Nanosized microporous crystals: emerging applications

Chemical Society Reviews 44, 7207-7233 DOI: 10.1039/c5cs00210a

Citation Report

#	Article	IF	CITATIONS
2	Ultrastrong Alkali-Resisting Lanthanide-Zeolites Assembled by [Ln ₆₀] Nanocages. Journal of the American Chemical Society, 2015, 137, 15988-15991.	6.6	248
3	Solid state NMR characterization of zeolite beta based drug formulations containing Ag and sulfadiazine. RSC Advances, 2015, 5, 81957-81964.	1.7	14
4	Hybrid Sensors Fabricated by Inkjet Printing and Holographic Patterning. Chemistry of Materials, 2015, 27, 6097-6101.	3.2	34
5	In Situ Spectroscopic Studies of Proton Transport in Zeolite Catalysts for NH3-SCR. Catalysts, 2016, 6, 204.	1.6	8
6	Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection. Sensors and Actuators B: Chemical, 2016, 237, 776-786.	4.0	143
7	Mikroemulsionen: neue Möglichkeiten zur Erweiterung der Synthese anorganischer Nanopartikel. Angewandte Chemie, 2016, 128, 15958-15984.	1.6	6
8	Preparation of Y zeolite composites with adjustable, highly dispersed intra-crystal mesoporosity: Effect of lactic acid treatment in CTAB-assisted two-step approach. Microporous and Mesoporous Materials, 2016, 228, 237-247.	2.2	15
9	Physico-chemical characterization of lake pigments based on montmorillonite and carminic acid. Applied Clay Science, 2016, 130, 12-17.	2.6	46
10	Characterization and antibacterial activity of chlorhexidine loaded silver-kaolinite. Applied Clay Science, 2016, 127-128, 1-9.	2.6	34
11	One-dimensional PMMA–V2O5 photonic crystals used as color indicators of chloroform vapors. Optical and Quantum Electronics, 2016, 48, 1.	1.5	11
12	Nanosized inorganic porous materials: fabrication, modification and application. Journal of Materials Chemistry A, 2016, 4, 16756-16770.	5.2	43
13	Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure. CrystEngComm, 2016, 18, 6779-6783.	1.3	12
14	Syntheses of SSZ-39 and mordenite zeolites with N,N-dialkyl-2,6-dimethyl-piperidinium hydroxide/iodides: Phase-selective syntheses with anions. Microporous and Mesoporous Materials, 2016, 235, 135-142.	2.2	21
15	Hydrothermal synthesis of nanosized ZSM-22 and their use in the catalytic conversion of methanol. Chinese Journal of Catalysis, 2016, 37, 1381-1388.	6.9	14
16	Factors Governing the Formation of Hierarchically and Sequentially Intergrown MFI Zeolites by Using Simple Diquaternary Ammonium Structure-Directing Agents. Chemistry of Materials, 2016, 28, 8997-9007.	3.2	41
17	Hierarchical zeolites. MRS Bulletin, 2016, 41, 689-693.	1.7	42
18	Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus, 2016, 6, 20160027.	1.5	142
19	Porous organic cages: soluble, modular and molecular pores. Nature Reviews Materials, 2016, 1, .	23.3	603

#	Article	IF	CITATIONS
20	Microemulsions: Options To Expand the Synthesis of Inorganic Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 15728-15752.	7.2	78
21	Formation of Copper Nanoparticles in LTL Nanosized Zeolite: Kinetics Study. Journal of Physical Chemistry C, 2016, 120, 26300-26308.	1.5	9
22	Fluorescence Quenching of SulfoÂrhodamine Dye over Graphene Oxide and Boron Nitride Nanosheets. European Journal of Inorganic Chemistry, 2016, 2016, 2125-2130.	1.0	25
23	FRET-assisted selective detection of flavins via cationic conjugated polyelectrolyte under physiological conditions. Journal of Materials Chemistry B, 2016, 4, 4439-4446.	2.9	24
24	Noncontact AFM First-Principles Simulations of Functionalized Silicon Tips on the Montmorillonite (001) Surface. Journal of Physical Chemistry C, 2016, 120, 13503-13513.	1.5	7
25	Iron loaded EMT nanosized zeolite with high affinity towards CO 2 and NO. Microporous and Mesoporous Materials, 2016, 232, 256-263.	2.2	12
26	Silylation of leached-vermiculites following reaction with imidazole and copper sorption behavior. Journal of Hazardous Materials, 2016, 306, 406-418.	6.5	20
27	Ultrafast synthesis of silicalite-1 using a tubular reactor with a feature of rapid heating. Microporous and Mesoporous Materials, 2016, 223, 140-144.	2.2	36
28	High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 2016, 7, 102-108.	3.7	82
29	Removal of nitroimidazole antibiotics from water by adsorption over metal–organic frameworks modified with urea or melamine. Chemical Engineering Journal, 2017, 315, 92-100.	6.6	186
30	Hydrogen positions in single nanocrystals revealed by electron diffraction. Science, 2017, 355, 166-169.	6.0	203
31	Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane. Applied Catalysis A: General, 2017, 533, 90-98.	2.2	55
32	Fluoride etching of mordenite and its influence on catalytic activity. Journal of Materials Science, 2017, 52, 5297-5308.	1.7	13
33	Two-Stage Crystallization of Meso- and Macroporous MFI and MEL Zeolites Using Tributylamine-Derived Diquaternary Ammonium Cations as Organic Structure-Directing Agents. Bulletin of the Chemical Society of Japan, 2017, 90, 586-594.	2.0	4
34	Synthesis, structure and characterization of two new organic template-directed gallium phosphate/phosphite-oxalates. Journal of Molecular Structure, 2017, 1138, 1-5.	1.8	12
35	Optical fiber–Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing. Sensors and Actuators B: Chemical, 2017, 248, 359-366.	4.0	8
36	Crystal growth study of K-F nanozeolite and its catalytic behavior in Aldol condensation of benzaldehyde and heptanal enhanced by microwave heating. Materials Chemistry and Physics, 2017, 196, 295-301.	2.0	33
37	Electrochemical detection of chemical pollutants based on gold nanomaterials. Trends in Environmental Analytical Chemistry, 2017, 14, 28-36.	5.3	48

