Securing Android

ACM Computing Surveys 47, 1-45

DOI: 10.1145/2733306

Citation Report

#	Article	IF	CITATIONS
1	Survey on Privacy Protection of Android Devices. , 2015, , .		14
2	Privacy and security constraints for code contributions. , 2015, , .		0
3	Accurate mobile malware detection and classification in the cloud. SpringerPlus, 2015, 4, 583.	1.2	27
4	Accurate Specification for Robust Detection of Malicious Behavior in Mobile Environments. Lecture Notes in Computer Science, 2015, , 355-375.	1.0	1
5	Detection and Visualization of Android Malware Behavior. Journal of Electrical and Computer Engineering, 2016, 2016, 1-17.	0.6	25
6	Reviving Android Malware with DroidRide: And How Not To. , 2016, , .		0
7	A Cloud-Assisted Malware Detection Framework for Mobile Devices. , 2016, , .		5
8	Exploring the Usage of Topic Modeling for Android Malware Static Analysis. , 2016, , .		9
9	HybriDroid: static analysis framework for Android hybrid applications. , 2016, , .		48
10	Fingerprinting Android packaging: Generating DNAs for malware detection. Digital Investigation, 2016, 18, S33-S45.	3.2	28
11	Mystique., 2016,,.		42
12	*droid. ACM Computing Surveys, 2017, 49, 1-30.	16.1	51
13	The Evolution of Android Malware and Android Analysis Techniques. ACM Computing Surveys, 2017, 49, 1-41.	16.1	251
14	Security and Privacy in Device-to-Device (D2D) Communication: A Review. IEEE Communications Surveys and Tutorials, 2017, 19, 1054-1079.	24.8	237
15	Cryptographic key protection against FROST for mobile devices. Cluster Computing, 2017, 20, 2393-2402.	3.5	25
16	A survey on ultra-dense network and emerging technologies: Security challenges and possible solutions. Journal of Network and Computer Applications, 2017, 95, 54-78.	5.8	47
17	Android inter-app communication threats and detection techniques. Computers and Security, 2017, 70, 392-421.	4.0	29
18	Understanding Android Application Programming and Security: A Dynamic Study. , 2017, , .		18

#	Article	IF	CITATIONS
19	Exception beyond Exception: Crashing Android System by Trapping in "Uncaught Exception"., 2017,,.		10
21	DroidFax: A Toolkit for Systematic Characterization of Android Applications. , 2017, , .		16
22	RootAgency: A digital signature-based root privilege management agency for cloud terminal devices. Information Sciences, 2018, 444, 36-50.	4.0	44
23	Forensic analysis and security assessment of Android m-banking apps. Australian Journal of Forensic Sciences, 2018, 50, 3-19.	0.7	25
24	Circumventing iOS security mechanisms for APT forensic investigations: A security taxonomy for cloud apps. Future Generation Computer Systems, 2018, 79, 247-261.	4.9	29
25	A survey on dynamic mobile malware detection. Software Quality Journal, 2018, 26, 891-919.	1.4	94
26	Machine-Learning-Based Android Malware Detection Techniques—A Comparative Analysis. Lecture Notes in Networks and Systems, 2018, , 181-190.	0.5	5
27	Analyzing the analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe. , 2018, , .		57
28	A Context-Perceptual Privacy Protection Approach on Android Devices. , 2018, , .		1
29	Understanding Android Financial MalwareAttacks:Taxonomy, Characterization,and Challenges. Journal of Cyber Security and Mobility, 2018, 7, 1-52.	0.7	8
30	An Insight into Android Side-Channel Attacks. , 2018, , .		1
31	Systematically Understanding the Cyber Attack Business. ACM Computing Surveys, 2019, 51, 1-36.	16.1	59
32	Idea: Benchmarking Android Data Leak Detection Tools. Lecture Notes in Computer Science, 2018, , 116-123.	1.0	6
33	Protecting contacts against privacy leaks in smartphones. PLoS ONE, 2018, 13, e0191502.	1.1	6
34	A temporal permission analysis and enforcement framework for Android., 2018,,.		23
35	NDroid: Toward Tracking Information Flows Across Multiple Android Contexts. IEEE Transactions on Information Forensics and Security, 2019, 14, 814-828.	4.5	31
36	BridgeTaint: A Bi-Directional Dynamic Taint Tracking Method for JavaScript Bridges in Android Hybrid Applications. IEEE Transactions on Information Forensics and Security, 2019, 14, 677-692.	4. 5	9
37	On the Deterioration of Learning-Based Malware Detectors for Android., 2019,,.		30

