationship between selected percentiles and return periods of extreme events. Acta Geophysica, 2020, 68, 1201-1211.	1.0	9
155	The formation, character and changing nature of mesoscale convective systems. Nature Reviews Earth & Environment, 2020, 1, 300-314.	12.2	86
156	Conceptual deconstruction of the simulated precipitation response to climate change. Climate Dynamics, 2020, 55, 613-630.	1.7	2
157	Impact of resolution on large-eddy simulation of midlatitude summertime convection. Atmospheric Chemistry and Physics, 2020, 20, 2891-2910.	1.9	7
158	Increased melting level height impacts surface precipitation phase and intensity. Nature Climate Change, 2020, 10, 771-776.	8.1	47
159	Contrasting features of hydroclimatic teleconnections and the predictability of seasonal rainfall over east and west Japan. Meteorological Applications, 2020, 27, e1881.	0.9	6
160	Modelling Climate Changes with Stationary Models: Is It Possible or Is It a Paradox?. Lecture Notes in Computer Science, 2020, , 84-96.	1.0	4
161	Future extremes of temperature and precipitation in Europe derived from a combination of dynamical and statistical approaches. International Journal of Climatology, 2020, 40, 4800-4827.	1,5	37
162	Temperature effects on the spatial structure of heavy rainfall modify catchment hydro-morphological response. Earth Surface Dynamics, 2020, 8, 17-36.	1.0	28
163	Meteorological aspects of heavy precipitation in relation to floods – An overview. Earth-Science Reviews, 2020, 204, 103171.	4.0	35

#	Article	IF	CITATIONS
164	Flood trends in Europe: are changes in small and big floods different?. Hydrology and Earth System Sciences, 2020, 24, 1805-1822.	1.9	54
165	Detecting Floodâ€Rich and Floodâ€Poor Periods in Annual Peak Discharges Across Europe. Water Resources Research, 2020, 56, e2019WR026575.	1.7	21
166	Performance evaluation of regional climate model simulations at different spatial and temporal scales over the complex orography area of the Alpine region. Natural Hazards, 2020, 102, 151-177.	1.6	20
167	Climate Change Impacts on Sediment Yield and Debrisâ€Flow Activity in an Alpine Catchment. Journal of Geophysical Research F: Earth Surface, 2021, 126, .	1.0	39
168	Role of forests in headwater control with changing environment and society. International Soil and Water Conservation Research, 2021, 9, 143-157.	3.0	5
169	Convectionâ€permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 341-362.	1.0	67
170	Fine-scale rainfall over New Caledonia under climate change. Climate Dynamics, 2021, 56, 87-108.	1.7	11
171	Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2021, 2, 107-122.	12.2	279
172	The impact of snow loss and soil moisture on convective precipitation over the Rocky Mountains under climate warming. Climate Dynamics, 2021, 56, 2915-2939.	1.7	9
173	Extreme Subâ€Hourly Precipitation Intensities Scale Close to the Clausiusâ€Clapeyron Rate Over Europe. Geophysical Research Letters, 2021, 48, e2020CL089506.	1.5	25
174	Changing Spatial Structure of Summer Heavy Rainfall, Using Convectionâ€Permitting Ensemble. Geophysical Research Letters, 2021, 48, e2020GL090903.	1.5	15
175	Does the Hook Structure Constrain Future Flood Intensification Under Anthropogenic Climate Warming?. Water Resources Research, 2021, 57, e2020WR028491.	1.7	78
177	Detectable Intensification of Hourly and Daily Scale Precipitation Extremes across Eastern China. Journal of Climate, 2021, 34, 1185-1201.	1.2	15
178	The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Climate Dynamics, 2021, 56, 3581-3602.	1.7	101
179	Response of extreme precipitation to uniform surface warming in quasi-global aquaplanet simulations at high resolution. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190543.	1.6	11
180	Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190542.	1.6	56
181	Updating <scp>intensity–duration–frequency</scp> curves for urban infrastructure design under a changing environment. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1519.	2.8	25
182	Variations in Flash Flood–Producing Storm Characteristics Associated with Changes in Vertical Velocity in a Future Climate in the Mississippi River Basin. Journal of Hydrometeorology, 2021, 22, 671-687.	0.7	6

#	Article	IF	CITATIONS
183	Pronounced increase in slope instability linked to global warming: A case study from the eastern European Alps. Earth Surface Processes and Landforms, 2021, 46, 1328-1347.	1.2	40
