Dense dislocation arrays embedded in grain boundaries thermoelectrics

Science 348, 109-114 DOI: 10.1126/science.aaa4166

Citation Report

#	ARTICLE	IF	CITATIONS
9	Nanocomposites for thermoelectrics and thermal engineering. MRS Bulletin, 2015, 40, 746-752.	1.7	40
10	Band and scattering tuning for high performance thermoelectric Sn1â^'xMnxTe alloys. Journal of Materiomics, 2015, 1, 307-315.	2.8	193
11	Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism. Scientific Reports, 2015, 5, 15827.	1.6	103
12	Thermoelectric properties of Si/SiB3 sub-micro composite prepared by melt-spinning technique. Journal of Applied Physics, 2015, 118, .	1.1	6
13	Influence of melt overheating treatment on solidification behavior of BiTe-based alloys at different cooling rates. Materials and Design, 2015, 88, 743-750.	3.3	19
14	Gas induced reduction synthesis of Sb2Te3 and Bi0.5Sb1.5Te3 nanosheets and their evolvement mechanism. Journal of Materiomics, 2015, 1, 316-324.	2.8	2
15	Engineering Nanostructural Routes for Enhancing Thermoelectric Performance: Bulk to Nanoscale. Frontiers in Chemistry, 2015, 3, 63.	1.8	16
16	Melting and solidification of bismuth antimony telluride under a high magnetic field: A new route to high thermoelectric performance. Nano Energy, 2015, 15, 709-718.	8.2	35
17	Facile hydrothermal synthesis and formation mechanisms of Bi ₂ Te ₃ , Sb ₂ Te ₃ and Bi ₂ Te ₃ –Sb ₂ Te ₃ nanowires. RSC Advances, 2015, 5, 100309-100315.	1.7	16
18	A Facile Surfactant-Assisted Reflux Method for the Synthesis of Single-Crystalline Sb ₂ Te ₃ Nanostructures with Enhanced Thermoelectric Performance. ACS Applied Materials & Interfaces, 2015, 7, 14263-14271.	4.0	36
19	Skutterudites as thermoelectric materials: revisited. RSC Advances, 2015, 5, 41653-41667.	1.7	293
20	Enhanced thermoelectric performance of n-type Cu _{0.008} Bi ₂ Te _{2.7} Se _{0.3} by band engineering. Journal of Materials Chemistry C, 2015, 3, 10604-10609.	2.7	34
21	Enhanced Thermoelectric Performance of Nanostructured Bi ₂ Te ₃ through Significant Phonon Scattering. ACS Applied Materials & Interfaces, 2015, 7, 23694-23699.	4.0	200
22	Thermoelectric transport properties of pristine and Na-doped SnSe _{1â^'x} Te _x polycrystals. Physical Chemistry Chemical Physics, 2015, 17, 30102-30109.	1.3	154
23	Strong correlation between the crystal structure and the thermoelectric properties of pavonite homologue Cu _{x+y} Bi _{5â^'y} Ch ₈ (Ch = S or Se) compounds. Journal of Materials Chemistry C, 2015, 3, 11271-11285.	2.7	9
24	High performance n-type bismuth telluride based alloys for mid-temperature power generation. Journal of Materials Chemistry C, 2015, 3, 10597-10603.	2.7	64
25	Strategies for engineering phonon transport in thermoelectrics. Journal of Materials Chemistry C, 2015, 3, 10336-10348.	2.7	210
26	Fabrication of thermoelectric materials – thermal stability and repeatability of achieved efficiencies. Journal of Materials Chemistry C, 2015, 3, 10610-10615.	2.7	17

ATION REDO

#	Article	IF	CITATIONS
27	Electrical transport properties of AlAs under compression: reversible boundary effect. Physical Chemistry Chemical Physics, 2015, 17, 26277-26282.	1.3	6
28	Tetrahedrites as thermoelectric materials: an overview. Journal of Materials Chemistry C, 2015, 3, 12364-12378.	2.7	148
29	Examples of Role of Metrology in Materials Science & Engineering. Journal of Scientific and Industrial Metrology, 2016, 01, .	0.1	1
30	Synergistic Optimization of Thermoelectric Performance in P-Type Bi0.48Sb1.52Te3/Graphene Composite. Energies, 2016, 9, 236.	1.6	29
31	Progress in Polymer Thermoelectrics. , 0, , .		2
32	Recent advances in thermoelectric materials. Progress in Materials Science, 2016, 83, 330-382.	16.0	572
33	Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric <i>p</i> -Type Polycrystalline SnSe. Journal of the American Chemical Society, 2016, 138, 8875-8882.	6.6	298
34	Thermoelectric Enhancement of Different Kinds of Metal Chalcogenides. Advanced Energy Materials, 2016, 6, 1600498.	10.2	145
35	Progressive Regulation of Electrical and Thermal Transport Properties to Highâ€Performance CuInTe ₂ Thermoelectric Materials. Advanced Energy Materials, 2016, 6, 1600007.	10.2	118
36	One-step bonding of Ni electrode to n-type PbTe — A step towards fabrication of thermoelectric generators. Materials and Design, 2016, 107, 90-97.	3.3	33
37	Recent development of n-type perovskite thermoelectrics. Journal of Materiomics, 2016, 2, 225-236.	2.8	63
38	On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. Npj Computational Materials, 2016, 2, .	3.5	399
40	Chapter 3 Growth and Transport Properties of Tetradymite Thin Films. , 2016, , 95-124.		2
41	Optimization of thermoelectric properties in <i>n</i> -type SnSe doped with BiCl3. Applied Physics Letters, 2016, 108, .	1.5	103
42	Thermoelectric effects and topological insulators. Chinese Physics B, 2016, 25, 117309.	0.7	23
43	In-situ Observation of Size and Irradiation Effects on Thermoelectric Properties of Bi-Sb-Te Nanowire in FIB Trimming. Scientific Reports, 2016, 6, 23672.	1.6	17
44	Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi _{2â^'<i>x</i>} Sb _{<i>x</i>} Te ₃ compounds. APL Materials, 2016, 4, 104812.	2.2	14
45	Enhanced thermoelectric properties of Ga and In Co-added CoSb3-based skutterudites with optimized chemical composition and microstructure. AIP Advances, 2016, 6, 125015.	0.6	13

#	Article	IF	CITATIONS
46	Enhanced thermoelectric performance of Cu2Se/Bi0.4Sb1.6Te3 nanocomposites at elevated temperatures. Applied Physics Letters, 2016, 108, .	1.5	46
47	Effect of spark plasma sintering conditions on the thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys. Journal of Alloys and Compounds, 2016, 678, 396-402.	2.8	25
48	Thermoelectric properties of Ni-doped BaSi ₂ . Functional Materials Letters, 2016, 09, 1650017.	0.7	5
49	New Chemical Reaction Process of a Bi ₂ Te _{2.7} Se _{0.3} Nanomaterial for Feasible Optimization in Transport Properties Resulting in Predominant n-Type Thermoelectric Performance. Industrial & Engineering Chemistry Research, 2016, 55, 5623-5633.	1.8	15
50	High thermoelectric performance of superionic argyrodite compound Ag ₈ SnSe ₆ . Journal of Materials Chemistry C, 2016, 4, 5806-5813.	2.7	77
51	Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting. Nano Energy, 2016, 26, 172-179.	8.2	178
52	Effect of cooling rate on the thermoelectric and mechanical performance of Bi0.5Sb1.5Te3 prepared under a high magnetic field. Intermetallics, 2016, 72, 62-68.	1.8	9
53	Elemental distributions within multiphase quaternary Pb chalcogenide thermoelectric materials determined through three-dimensional atom probe tomography. Nano Energy, 2016, 26, 157-163.	8.2	15
54	Chemical Pressure Schemes for the Prediction of Soft Phonon Modes: A Chemist's Guide to the Vibrations of Solid State Materials. Chemistry of Materials, 2016, 28, 3171-3183.	3.2	42
55	<i>>n</i> -Type Bi ₂ Te _{3–<i>x</i>} Se _{<i>x</i>} Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings. ACS Nano, 2016, 10, 4719-4727.	7.3	303
56	Influence of external magnetic field on microstructure and electrical transport properties of Ca3â^'La Co4O9+ ceramics. Ceramics International, 2016, 42, 11404-11410.	2.3	4
57	The origin of low thermal conductivity in Sn _{1â^'x} Sb _x Te: phonon scattering via layered intergrowth nanostructures. Energy and Environmental Science, 2016, 9, 2011-2019.	15.6	234
58	Lead-free SnTe-based thermoelectrics: enhancement of thermoelectric performance by doping with Gd/Ag. Journal of Materials Chemistry A, 2016, 4, 7936-7942.	5.2	77
59	Indium substitution effect on thermoelectric and optical properties of Sn1â^'In Se compounds. Journal of Alloys and Compounds, 2016, 682, 785-790.	2.8	36
60	All-in-one energy harvesting and storage devices. Journal of Materials Chemistry A, 2016, 4, 7983-7999.	5.2	245
61	High thermoelectric performance of Bi-Te alloy: Defect engineering strategy. Current Applied Physics, 2016, 16, 1202-1215.	1.1	34
62	Pushing the optimal ZT values of p-type Bi2â^'xSbxTe3 alloys to a higher temperature by expanding band gaps and suppressing intrinsic excitation. Journal of Materials Science: Materials in Electronics, 2016, 27, 8923-8929.	1.1	12
63	Vacancy scattering for enhancing the thermoelectric performance of CuGaTe ₂ solid solutions. Journal of Materials Chemistry A, 2016, 4, 15464-15470.	5.2	106