#	Article	IF	CITATIONS
38	Densification of Silica Spheres: A New Pathway to Nanoâ€Đimensioned Zeoliteâ€Based Catalysts. Chemistry - A European Journal, 2017, 23, 10983-10986.	1.7	6
39	Application of Cu-FAU nanozeolites for decontamination of surfaces soiled with the ESKAPE pathogens. Microporous and Mesoporous Materials, 2017, 253, 233-238.	2.2	8
40	Rapid screening of the antimicrobial efficacy of Ag zeolites. Colloids and Surfaces B: Biointerfaces, 2017, 157, 254-260.	2.5	22
41	Influence of the nature of amino acids on the formation of mesoporous LTA-type zeolite. Microporous and Mesoporous Materials, 2017, 252, 79-89.	2.2	23
42	Conversion of Y into SSZ-13 zeolite in the presence of tetraethylammonium hydroxide and ethylene-to-propylene reactions over SSZ-13 zeolites. Catalysis Today, 2017, 298, 53-60.	2.2	39
43	Biomassâ€assisted Zeolite Syntheses as a Tool for Designing New Acid Catalysts. ChemCatChem, 2017, 9, 2065-2079.	1.8	14
44	Cysteine-montmorillonite composites for heavy metal cation complexation: A combined experimental and theoretical study. Chemical Engineering Journal, 2017, 314, 406-417.	6.6	68
45	Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chemical Reviews, 2017, 117, 13639-13720.	23.0	98
46	Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant <i>Staphylococcus aureus</i> . ACS Applied Materials & Interfaces, 2017, 9, 39271-39282.	4.0	36
47	Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catalysis Science and Technology, 2017, 7, 4905-4923.	2.1	115
48	Syntheses and Crystal Structures of Three Organically Templated Gallium Phosphates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1011-1015.	0.6	2
49	One-pot synthesis of silanol-free nanosized MFIÂzeolite. Nature Materials, 2017, 16, 1010-1015.	13.3	135
50	LAPONITE®-pilocarpine hybrid material: experimental and theoretical evaluation of pilocarpine conformation. RSC Advances, 2017, 7, 27290-27298.	1.7	26
51	Systematic Engineering of Single Substitution in Zirconium Metal–Organic Frameworks toward High-Performance Catalysis. Journal of the American Chemical Society, 2017, 139, 18590-18597.	6.6	102
52	Hot-Electron Photodynamics of Silver-Containing Nanosized Zeolite Films Revealed by Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 26958-26966.	1.5	7
53	In Situ Assembly of Nanoparticles into Hierarchical Beta Zeolite with Tailored Simple Organic Molecule. Langmuir, 2017, 33, 14396-14404.	1.6	22
54	Template-free synthesis and structural evolution of discrete hydroxycancrinite zeolite nanorods from high-concentration hydrogels. Nanoscale, 2017, 9, 18804-18811.	2.8	9
55	Synthesis of ZSM-5 aggregates by a seed-induced method and catalytic performance in methanol-to-gasoline conversion. Comptes Rendus Chimie, 2017, 20, 385-394.	0.2	23

#	Article	IF	CITATIONS
56	Synthesis and characterization of three new beryllium phosphate/phosphites with different structure-directing agents. Journal of Molecular Structure, 2017, 1131, 218-224.	1.8	1
57	Applications of Zeolites in Sustainable Chemistry. CheM, 2017, 3, 928-949.	5.8	518
58	Strategies to Enhance the Catalytic Performance of ZSM-5 Zeolite in Hydrocarbon Cracking: A Review. Catalysts, 2017, 7, 367.	1.6	89
59	Solvates and Hydrates—Supramolecular Compounds â^†. , 2017, , 89-108.		1
60	Zeolite Y microspheres with perpendicular mesochannels and metal@Y heterostructures for catalytic and SERS applications. Journal of Materials Chemistry A, 2018, 6, 6273-6281.	5.2	18
61	Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core–Shell Materials. Advanced Materials, 2018, 30, e1704439.	11.1	114
62	Direct Synthesis of Nanoâ€Ferrierite along the 10â€Ringâ€Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie - International Edition, 2018, 57, 3459-3463.	7.2	46
63	Physico-chemical characterization of natural lake pigments obtained from Caesalpinia Sappan Linn. and their composite films for poly(lactic acid)-based packaging materials. Dyes and Pigments, 2018, 157, 27-39.	2.0	26
64	Direct Synthesis of Nanoâ€Ferrierite along the 10â€Ringâ€Channel Direction Boosts Their Catalytic Behavior. Angewandte Chemie, 2018, 130, 3517-3521.	1.6	9
65	NanoMOFs: little crystallites for substantial applications. Journal of Materials Chemistry A, 2018, 6, 7338-7350.	5.2	79
66	Detection of CO2 and O2 by iron loaded LTL zeolite films. Frontiers of Chemical Science and Engineering, 2018, 12, 94-102.	2.3	7
67	A zeolite-like aluminophosphate membrane with molecular-sieving property for water desalination. Chemical Science, 2018, 9, 2533-2539.	3.7	27
68	Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction. Comptes Rendus Chimie, 2018, 21, 61-70.	0.2	12
69	Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization. Physical Chemistry Chemical Physics, 2018, 20, 2880-2889.	1.3	11
70	Catalytic cracking of n-hexane to light alkene over ZSM-5 zeolite: Influence of hierarchical porosity and acid property. Molecular Catalysis, 2018, 448, 91-99.	1.0	31
71	Creating intraparticle mesopores inside ZSM-5 nanocrystals under OSDA-free conditions and achievement of high activity in LDPE degradation. Microporous and Mesoporous Materials, 2018, 258, 178-188.	2.2	17
72	Label-free electrochemical immunosensor based on conductive Ag contained EMT-style nano-zeolites and the application for α-fetoprotein detection. Sensors and Actuators B: Chemical, 2018, 255, 2919-2926.	4.0	28
73	Zeolite constructor kit: Design for catalytic applications. Catalysis Today, 2018, 304, 2-11.	2.2	10