184	The importance of horizontal model resolution on simulated precipitation in Europe – from global to regional models. Weather and Climate Dynamics, 2021, 2, 181-204.	1.2	8
185	Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190544.	1.6	30
186	Challenges and outlook for convection-permitting climate modelling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190547.	1.6	67
187	STORAGE (STOchastic RAinfall GEnerator): A User-Friendly Software for Generating Long and High-Resolution Rainfall Time Series. Hydrology, 2021, 8, 76.	1.3	17
188	A 1400-years flood frequency reconstruction for the Basque country (N Spain): Integrating geological, historical and instrumental datasets. Quaternary Science Reviews, 2021, 262, 106963.	1.4	10
189	Internal variability and temperature scaling of future sub-daily rainfall return levels over Europe. Environmental Research Letters, 2021, 16, 064097.	2.2	12
190	Complex changes of extreme precipitation in the warming climate of Poland. International Journal of Climatology, 2022, 42, 817-833.	1.5	11
191	River runoff in Switzerland in a changing climate – changes in moderate extremes and their seasonality. Hydrology and Earth System Sciences, 2021, 25, 3577-3594.	1.9	11
192	An Analysis of (Sub-)Hourly Rainfall in Convection-Permitting Climate Simulations Over Southern Sweden From a User's Perspective. Frontiers in Earth Science, 2021, 9, .	0.8	8
193	Quasi‧tationary Intense Rainstorms Spread Across Europe Under Climate Change. Geophysical Research Letters, 2021, 48, e2020GL092361.	1.5	49
194	Climate change impact assessment on pluvial flooding using a distribution-based bias correction of regional climate model simulations. Journal of Hydrology, 2021, 598, 126239.	2.3	38
195	Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin. Journal of Hydrology, 2021, 598, 126273.	2.3	19
196	<scp>Convection</scp> â€permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e731.	3.6	74
197	Evaluation framework for sub-daily rainfall extremes simulated by regional climate models. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	2
198	Mitigation of climate change and environmental hazards in plants: Potential role of the beneficial metalloid silicon. Journal of Hazardous Materials, 2021, 416, 126193.	6.5	19
200	European extreme precipitation: The effects of spatio-temporal resolution of the data. Weather and Climate Extremes, 2021, 33, 100337.	1.6	2
201	Unprecedented Retention Capabilities of Extensive Green Roofs—New Design Approaches and an Open-Source Model. Frontiers in Water, 2021, 3, .	1.0	5

#	Article	IF	CITATIONS
202	Observation and modeling of Hurricane Maria for damage assessment. Weather and Climate Extremes, 2021, 33, 100331.	1.6	8
203	Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation. Journal of Hydrologic Engineering - ASCE, 2021, 26, .	0.8	58
204	Likelihood of compound dry and hot extremes increased with stronger dependence during warm seasons. Atmospheric Research, 2021, 260, 105692.	1.8	29
205	Quality control of a global hourly rainfall dataset. Environmental Modelling and Software, 2021, 144, 105169.	1.9	21
206	Revealing the impacts of climate change on mountainous catchments through high-resolution modelling. Journal of Hydrology, 2021, 603, 126806.	2.3	14
207	Indices for exploring information in Lorentz curve of daily precipitation and their application in natural disaster risk assessment. Journal of Hydrology, 2021, 603, 126840.	2.3	4
208	Synoptic forcing associated with extreme precipitation events over Southeastern South America as depicted by a CORDEX FPS set of convection-permitting RCMs. Climate Dynamics, 2021, 56, 3187-3203.	1.7	13
209	Sarus: Highly Scalable Docker Containers for HPC Systems. Lecture Notes in Computer Science, 2019, , 46-60.	1.0	24
210	Catastrophic Insurance in South Asia: Scope in India. Disaster Risk Reduction, 2018, , 339-359.	0.2	1
211	How will rainfall change over Hawaiâ€~i in the future? High-resolution regional climate simulation of the Hawaiian Islands. Bulletin of Atmospheric Science and Technology, 2020, 1, 459-490.	0.4	15
213	Kilometer-Scale Climate Models: Prospects and Challenges. Bulletin of the American Meteorological Society, 2020, 101, E567-E587.	1.7	96
215	Detectable Anthropogenic Influence on Changes in Summer Precipitation in China. Journal of Climate, 2020, 33, 5357-5369.	1.2	14