#	Article	IF	CITATIONS
64	Attaining high mid-temperature performance in (Bi,Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Materials, 2016, 8, e302-e302.	3.8	119
65	Synthesis and Thermoelectric Properties of Noble Metal Ternary Chalcogenide Systems of Ag–Au–Se in the Forms of Alloyed Nanoparticles and Colloidal Nanoheterostructures. Chemistry of Materials, 2016, 28, 7017-7028.	3.2	26
66	Thermoelectric properties of polycrystalline SnSe _{1±x} prepared by mechanical alloying and spark plasma sintering. RSC Advances, 2016, 6, 92335-92340.	1.7	17
67	Enhanced thermoelectric performance of nanostructured CNTs/BiSbTe bulk composite from rapid pressure-quenching induced multi-scale microstructure. Journal of Materiomics, 2016, 2, 316-323.	2.8	23
68	Lead-free tin chalcogenide thermoelectric materials. Inorganic Chemistry Frontiers, 2016, 3, 1449-1463.	3.0	42
69	Enhancement of thermoelectric properties of Ce0.9Fe3.75Ni0.25Sb12p-type skutterudite by tellurium addition. Journal of Materials Chemistry A, 2016, 4, 16499-16506.	5.2	13
70	Enhanced thermoelectric properties and their controllability in p-type (BiSb)2Te3 compounds through simultaneous adjustment of charge and thermal transports by Cu incorporation. Journal of Alloys and Compounds, 2016, 687, 320-325.	2.8	35
71	The Effect of Porosity and Milling Induced Defects on the Thermoelectric Properties of pâ€Type Bi ₂ Te ₃ â€Based Bulks. Advanced Engineering Materials, 2016, 18, 1777-1784.	1.6	29
72	Simultaneous improvement in electrical and thermal properties of interface-engineered BiSbTe nanostructured thermoelectric materials. Journal of Alloys and Compounds, 2016, 689, 899-907.	2.8	39
73	Crystalline coherence length effects on the thermal conductivity of MgO thin films. Journal of Materials Science, 2016, 51, 10408-10417.	1.7	14
74	New Insights into Intrinsic Point Defects in V ₂ VI ₃ Thermoelectric Materials. Advanced Science, 2016, 3, 1600004.	5.6	317
75	Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag ₈ SnSe ₆ . Advanced Science, 2016, 3, 1600196.	5.6	215
76	Hybrid semiconductor/metal nanomembrane superlattices for thermoelectric application. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 620-625.	0.8	6
77	High efficiency Bi ₂ Te ₃ -based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy and Environmental Science, 2016, 9, 3120-3127.	15.6	358
78	Rationally Designing High-Performance Bulk Thermoelectric Materials. Chemical Reviews, 2016, 116, 12123-12149.	23.0	1,624
79	Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Materials, 2016, 8, e275-e275.	3.8	152
80	Chapter 2 Tetradymites. , 2016, , 39-94.		9
81	Inhibition of minority transport for elevating the thermoelectric figure of merit of CuO/BiSbTe nanocomposites at high temperatures. RSC Advances, 2016, 6, 112050-112056.	1.7	19

	CITATION	Citation Report	
#		IF	CITATIONS
82	In situ characterisation of nanostructured multiphase thermoelectric materials at elevated temperatures. Physical Chemistry Chemical Physics, 2016, 18, 32814-32819.	1.3	2
83	Nano- and Microstructure Engineering: An Effective Method for Creating High Efficiency Magnesium Silicide Based Thermoelectrics. ACS Applied Materials & Interfaces, 2016, 8, 34431-34437.	4.0	58
84	2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy, 2016, 30, 780-789.	8.2	54
85	Self-organized pseudo-graphene on grain boundaries in topological band insulators. Physical Review B, 2016, 93, .	1.1	32
86	Performance enhancement of thermoelectric waste heat recovery system by using metal foam inserts. Energy Conversion and Management, 2016, 124, 13-19.	4.4	55
87	What is unique in 2D-layered materials?. , 2016, , .		0
88	Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nature Energy, 2016, 1, .	19.8	902
89	Limit of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>z</mml:mi><mml:mi>Tin rocksalt structured chalcogenides by band convergence. Physical Review B, 2016, 94, .</mml:mi></mml:mrow></mml:math 	ni> <td>row&ık/mml:n</td>	row&ık/mml:n
90	High-performance shape-engineerable thermoelectric painting. Nature Communications, 2016, 7, 13403.	5.8	122
91	Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. Nature Communications, 2016, 7, 11924.	5.8	59
92	Anomalous thermoelectricity in strained Bi2Te3 films. Scientific Reports, 2016, 6, 32661.	1.6	11
93	Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nature Energy, 2016, 1, .	19.8	269
94	Defect Chemistry for Thermoelectric Materials. Journal of the American Chemical Society, 2016, 138, 14810-14819.	6.6	161
95	High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nature Communications, 2016, 7, 10766.	5.8	224
96	Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor. Journal of the American Chemical Society, 2016, 138, 14458-14468.	6.6	85
97	Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy, 2016, 30, 630-638.	8.2	78
98	Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties. Scientific Reports, 2016, 6, 32501.	1.6	96
99	Thermoelectric properties of CNTs/Mn _{0.7} Zn _{0.3} Fe ₂ O ₄ composite fabricated by spark plasma sintering. Materials Research Express, 2016, 3, 106303.	0.8	3

		15	6
#	ARTICLE	IF	CITATIONS
100	Engineering Thermal Conductivity for Balancing Between Reliability and Performance of Bulk Thermoelectric Generators. Advanced Functional Materials, 2016, 26, 3678-3686.	7.8	25
101	Interstitial Point Defect Scattering Contributing to High Thermoelectric Performance in SnTe. Advanced Electronic Materials, 2016, 2, 1600019.	2.6	235
102	Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride. RSC Advances, 2016, 6, 59565-59573.	1.7	33
103	Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Advances, 2016, 6, 52164-52170.	1.7	91
104	Manipulating the Combustion Wave during Self-Propagating Synthesis for High Thermoelectric Performance of Layered Oxychalcogenide Bi _{1â€"<i>x</i>} Pb _{<i>x</i>} CuSeO. Chemistry of Materials, 2016, 28, 4628-4640.	3.2	88
105	Effect of Sn Doping in (Bi0.25Sb0.75)2â^'x Sn x Te3 (0Ââ‰ÂxÂâ‰Â0.1) on Thermoelectric Performance. Journal Electronic Materials, 2016, 45, 1441-1446.	of 1.0	3
106	Recent advances in high-performance bulk thermoelectric materials. International Materials Reviews, 2016, 61, 379-415.	9.4	394
107	Microwave activated hot pressing: A new opportunity to improve the thermoelectric properties of nâ¿¿type Bi 2 Te 3â¿¿x Se x bulks. Materials Research Bulletin, 2016, 83, 122-127.	2.7	28
108	Thermoelectric power factor performance of Bi ₈₅ Sb ₁₅ /graphene composite. Japanese Journal of Applied Physics, 2016, 55, 045802.	0.8	13
109	Importance of crystal chemistry with interstitial site determining thermoelectric transport properties in pavonite homologue Cu–Bi–S compounds. CrystEngComm, 2016, 18, 1453-1461.	1.3	14
110	Synthesis via a Microwave-Assisted Wet Chemical Method and Characterization of Bi2Te3 with Various Morphologies. Journal of Electronic Materials, 2016, 45, 1425-1432.	1.0	9
111	Microstructure and electrical transport properties of Ca3Co4â^'Mn O9+ ceramics fabricated under two-step external magnetic field. Ceramics International, 2016, 42, 6107-6114.	2.3	6
112	"Phonon―scattering beyond perturbation theory. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	6
113	Thermoelectric Properties of Zintl Phase Compounds of Ca1â^'x Eu x Zn2Sb2 (0Ââ‰ÂxÂâ‰Â1). Journal of Electronic Materials, 2016, 45, 1942-1946.	1.0	27
114	Bi x Sb 2â^'x Te 3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy, 2016, 20, 144-155.	8.2	107
115	Solution-based synthesis and characterization of earth abundant Cu ₃ (As,Sb)Se ₄ nanocrystal alloys: towards scalable room-temperature thermoelectric devices. Journal of Materials Chemistry A, 2016, 4, 2198-2204.	5.2	17
116	Different site occupancies in substitution variants of Mo3Sb7. Journal of Solid State Chemistry, 2016, 236, 123-129.	1.4	2
117	Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy and Environmental Science, 2016, 9, 454-460.	15.6	396

#	Article	IF	CITATIONS
118	Nanowires with dislocations for ultralow lattice thermal conductivity. Physical Chemistry Chemical Physics, 2016, 18, 9888-9892.	1.3	18
119	Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature Communications, 2016, 7, 10302.	5.8	145
120	Dislocation strain as the mechanism of phonon scattering at grain boundaries. Materials Horizons, 2016, 3, 234-240.	6.4	108
121	Thermoelectric properties and extremely low lattice thermal conductivity in p-type Bismuth Tellurides by Pb-doping and PbTe precipitation. Journal of Alloys and Compounds, 2016, 671, 538-544.	2.8	34
122	Evaluating the life cycle CO 2 emissions and costs of thermoelectric generators for passenger automobiles: a scenario analysis. Journal of Cleaner Production, 2016, 126, 607-619.	4.6	66
123	Suppressing adverse intrinsic conduction of Bi ₂ Te ₃ thermoelectric bulks by Sb and Cu co-substitutions via HPHT synthesis. RSC Advances, 2016, 6, 7378-7383.	1.7	26
124	Tellurium as a high-performance elemental thermoelectric. Nature Communications, 2016, 7, 10287.	5.8	369
125	Direct fabrication of highly-dense Cu2ZnSnSe4 bulk materials by combustion synthesis for enhanced thermoelectric properties. Materials and Design, 2016, 93, 238-246.	3.3	12
126	Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation. Journal of Materials Chemistry C, 2016, 4, 1201-1207.	2.7	125
127	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351, 141-144.	6.0	1,594
128	Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency. Acta Materialia, 2016, 102, 17-23.	3.8	45
129	Improvement of Thermoelectric Properties of Bi0.4Sb1.6Te3 with Addition of Nanoscale Zinc Oxide Particles. Journal of Electronic Materials, 2016, 45, 1266-1270.	1.0	17
130	Thermoelectric Performance Enhancement of CeFe4Sb12 p-Type Skutterudite by Disorder on the Sb4 Rings Induced by Te Doping and Nanopores. Journal of Electronic Materials, 2016, 45, 1240-1244.	1.0	12
131	Towards higher thermoelectric performance of Bi2Te3 via defect engineering. Scripta Materialia, 2016, 111, 39-43.	2.6	100
132	Multiâ€5cale Microstructural Thermoelectric Materials: Transport Behavior, Nonâ€Equilibrium Preparation, and Applications. Advanced Materials, 2017, 29, 1602013.	11.1	234
133	The influence of interfacial defect-region on the thermoelectric properties of nanodiamond-dispersed Bi 2 Te 2.7 Se 0.3 matrix composites. Applied Surface Science, 2017, 415, 109-113.	3.1	14
134	Interstitial Defects Improving Thermoelectric SnTe in Addition to Band Convergence. ACS Energy Letters, 2017, 2, 563-568.	8.8	123
135	Enhanced thermoelectric performance of SnSe doped with layered MoS 2 /graphene. Materials Letters, 2017, 193, 146-149.	1.3	33