#	Article	IF	CITATIONS
74	Femto-to nanosecond photodynamics of Nile Red in metal-ion exchanged faujasites. Microporous and Mesoporous Materials, 2018, 256, 214-226.	2.2	12
75	Superior ion release properties and antibacterial efficacy of nanostructured zeolites ion-exchanged with zinc, copper, and iron. RSC Advances, 2018, 8, 37949-37957.	1.7	32
76	Hollow Zeolite Single Crystals: Synthesis Routes and Functionalization Methods. Small Methods, 2018, 2, 1800197.	4.6	28
77	Design Synthesis of ITE Zeolite Using Nickel–Amine Complex as an Efficient Structure-Directing Agent. ACS Applied Materials & Interfaces, 2018, 10, 33214-33220.	4.0	9
78	Demonstration of Improved Effectiveness Factor of Catalysts Based on Hollow Single Crystal Zeolites. ChemCatChem, 2018, 10, 4525-4529.	1.8	14
79	Ga-Substituted Nanoscale HZSM-5 in Methanol Aromatization: The Cooperative Action of the BrÃnsted Acid and the Extra-Framework Ga Species. Industrial & Engineering Chemistry Research, 2018, 57, 7742-7751.	1.8	42
80	Biomass-mediated ZSM-5 zeolite synthesis: when self-assembly allows to cross the Si/Al lower limit. Chemical Science, 2018, 9, 6532-6539.	3.7	26
81	When anthraquinone dyes meet pillared montmorillonite: Stability or fading upon exposure to light?. Dyes and Pigments, 2018, 159, 384-394.	2.0	47
82	Conversion of ethylene into propylene with the siliceous SSZ-13 zeolite prepared without an organic structure-directing agent. Journal of Catalysis, 2018, 365, 94-104.	3.1	24
83	Basics of Crystallization Process Applied in Drug Exploration. , 2018, , 67-103.		1
84	Nanosized MCM-22 zeolite using simple non-surfactant organic growth modifiers: synthesis and catalytic applications. Chemical Communications, 2018, 54, 9989-9992.	2.2	14
85	A systematic study on solid-state synthesis of monticellite (CaMgSiO4) based ceramic powders obtained from boron derivative waste. Advanced Powder Technology, 2018, 29, 2835-2844.	2.0	12
86	Single crystal fluorescence behavior of a new HOF material: a potential candidate for a new LED. Journal of Materials Chemistry C, 2018, 6, 6929-6939.	2.7	33
87	A Topotactic Synthetic Methodology for the Synthesis of Nanosized MFI Zeolites with Hierarchical Structures. Chemistry - A European Journal, 2018, 24, 12600-12606.	1.7	2
88	Dandelion-Like Microspherical MCM-22 Zeolite Using BP 2000 as a Hard Template. ACS Omega, 2018, 3, 6217-6223.	1.6	13
89	Ultrasmall Zeoliteâ€L Crystals Prepared from Highly Interdispersed Alkaliâ€Silicate Precursors. Angewandte Chemie - International Edition, 2018, 57, 11283-11288.	7.2	60
90	Crystallization of ATO silicoaluminophosphates nanocrystalline spheroids using a phase-transfer synthetic strategy for n-heptane hydroisomerization. Journal of Catalysis, 2018, 364, 308-327.	3.1	42
91	Ultrasmall Zeoliteâ€L Crystals Prepared from Highly Interdispersed Alkaliâ€Silicate Precursors.	1.6	14

#	ARTICLE	IF	CITATIONS
" 92	Preparation of SSZ-13 zeolites from beta zeolite and their application in the conversion of ethylene to propylene. Chemical Engineering Journal, 2019, 377, 119546.	6.6	23
93	Bifunctional Hydrogen Production and Storage on 0D–1D Heterojunction of Cd _{0.5} Zn _{0.5} S@Halloysites. Advanced Functional Materials, 2019, 29, 1903825.	7.8	50
94	Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation. Journal of Membrane Science, 2019, 591, 117343.	4.1	45
95	Acid/base reversible allochroic anthocyanin/palygorskite hybrid pigments: Preparation, stability and potential applications. Dyes and Pigments, 2019, 171, 107738.	2.0	25
96	Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry, 2019, 1, 601-611.	4.4	145
97	Exploratory Synthesis of Low-Silica Nanozeolites through Geopolymer Chemistry. Crystal Growth and Design, 2019, 19, 1167-1171.	1.4	12
98	Zeolite RHO Synthesis Accelerated by Ultrasonic Irradiation Treatment. Scientific Reports, 2019, 9, 15062.	1.6	17
99	Ordered Macro–Microporous Metal–Organic Framework Single Crystals and Their Derivatives for Rechargeable Aluminum-Ion Batteries. Journal of the American Chemical Society, 2019, 141, 14764-14771.	6.6	226
100	Steps Towards Large Mylar Membrane Based Multiple Transducers, Application to Chemical Adsoptions Sensors. , 2019, , .		0
101	Zeolite Nanocrystals Protect the Performance of Organic Additives and Adsorb Acid Compounds during Lubricants Oxidation. Materials, 2019, 12, 2830.	1.3	5
102	New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48, 1095-1149.	18.7	330
103	Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF). Analytica Chimica Acta, 2019, 1055, 74-80.	2.6	42
104	Effect of alkali metal cations modification on the acid/basic properties and catalytic activity of ZSM-5 in cracking of supercritical n-dodecane. Fuel, 2019, 243, 155-161.	3.4	48
105	Design of ZIF(Co & Zn)@wool composite for efficient removal of pharmaceutical intermediate from wastewater. Journal of Colloid and Interface Science, 2019, 552, 494-505.	5.0	87
106	Ultrasound-assisted magnetic solid phase extraction of lead and thallium in complex environmental samples using magnetic multi-walled carbon nanotubes/zeolite nanocomposite. Microchemical Journal, 2019, 149, 103960	2.3	55
107	Incorporation of Brazilian Diatomite in the Synthesis of An MFI Zeolite. Molecules, 2019, 24, 1980.	1.7	4
108	Direct Evidence for Single Molybdenum Atoms Incorporated in the Framework of MFI Zeolite Nanocrystals. Journal of the American Chemical Society, 2019, 141, 8689-8693.	6.6	57
109	Synthesis of Nanoscale Zeolites. Petroleum Chemistry, 2019, 59, 262-274.	0.4	8