216	Effects of Explicit Convection on Future Projections of Mesoscale Circulations, Rainfall, and Rainfall Extremes over Eastern Africa. Journal of Climate, 2020, 33, 2701-2718.	1.2	36
217	A Comparison of Intra-Annual and Long-Term Trend Scaling of Extreme Precipitation with Temperature in a Large-Ensemble Regional Climate Simulation. Journal of Climate, 2020, 33, 9233-9245.	1.2	16
218	Heavy Daily Precipitation Events in the CMIP6 Worst-Case Scenario: Projected Twenty-First-Century Changes. Journal of Climate, 2020, 33, 7631-7642.	1.2	27
219	Greater Future U.K. Winter Precipitation Increase in New Convection-Permitting Scenarios. Journal of Climate, 2020, 33, 7303-7318.	1.2	22
220	Changes in Future Flash Flood–Producing Storms in the United States. Journal of Hydrometeorology, 2020, 21, 2221-2236.	0.7	13
221	Future Changes in the Hydrologic Cycle Associated with Flood-Producing Storms in California. Journal of Hydrometeorology, 2020, 21, 2607-2621.	0.7	3

#	Article	IF	CITATIONS
222	Model Improvement via Systematic Investigation of Physics Tendencies. Monthly Weather Review, 2020, 148, 671-688.	0.5	14
224	Changes in intensity of high temporal resolution precipitation extremes in Romania: implications for Clausius-Clapeyron scaling. Climate Research, 2017, 72, 239-249.	0.4	14
225	Climate projections in Lake Maggiore watershed using statistical downscaling model. Climate Research, 2020, 81, 113-130.	0.4	8
226	Evaluation and Expected Changes of Summer Precipitation at Convection Permitting Scale with COSMO-CLM over Alpine Space. Atmosphere, 2021, 12, 54.	1.0	27
227	The INTENSE project: using observations and models to understand the past, present and future of sub-daily rainfall extremes. Advances in Science and Research, 0, 15, 117-126.	1.0	59
228	European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 2020, 13, 5485-5506.	1.3	29
229	The benefits of increasing resolution in global and regional climate simulations for European climate extremes. Geoscientific Model Development, 2020, 13, 5583-5607.	1.3	37
230	Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain. Geoscientific Model Development, 2020, 13, 5779-5797.	1.3	5
233	Contrasting seasonal changes in total and intense precipitation in the European Alps fromÂ1903 toÂ2010. Hydrology and Earth System Sciences, 2020, 24, 5355-5377.	1.9	25
234	Attribution of precipitation to cyclones and fronts over Europe in a kilometer-scale regional climate simulation. Weather and Climate Dynamics, 2020, 1, 675-699.	1.2	15
235	Sensitivity to Horizontal Resolution of Regional Climate Model in Simulated Precipitation over Kyushu in Baiu Season. Scientific Online Letters on the Atmosphere, 2021, 17, 207-212.	0.6	0
236	Evaluation of terra moderateÂresolutionÂimaging spectroradiometer sensor level 3 daily sea surface temperature using buoy measurements. International Journal of Environmental Science and Technology, 2022, 19, 5323-5332.	1.8	1
237	The 63-year changes in annual streamflow volumes across Europe with a focus on the Mediterranean basin. Hydrology and Earth System Sciences, 2021, 25, 5589-5601.	1.9	20
238	Recent increases in tropical cyclone precipitation extremes over the US east coast. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
239	Teil II: Extremereignisse einzelner Prozesse und Prozessbereiche. , 2020, , 73-620.		0
240	Future intensification of precipitation and wind gust associated thunderstorms over Lake Victoria. Weather and Climate Extremes, 2021, 34, 100391.	1.6	8
241	The Role of Mesoscale Convective Systems in Precipitation in the Tibetan Plateau Region. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035279.	1.2	13
242	Future Changes in Precipitation Extremes Over Iran: Insight from a CMIP6 Bias-Corrected Multi-Model Ensemble. Pure and Applied Geophysics, 2022, 179, 441-464.	0.8	10

#	Article	IF	CITATIONS
243	Observed and Projected Scaling of Daily Extreme Precipitation with Dew Point Temperature at Annual and Seasonal Scales across the Northeast United Sates. Journal of Hydrometeorology, 2022, , .	0.7	1
244	Meteotsunamis in Orographyâ€Free, Flat Bathymetry and Warming Climate Conditions. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	6
245	The analysis of summer 2020 urban flood in Zagreb (Croatia) from hydro-meteorological point of view. Natural Hazards, 2022, 112, 873-897.	1.6	2