#	Article	IF	CITATIONS
136	High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. Journal of Alloys and Compounds, 2017, 700, 223-227.	2.8	37
137	Ultrahigh Thermoelectric Figure of Merit and Enhanced Mechanical Stability of <i>p</i> -type AgSb _{1–<i>x</i>} Zn _{<i>x</i>} Te ₂ . ACS Energy Letters, 2017, 2, 349-356.	8.8	76
138	Nanocomposites from Solution‣ynthesized PbTeâ€BiSbTe Nanoheterostructure with Unity Figure of Merit at Lowâ€Medium Temperatures (500–600 K). Advanced Materials, 2017, 29, 1605140.	11.1	70
139	Effects of high pressure sintering on the microstructure and thermoelectric properties of BiCuSeO. High Pressure Research, 2017, 37, 36-45.	0.4	7
140	Electronic structure and transport coefficients of the thermoelectric materials Bi2Te3 from first-principles calculations. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 11-15.	0.4	1
141	Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports, 2017, 72, 1-58.	3.8	419
142	Grain Boundary Engineering for Achieving High Thermoelectric Performance in nâ€Type Skutterudites. Advanced Energy Materials, 2017, 7, 1602582.	10.2	194
143	Mg vacancy and dislocation strains as strong phonon scatterers in Mg 2 Si 1â^'x Sb x thermoelectric materials. Nano Energy, 2017, 34, 428-436.	8.2	116
144	The structure and opto–thermo electronic properties of a new (Bi(Bi ₂ S ₃) ₉ I ₃) _{2/3} hexagonal nano-/micro-rod. Chemical Communications, 2017, 53, 3741-3744.	2.2	14
145	Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 2017, 9, e353-e353.	3.8	223
146	Ultra-fast synthesis and high thermoelectric properties of heavy sodium doped BiCuSeO. Journal of Alloys and Compounds, 2017, 708, 955-960.	2.8	22
147	Promoting SnTe as an Ecoâ€Friendly Solution for pâ€PbTe Thermoelectric via Band Convergence and Interstitial Defects. Advanced Materials, 2017, 29, 1605887.	11.1	317
148	A synergistic effect of metal iodide doping on the thermoelectric properties of Bi ₂ Te ₃ . Inorganic Chemistry Frontiers, 2017, 4, 881-888.	3.0	18
149	Substitutional defects enhancing thermoelectric CuGaTe ₂ . Journal of Materials Chemistry A, 2017, 5, 5314-5320.	5.2	87
150	Effect of Isovalent Substitution on the Electronic Structure and Thermoelectric Properties of the Solid Solution α-As ₂ Te _{3–<i>x</i>} Se _{<i>x</i>} (0 ≤i>x ≤.5). Inorganic Chemistry, 2017, 56, 2248-2257.	1.9	18
151	Enhanced Average Thermoelectric Figure of Merit of the PbTe–SrTe–MnTe Alloy. ACS Applied Materials & Interfaces, 2017, 9, 8729-8736.	4.0	38
152	Compromise and Synergy in Highâ€Efficiency Thermoelectric Materials. Advanced Materials, 2017, 29, 1605884.	11.1	1,098
153	Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy and Environmental Science, 2017, 10, 799-807.	15.6	326

#	Article	IF	CITATIONS
154	Structural optimization for thermoelectric properties in Cu-Bi-S pavonite compounds. Journal of Alloys and Compounds, 2017, 704, 282-288.	2.8	8
155	Constructing nanoporous carbon nanotubes/Bi2Te3 composite for synchronous regulation of the electrical and thermal performances. Journal of Applied Physics, 2017, 121, .	1.1	14
156	Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence. Advanced Materials, 2017, 29, 1606768.	11.1	365
157	Filled Skutterudites for Broadband Saturable Absorbers. Advanced Optical Materials, 2017, 5, 1700096.	3.6	36
158	Bi 2 Te 3 thin hexagonal nanoplatelets: Synthesis and its characterization studies. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 92, 17-22.	1.3	13
159	Design and Experimental Investigation of Thermoelectric Generators for Wearable Applications. Advanced Materials Technologies, 2017, 2, 1600292.	3.0	28
160	Structure and thermoelectric properties of InxBayCo4Sb12 samples prepared by HPHT. Journal of Alloys and Compounds, 2017, 712, 477-481.	2.8	7
161	Synthesis of n -type Bi 2 Te 1-x Se x compounds through oxide reduction process and related thermoelectric properties. Journal of the European Ceramic Society, 2017, 37, 3361-3366.	2.8	12
162	High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag ₈ SiSe ₆ . Chemistry of Materials, 2017, 29, 4833-4839.	3.2	65
163	Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering. Nano Energy, 2017, 37, 203-213.	8.2	164
164	Changing the Band Gaps by Controlling the Distribution of Initial Particle Size to Improve the Power Factor of Nâ€∢ype Bi ₂ Te ₃ Based Polycrystalline Bulks. Advanced Engineering Materials, 2017, 19, 1600696.	1.6	17
165	Engineering the Thermoelectric Transport in Halfâ€Heusler Materials through a Bottomâ€Up Nanostructure Synthesis. Advanced Energy Materials, 2017, 7, 1700446.	10.2	48
166	An overview of cooling of thermoelectric devices. Renewable and Sustainable Energy Reviews, 2017, 78, 15-22.	8.2	98
167	A gigantically increased ratio of electrical to thermal conductivity and synergistically enhanced thermoelectric properties in interface-controlled TiO2–RGO nanocomposites. Nanoscale, 2017, 9, 7830-7838.	2.8	34
168	Flexo-green Polypyrrole – Silver nanocomposite films for thermoelectric power generation. Energy Conversion and Management, 2017, 144, 143-152.	4.4	41
169	Twinning and its formation mechanism in a binary Mg ₂ Si thermoelectric material with an anti-fluorite structure. RSC Advances, 2017, 7, 21671-21677.	1.7	16
170	Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorganic Chemistry Frontiers, 2017, 4, 1066-1072.	3.0	45
171	Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chemistry of Materials, 2017, 29, 605-611.	3.2	226

#	Article	IF	CITATIONS
172	n-type Bi-doped PbTe Nanocubes with Enhanced Thermoelectric Performance. Nano Energy, 2017, 31, 105-112.	8.2	113
173	Reduction in thermal conductivity of BiSbTe lump. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	6
174	Enhancement of the thermoelectric performance of bulk SnTe alloys via the synergistic effect of band structure modification and chemical bond softening. Journal of Materials Chemistry A, 2017, 5, 14165-14173.	5.2	65
175	Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth-antimony-telluride by lattice thermal conductivity reduction. Journal of Alloys and Compounds, 2017, 718, 342-348.	2.8	49
176	Grain size optimization for high-performance polycrystalline SnSe thermoelectrics. Journal of Materials Chemistry A, 2017, 5, 14053-14060.	5.2	53
177	Optimization design and experimental study of thermoelectric dehumidifier. Applied Thermal Engineering, 2017, 123, 820-829.	3.0	27
178	Effect of dimensionality on thermoelectric powerfactor of molybdenum disulfide. Journal of Applied Physics, 2017, 121, .	1.1	17
179	Improving deformability of Sb 2 Te 3 layered material by dislocation climb at anti-phase boundary. Scripta Materialia, 2017, 135, 10-14.	2.6	16
180	Deformation mechanisms in high-efficiency thermoelectric layered Zintl compounds. Journal of Materials Chemistry A, 2017, 5, 9050-9059.	5.2	31
181	Scattering characteristics of grain boundaries in electrically sintered Bi 0.4 Sb 1.6 Te 3 compounds. Materials Letters, 2017, 197, 21-23.	1.3	Ο
182	Evolution of Microstructural Disorder in Annealed Bismuth Telluride Nanowires. ECS Journal of Solid State Science and Technology, 2017, 6, N3117-N3124.	0.9	3
183	Thermoelectric properties of Graphene/Mn 0.7 Zn 0.3 Fe 2 O 4 composites. Ceramics International, 2017, 43, 8643-8647.	2.3	11
184	Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy and Environmental Science, 2017, 10, 956-963.	15.6	274
185	Minority Carrier Blocking to Enhance the Thermoelectric Performance of Solution-Processed Bi _{<i>x</i>} Sb _{2–<i>x</i>} Te ₃ Nanocomposites via a Liquid-Phase Sintering Process. ACS Applied Materials & Interfaces, 2017, 9, 12501-12510.	4.0	46
186	Scalable solution-based synthesis of component-controllable ultrathin PbTe1â^'xSexnanowires with high n-type thermoelectric performance. Journal of Materials Chemistry A, 2017, 5, 2876-2884.	5.2	26
187	Enhanced thermoelectric performance of lanthanum filled CoSb 3 synthesized under high pressure. Journal of Alloys and Compounds, 2017, 699, 751-755.	2.8	25
188	Dramatically enhanced thermoelectric performance of MoS ₂ by introducing MoO ₂ nanoinclusions. Journal of Materials Chemistry A, 2017, 5, 2004-2011.	5.2	66
189	Low Thermal Conductivity and High Thermoelectric Performance in In4Se3â^'x with Phase-Separated Indium Inclusions. Journal of Electronic Materials, 2017, 46, 1444-1450.	1.0	9

#	Article	IF	CITATIONS
190	Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nature Communications, 2017, 8, 13828.	5.8	360
191	Electronic, optical and thermoelectric properties of bulk and surface (001) CuInTe 2 : A first principles study. Journal of Alloys and Compounds, 2017, 699, 1003-1011.	2.8	15
192	Phonon scattering by nanoscale twin boundaries. Nano Energy, 2017, 32, 174-179.	8.2	77
193	Graphene Substrate for van der Waals Epitaxy of Layer‣tructured Bismuth Antimony Telluride Thermoelectric Film. Advanced Materials, 2017, 29, 1604899.	11.1	33
194	Promising thermoelectric performance in van der Waals layered SnSe2. Materials Today Physics, 2017, 3, 127-136.	2.9	95
195	Co-doping for significantly improved thermoelectric figure of merit in p-type Bi1-2Mg Pb CuSeO oxyselenides. Ceramics International, 2017, 43, 17186-17193.	2.3	19
196	Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics. Advanced Science, 2017, 4, 1700341.	5.6	151
197	Tuned thermoelectric transport properties of Co2.0Sb1.6Se2.4 and Co2.0Sb1.5M0.1Se2.4 (M=Zn, Sn): Compounds with high phonon scattering. Journal of Alloys and Compounds, 2017, 729, 303-312.	2.8	5
198	Photoemission study of the electronic structure of valence band convergent SnSe. Physical Review B, 2017, 96, .	1.1	30
199	Promising Thermoelectric Ag _{5â~Î~/sub>Te₃ with Intrinsic Low Lattice Thermal Conductivity. ACS Energy Letters, 2017, 2, 2470-2477.}	8.8	54
200	Ecoâ€Friendly SnTe Thermoelectric Materials: Progress and Future Challenges. Advanced Functional Materials, 2017, 27, 1703278.	7.8	312
201	Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357, .	6.0	1,613
202	Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics. Small, 2017, 13, 1702013.	5.2	265
203	More than half reduction in price per watt of thermoelectric device without increasing the thermoelectric figure of merit of materials. Applied Energy, 2017, 205, 1459-1466.	5.1	18
204	High Thermoelectric Performance of Ag9GaSe6 Enabled by Low Cutoff Frequency of Acoustic Phonons. Joule, 2017, 1, 816-830.	11.7	195
205	Enhancing room temperature thermoelectric performance of n -type polycrystalline bismuth-telluride-based alloys via Ag doping and hot deformation. Materials Today Physics, 2017, 2, 62-68.	2.9	76
206	Mat-like flexible thermoelectric system based on rigid inorganic bulk materials. Journal Physics D: Applied Physics, 2017, 50, 494006.	1.3	30
207	Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe. NPG Asia Materials, 2017, 9, e426-e426.	3.8	49

