Where Next for Microbiome Research?

PLoS Biology 13, e1002050 DOI: 10.1371/journal.pbio.1002050

Citation Report

#	Article	IF	CITATIONS
1	Metabolic network modeling ofÂmicrobial communities. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 317-334.	6.6	95
2	The role of breast-feeding in infant immune system: a systems perspective on the intestinal microbiome. Microbiome, 2015, 3, 41.	4.9	81
3	From next-generation sequencing to systematic modeling of the gut microbiome. Frontiers in Genetics, 2015, 6, 219.	1.1	99
4	Lungs, Microbes and the Developing Neonate. Neonatology, 2015, 107, 337-343.	0.9	24
5	Lung Microbiomes: New Frontiers?. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 870-871.	2.5	0
6	Increasing Metagenomic Resolution of Microbiome Interactions Through Functional Phylogenomics and Bacterial Sub-Communities. Frontiers in Genetics, 2016, 7, 4.	1.1	8
7	Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Frontiers in Microbiology, 2016, 7, 459.	1.5	659
8	A Mutational Hotspot and Strong Selection Contribute to the Order of Mutations Selected for during Escherichia coli Adaptation to the Gut. PLoS Genetics, 2016, 12, e1006420.	1.5	47
9	Microbial contributions to chronic inflammation and metabolic disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 257-262.	1.3	19
10	Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota. Genetics Selection Evolution, 2016, 48, 93.	1.2	41
11	Overview and Update in Geriatric Dermatology. Current Geriatrics Reports, 2016, 5, 275-282.	1.1	0
12	Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation. MSystems, 2016, 1, .	1.7	167
13	The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin. Digestive Diseases, 2016, 34, 269-278.	0.8	105
14	High definition for systems biology of microbial communities: metagenomics gets genome-centric and strain-resolved. Current Opinion in Biotechnology, 2016, 39, 174-181.	3.3	30
15	The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 2016, 122, 22-29.	2.9	271
16	The evolution of cooperation within the gut microbiota. Nature, 2016, 533, 255-259.	13.7	483
17	Details Matter: Designing Skin Microbiome Studies. Journal of Investigative Dermatology, 2016, 136, 900-902.	0.3	37
18	Plant–Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. Advances in Applied Microbiology, 2016, 95, 1-67.	1.3	105

ARTICLE

Effects of host genetics and environment on eggâ \in associated microbiotas in brown trout (<i>Salmo) Tj ETQq0 0 0 gBT /Overlock 10 Tf 28

20	Getting Personal About Nutrition. Trends in Molecular Medicine, 2016, 22, 83-85.	3.5	11
21	Bottom-Up Proteomics (2013–2015): Keeping up in the Era of Systems Biology. Analytical Chemistry, 2016, 88, 95-121.	3.2	52
22	Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes, 2016, 7, 126-135.	4.3	38
23	The plant microbiome explored: implications for experimental botany. Journal of Experimental Botany, 2016, 67, 995-1002.	2.4	424
24	Synthetic Ecology of Microbes: Mathematical Models and Applications. Journal of Molecular Biology, 2016, 428, 837-861.	2.0	198
25	Endless resistance. Endless antibiotics?. MedChemComm, 2016, 7, 37-49.	3.5	39
26	Microbiome engineering: Current applications and its future. Biotechnology Journal, 2017, 12, 1600099.	1.8	137
27	The microbiome in allergic disease: Current understanding and future opportunities—2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. Journal of Allergy and Clinical Immunology, 2017, 139, 1099-1110.	1.5	264
28	The microbiome in respiratory medicine: current challenges and future perspectives. European Respiratory Journal, 2017, 49, 1602086.	3.1	194
29	Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes. Briefings in Bioinformatics, 2018, 19, 1415-1429.	3.2	34
30	Communicating the promise, risks, and ethics of large-scale, open space microbiome and metagenome research. Microbiome, 2017, 5, 132.	4.9	26
31	Recurrent Reverse Evolution Maintains Polymorphism after Strong Bottlenecks in Commensal Gut Bacteria. Molecular Biology and Evolution, 2017, 34, 2879-2892.	3.5	38
32	Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nature Communications, 2017, 8, 1563.	5.8	130
34	Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nature Microbiology, 2017, 2, 16180.	5.9	233
35	Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Annals of the New York Academy of Sciences, 2017, 1388, 42-58.	1.8	38
36	High-resolution characterization of the human microbiome. Translational Research, 2017, 179, 7-23.	2.2	55
37	Dysbiosis in the intensive care unit: Microbiome science coming to the bedside. Journal of Critical Care, 2017, 38, 84-91.	1.0	82