246	Atmospheric regional climate projections for the Baltic Sea region until 2100. Earth System Dynamics, 2022, 13, 133-157.	2.7	21
247	Recent increase in the observation-derived land evapotranspiration due to global warming. Environmental Research Letters, 2022, 17, 024020.	2.2	31
248	Observational evidenceÂofÂregional increasing hot extreme accelerated by surface energy partitioning. Journal of Hydrometeorology, 2022, , .	0.7	3
249	Convection-permitting modeling strategies for simulating extreme rainfall events over Southeastern South America. Climate Dynamics, 2022, 59, 2549-2569.	1.7	3
250	Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling. Natural Hazards and Earth System Sciences, 2022, 22, 693-711.	1.5	8
251	Update of intensity-duration-frequency (IDF) curves under climate change: a review. Water Science and Technology: Water Supply, 2022, 22, 4951-4974.	1.0	19
252	Evaluation of extreme precipitation in the Yangtze River Delta Region of China using a 1.5Âkm mesh convection‑permitting regional climate model. Climate Dynamics, 2022, 59, 2257-2273.	1.7	3
253	A Short-Term Precipitation Prediction Model Based on Spatiotemporal Convolution Network and Ensemble Empirical Mode Decomposition. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 738-740.	8.5	3
254	Future changes in extreme precipitation over the San Francisco Bay Area: Dependence on atmospheric river and extratropical cyclone events. Weather and Climate Extremes, 2022, 36, 100440.	1.6	12
255	Performance of HAILCAST and the Lightning Potential Index in simulating hailstorms in Croatia in a mesoscale model – Sensitivity to the PBL and microphysics parameterization schemes. Atmospheric Research, 2022, 272, 106143.	1.8	5
256	Non-Hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains. Geoscientific Model Development, 2021, 14, 7705-7723.	1.3	29
257	Impact of Changes in Short-Term Rainfall on Design Floods: Case Study of the Hnilec River Basin, Slovakia. Slovak Journal of Civil Engineering, 2022, 30, 68-74.	0.2	2
258	Climate Scenarios for Switzerland CH2018 – Approach and Implications. Climate Services, 2022, 26, 100288.	1.0	12
259	Precipitation Scaling With Temperature in the Northeast US: Variations by Weather Regime, Season, and Precipitation Intensity. Geophysical Research Letters, 2022, 49, .	1.5	4
269	21st Century alpine climate change. Climate Dynamics, 2023, 60, 65-86.	1.7	29

#	Article	IF	CITATIONS
270	Summerâ€Winter Contrast in the Response of Precipitation Extremes to Climate Change Over Northern Hemisphere Land. Geophysical Research Letters, 2022, 49, .	1.5	5
271	Non-Hydrostatic Regcm4 (Regcm4-NH): Evaluation of Precipitation Statistics at the Convection-Permitting Scale over Different Domains. Atmosphere, 2022, 13, 861.	1.0	8
272	Summer regional climate simulations over Tibetan Plateau: from gray zone to convection permitting scale. Climate Dynamics, 2023, 60, 301-322.	1.7	6
273	Enabling forecasts of environmental exposure to chemicals in European agriculture under global change. Science of the Total Environment, 2022, 840, 156478.	3.9	16
276	Nowcasting Extreme Weather with Machine Learning Techniques Applied to Different Input Datasets. SSRN Electronic Journal, 0, , .	0.4	0
277	Quantifying Carbon Cycle Extremes and Attributing Their Causes Under Climate and Land Use and Land Cover Change From 1850 to 2300. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
278	How Accurately Satellite Precipitation Products Capture the Tropical Cyclone Rainfall?. Journal of the Indian Society of Remote Sensing, 2022, 50, 1871-1884.	1.2	3
279	A review on observed historical changes in hydroclimatic extreme events over Europe. , 2022, , 131-144.		0
281	Mapping storm spatial profiles for flood impact assessments. Advances in Water Resources, 2022, 166, 104258.	1.7	9
282	Technology for Position Correction of Satellite Precipitation and Contributions to Error Reduction—A Case of the â€~720' Rainstorm in Henan, China. Sensors, 2022, 22, 5583.	2.1	2
283	A shortâ€ŧerm regional precipitation prediction model based on windâ€ɨmproved spatiotemporal convolutional network. Earth and Space Science, 0, , .	1.1	0
284	Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling. Hydrology and Earth System Sciences, 2022, 26, 4431-4446.	1.9	4
285	Projected Changes in Future Extreme Precipitation over the Northeast US in the NA-CORDEX Ensemble. Journal of Applied Meteorology and Climatology, 2022, , .	0.6	3