#	Article	IF	CITATIONS
208	Superstrengthening <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mml:mn>2through Nanotwinning. Physical Review Letters, 2017, 119, 085501.</mml:mn></mml:msub></mml:mrow></mml:math>	l:m 2 39 /mn	nl:m s ub> <mm< td=""></mm<>
209	Oscillatory deviations from Matthiessen's rule due to interacting dislocations. Journal of Physics Condensed Matter, 2017, 29, 325702.	0.7	3
210	Thermoelectric power factor of Bi-Sb-Te and Bi-Te-Se alloys and doping strategy: First-principles study. Journal of Alloys and Compounds, 2017, 727, 1067-1075.	2.8	16
211	Evaluation of the f-electron rare-earth copper telluride GdCu1+xTe2 as a thermoelectric material. Journal of Solid State Chemistry, 2017, 255, 193-199.	1.4	2
212	A two-step synthesis process of thermoelectric alloys for the separate control of carrier density and mobility. Journal of Alloys and Compounds, 2017, 727, 191-195.	2.8	6
213	First-principles and molecular dynamics study of thermoelectric transport properties of N-type silicon-based superlattice-nanocrystalline heterostructures. Journal of Applied Physics, 2017, 122, 085105.	1.1	12
214	Effect of multiwalled carbon nanotubes on the thermoelectric properties of Mn-Zn ferrites. Solid State Sciences, 2017, 72, 130-133.	1.5	3
215	The fountain effect of ice-like water across nanotubes at room temperature. Physical Chemistry Chemical Physics, 2017, 19, 28496-28501.	1.3	2
216	Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg ₃ Sb ₂ -based materials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10548-10553.	3.3	267
217	Te Monolayer-Driven Spontaneous van der Waals Epitaxy of Two-dimensional Pnictogen Chalcogenide Film on Sapphire. Nano Letters, 2017, 17, 6140-6145.	4.5	19
218	Superparamagnetic enhancement of thermoelectric performance. Nature, 2017, 549, 247-251.	13.7	472
220	Flexible thermoelectric power generation system based on rigid inorganic bulk materials. Applied Energy, 2017, 206, 649-656.	5.1	87
221	Tetradymites as thermoelectrics and topological insulators. Nature Reviews Materials, 2017, 2, .	23.3	184
222	Defect Engineering for Realizing High Thermoelectric Performance in n-Type Mg ₃ Sb ₂ -Based Materials. ACS Energy Letters, 2017, 2, 2245-2250.	8.8	181
223	Grain boundary engineering with nano-scale InSb producing high performance In Ce Co4Sb12+ skutterudite thermoelectrics. Journal of Materiomics, 2017, 3, 273-279.	2.8	33
224	Advances in Environment-Friendly SnTe Thermoelectrics. ACS Energy Letters, 2017, 2, 2349-2355.	8.8	109
225	Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime. Physical Review Applied, 2017, 8, .	1.5	15
226	Ultrahigh thermoelectric performance in Cu 2â^'y Se 0.5 S 0.5 liquid-like materials. Materials Today Physics: 2017, 1, 14-23	2.9	130

		CITATION REPORT		
#	Article		IF	CITATIONS
227	Impact of Interfacial Layers in Perovskite Solar Cells. ChemSusChem, 2017, 10, 3687-3	3704.	3.6	191
228	Promising Thermoelectric Bulk Materials with 2D Structures. Advanced Materials, 201	7, 29, 1702676.	11.1	228
229	Recent progress and future challenges on thermoelectric Zintl materials. Materials Too 2017, 1, 74-95.	lay Physics,	2.9	275
230	Ultrahigh thermoelectric performance in Cu ₂ Se-based hybrid materials w dispersed molecular CNTs. Energy and Environmental Science, 2017, 10, 1928-1935.	ith highly	15.6	298
231	Dependence of Solidification for Bi2Te3â^'xSex Alloys on Their Liquid States. Scientific 2463.	Reports, 2017, 7,	1.6	12
232	Enhanced figure of merit in nanostructured (Bi,Sb)2Te3 with optimized composition, p straightforward arc-melting procedure. Scientific Reports, 2017, 7, 6277.	brepared by a	1.6	41
233	Structural, electronic, mechanical, and thermoelectric properties of a novel half Heusle HfPtPb. Journal of Applied Physics, 2017, 122, .	er compound	1.1	34
234	Influence of Sodium Chloride Doping on Thermoelectric Properties of p-type SnSe. Jou Electronic Materials, 2017, 46, 6662-6668.	rnal of	1.0	18
235	Taguchi optimization of bismuth-telluride based thermoelectric cooler. Journal of Appli 2017, 122, .	ed Physics,	1.1	20
236	Improvement of power factor of n-type Bi2Te3 by dispersed nanosized Ga2Te3 precipi Alloys and Compounds, 2017, 726, 578-586.	tates. Journal of	2.8	5
237	Degraded thermal stability of p-type Bi2Te3-based polycrystalline bulks for thermoelec generation at service temperature of 473ÂK. Journal of Materials Science: Materials in 28, 15731-15738.	tric power Electronics, 2017,	1.1	3
238	Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Bas Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects. ACS Applied Material Interfaces, 2017, 9, 28577-28585.		4.0	71
239	High-pressure synthesis of tetragonal iron aluminide FeAl2. Scripta Materialia, 2017, 1	41, 107-110.	2.6	10
240	2D Nanosheet Paint from Solvent-Exfoliated Bi ₂ Te ₃ Ink. Che Materials, 2017, 29, 7390-7400.	emistry of	3.2	16
241	Combination of Carrier Concentration Regulation and High Band Degeneracy for Enha Thermoelectric Performance of Cu ₃ SbSe ₄ . ACS Applied Mat Interfaces, 2017, 9, 28558-28565.		4.0	30
242	Processing of advanced thermoelectric materials. Science China Technological Science 1347-1364.	es, 2017, 60,	2.0	79
243	Thermoelectric properties of Lu-doped n-type Lu Bi2-Te2.7Se0.3 alloys. Journal of Alloy Compounds, 2017, 727, 326-331.	s and	2.8	24
244	Designing hybrid architectures for advanced thermoelectric materials. Materials Chem Frontiers, 2017, 1, 2457-2473.	istry	3.2	34

ARTICLE IF CITATIONS # Selfâ€Tuning nâ€Type Bi₂(Te,Se)₃/SiC Thermoelectric Nanocomposites to Realize 245 5.6 72 High Performances up to 300 °C. Advanced Science, 2017, 4, 1700259. Performance optimization and single parabolic band behavior of thermoelectric MnTe. Journal of 246 5.2 Materials Chemistry A, 2017, 5, 19143-19150. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Scientific 247 46 1.6 Reports, 2017, 7, 16746. Synthesis and thermoelectric properties of defect-containing PbSe–PbTe heterojunction 248 nanostructures. RSC Advances, 2017, 7, 53855-53860. Reduction of thermal conductivity in Y<i>x</i>Sb2â€"<i>x</i>Te3 for phase change memory. Journal of 249 1.1 21 Applied Physics, 2017, 122, . Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb. Physical Review Letters, 2017, 119, 215503. Low temperature sputter-deposited ZnO films with enhanced Hall mobility using excimer laser 251 1.3 9 post-processing. Journal Physics D: Applied Physics, 2017, 50, 485306. Transport properties of electrically sintered bismuth antimony telluride with antimony 1.5 nanoprecipitation. Applied Physics Letters, 2017, 111, 143901. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Physical 253 378 1.1 Review B, 2017, 96, . Suppressed intrinsic excitation and enhanced thermoelectric performance in 254 Ag_xBi_{0.5}Sb_{1.5â^x}Te₃. Journal of Materials Chemistry C, 2.7 2017, 5, 12619-12628. Micro- and Macromechanical Properties of Thermoelectric Lead Chalcogenides. ACS Applied Materials 255 4.045 & Interfaces, 2017, 9, 40488-40496. Enhancement of thermoelectric properties in liquid-phase sintered Te-excess bismuth antimony 3.8 tellurides prepared by hot-press sintering. Acta Materialia, 2017, 135, 297-303. Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics. Journal 257 1.3 12 Physics D: Applied Physics, 2017, 50, 274002. Decouple electronic and phononic transport in nanotwinned structures: a new strategy for 2.8 enhancing the figure-of-merit of thermoelectrics. Nanoscale, 2017, 9, 9987-9996. High thermoelectric performance of Bilâ[^]x K x CuSeO prepared by combustion synthesis. Journal of 259 1.7 8 Materials Science, 2017, 52, 11569-11579. Insight into Nucleation and Growth of Bi_{2â€"<i>x</i>}Sb_{<i>x</i>}Te₃ (<i>×</i>> = 0â€"2) Nanoplatelets in Hydrothermal Synthesis. Chemistry of Materials, 2017, 29, 5070-5079. Thermoelectric Performance of Se/Cd Codoped SnTe via Microwave Solvothermal Method. ACS Applied 261 4.0 51 Materials & amp; Interfaces, 2017, 9, 22612-22619. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by 8.3 carrier concentration control. Materials Today, 2017, 20, 452-459.