#	Article	IF	CITATIONS
110	Morphology adjustment of ZSM-5 nanocrystal agglomerates and achievement of improved activity in LDPE catalytic cracking reaction. Microporous and Mesoporous Materials, 2019, 285, 120-128.	2.2	12
111	New Insights into Manganese Local Environment in MnS-1 Nanocrystals. Crystal Growth and Design, 2019, 19, 3130-3138.	1.4	7
112	Nanobiopesticides: Composition and preparation methods. , 2019, , 69-131.		16
113	Chemical Crosslinking Assembly of ZSM-5 Nanozeolites into Uniform and Hierarchically Porous Microparticles for High-Performance Acid Catalysis. ACS Applied Materials & Interfaces, 2019, 11, 16693-16703.	4.0	28
114	Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48, 2366-2421.	18.7	457
115	Photoactive Metal-Containing Zeolitic Materials for Sensing and Light-to-Chemical Energy Conversion. , 2019, , 331-349.		0
116	Dimethyl Ether Conversion to Gasoline Hydrocarbons over Nanosized Zeolite Catalysts: Effect of Modifier Nature. Petroleum Chemistry, 2019, 59, 1331-1336.	0.4	5
117	Recent progress in the biomass-mediated synthesis of porous materials. Inorganica Chimica Acta, 2019, 487, 379-386.	1.2	4
118	CO ₂ Adsorption/Desorption in FAU Zeolite Nanocrystals: In Situ Synchrotron X-ray Powder Diffraction and in Situ Fourier Transform Infrared Spectroscopic Study. Journal of Physical Chemistry C, 2019, 123, 2361-2369.	1.5	34
119	Synthesis of SSZ-13 zeolite in the presence of dimethylethylcyclohexyl ammonium ion and direct conversion of ethylene to propylene with the SSZ-13. Chemical Engineering Journal, 2019, 377, 120116.	6.6	16
120	Organic-free one-step synthesis of macro/microporous LTA zeolite and its encapsulation of metal nanoparticles. Microporous and Mesoporous Materials, 2020, 293, 109813.	2.2	12
121	Synthesis and physicochemical properties of hierarchical zeolites containing ruthenium oxide nanoparticles and their application in the reaction of dihydroxyacetone isomerization. Microporous and Mesoporous Materials, 2020, 293, 109787.	2.2	6
122	Synthesis of aggregation-resistant MFI nanoparticles. Catalysis Today, 2020, 354, 151-157.	2.2	2
123	Sustainable Synthesis of Hierarchical MWW Zeolites Using Silica from an Agro-industrial Waste, Rice Husk Ash. Crystal Growth and Design, 2020, 20, 178-188.	1.4	11
124	Understanding Dealumination Mechanisms in Protonic and Cationic Zeolites. Journal of Physical Chemistry C, 2020, 124, 668-676.	1.5	22
125	Evolution of Structure and Active Sites during the Synthesis of ZSM-5: From Amorphous to Fully Grown Structure. Journal of Physical Chemistry C, 2020, 124, 2439-2449.	1.5	15
126	Facile Synthesis of Hierarchical Nanosized Single rystal Aluminophosphate Molecular Sieves from Highly Homogeneous and Concentrated Precursors. Angewandte Chemie, 2020, 132, 3483-3487.	1.6	2
127	Facile Synthesis of Hierarchical Nanosized Single rystal Aluminophosphate Molecular Sieves from Highly Homogeneous and Concentrated Precursors. Angewandte Chemie - International Edition, 2020, 59, 3455-3459.	7.2	36