286	Quantification of soil textural and hydraulic properties in a complex conductivity imaging framework: Results from the Wolfsegg slope. Frontiers in Earth Science, 0, 10, .	0.8	2
287	Climate Change Impacts on Extreme Rainfall in Eastern Africa in a Convection-Permitting Climate Model. Journal of Climate, 2023, 36, 93-109.	1.2	1
288	Respective contributions of precipitation and potential evapotranspiration to longâ€ŧerm changes in global drought duration and intensity. International Journal of Climatology, 2022, 42, 10126-10137.	1.5	4
289	Enhanced Role of Convection in Future Hourly Rainfall Extremes Over South Korea. Geophysical Research Letters, 2022, 49, .	1.5	4
290	1,100‥ear Reconstruction of Baseflow for the Santee River, South Carolina, USA Reveals Connection to the North Atlantic Subtropical High. Geophysical Research Letters, 2022, 49, .	1.5	1

#	Article	IF	CITATIONS
291	Systematic Calibration of a Convectionâ€Resolving Model: Application Over Tropical Atlantic. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
292	Towards Ensemble-Based Kilometer-Scale Climate Simulations over the Third Pole Region. Climate Dynamics, 2023, 60, 4055-4081.	1.7	5
293	The Role of Anthropogenic Forcing in Western United States Hydroclimate Extremes. Geophysical Research Letters, 2022, 49, .	1.5	2
294	Evaluation of Alpine-Mediterranean precipitation events in convection-permitting regional climate models using a set of tracking algorithms. Climate Dynamics, 2023, 61, 939-957.	1.7	4
295	Impacts of tropical cyclones on summertime short-duration precipitation extremes over the middle-lower reaches of the Yangtze River valley. Atmospheric Research, 2023, 282, 106520.	1.8	1
296	Nowcasting extreme rain and extreme wind speed with machine learning techniques applied to different input datasets. Atmospheric Research, 2023, 282, 106548.	1.8	14
297	Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model. Climate Dynamics, 2023, 61, 519-541.	1.7	4
298	Temperatureâ€Precipitation Scaling Rates: A Rainfall Eventâ€Based Perspective. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
299	Does Water Brownification Affect Duckweeds in Freshwaters? Results from a Laboratory Experiment. Water (Switzerland), 2022, 14, 3826.	1.2	0
300	A convection-permitting and limited-area model hindcast driven by ERA5 data: precipitation performances in Italy. Climate Dynamics, 2023, 61, 1411-1437.	1.7	4
301	Projection of hourly extreme precipitation using the WRF model over eastern China. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	0
302	Multi-Sensor Data Analysis of an Intense Weather Event: The July 2021 Lake Como Case Study. Water (Switzerland), 2022, 14, 3916.	1.2	2
303	Extreme hourly precipitation characteristics of Mainland China from 1980 to 2019. International Journal of Climatology, 2023, 43, 2989-3004.	1.5	4
304	Large-scale dynamics moderate impact-relevant changes to organised convective storms. Communications Earth & Environment, 2023, 4, .	2.6	7
305	Integration of shapley additive explanations with random forest model for quantitative precipitation estimation of mesoscale convective systems. Frontiers in Environmental Science, 0, 10, .	1.5	4
306	Vortex streets to the lee of Madeira in a kilometre-resolution regional climate model. Weather and Climate Dynamics, 2023, 4, 189-211.	1.2	2
307	Evaluation of the near-surface wind field over the Adriatic region: local wind characteristics in the convection-permitting model ensemble. Climate Dynamics, 0, , .	1.7	0
308	Future Simulated Changes in Central U.S. Mesoscale Convective System Rainfall Caused by Changes in Convective and Stratiform Structure. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0

#	Article	IF	CITATIONS
309	Convectionâ€permitting climate simulations with <scp>COSMOâ€CLM</scp> over northwestern Türkiye under the <scp>RCP8</scp> .5 scenario. International Journal of Climatology, 2023, 43, 3841-3858.	1.5	0
310	Variability conceals emerging trend in 100yr projections of UK local hourly rainfall extremes. Nature Communications, 2023, 14, .	5.8	14
311	Regionally high risk increase for precipitation extreme events under global warming. Scientific Reports, 2023, 13, .	1.6	5
312	Investigating the representation of heatwaves from an ensemble of km-scale regional climate simulations within CORDEX-FPS convection. Climate Dynamics, 0, , .	1.7	2