#	Article	IF	CITATIONS
263	Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials. Chemistry of Materials, 2017, 29, 6396-6404.	3.2	14
264	The initial powder-refinement-induced donor-like effect and nonlinear change of thermoelectric performance for Bi2Te3-based polycrystalline bulks. Semiconductor Science and Technology, 2017, 32, 075004.	1.0	6
265	<i>Ab initio</i> phonon scattering by dislocations. Physical Review B, 2017, 95, .	1.1	49
266	Filling-Fraction Fluctuation Leading to Glasslike Ultralow Thermal Conductivity in Caged Skutterudites. Physical Review Letters, 2017, 118, 245901.	2.9	38
267	Ultrathin few layer oxychalcogenide BiCuSeO nanosheets. Inorganic Chemistry Frontiers, 2017, 4, 84-90.	3.0	19
268	Phonon scattering by dislocations at grain boundaries in polycrystalline Bi _{0.5} Sb _{1.5} Te ₃ . Physica Status Solidi (B): Basic Research, 2017, 254, 1600103.	0.7	43
269	Effect of Uniform Dispersion of Single-Wall Carbon Nanotubes on the Thermoelectric Properties of BiSbTe-Based Nanocomposites. Journal of Electronic Materials, 2017, 46, 1348-1357.	1.0	18
270	Thermoelectric characteristics of nanocomposites made of HgSe and Ag nanoparticles for flexible thermoelectric devices. Nano Research, 2017, 10, 683-689.	5.8	5
271	The bridge between the materials and devices of thermoelectric power generators. Energy and Environmental Science, 2017, 10, 69-85.	15.6	143
272	Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy and Environmental Science, 2017, 10, 183-191.	15.6	252
273	Thermoelectric transport properties of tetradymite-type Pb1-Sn Bi2Te4 compounds. Journal of Alloys and Compounds, 2017, 690, 966-970.	2.8	7
274	Stabilization of Thermoelectric Properties of the Cu/Bi0.48Sb1.52Te3 Composite for Advantageous Power Generation. Journal of Electronic Materials, 2017, 46, 2746-2751.	1.0	9
275	Influence of Se-doping and/or Bi addition on microstructure and thermoelectric properties of Cu0.05Bi2Te3. Ceramics International, 2017, 43, 599-603.	2.3	2
276	Integrating Band Structure Engineering with Allâ€Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System. Advanced Energy Materials, 2017, 7, 1601450.	10.2	157
277	Thermal stability of p-type polycrystalline Bi2Te3-based bulks for the application on thermoelectric power generation. Journal of Alloys and Compounds, 2017, 692, 885-891.	2.8	31
278	Manipulation of charge transport in thermoelectrics. Npj Quantum Materials, 2017, 2, .	1.8	55
279	Improved thermoelectric performance in p-type Bi 0.48 Sb 1.52 Te 3 bulk material by adding MnSb 2 Se 4. Chinese Physics B, 2017, 26, 017202.	0.7	8
281	BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective. Materials, 2017, 10, 198.	1.3	70

#	Article	IF	CITATIONS
282	Thermal Stability of P-Type BiSbTe Alloys Prepared by Melt Spinning and Rapid Sintering. Materials, 2017, 10, 617.	1.3	18
283	Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te3. Materials, 2017, 10, 763.	1.3	33
284	Thermoelectric Properties of Bi2Te3: Cul and the Effect of Its Doping with Pb Atoms. Materials, 2017, 10, 1235.	1.3	74
285	Microstructure Analysis and Thermoelectric Properties of Melt-Spun Bi-Sb-Te Compounds. Crystals, 2017, 7, 180.	1.0	8
286	Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant. Energies, 2017, 10, 1489.	1.6	11
287	Enhancement of Thermoelectric Properties in n-Type Cu0.01Bi2Te2.3+xSe0.7 (0Â≤xÂ≤0.7) Compounds w Te-Excess. Electronic Materials Letters, 2018, 14, 139-145.	ith 1.0	3
288	Screw-Dislocated Nanostructures. SpringerBriefs in Applied Sciences and Technology, 2018, , 27-40.	0.2	1
289	Mechanical properties in thermoelectric oxides: Ideal strength, deformation mechanism, and fracture toughness. Acta Materialia, 2018, 149, 341-349.	3.8	25
290	Thermoelectric Effects of Nanogaps between Two Tips. Small, 2018, 14, e1703695.	5.2	3
291	Study on the thermoelectric performance of polycrystal SnSe with Se vacancies. Journal of Alloys and Compounds, 2018, 745, 513-518.	2.8	27
292	Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. MRS Bulletin, 2018, 43, 181-186.	1.7	111
293	Study on anisotropy of n-type Mg3Sb2-based thermoelectric materials. Applied Physics Letters, 2018, 112,	1.5	36
294	Valleytronics in thermoelectric materials. Npj Quantum Materials, 2018, 3, .	1.8	104
295	Enhancement in Thermoelectric Properties of TiS2 by Sn Addition. Journal of Electronic Materials, 2018, 47, 3091-3098.	1.0	12
296	High thermoelectric properties of (Sb, Bi)2Te3 nanowire arrays by tilt-structure engineering. Applied Surface Science, 2018, 443, 11-17.	3.1	18
297	The single-crystal multinary compound Cu2ZnSnS4 as an environmentally friendly high-performance thermoelectric material. Applied Physics Express, 2018, 11, 051203.	1.1	23
298	Tilt-structure and high-performance of hierarchical Bi1.5Sb0.5Te3 nanopillar arrays. Scientific Reports, 2018, 8, 6384.	1.6	10
299	Thermoelectric Power Factor in Nanostructured Materials With Randomized Nanoinclusions. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700997.	0.8	7

		15	<u></u>
#	ARTICLE	IF	CITATIONS
300	New evaluation parameter for wearable thermoelectric generators. Journal of Applied Physics, 2018, 123, .	1.1	7
301	MnTe2 as a novel promising thermoelectric material. Journal of Materiomics, 2018, 4, 215-220.	2.8	19
302	Atomic structure and migration dynamics of MoS2/LixMoS2 interface. Nano Energy, 2018, 48, 560-568.	8.2	42
303	Crystal Structure Induced Ultralow Lattice Thermal Conductivity in Thermoelectric Ag ₉ AlSe ₆ . Advanced Energy Materials, 2018, 8, 1800030.	10.2	88
304	Routes for high-performance thermoelectric materials. Materials Today, 2018, 21, 974-988.	8.3	265
305	Ecoâ€Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges. Advanced Energy Materials, 2018, 8, 1800056.	10.2	116
306	Effect of Dislocation Arrays at Grain Boundaries on Electronic Transport Properties of Bismuth Antimony Telluride: Unified Strategy for High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1800065.	10.2	40
307	Sodiumâ€Doped Tin Sulfide Single Crystal: A Nontoxic Earthâ€Abundant Material with High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1800087.	10.2	80
308	Localized Vibrations of Bi Bilayer Leading to Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Weak Topological Insulator <i>n-</i> Type BiSe. Journal of the American Chemical Society, 2018, 140, 5866-5872.	6.6	137
309	Strong anharmonic phonon scattering induced giant reduction of thermal conductivity in PbTe nanotwin boundary. Physical Review B, 2018, 97, .	1.1	34
310	Enhanced thermoelectric properties of p-type SnS0.2Se0.8 solid solution doped with Ag. Journal of Alloys and Compounds, 2018, 745, 172-178.	2.8	14
311	Thermo-element geometry optimization for high thermoelectric efficiency. Energy, 2018, 147, 672-680.	4.5	26
312	Manipulation of Phonon Transport in Thermoelectrics. Advanced Materials, 2018, 30, e1705617.	11.1	316
313	Simultaneous blocking of minority carrier and high energy phonon in p-type skutterudites. Nano Energy, 2018, 46, 249-256.	8.2	16
314	Excellent thermoelectric performance achieved over broad temperature plateau in indium-doped SnTe-AgSbTe2 alloys. Applied Physics Letters, 2018, 112, .	1.5	15
315	Assessing phase discrimination <i>via</i> the segmentation of an elemental energy dispersive X-ray spectroscopy map: a case study of Bi ₂ Te ₃ and Bi ₂ Te ₂ S. RSC Advances, 2018, 8, 7457-7464.	1.7	3
316	Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO ₃ thin films. Nanoscale, 2018, 10, 4377-4384.	2.8	19
317	Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures. Nanoscale, 2018, 10, 3046-3052.	2.8	35

#	Article	IF	CITATIONS
318	High performance p-type half-Heusler thermoelectric materials. Journal Physics D: Applied Physics, 2018, 51, 113001.	1.3	65
319	Recent progress in magnesium-based thermoelectric materials. Journal of Materials Chemistry A, 2018, 6, 3328-3341.	5.2	70
320	Atomic Resolution Imaging of Nanoscale Chemical Expansion in Pr _{<i>x</i>} Ce _{1–<i>x</i>} O _{2â^îî} during <i>In Situ</i> Heating. ACS Nano, 2018, 12, 1359-1372.	7.3	8
321	Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures. Physical Review B, 2018, 97, .	1.1	69
322	Realizing <i>zT</i> of 2.3 in Ge _{1â^'} <i>_x</i> _{â^'} <i>_y</i> Sb <i>_x</i> In <i>_{ via Reducing the Phaseâ€Transition Temperature and Introducing Resonant Energy Doping. Advanced Materials, 2018, 30, 1705942.}</i>	y </td <td>'i>Te 316</td>	'i>Te 316
323	Grain Boundaries Softening Thermoelectric Oxide BiCuSeO. ACS Applied Materials & Interfaces, 2018, 10, 6772-6777.	4.0	10
324	Manipulating Band Structure through Reconstruction of Binary Metal Sulfide for Highâ€Performance Thermoelectrics in Solutionâ€Synthesized Nanostructured Bi ₁₃ S ₁₈ I ₂ . Angewandte Chemie - International Edition, 2018, 57, 2413-2418.	7.2	20
325	Manipulating Band Structure through Reconstruction of Binary Metal Sulfide for Highâ€Performance Thermoelectrics in Solutionâ€Synthesized Nanostructured Bi 13 S 18 I 2. Angewandte Chemie, 2018, 130, 2437-2442.	1.6	11
326	Thermoelectric transport properties of Pb–Sn–Te–Se system. Rare Metals, 2018, 37, 343-350.	3.6	55
327	Thermoelectric effects in solid-state polyelectrolytes. Organic Electronics, 2018, 54, 231-236.	1.4	72
328	Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations. New Journal of Physics, 2018, 20, 023010.	1.2	13
329	Achieving <i>zT</i> > 2 in pâ€Type AgSbTe _{2â^'} <i>_x</i> Se <i>_x</i> Alloys via Exploring the Extra Light Valence Band and Introducing Dense Stacking Faults. Advanced Energy Materials, 2018, 8, 1702333.	10.2	143
330	Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect. Rare Metals, 2018, 37, 326-332.	3.6	18
331	Ternary Bi2Te3In2Te3Ga2Te3 (n-type) thermoelectric film on a flexible PET substrate for use in wearables. Energy, 2018, 144, 607-618.	4.5	28
332	Stabilization of Metastable Thermoelectric Crystalline Phases by Tuning the Glass Composition in the Cu–As–Te System. Inorganic Chemistry, 2018, 57, 754-767.	1.9	14
333	3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nature Energy, 2018, 3, 301-309.	19.8	237
334	Liquid-like thermal conduction in intercalated layered crystalline solids. Nature Materials, 2018, 17, 226-230.	13.3	136
335	Impact of screw and edge dislocations on the thermal conductivity of individual nanowires and bulk GaN: a molecular dynamics study. Physical Chemistry Chemical Physics, 2018, 20, 5159-5172.	1.3	26