#	Article	IF	CITATIONS
128	Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nature Protocols, 2020, 15, 3527-3555.	5.5	54
129	Hotâ€Electron Photodynamics in Silverâ€Containing BEAâ€Type Nanozeolite Studied by Femtosecond Transient Absorption Spectroscopy. ChemPhysChem, 2020, 21, 2634-2643.	1.0	2
130	Effects of Wax-Impregnated Nanozeolites on Bitumen's Thermomechanical Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 15299-15309.	3.2	7
131	CO ₂ hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: influence of the zeolite structure and crystal size. Catalysis Science and Technology, 2020, 10, 5648-5658.	2.1	15
132	Formation of EMT/FAU intergrowth and nanosized SOD zeolites from synthesis gel of zeolite NaX containing ethanol. Materials Research Express, 2020, 7, 075011.	0.8	4
133	CO2 adsorption by conventional and nanosized zeolites. , 2020, , 193-228.		15
134	A facile way to improve zeolite Y-based catalysts' properties and performance in the isobutane–butene alkylation reaction. RSC Advances, 2020, 10, 29068-29076.	1.7	9
135	Finned zeolite catalysts. Nature Materials, 2020, 19, 1074-1080.	13.3	116
136	Nanosized zeolites as a gas delivery platform in a glioblastoma model. Biomaterials, 2020, 257, 120249.	5.7	14
137	Zero-order and prolonged release of atenolol from microporous FAU and BEA zeolites, and mesoporous MCM-41: Experimental and theoretical investigations. Journal of Controlled Release, 2020, 327, 140-149.	4.8	9
138	Faster transport in hollow zeolites. Microporous and Mesoporous Materials, 2020, 308, 110499.	2.2	10
139	Bicomponent drug formulation for simultaneous release of Ag and sulfadiazine supported on nanosized zeolite Beta. Nano Structures Nano Objects, 2020, 24, 100562.	1.9	5
140	Environmentally benign synthesis of crystalline nanosized molecular sieves. Green Energy and Environment, 2020, 5, 394-404.	4.7	14
141	Electrochemical (bio) sensors go green. Biosensors and Bioelectronics, 2020, 163, 112270.	5.3	85
142	Controlled Crystallization of Hierarchical Monoliths Composed of Nanozeolites. Crystal Growth and Design, 2020, 20, 5413-5423.	1.4	5
143	Hemolitic Activity and Sorption Ability of Beta Zeolite Nanoparticles. Glass Physics and Chemistry, 2020, 46, 155-161.	0.2	7
144	Expanding the Synthesis Field of High‧ilica Zeolites. Angewandte Chemie, 2020, 132, 19744-19749.	1.6	1
145	Expanding the Synthesis Field of Highâ€6ilica Zeolites. Angewandte Chemie - International Edition, 2020, 59, 19576-19581.	7.2	18

#	Article	IF	Citations
146	Seed-assisted synthesis and characterization of nano and micron ZSM-5 molecular sieves in template-free system. Journal of Solid State Chemistry, 2020, 290, 121536.	1.4	14
147	Flexible Template-Free RHO Nanosized Zeolite for Selective CO ₂ Adsorption. Chemistry of Materials, 2020, 32, 5985-5993.	3.2	31
148	Nanosized zeolite beta - Determining the safety of usage by zebrafish Danio rerio embryos. Microporous and Mesoporous Materials, 2020, 299, 110103.	2.2	3
149	From One to Two: Acidic Proton Spatial Networks in Porous Zeolite Materials. Chemistry of Materials, 2020, 32, 1332-1342.	3.2	35
150	Environment, Stability and Acidity of External Surface Sites of Silicalite-1 and ZSM-5 Micro and Nano Slabs, Sheets, and Crystals. ACS Catalysis, 2020, 10, 3297-3312.	5.5	32
151	<p>Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions</p> . International Journal of Nanomedicine, 2020, Volume 15, 363-386.	3.3	34
152	Decoupling nucleation from crystal-growth for the synthesis of nanocrystalline zeolites. Dalton Transactions, 2020, 49, 7258-7266.	1.6	16
153	A review on synthesis of kaolinâ€based zeolite and the effect of impurities. Journal of the Chinese Chemical Society, 2020, 67, 911-936.	0.8	28
154	Conventional synthesis of layer-like zeolites with faujasite (FAU) structure and their pathway of crystallization. Microporous and Mesoporous Materials, 2020, 303, 110263.	2.2	13
155	Toward the Atomic Scale Simulation of Intricate Acidic Aluminosilicate Catalysts. ACS Catalysis, 2020, 10, 5579-5601.	5.5	49
156	On certain distance and degree based topological indices of Zeolite LTA frameworks. Materials Research Express, 2020, 7, 055006.	0.8	30
157	Confining isolated atoms and clusters in crystalline porous materials forÂcatalysis. Nature Reviews Materials, 2021, 6, 244-263.	23.3	219
158	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
159	Natureâ€Inspired, Computerâ€Assisted Optimization of Hierarchically Structured Zeolites. Advanced Materials Interfaces, 2021, 8, 2001409.	1.9	16
160	MFI vs. FER zeolite during methanol dehydration to dimethyl ether: The crystal size plays a key role. Catalysis Communications, 2021, 149, 106214.	1.6	25
161	Synthesis of Metal Organic Frameworks (MOF) and Covalent Organic Frameworks (COF). Indian Institute of Metals Series, 2021, , 503-556.	0.2	Ο
162	Tracking the evolution of embryonic zeolites into hierarchical ZSM-5. Journal of Materials Chemistry A, 2021, 9, 13570-13587.	5.2	11
163	Nuclear spin relaxation as a probe of zeolite acidity: a combined NMR and TPD investigation of pyridine in HZSM-5. Physical Chemistry Chemical Physics, 2021, 23, 17752-17760.	1.3	19