#	Article	IF	CITATIONS
38	A Characterization of Digital Native Approaches To Mobile Privacy and Security., 2019,,.		2
39	An Empirical Study of Cross-Platform Mobile Development in Industry. Wireless Communications and Mobile Computing, 2019, 2019, 1-12.	0.8	22
40	The Android OS stack and its vulnerabilities: an empirical study. Empirical Software Engineering, 2019, 24, 2056-2101.	3.0	16
41	SeMA: A Design Methodology for Building Secure Android Apps. , 2019, , .		1
42	Android Malware Similarity Clustering using Method based Opcode Sequence and Jaccard Index. , 2019, , .		3
43	A scalable and extensible framework for android malware detection and family attribution. Computers and Security, 2019, 80, 120-133.	4.0	40
44	A formal framework for software faults and permissions based on unified theory of programming. Cluster Computing, 2019, 22, 14049-14059.	3 . 5	1
45	Android data storage security: A review. Journal of King Saud University - Computer and Information Sciences, 2020, 32, 543-552.	2.7	21
46	Are free Android app security analysis tools effective in detecting known vulnerabilities?. Empirical Software Engineering, 2020, 25, 178-219.	3.0	22
47	A Taxonomy for Security Flaws in Event-Based Systems. Applied Sciences (Switzerland), 2020, 10, 7338.	1.3	2
48	DroidXP: A Benchmark for Supporting the Research on Mining Android Sandboxes., 2020,,.		1
49	Code analysis for intelligent cyber systems: A data-driven approach. Information Sciences, 2020, 524, 46-58.	4.0	25
50	A Longitudinal Study of Application Structure and Behaviors in Android. IEEE Transactions on Software Engineering, 2021, 47, 2934-2955.	4.3	28
51	A study of run-time behavioral evolution of benign versus malicious apps in android. Information and Software Technology, 2020, 122, 106291.	3.0	37
52	Android security assessment: A review, taxonomy and research gap study. Computers and Security, 2021, 100, 102087.	4.0	13
53	Research on Third-Party Libraries in Android Apps: A Taxonomy and Systematic Literature Review. IEEE Transactions on Software Engineering, 2022, 48, 4181-4213.	4.3	11
55	Analyzing Android Taint Analysis Tools: FlowDroid, Amandroid, and DroidSafe. IEEE Transactions on Software Engineering, 2022, 48, 4014-4040.	4.3	3
57	A survey on analysis and detection of Android ransomware. Concurrency Computation Practice and Experience, 2021, 33, e6272.	1.4	21

#	Article	IF	CITATIONS
58	Malicious application detection in android $\hat{a} \in \text{``}$ A systematic literature review. Computer Science Review, 2021, 40, 100373.	10.2	31
59	On the Interplay Between Static and Dynamic Analysis for Mining Sandboxes. , 2021, , .		O
60	Malware detection using static analysis in Android: a review of FeCO (features, classification, and) Tj ETQq0 0 0	rgBT /Ove 2.7	rlock 10 Tf 50
61	Exploring the use of static and dynamic analysis to improve the performance of the mining sandbox approach for android malware identification. Journal of Systems and Software, 2022, 183, 111092.	3.3	5
62	Position Paper on Recent Cybersecurity Trends: Legal Issues, Al and IoT. Lecture Notes in Computer Science, 2018, , 484-490.	1.0	1
63	Assessing and Improving Malware Detection Sustainability through App Evolution Studies. ACM Transactions on Software Engineering and Methodology, 2020, 29, 1-28.	4.8	72
64	DroidMark: A Lightweight Android Text and Space Watermark Scheme Based on Semantics of XML and DEX. Lecture Notes on Data Engineering and Communications Technologies, 2018, , 756-766.	0.5	0
65	Information Disclosure Detection in Cyber-Physical Systems. Communications in Computer and Information Science, 2019, , 85-94.	0.4	1
66	Where Are We Looking for Security Concerns? Understanding Android Security Static Analysis. Advances in Intelligent Systems and Computing, 2020, , 467-483.	0.5	0
67	Dynamic Taint Tracking Simulation. Communications in Computer and Information Science, 2020, , 203-227.	0.4	0
68	Feature Point Detection for Repacked Android Apps. Intelligent Automation and Soft Computing, 2020, 26, 1359-1373.	1.6	11
69	Embracing mobile app evolution via continuous ecosystem mining and characterization., 2020,,.		17
70	The Effect of Context on Small Screen and Wearable Device Users' Performance - A Systematic Review. ACM Computing Surveys, 2021, 53, 1-44.	16.1	7
71	CryptoTutor., 2020,,.		8
72	Learning Latent Correlation of Heterogeneous Sensors Using Attention based Temporal Convolutional Network. , 2020, , .		0
73	Taxonomy of security weaknesses in Java and Kotlin Android apps. Journal of Systems and Software, 2022, 187, 111233.	3.3	9
74	The rise of obfuscated Android malware and impacts on detection methods. PeerJ Computer Science, 2022, 8, e907.	2.7	9
75	A Comprehensive Review of Android Security: Threats, Vulnerabilities, Malware Detection, and Analysis. Security and Communication Networks, 2022, 2022, 1-34.	1.0	7

#	Article	IF	CITATIONS
76	FSAFlow: Lightweight and Fast Dynamic Path Tracking and Control for Privacy Protection on Android Using Hybrid Analysis with State-Reduction Strategy. , 2022, , .		1
77	ADAM: Automatic Detection ofÂAndroid Malware. Lecture Notes in Computer Science, 2022, , 18-31.	1.0	0
78	Towards a fair comparison and realistic evaluation framework of android malware detectors based on static analysis and machine learning. Computers and Security, 2023, 124, 102996.	4.0	10
79	Large-scale analysis of non-termination bugs in real-world OSS projects. , 2022, , .		3
82	Android Malware Detection Based onÂStatic Analysis andÂData Mining Techniques: A Systematic Literature Review. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 51-71.	0.2	0
83	A Small Leak Will Sink Many Ships: Vulnerabilities Related to mini-programs Permissions. , 2023, , .		1
85	Artificial Neural Network-Based Malware Detection Model Among Shopping Apps to Increase the App Security. Smart Innovation, Systems and Technologies, 2023, , 267-275.	0.5	0
87	On Running Disabled Networking Features: A Taxonomy with Security Implications. , 2024, , .		O