#	Article	IF	CITATIONS
336	Work function of bismuth telluride: First-principles approach. Journal of the Korean Physical Society, 2018, 72, 122-128.	0.3	16
337	Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials. ACS Applied Materials & Interfaces, 2018, 10, 3609-3615.	4.0	74
338	Mechanism and application method to analyze the carrier scattering factor by electrical conductivity ratio based on thermoelectric property measurement. Journal of Applied Physics, 2018, 123, .	1.1	13
339	Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe ₂ Incorporation. ACS Applied Materials & amp; Interfaces, 2018, 10, 3689-3698.	4.0	66
340	Pressure-induced electrical transport properties, texture, and microstructure of the (Bi,Sb) ₂ Te ₃ alloys. Inorganic Chemistry Frontiers, 2018, 5, 1540-1544.	3.0	14
341	Ultrahigh Power Factor in Thermoelectric System Nb _{0.95} M _{0.05} FeSb (M = Hf,) Tj ETQq1	1.0.7843 5.0	14 rgBT /0\ 45
342	Single parabolic band behavior of thermoelectric p-type Cu4Mn2Te4. Journal of Alloys and Compounds, 2018, 753, 93-99.	2.8	8
343	High-performance SnSe thermoelectric materials: Progress and future challenge. Progress in Materials Science, 2018, 97, 283-346.	16.0	419
344	Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule, 2018, 2, 976-987.	11.7	402
345	Phase-dependent thermal conductivity of electrodeposited antimony telluride films. Journal of Materials Chemistry C, 2018, 6, 3410-3416.	2.7	6
346	Thermoelectrics based on metal oxide thin films. , 2018, , 441-464.		5
347	Naturally decorated dislocations capable of enhancing multiple-phonon scattering in Si-based thermoelectric composites. Journal of Applied Physics, 2018, 123, 115114.	1.1	5
348	Crystallographically Textured Nanomaterials Produced from the Liquid Phase Sintering of Bi _{<i>x</i>} Sb _{2–<i>x</i>} Te ₃ Nanocrystal Building Blocks. Nano Letters, 2018, 18, 2557-2563.	4.5	89
349	Synthesis and thermoelectric performance of titanium diboride and its composites with lead selenide and carbon. Ceramics International, 2018, 44, 10685-10692.	2.3	12
350	An improved interatomic potential function for thermoelectric Mg2Si: A combination study of ab-initio and molecular dynamics method. Computational Materials Science, 2018, 149, 49-56.	1.4	7
351	Enhancing thermoelectric performance of Cu-modified Bi0.5Sb1.5Te3 by electroless plating and annealing. Progress in Natural Science: Materials International, 2018, 28, 218-224.	1.8	6
352	Odyssey of thermoelectric materials: foundation of the complex structure. Journal of Physics Communications, 2018, 2, 062001.	0.5	34
353	Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy, 2018, 47, 374-384.	8.2	101

	CITATION RE	PORT	
Article		IF	CITATIONS
Enhancement of Thermoelectric Performances in a Topological Crystal Insulator Pb _{0.7} Sn _{0.3} Se via Weak Perturbation of the Topological Sta Potential Tuning by Chlorine Doping. ACS Applied Materials & amp; Interfaces, 2018, 1		4.0	15
Rapid and low-cost fabrication of thermoelectric composite using low-pressure cold pr thermocuring methods. Materials Letters, 2018, 212, 299-302.	ressing and	1.3	8
Simple and efficient synthesis of nanograin structured single phase filled skutterudite thermoelectric performance. Acta Materialia, 2018, 142, 8-17.	for high	3.8	44
Development of a numerical method for the performance analysis of thermoelectric get thermal and electric contact resistance. Applied Thermal Engineering, 2018, 130, 408-	enerators with 417.	3.0	65
Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spil the spark plasma sintering process. Scripta Materialia, 2018, 143, 90-93.	ling during	2.6	77
Band engineering and tuning thermoelectric transport properties of p-type Bi0.52Sb1. doping for low-temperature power generation. Scripta Materialia, 2018, 145, 41-44.	48Te3 by Pb	2.6	49
High thermoelectric performance of α-MgAgSb for power generation. Energy and Envi Science, 2018, 11, 23-44.	ironmental	15.6	127
Enhancement of thermoelectric properties in Cul-doped Bi2Te2.7Se0.3 by hot-deforma Alloys and Compounds, 2018, 731, 531-536.	ation. Journal of	2.8	26
In Situ TEM Studies of Nanostructured Thermoelectric Materials: An Application to Mg Zn ₄ Sb ₃ Alloy. ChemPhysChem, 2018, 19, 108-115.	â€Ðoped	1.0	7
Fiberâ€Based Thermoelectric Generators: Materials, Device Structures, Fabrication, Ch and Applications. Advanced Energy Materials, 2018, 8, 1700524.	aracterization,	10.2	108
Realizing p-Type MoS ₂ with Enhanced Thermoelectric Performance by En VMo ₂ S ₄ Nanoinclusions. Journal of Physical Chemistry B, 20	nbedding 018, 122, 713-720.	1.2	44
The effect of europium on structure and thermoelectric properties of silicon clathrates synthesis. Materials Chemistry and Physics, 2018, 205, 84-89.	by HPHT	2.0	3
Enhanced thermoelectric performance through synergy of resonance levels and valence convergence <i>via</i> Q/In (Q = Mg, Ag, Bi) co-doping. Journal of Materials Chemistry 2507-2516.		5.2	34
High thermoelectric performance of few-quintuple Sb2Te3 nanofilms. Nano Energy, 20	018, 43, 285-290.	8.2	51
Nanoimaging of Electronic Heterogeneity in Bissub>23/5005 Sessub>33/5005 and			

368	Sb ₂ Te ₃ Nanocrystals. Advanced Electronic Materials, 2018, 4, 1700377.	2.6	16
369	Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies. Journal of the American Chemical Society, 2018, 140, 499-505.	6.6	180
370	Ultra-high average figure of merit in synergistic band engineered Sn Na1â^'Se0.9S0.1 single crystals. Materials Today, 2018, 21, 501-507.	8.3	71
371	High Thermoelectric Power Factor of Highâ€Mobility 2D Electron Gas. Advanced Science, 2018, 5, 1700696.	5.6	51

#

354

356

358

360

362

364

366

#	Article	IF	Citations
372	First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4. Journal of Electronic Materials, 2018, 47, 1871-1880.	1.0	4
373	nâ€Type SnSe ₂ Orientedâ€Nanoplateâ€Based Pellets for High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1702167.	10.2	103
374	A comprehensive optimization study on Bi ₂ Te ₃ -based thermoelectric generators using the Taguchi method. Sustainable Energy and Fuels, 2018, 2, 175-190.	2.5	24
375	High Performance Thermoelectric Materials: Progress and Their Applications. Advanced Energy Materials, 2018, 8, 1701797.	10.2	548
376	Achieving high power factor of p-type BiSbTe thermoelectric materials via adjusting hot-pressing temperature. Intermetallics, 2018, 93, 338-342.	1.8	11
377	Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene. Journal of Materials Chemistry A, 2018, 6, 2018-2033.	5.2	80
378	Control of donor-like effect in V2VI3 polycrystalline thermoelectric materials. Materials Research Bulletin, 2018, 99, 377-384.	2.7	9
379	Effect of annealing treatment on thermoelectric properties of Ti-doped ZnO thin film. AIP Conference Proceedings, 2018, , .	0.3	1
380	Realizing high thermoelectric performance in Te nanocomposite through Sb ₂ Te ₃ incorporation. CrystEngComm, 2018, 20, 7729-7738.	1.3	20
381	Enhancing the thermoelectric power factor of Sr _{0.9} Nd _{0.1} TiO ₃ through control of the nanostructure and microstructure. Journal of Materials Chemistry A, 2018, 6, 24928-24939.	5.2	34
382	Thermoelectric Properties of Hot-Pressed Bi-Doped n-Type Polycrystalline SnSe. Nanoscale Research Letters, 2018, 13, 200.	3.1	22
383	Phonon diffraction and dimensionality crossover in phonon-interface scattering. Communications Physics, 2018, 1, .	2.0	28
384	Multi-scale study of the deformation mechanisms of thermoelectric p-type half-Heusler Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. Journal of Applied Physics, 2018, 124, .	1.1	1
385	Enhanced carrier mobility and thermoelectric performance in Cu2FeSnSe4 diamond-like compound via manipulating the intrinsic lattice defects. Materials Today Physics, 2018, 7, 45-53.	2.9	28
386	Advances in thermoelectrics. Advances in Physics, 2018, 67, 69-147.	35.9	383
387	High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering. Journal of Materials Chemistry A, 2018, 6, 20128-20137.	5.2	22
388	Vacancy Manipulation for Thermoelectric Enhancements in GeTe Alloys. Journal of the American Chemical Society, 2018, 140, 15883-15888.	6.6	182
389	Rationalizing phonon dispersion for lattice thermal conductivity of solids. National Science Review, 2018, 5, 888-894.	4.6	129

#	Article	IF	CITATIONS
390	Thermal boundary resistance correlated with strain energy in individual Si film-wafer twist boundaries. Materials Today Physics, 2018, 6, 53-59.	2.9	27
391	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Advanced Materials, 2018, 30, e1802402.	11.1	27
392	<i>Colloquium</i> : Nonequilibrium effects in superconductors with a spin-splitting field. Reviews of Modern Physics, 2018, 90, .	16.4	127
393	High-Performance Thermoelectric Materials for Solar Energy Application. , 2018, , 3-38.		4
394	Thermoelectric properties of Ag9GaS6 with ultralow lattice thermal conductivity. Materials Today Physics, 2018, 6, 60-67.	2.9	46
395	Atomistic insights toward strengthening of GeTe phase change material by impurity doping and grain boundary engineering. Journal of Applied Physics, 2018, 124, .	1.1	3
396	Promise and Challenge of Phosphorus in Science, Technology, and Application. Advanced Functional Materials, 2018, 28, 1803471.	7.8	65
397	Charge and phonon transport in PbTe-based thermoelectric materials. Npj Quantum Materials, 2018, 3, .	1.8	227
398	Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances, 2018, 4, eaau5849.	4.7	208
399	High Thermoelectric Performance in Sintered Octahedron-Shaped Sn(Cdln) _{<i>x</i>} Te _{1+2<i>x</i>} Microcrystals. ACS Applied Materials & Interfaces, 2018, 10, 38944-38952.	4.0	31
400	High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases. Journal of the American Chemical Society, 2018, 140, 16190-16197.	6.6	108
401	Thermoelectric Transport Properties of Cd _{<i>x</i>} Bi _{<i>y</i>} Ge _{1–<i>x</i>–<i>y</i>} Te Alloys. ACS Applied Materials & Interfaces, 2018, 10, 39904-39911.	4.0	41
402	Entropy Engineering of SnTe: Multiâ€Principalâ€Element Alloying Leading to Ultralow Lattice Thermal Conductivity and Stateâ€ofâ€theâ€Art Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1802116.	10.2	157
403	Achieving high thermoelectric performance with Pb and Zn codoped polycrystalline SnSe via phase separation and nanostructuring strategies. Nano Energy, 2018, 53, 683-689.	8.2	98
404	Three-dimensional X-ray diffraction imaging of dislocations in polycrystalline metals under tensile loading. Nature Communications, 2018, 9, 3776.	5.8	35
405	Arrays of Planar Vacancies in Superior Thermoelectric Ge _{1â^'} <i>_x</i> Bi <i>_{a^'}<i>_y</i>Cd<i>_x</i>Bi<i><sub with Band Convergence. Advanced Energy Materials, 2018, 8, 1801837.</sub </i></i>	>y∢ lan ap><	/i> ∏@ 1
406	Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu 2 Te. Chinese Physics B, 2018, 27, 047204.	0.7	5
407	Design of Highly Efficient Thermoelectric Materials: Tailoring Reciprocalâ€Space Properties by Realâ€Space Modification. Advanced Materials, 2018, 30, e1802000.	11.1	51