#	Article	IF	CITATIONS
164	Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50, 8511-8595.	18.7	87
165	Synthesis and application of (nano) zeolites. , 2021, , .		2
166	Platelike MFI Crystals with Controlled Crystal Faces Aspect Ratio. Journal of the American Chemical Society, 2021, 143, 1993-2004.	6.6	93
167	How neutral nitrogen-containing compounds are oxidized in oxidative-denitrogenation of liquid fuel with TiO ₂ @carbon. Physical Chemistry Chemical Physics, 2021, 23, 8368-8374.	1.3	4
168	One-pot synthesis of hollow single crystal SSZ-13 zeolite by creating aluminum gradients with excellent activity for NH3-SCR. Microporous and Mesoporous Materials, 2021, 314, 110865.	2.2	10
169	Synthesis of Zeolitic Mo-Doped Vanadotungstates and Their Catalytic Activity for Low-Temperature NH3-SCR. Inorganic Chemistry, 2021, 60, 5081-5086.	1.9	8
170	Zeoliteâ€Based Memristive Synapse with Ultralow Subâ€10â€fJ Energy Consumption for Neuromorphic Computation. Small, 2021, 17, e2006662.	5.2	13
172	Capture CO2 from N2 and CH4 by zeolite L with different crystal morphology. Microporous and Mesoporous Materials, 2021, 316, 110956.	2.2	17
173	Formation of Highly Dispersed Faujasites in Natural Aluminosilicate Gels. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 329-334.	0.3	0
174	MFI crystal and film growth and defects evolution: Revealed by high resolution electron microscopy. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 439-452.	0.9	0
175	Confinement-Driven "Flexible―Acidity Properties of Porous Zeolite Catalysts with Varied Probe-Assisted Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 11580-11590.	1.5	8
176	Spontaneous Pillaring of Pentasil Zeolites. Advanced Materials, 2021, 33, e2100897.	11.1	36
177	Surface Fingerprinting of Faceted Metal Oxides and Porous Zeolite Catalysts by Probe-Assisted Solid-State NMR Approaches. Accounts of Chemical Research, 2021, 54, 2421-2433.	7.6	21
178	Overcoming the limitations of anthracene alkylation using SZ-DeAl-DFNS acid catalyst. Chinese Chemical Letters, 2021, 32, 3976-3979.	4.8	3
179	From Colloidal Dispersions of Zeolite Monolayers to Effective Solid Catalysts in Transformations of Bulky Organic Molecules: Role of Freeze-Drying and Dialysis. Molecules, 2021, 26, 2076.	1.7	2
180	Cooperative Adsorption: Solvating the Hofmann Elimination of Alkylamines. ACS Catalysis, 2021, 11, 6416-6430.	5.5	7
181	Controllably tailoring external surface sites of nanosheet HZSM-5 for maximizing light olefins in catalytic cracking of n-decane. Chinese Journal of Chemical Engineering, 2021, 38, 276-285.	1.7	13
182	Make it clean, make it safe: A review on virus elimination via adsorption. Chemical Engineering Journal, 2021, 412, 128682.	6.6	40

\sim	-	
	REDU	ID T
	ILLI U	

#	Article	IF	CITATIONS
183	Pyrolysis Degradation of Cellulose over Highly Effective ZnO and ZnOâ^'CuO Nanocatalysts. ChemistrySelect, 2021, 6, 4256-4264.	0.7	6
184	A comparative study on surface/interface mechanism and antibacterial properties of different hybrid materials prepared with essential oils active ingredients and palygorskite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126455.	2.3	16
185	Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catalysis, 2021, 11, 7780-7819.	5.5	92
186	Experimental and molecular modelling study of beta zeolite as drug delivery system. Microporous and Mesoporous Materials, 2021, 321, 111152.	2.2	4
187	A facile organic-free synthesis of high silica zeolite Y with small crystal in the presence of Co2+. Microporous and Mesoporous Materials, 2021, 323, 111248.	2.2	10
188	Seed-Assisted Synthesis of ZSM-5 Aggregates Assembled from Regularly Stacked Nanosheets and Their Performance in <i>n</i> -Hexane Aromatization. Industrial & Engineering Chemistry Research, 2021, 60, 12100-12108.	1.8	9
189	Synthesis and characterization of nanozeolite from (agro)industrial waste for application in heterogeneous photocatalysis. Environmental Science and Pollution Research, 2022, 29, 3794-3807.	2.7	28
190	Synthesis TS-1 nanozelites via L-lysine assisted route for hydroxylation of Benzene. Molecular Catalysis, 2021, 513, 111779.	1.0	7
191	for Hydroisomerization of C16+ n-Paraffins. Part 2: Current State of Research on Methods to Control the Crystal Morphology, Dispersion, Acidic Properties, Secondary Porous Structure, and Catalytic Properties of SAPO-11 and SAPO-41 in Hydroisomerization of C16+ n-Paraffins (A Review). Petroleum	0.4	12
192	Cnemistry, 2021, 61, 852-870. Controllable synthesis of nanoscaled ZSM-5 aggregates with multivariate channel under the synergistic effect of silicate-1 and TPABr using dual-silica source. Microporous and Mesoporous Materials, 2021, 323, 111224.	2.2	5
193	Sandwich-Type Zeolite Intergrowths with MFI and the Novel Extra-Large Pore IDM-1 as Ordered End-Members. Chemistry of Materials, 2021, 33, 7869-7877.	3.2	6
194	Biological fabrication and electrostatic attractions of new layered silver/talc nanocomposite using Lawsonia inermis L. and its chitosan-capped inorganic/organic hybrid: Investigation on acceleration of Staphylococcus aureus and Pseudomonas aeruginosa infected wound healing. Materials Science and Engineering C. 2021, 128, 112294.	3.8	28
195	Synergistic effect of micro-meso-macroporous system and structural Al amount of ZSM-5 for intensification of light olefins production in n-hexane cracking. Journal of Solid State Chemistry, 2021, 301, 122342.	1.4	8
196	Effectiveness of Green Synthesis of Silver/Kaolinite Nanocomposite Using <i>Quercus infectoria</i> Galls Aqueous Extract and Its Chitosan-Capped Derivative on the Healing of Infected Wound. IEEE Transactions on Nanobioscience, 2021, 20, 530-542.	2.2	8
197	Solid catalysts for environmentally benign synthesis. , 2022, , 23-80.		0
198	Spectroscopic Expression of the External Surface Sites of H-ZSM-5. Journal of Physical Chemistry C, 2021, 125, 2163-2181.	1.5	34
199	Deep red fluoride dots-in-nanoparticles for high color quality micro white light-emitting diodes. Optics Express, 2020, 28, 26189.	1.7	17
200	Transmission Spectra Investigation of Nanoporous Al2O3 Matrices Filled with KDP, ADP and TGS Crystals at Visible, NIR, and SubTerahertz Ranges. , 2021, , .		2