	CITATION	CITATION REPORT	
#	ARTICLE Culture-Independent Analyses Reveal Novel Anaerolineaceae as Abundant Primary Fermenters in	lF 1.5	CITATIONS
39	Anaerobic Digesters Treating Waste Activated Sludge. Frontiers in Microbiology, 2017, 8, 1134. A phylogenetic transform enhances analysis of compositional microbiota data. ELife, 2017, 6, .	2.8	247
40	Evolution of Small-Molecule Immunology Research—Changes Since CMC II. , 2017, , 395-419.		0
42	Role of the Microbiome in Food Allergy. Current Allergy and Asthma Reports, 2018, 18, 27.	2.4	54
43	Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.	0.6	194
44	Tiny but mighty: The role of the rumen microbes in livestock production. Journal of Animal Science, 2018, 96, 752-770.	0.2	23
45	Short communication: Signs of host genetic regulation in the microbiome composition in 2 dairy breeds: Holstein and Brown Swiss. Journal of Dairy Science, 2018, 101, 2285-2292.	1.4	36
46	A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two Muslim groups. Systematic and Applied Microbiology, 2018, 41, 1-12.	1.2	24
47	<i>Legionella</i> confirmation in cooling tower water. Journal of King Abdulaziz University, Islamic Economics, 2018, 39, 137-141.	0.5	6
48	Medicinal Application of Synthetic Biology. , 2018, , 87-94.		0
49	Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Scientific Reports, 2018, 8, 14147.	1.6	50
50	Animal/Human Concordance. , 2018, , 527-538.		0
51	Microbiome in the primary prevention of allergic diseases and bronchial asthma. Allergologia Et Immunopathologia, 2019, 47, 79-84.	1.0	9
52	Profiling the Gut Microbiome: Practice and Potential. , 2019, , 200-217.		0
53	Assessment of a metabarcoding approach for the characterisation of vector-borne bacteria in canines from Bangkok, Thailand. Parasites and Vectors, 2019, 12, 394.	1.0	29
54	TADA: phylogenetic augmentation of microbiome samples enhances phenotype classification. Bioinformatics, 2019, 35, i31-i40.	1.8	9
55	BOARD INVITED REVIEW: The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health1. Journal of Animal Science, 2019, 97, 3741-3757.	0.2	39
56	Trait-based analysis of the human skin microbiome. Microbiome, 2019, 7, 101.	4.9	25

#	Article	IF	CITATIONS
57	Diet–microbiome–disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathogens, 2019, 15, e1007891.	2.1	49
58	Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut <i>Bacteroidetes</i> to Polysaccharide Side Chain Diversity. Applied and Environmental Microbiology, 2019, 85, .	1.4	24
59	Microbiota- and Radiotherapy-Induced Gastrointestinal Side-Effects (MARS) Study: A Large Pilot Study of the Microbiome in Acute and Late-Radiation Enteropathy. Clinical Cancer Research, 2019, 25, 6487-6500.	3.2	116
60	Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome, 2019, 7, 94.	4.9	126
61	Probiotics: current landscape and future horizons. Future Science OA, 2019, 5, FSO391.	0.9	52
62	Gut Check: In Vitro Diagnostics for Gut Microbiome Analysis. Clinical Microbiology Newsletter, 2019, 41, 57-62.	0.4	2
63	A place for taxonomic profiling in the study of the coral prokaryotic microbiome. FEMS Microbiology Letters, 2019, 366, .	0.7	11
64	Probabilistic Modeling of Microbial Metabolic Networks for Integrating Partial Quantitative Knowledge Within the Nitrogen Cycle. Frontiers in Microbiology, 2019, 9, 3298.	1.5	0
65	Plant-Microbiome Interaction and the Effects of Biotic and Abiotic Components in Agroecosystem. , 2019, , 517-546.		6
66	Biomarker discovery in inflammatory bowel diseases using network-based feature selection. PLoS ONE, 2019, 14, e0225382.	1.1	17
67	The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiology, 2019, 79, 96-115.	2.1	225
68	Metagenomic study on the composition of culturable and non-culturable bacteria in tap water and biofilms at intensive care units. Journal of Water and Health, 2019, 17, 72-83.	1.1	5
69	White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei. Fish and Shellfish Immunology, 2019, 84, 130-137.	1.6	107
70	Gut Microbiota as a Positive Potential Therapeutic Factor in Carcinogenesis: an Overview of Microbiota-Targeted Therapy. Journal of Gastrointestinal Cancer, 2020, 51, 363-378.	0.6	10
71	The role of the microbiome in precision medicine. , 2020, , 13-18.		0
72	Challenges in Human Skin Microbial Profiling for Forensic Science: A Review. Genes, 2020, 11, 1015.	1.0	18
73	Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biology, 2020, 18, e3000617.	2.6	59
74	Emerging Priorities for Microbiome Research. Frontiers in Microbiology, 2020, 11, 136.	1.5	113