#	Article	IF	CITATIONS
408	Enormous suppression of phonon transport in silicon nanowires with five-fold twin boundary. Journal of Materials Chemistry A, 2018, 6, 18533-18542.	5.2	16
409	Effects of chalcogen composition on the thermoelectric properties in Cu ₂ ZnSn(S _{1â^'} <i> _x </i> Se <i> _x </i>) ₄ single crystals. Japanese Journal of Applied Physics, 2018, 57, 101201.	0.8	7
410	Constructing Highly Porous Thermoelectric Monoliths with High-Performance and Improved Portability from Solution-Synthesized Shape-Controlled Nanocrystals. Nano Letters, 2018, 18, 4034-4039.	4.5	38
411	Determining ideal strength and failure mechanism of thermoelectric CuInTe2 through quantum mechanics. Journal of Materials Chemistry A, 2018, 6, 11743-11750.	5.2	10
412	Engineering electrical transport in α-MgAgSb to realize high performances near room temperature. Physical Chemistry Chemical Physics, 2018, 20, 16729-16735.	1.3	15
413	Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields. Frontiers of Physics, 2018, 13, 1.	2.4	6
414	Understanding Chemical Bonding in Alloys and the Representation in Atomistic Simulations. Journal of Physical Chemistry C, 2018, 122, 14996-15009.	1.5	30
415	Thermal conductivity in Bi _{0.5} Sb _{1.5} Te _{3+ <i>x</i>} and the role of dense dislocation arrays at grain boundaries. Science Advances, 2018, 4, eaar5606.	4.7	143
416	Extraordinary Thermoelectric Performance Realized in Hierarchically Structured AgSbSe ₂ with Ultralow Thermal Conductivity. ACS Applied Materials & Interfaces, 2018, 10, 18685-18692.	4.0	49
417	Tunable Optimum Temperature Range of High-Performance Zone Melted Bismuth-Telluride-Based Solid Solutions. Crystal Growth and Design, 2018, 18, 4646-4652.	1.4	29
418	Manipulation of Band Structure and Interstitial Defects for Improving Thermoelectric SnTe. Advanced Functional Materials, 2018, 28, 1803586.	7.8	183
419	High Thermoelectric Performance in Crystallographically Textured n-Type Bi ₂ Te _{3–<i>x</i>} Se _{<i>x</i>} Produced from Asymmetric Colloidal Nanocrystals. ACS Nano, 2018, 12, 7174-7184.	7.3	114
420	Introduction of porous structure: A feasible and promising method for improving thermoelectric performance of Bi2Te3 based bulks. Journal of Materials Science and Technology, 2018, 34, 2458-2463.	5.6	24
421	6.14 Organic Thermoelectric Composites Materials. , 2018, , 408-430.		8
422	Recent advances in inorganic material thermoelectrics. Inorganic Chemistry Frontiers, 2018, 5, 2380-2398.	3.0	63
423	High thermoelectric performance of melt-spun CuxBi0.5Sb1.5Te3 by synergetic effect of carrier tuning and phonon engineering. Acta Materialia, 2018, 158, 289-296.	3.8	37
424	Analysis of mechanical, thermodynamic, and thermoelectric properties of ferromagnetic SrFe4As12 skutterudite. Journal of Solid State Chemistry, 2018, 266, 274-278.	1.4	10
425	An <i>in situ</i> eutectic remelting and oxide replacement reaction for superior thermoelectric performance of InSb. Journal of Materials Chemistry A, 2018, 6, 17049-17056.	5.2	20

#	Article	IF	CITATIONS
426	Optimizing the thermoelectric transport properties of BiCuSeO via doping with the rare-earth variable-valence element Yb. Journal of Materials Chemistry C, 2018, 6, 8479-8487.	2.7	26
427	Low-cost and environmentally benign selenides as promising thermoelectric materials. Journal of Materiomics, 2018, 4, 304-320.	2.8	73
428	Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano Energy, 2018, 52, 246-255.	8.2	188
429	Compressive creep behavior of hot-pressed GeTe based TAGS-85 and effect of creep on thermoelectric properties. Acta Materialia, 2018, 158, 239-246.	3.8	16
430	Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nature Communications, 2018, 9, 2910.	5.8	148
431	Enhanced Thermoelectric Properties of Polycrystalline SnSe via LaCl3 Doping. Materials, 2018, 11, 203.	1.3	30
432	Carbon-Based Materials for Thermoelectrics. Advances in Condensed Matter Physics, 2018, 2018, 1-29.	0.4	35
433	MnS Incorporation into Higher Manganese Silicide Yields a Green Thermoelectric Composite with High Performance/Price Ratio. Advanced Science, 2018, 5, 1800626.	5.6	16
434	Melt entrifuged (Bi,Sb) ₂ Te ₃ : Engineering Microstructure toward High Thermoelectric Efficiency. Advanced Materials, 2018, 30, e1802016.	11.1	133
435	High thermoelectric performance in Cu-doped Bi2Te3 with carrier-type transition. Acta Materialia, 2018, 157, 33-41.	3.8	70
436	Achieving high thermoelectric performance of Ni/Cu modified Bi0.5Sb1.5Te3 composites by a facile electroless plating. Materials Today Energy, 2018, 9, 383-390.	2.5	22
437	Advances in Thermoelectric Mg ₃ Sb ₂ and Its Derivatives. Small Methods, 2018, 2, 1800022.	4.6	66
438	Effect of Nb doping on microstructures and thermoelectric properties of SrTiO ₃ ceramics. Chinese Physics B, 2018, 27, 047205.	0.7	6
439	Synergistic Compositional–Mechanical–Thermal Effects Leading to a Record High <i>zT</i> in nâ€Type V ₂ VI ₃ Alloys Through Progressive Hot Deformation. Advanced Functional Materials, 2018, 28, 1803617.	7.8	73
440	Manipulation of Solubility and Interstitial Defects for Improving Thermoelectric SnTe Alloys. ACS Energy Letters, 2018, 3, 1969-1974.	8.8	69
441	Physical Metallurgy Inspired Nanoâ€Features for Enhancement of Thermoelectric Conversion Efficiency. Advanced Theory and Simulations, 2018, 1, 1800072.	1.3	6
442	Enhanced thermoelectric performance of Bi 0.4 Sb 1.6 Te 3 based composites with CuInTe 2 inclusions. Journal of Alloys and Compounds, 2018, 758, 72-77.	2.8	29
443	Linking thermoelectric generation in polycrystalline semiconductors to grain boundary effects sets a platform for novel Seebeck effect-based sensors. Journal of Materials Chemistry A, 2018, 6, 10370-10378.	5.2	27

#	Article	IF	CITATIONS
444	Multinary diamond-like chalcogenides for promising thermoelectric application. Chinese Physics B, 2018, 27, 047206.	0.7	15
445	Fundamental and progress of Bi ₂ Te ₃ -based thermoelectric materials. Chinese Physics B, 2018, 27, 048403.	0.7	114
446	Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self ompensation and Mn Alloying. Small, 2018, 14, e1802615.	5.2	132
447	Highly fluidic liquid at homointerface generates grain-boundary dislocation arrays for high-performance bulk thermoelectrics. Acta Materialia, 2018, 159, 266-275.	3.8	19
448	Transition from n- to p-type conduction concomitant with enhancement of figure-of-merit in Pb doped bismuth telluride: Material to device development. Materials and Design, 2018, 159, 127-137.	3.3	39
449	Porosity induced thermoelectric performance optimization for antimony telluride. Ceramics International, 2018, 44, 21421-21427.	2.3	13
450	Improved thermoelectric performance of p-type Bi0.5Sb1.5Te3 through Mn doping at elevated temperature. Materials Today Physics, 2018, 6, 31-37.	2.9	73
451	Low lattice thermal conductivity in arc-melted GeTe with Ge-deficient crystal structure. Applied Physics Letters, 2018, 113, .	1.5	14
452	High power output from body heat harvesting based on flexible thermoelectric system with low thermal contact resistance. Journal Physics D: Applied Physics, 2018, 51, 365501.	1.3	44
453	Strain-induced suppression of the miscibility gap in nanostructured Mg ₂ Si–Mg ₂ Sn solid solutions. Journal of Materials Chemistry A, 2018, 6, 17559-17570.	5.2	30
454	Largeâ€Scale, Solutionâ€Synthesized Nanostructured Composites for Thermoelectric Applications. Advanced Materials, 2018, 30, e1801904.	11.1	16
455	Simultaneously enhanced power factor and phonon scattering in Bi0.4Sb1.6Te3 alloy doped with germanium. Scripta Materialia, 2018, 154, 118-122.	2.6	11
456	Enhanced Thermoelectric Performance in n-Type Bi ₂ Te ₃ -Based Alloys via Suppressing Intrinsic Excitation. ACS Applied Materials & Interfaces, 2018, 10, 21372-21380.	4.0	76
457	Texture-induced reduction in electrical resistivity of p-type (Bi,Sb)2Te3 by a hot extrusion. Journal of Alloys and Compounds, 2018, 764, 261-266.	2.8	12
458	Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency. Applied Energy, 2018, 226, 381-388.	5.1	44
459	Nano-scale dislocations induced by self-vacancy engineering yielding extraordinary n-type thermoelectric Pb0.96-yInySe. Nano Energy, 2018, 50, 785-793.	8.2	51
460	Double thermoelectric power factor of a 2D electron system. Nature Communications, 2018, 9, 2224.	5.8	48
461	Solution-processed n-type Bi2Te3â^'xSex nanocomposites with enhanced thermoelectric performance via liquid-phase sintering. Science China Materials, 2019, 62, 389-398.	3.5	25