#	Article	IF	CITATIONS
201	Nanomaterials to Improve Bio-Oil from Biomass Pyrolysis: State-Of-Art and Challenges. Engineering Materials, 2022, , 109-132.	0.3	0
202	Zeolites as Scaffolds for Metal Nanoclusters. , 0, , .		0
203	Enhancing hydrophobicity and catalytic activity of nano-Sn-Beta for alcohol ring opening of epoxides through post-synthetic treatment with fluoride. Journal of Catalysis, 2021, 404, 430-439.	3.1	5
204	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie - International Edition, 2021, 60, 26702-26709.	7.2	17
205	Unlocking the potential of hidden sites in FAUJASITE: new insights in a proton transfer mechanism. Angewandte Chemie, 0, , .	1.6	4
206	Introduction to Nanocatalysts. RSC Catalysis Series, 2019, , 1-36.	0.1	5
207	Exfoliation and Extraction of Nanoclay from Montmorillonite Mineral Rich Bentonite Soil. Lecture Notes in Civil Engineering, 2020, , 1-12.	0.3	2
208	Nanocellulose and nanoclay as reinforcement materials in polymer composites: A review. Malaysian Journal of Fundamental and Applied Sciences, 2020, 16, 145-153.	0.4	8
209	Radiation defects and intrinsic luminescence of cancrinite. Journal of Luminescence, 2022, 243, 118628.	1.5	6
210	"Open―Nonporous Nonasil Zeolite Structure for Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 20569-20573.	6.6	14
211	Autocatalysis and Oriented Attachment Direct the Synthesis of a Metal–Organic Framework. Jacs Au, 2022, 2, 453-462.	3.6	14
212	Reduction of crystal size of silicalite-1 synthesized in fluoride-containing media via multi-stage heating with intermediate stirring. Journal of the Ceramic Society of Japan, 2022, 130, 187-194.	0.5	1
213	Synthesis of Nanosized Mordenite with Enhanced Catalytic Performance in the Alkylation of Benzene with Benzyl Alcohol. Industrial & Engineering Chemistry Research, 2022, 61, 1078-1088.	1.8	6
214	Elucidating the Zeolite Particle Size Effect on Butene/Isobutane Alkylation. Industrial & Engineering Chemistry Research, 2022, 61, 1032-1043.	1.8	6
215	Reactivity of internal vs. external BrÃ,nsted acid sites in nanosponge MFI: H/D exchange kinetic study. Microporous and Mesoporous Materials, 2022, 332, 111717.	2.2	1
216	Efficient methanol dehydration to DME and light hydrocarbons by submicrometric ZrO2-ZSM-5 fibrillar catalysts with a shell-like structure. Fuel, 2022, 315, 123283.	3.4	12
217	Sustainable and safer nanoclay composites for multifaceted applications. Green Chemistry, 2022, 24, 3081-3114.	4.6	28
218	Mixed-Matrix Ion Gel Membranes for Gas Separation. ACS Applied Polymer Materials, 2022, 4, 3098-3119.	2.0	10

#	Article	IF	CITATIONS
219	Plate-Like ZSM-5 Zeolites as Robust Catalysts for the Cracking of Hydrocarbons. ACS Applied Materials & Interfaces, 2022, 14, 11415-11424.	4.0	20
220	Hierarchical Catalysts Prepared by Interzeolite Transformation. Journal of the American Chemical Society, 2022, 144, 5163-5171.	6.6	20
221	Ultrafast synthesis of discrete submicron AlPO4-LTA molecular sieve crystals and their application in molecular sieve membrane. Microporous and Mesoporous Materials, 2022, 334, 111771.	2.2	4
222	The high efficiency of ZnAl2O4/ZSM-5 in the removal of carbon monoxide contaminants during photocatalytic oxidation process. Microporous and Mesoporous Materials, 2022, 335, 111797.	2.2	0
223	Advances in the application of molecular sieves as catalysts for lignin depolymerization ― <scp>HZSM</scp> â€5 as an example. Environmental Progress and Sustainable Energy, 0, , .	1.3	4
224	Correlation of BrÃnsted acid sites and Al distribution in ZSM-5 zeolites and their effects on butenes conversion. Fuel, 2022, 320, 123729.	3.4	8
225	Kâ€Chabazite Zeolite Nanocrystal Aggregates for Highly Efficient Methane Separation. Angewandte Chemie - International Edition, 2022, 61, e202116850.	7.2	12
226	Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization. Angewandte Chemie, 2022, 134, .	1.6	7
227	Kâ€Chabazite Zeolite Nanocrystal Aggregates for Highly Efficient Methane Separation. Angewandte Chemie, 2022, 134, .	1.6	9
228	Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
229	Hierarchically Nitrogenâ€doped Porous Carbonâ€Supported Nonâ€noble Metal Nanoparticles for Promoting the Selective Hydrogenation of Furfural. ChemNanoMat, 2022, 8, .	1.5	2
230	Synergistic effect of acid sites and a gallium-based modified meso-/microporous catalyst for the pyrolysis of biomass. Renewable Energy, 2022, 191, 580-590.	4.3	8
231	Prolonged repellent activity of Ruta graveolens essential oil adsorbed on different mineral matrices against Sitophilus zeamais (L.) (Coleoptera: Curculionidae). Journal of Stored Products Research, 2022, 97, 101976.	1.2	1
232	Advances in zeolite-supported metal catalysts for propane dehydrogenation. Inorganic Chemistry Frontiers, 2022, 9, 3095-3115.	3.0	19
233	Facile synthesis of nanosized mordenite and beta zeolites with improved catalytic performance: non-surfactant diquaternary ammonium compounds as structure-directing agents. Inorganic Chemistry Frontiers, 2022, 9, 3200-3216.	3.0	11
234	Hierarchical Gallium-Modified Zsm-5@Sba-15 for the Catalytic Pyrolysis of Biomass into Hydrocarbons. SSRN Electronic Journal, 0, , .	0.4	0
235	Tribological performance of zeolite/sodium dodecylbenzenesulfonate hybrid water-based lubricants. Applied Surface Science, 2022, 598, 153764.	3.1	2
236	N-doped nanocarbon embedded in hierarchically porous metal-organic frameworks for highly efficient CO2 fixation. Science China Chemistry, 2022, 65, 1411-1419.	4.2	15