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
75	Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Microbiome, 2020, 8, 25.	4.9	49
76	Co-cultured non-marine ostracods from a temporary wetland harbor host-specific microbiota of different metabolic profiles. Hydrobiologia, 2020, 847, 2503-2519.	1.0	4
77	A comparative analysis of drinking water employing metagenomics. PLoS ONE, 2020, 15, e0231210.	1.1	28
78	Effects of Dietary Maltol on Innate Immunity, Gut Health, and Growth Performance of Broiler Chickens Challenged With Eimeria maxima. Frontiers in Veterinary Science, 2021, 8, 667425.	0.9	14
79	Realities and hopes in the application of microbial tools in agriculture. Microbial Biotechnology, 2021, 14, 1258-1268.	2.0	61
80	Features of Bacterial Microbiota in the Wild Habitat of Pulsatilla tongkangensis, the Endangered "Long-Sepal Donggang Pasque-Flower Plant,―Endemic to Karst Topography of Korea. Frontiers in Microbiology, 2021, 12, 656105.	1.5	7
81	Comparative genomics of in vitro and in vivo evolution of probiotics reveals energy restriction not the main evolution driving force in short term. Genomics, 2021, 113, 3373-3380.	1.3	4
82	Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients, 2021, 13, 3292.	1.7	6
83	Prevention of Severe Intestinal Barrier Dysfunction Through a Single-Species Probiotics is Associated With the Activation of Microbiome-Mediated Glutamate–Glutamine Biosynthesis. Shock, 2021, 55, 128-137.	1.0	7
89	A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems. PLoS ONE, 2017, 12, e0171744.	1.1	47
90	Microbiome Regulation of Autoimmune, Gut and Liver Associated Diseases. Inflammation and Allergy: Drug Targets, 2016, 14, 84-93.	1.8	12
91	The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Frontiers in Microbiology, 2019, 10, 3084.	1.5	54
93	Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by <i>Halobacteriovorax</i> predators. PeerJ, 2017, 5, e3315.	0.9	74
94	Benchmarking viromics: an <i>in silico</i> evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ, 2017, 5, e3817.	0.9	235
97	Toxicity Prediction—Regulatory Perspective. , 2017, , 285-303.		0
100	The developing microbiome and inflammatory bowel diseases. , 2020, , 95-114.		0
101	Safety Concerns, Regulatory Guidelines, Current Market Trends, and Future Directions toward the Use of Probiotics in Gut-Brain-Skin Axis. , 2022, , 245-268.		2
102	The meiofauna as neglected carriers of antibiotic resistant and pathogenic bacteria in freshwater ecosystems. Journal of Limnology, 2021, 80, .	0.3	1

#	Article	IF	Citations
104	The role of diet and physical activity in influencing the microbiota/microbiome. , 2022, , 693-745.		0
107	The sow microbiome: Current and future perspectives to maximize the productivity in swine herds. , 2022, 30, 238-250.		6
108	Acute toxic effects of diclofenac exposure on freshwater crayfish (Procambarus clarkii): Insights from hepatopancreatic pathology, molecular regulation and intestinal microbiota. Ecotoxicology and Environmental Safety, 2022, 244, 114068.	2.9	4
109	Guided by the principles of microbiome engineering: Accomplishments and perspectives for environmental use. , 2022, 1, 382-398.		13
110	The 2000HIV study: Design, multi-omics methods and participant characteristics. Frontiers in Immunology, 0, 13, .	2.2	2
111	Diversity of endophytic bacteria producing an antibacterial against colorectal bacteria from velvet apple (Diospyros blancoi A.DC.) fruit and stem. AIP Conference Proceedings, 2023, , .	0.3	0
112	The Fungal and Bacterial Interface in the Respiratory Mycobiome with a Focus on Aspergillus spp Life, 2023, 13, 1017.	1.1	2
113	Multi-factorial examination of amplicon sequencing workflows from sample preparation to bioinformatic analysis. BMC Microbiology, 2023, 23, .	1.3	2
114	Microbiome therapeutics in respiratory illnesses. , 2023, , 401-419.		0
115	Microbes from Wild Plants. , 2023, , 173-187.		Ο

CITATION REPORT