#	ARTICLE	IF	CITATIONS
237	Crystallization of potassium-zeolites in organic-free media. Microporous and Mesoporous Materials, 2022, 341, 112026.	2.2	12
238	Fundamental understanding and catalytic applications of hollow MFI-type zeolites. Catalysis Today, 2022, 405-406, 111-124.	2.2	8
239	Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: A critical review. Applied Catalysis A: General, 2022, 643, 118769.	2.2	5
240	Recent advances in aqueous virus removal technologies. Chemosphere, 2022, 305, 135441.	4.2	36
241	Geopolymeric nanomaterials. , 2022, , 41-68.		0
242	Post-synthesis and structural evolution of hollow titanium silicalite-1 with solvent-free method. Nano Research, 2023, 16, 1740-1747.	5.8	6
243	Recent advances in the imidazolium-based ionic liquid-templated synthesis of microporous zeolites. Materials Today Chemistry, 2022, 26, 101133.	1.7	2
244	Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules, 2022, 27, 6261.	1.7	25
245	Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chemical Reviews, 2022, 122, 17647-17695.	23.0	136
246	Hierarchical gallium-modified ZSM-5@SBA-15 for the catalytic pyrolysis of biomass into hydrocarbons. Renewable Energy, 2022, 200, 1037-1046.	4.3	3
247	ZSM-12 nanocrystals with tunable acidity directed by rigid diquats: Synthesis and catalytic applications. Fuel, 2023, 333, 126363.	3.4	5
248	Optical and Electron Microscopy Studies of Al ₂ O ₃ Nanomatrices with Embedded ADP and KB5 Nanocrystals. , 2022, , .		0
249	Synthesis of Core–Shell Magnetic Nanoparticles Containing Ultrasmall Domains of Silicaliteâ€1. Advanced Materials Interfaces, 0, , 2201961.	1.9	0
250	Stability and Acidity of Sites at the External Surface and at Point Defects of Faujasite. ChemCatChem, 2023, 15, .	1.8	3
251	Synthesis of Hierarchical ZSMâ€5 Submicron Spheres for Catalytic Cracking. ChemistrySelect, 2022, 7, .	0.7	0
252	Adsorbate-driven dynamic active sites in stannosilicate zeolites. Fundamental Research, 2023, , .	1.6	2
253	In Situ Imaging of Faujasite Surface Growth Reveals Unique Pathways of Zeolite Crystallization. Journal of the American Chemical Society, 2023, 145, 1155-1164.	6.6	5
254	One-step synthesis of super-absorbent nanocomposite hydrogel based on bentonite. Materials Research Express, 2023, 10, 015001.	0.8	3

#	ARTICLE	IF	CITATIONS
255	Analysis of the microstructure and morphology of disordered kaolinite based on the particle size distribution. Applied Clay Science, 2023, 232, 106801.	2.6	7
256	Hierarchical low-silica SAPO-34 with enhanced MTO performance: Mesopore template- and fluoride-free synthesis. Microporous and Mesoporous Materials, 2023, 349, 112425.	2.2	3
257	Gadolinium-loaded LTL nanosized zeolite for efficient oxygen delivery and magnetic resonance imaging. Inorganic Chemistry Frontiers, 2023, 10, 2665-2676.	3.0	1
258	Dendritic nanoarchitecture imparts ZSM-5 zeolite with enhanced adsorption and catalytic performance in energy applications. Journal of Energy Chemistry, 2023, 80, 77-88.	7.1	5
259	Synthesis of nanozeolites type A and X from quartz-rich Cameroonian kaolin: application to the modification of carbon paste electrode for acetaminophen and epinine electrochemical sensing. Journal of Solid State Electrochemistry, 2023, 27, 939-953.	1.2	4
260	Nonclassical Approaches and Behaviors in Synthesis, Structure Characterization, and Catalysis of Zeolites. Journal of Physical Chemistry C, 2023, 127, 3377-3388.	1.5	1
261	Relationship between the 13C chemical shifts of adsorbed mesityl oxide and acid strength of solid acid catalysts. Carbon Letters, 2023, 33, 947-956.	3.3	2
262	A Six-Membered Ring Molecular Sieve Achieved by a Reconstruction Route. Journal of the American Chemical Society, 2023, 145, 7712-7717.	6.6	4
263	The effect of amorphous silica support on the catalytic activity of liquid-exfoliated monolayered MCM-56 zeolite. Journal of Porous Materials, 2023, 30, 1459-1468.	1.3	1
264	Hydrothermal Synthesis and Catalytic Assessment of High-Silica (B,Fe)-beta Zeolites. Crystal Growth and Design, 2023, 23, 2988-3001.	1.4	2
265	MFI Type Zeolite Aggregates with Nanosized Particles via a Combination of Spray Drying and Steam-Assisted Crystallization (SAC) Techniques. Catalysts, 2023, 13, 536.	1.6	2
266	Sustainable product-based approach in the production of olefins using a dual functional ZSM-5 catalyst. RSC Advances, 2023, 13, 7514-7523.	1.7	2
267	Molecular Views on Mechanisms of BrÃ,nsted Acid-Catalyzed Reactions in Zeolites. Chemical Reviews, 2023, 123, 6107-6196.	23.0	22
268	Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules, 2023, 28, 3086.	1.7	23
269	Ultrafast formation of exciplex species in dicyanoanthracene ZSM-5 revealed by transient emission and vibrational spectroscopy. European Physical Journal: Special Topics, 2023, 232, 2145-2156.	1.2	3
284	Flexibility in zeolites: origin, limits, and evaluation. Chemical Science, 0, , .	3.7	2
288	Adsorption process of antibiotics by clay-based materials. , 2024, , 217-299.		0