	CITATION RE	PORT	
#	Article	IF	Citations
462	Promising cubic MnGeTe2 thermoelectrics. Science China Materials, 2019, 62, 379-388.	3.5	16
463	Mechanical and transport properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si44.svg"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Bi</mml:mtext></mml:mrow><mml:mro single ouin. Computational Materials Science. 2019. 170. 109182.</mml:mro </mml:msub></mml:mrow></mml:math 	w ^{1.4} mml:r	mi∛x
464	High Porosity in Nanostructured <i>n</i> -Type Bi ₂ Te ₃ Obtaining Ultralow Lattice Thermal Conductivity. ACS Applied Materials & Interfaces, 2019, 11, 31237-31244.	4.0	91
465	Effects of metal silicide inclusion interface and shape on thermal transport in silicon nanocomposites. Journal of Applied Physics, 2019, 126, .	1.1	4
466	Energy harvesting using thermoelectricity for IoT (Internet of Things) and E-skin sensors. JPhys Energy, 2019, 1, 042001.	2.3	40
467	Scattering of phonons by quantum-dislocation segments in an elastic continuum. Physical Review B, 2019, 99, .	1.1	19
468	Rapid synthesis of p-type Bi0.5Sb1.5Te3 with excellent thermoelectric properties by a modified robust non-vacuum melting process. Materials Letters, 2019, 253, 434-437.	1.3	1
469	Carbon nanomaterials for thermoelectric applications. , 2019, , 121-137.		0
470	Improved Thermoelectric Properties of Re-Substituted Higher Manganese Silicides by Inducing Phonon Scattering and an Energy-Filtering Effect at Grain Boundary Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 31169-31175.	4.0	34
471	Synergistically Optimized Thermoelectric Performance in Bi _{0.48} Sb _{1.52} Te ₃ by Hot Deformation and Cu Doping. ACS Applied Energy Materials, 2019, 2, 6714-6719.	2.5	37
472	3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance. Energy and Environmental Science, 2019, 12, 3106-3117.	15.6	125
473	Enhanced thermoelectric properties in vacuum-annealed Bi0.5Sb1.5Te3 thin films fabricated using pulsed laser deposition. Journal of Applied Physics, 2019, 125, 215308.	1.1	9
474	Effect of Cu electroless plating on thermoelectric properties of n-type Bi2Te2.4Se0.6 alloy. Journal of Materials Science: Materials in Electronics, 2019, 30, 15018-15023.	1.1	1
475	Revelation of Inherently High Mobility Enables Mg ₃ Sb ₂ as a Sustainable Alternative to nâ€Bi ₂ Te ₃ Thermoelectrics. Advanced Science, 2019, 6, 1802286.	5.6	71
476	Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te–Sb ₂ Se ₃ : Synergistic Effect of Doping and Defect Engineering. ACS Applied Materials & Interfaces, 2019, 11, 27788-27797.	4.0	46
477	Magnetic Fieldâ€Enhanced Thermoelectric Performance in Dirac Semimetal Cd ₃ As ₂ Crystals with Different Carrier Concentrations. Advanced Functional Materials, 2019, 29, 1902437.	7.8	33
478	Electronic and thermoelectric transport properties of topological insulator LiAuS. AIP Conference Proceedings, 2019, , .	0.3	2
479	Promising materials for thermoelectric applications. Journal of Alloys and Compounds, 2019, 806, 471-486.	2.8	76

#	Article	IF	CITATIONS
480	Reducing Lattice Thermal Conductivity of MnTe by Se Alloying toward High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2019, 11, 28221-28227.	4.0	29
481	Thermoelectric Thin Films. , 2019, , .		10
482	The p–n transformation and thermoelectric property optimization of Cu _{1+x} FeSe ₂ (<i>x</i> = 0–0.05) alloys. Journal of Materials Chemistry C, 2019, 7, 9641-9647.	2.7	6
483	Thermoelectric power generation: from new materials to devices. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180450.	1.6	116
484	Effects of Ge addition on thermoelectric properties in a nanocomposite of MnSi and SiGe thin films. Materialia, 2019, 7, 100374.	1.3	4
485	Powerful Thermogalvanic Cells Based on a Reversible Hydrogen Electrode and Gas-Containing Electrolytes. ACS Energy Letters, 2019, 4, 1810-1815.	8.8	28
486	Optimal band gap for improved thermoelectric performance of two-dimensional Dirac materials. Journal of Applied Physics, 2019, 126, .	1.1	18
487	Multiscale Defects as Strong Phonon Scatters to Enhance Thermoelectric Performance in Mg ₂ Sn _{1–} <i>_x</i> Sb <i>_x</i> Solid Solutions. Small Methods, 2019, 3, 1900412.	4.6	16
488	Electric Field Thermopower Modulation of 2D Electron Systems. , 2019, , 97-120.		2
489	Possible Rashba band splitting and thermoelectric properties in Cul-doped Bi2Te2.7Se0.3 bulk crystals. Journal of Alloys and Compounds, 2019, 806, 636-642.	2.8	18
490	Capturing anharmonic and anisotropic natures in the thermotics and mechanics of Bi ₂ Te ₃ thermoelectric material through an accurate and efficient potential. Journal Physics D: Applied Physics, 2019, 52, 425303.	1.3	10
491	Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals. ACS Nano, 2019, 13, 8347-8355.	7.3	54
492	Lone-Pair Electron-Driven Thermoelectrics at Room Temperature. Journal of Physical Chemistry Letters, 2019, 10, 4117-4122.	2.1	12
493	Extraordinary Role of Bi for Improving Thermoelectrics in Low-Solubility SnTe–CdTe Alloys. ACS Applied Materials & Interfaces, 2019, 11, 26093-26099.	4.0	35
494	Extraordinary nâ€Type Mg ₃ SbBi Thermoelectrics Enabled by Yttrium Doping. Advanced Materials, 2019, 31, e1903387.	11.1	120
495	Enhancing Thermoelectric Performance of p-Type PbSe through Suppressing Electronic Thermal Transports. ACS Applied Energy Materials, 2019, 2, 8236-8243.	2.5	30
496	Texture Development and Grain Alignment of Hotâ€Pressed Tetradymite Bi _{0.48} Sb _{1.52} Te ₃ via Powder Molding. Energy Technology, 2019, 7, 1900814.	1.8	11
497	Solute manipulation enabled band and defect engineering for thermoelectric enhancements of SnTe. InformaÄnÃ-Materiály, 2019, 1, 571-581.	8.5	36

	Сітатіо	n Report	
#	Article	IF	Citations
498	Phase stability and thermoelectric properties of semiconductor-like tetragonal FeAl ₂ . Science and Technology of Advanced Materials, 2019, 20, 937-948.	2.8	8
499	Efficient Sc-Doped Mg _{3.05–<i>x</i>} Sc <i>_x</i> SbBi Thermoelectrics Near Room Temperature. Chemistry of Materials, 2019, 31, 8987-8994.	۱ 3.2	55
500	Understanding the Structure and Properties of Sesqui halcogenides (i.e.,) Tj ETQq0 0 0 rgBT /Overlock 1	0 Tf 50 667 Td 11.1	(V ₂₉₈
501	Strategies for improving the sustainability of structural metals. Nature, 2019, 575, 64-74.	13.7	301
502	Simultaneous Enhancement of the Thermoelectric and Mechanical Performance in One-Step Sintered n-Type Bi ₂ Te ₃ -Based Alloys via a Facile MgB ₂ Doping Strategy. ACS Applied Materials & Interfaces, 2019, 11, 45746-45754.	4.0	58
503	Liquidâ€Phase Hot Deformation to Enhance Thermoelectric Performance of nâ€type Bismuthâ€Tellurideâ€Based Solid Solutions. Advanced Science, 2019, 6, 1901702.	5.6	71
504	Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device. Energy, 2019, 188, 116019.	4.5	55
505	Laser scattering, transmittance and low thermal expansion behaviors in Y2 â^' x (ZnLi) _x Mo ₃ O ₁₂ by forming regular grains*. Chinese Physics B, 2019, 28, 096501.	0.7	3
506	Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy and Environmental Science, 2019, 12, 2983-2990.	15.6	188
507	Layered oxygen-containing thermoelectric materials: Mechanisms, strategies, and beyond. Materials Today, 2019, 29, 68-85.	8.3	66
508	Thermoelectric phase diagram of the SrTiO3-LaTiO3 solid-solution system through a metal to Mott insulator transition. Journal of Applied Physics, 2019, 126, .	1.1	8
509	TiO2–SrTiO3 Biphase Nanoceramics as Advanced Thermoelectric Materials. Materials, 2019, 12, 2895.	1.3	11
510	Superior Thermoelectric Performance of Ordered Double Transition Metal MXenes: Cr ₂ TiC ₂ T ₂ (T = â^OH or â^F). Journal of Physical Chemistry Letters, 2019, 10, 5721-5728.	2.1	49
511	Transport properties of p-type CaMg2Bi2 thermoelectrics. Journal of Materiomics, 2019, 5, 567-573.	2.8	21
512	Recent developments in Earth-abundant copper-sulfide thermoelectric materials. Journal of Applied Physics, 2019, 126, .	1.1	103
513	Performance Analysis of a Thermoelectric Generator with a Segmented Leg. Journal of Electronic Materials, 2019, 48, 7769-7779.	1.0	3
514	Realizing the Interface Tuned Thermoelectric Transport Performance in Bi ₂ Te ₃ -Based Hierarchical Nanostructures. Journal of Physical Chemistry C, 2019, 123, 23817-23825.	1.5	10
515	The Effect of Severe Plastic Deformation on Thermoelectric Performance of Skutterudites, Half-Heuslers and Bi-Tellurides. Materials Transactions, 2019, 60, 2071-2085.	0.4	21

#	Article	IF	CITATIONS
516	Achieving Out-of-Plane Thermoelectric Figure of Merit <i>ZT</i> = 1.44 in a p-Type Bi ₂ Te ₃ /Bi _{0.5} Sb _{1.5} Te ₃ Superlattice Film with Low Interfacial Resistance. ACS Applied Materials & Interfaces, 2019, 11, 38247-38254.	4.0	26
517	Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138350.	2.6	23
518	Evaluation of thermoelectric CdSnAs2 with intrinsically low effective mass. Journal of Alloys and Compounds, 2019, 809, 151772.	2.8	4
519	Thermal, electric and spin transport in superconductor/ferromagnetic-insulator structures. Progress in Surface Science, 2019, 94, 100540.	3.8	64
520	Strong phonon localization in PbTe with dislocations and large deviation to Matthiessen's rule. Npj Computational Materials, 2019, 5, .	3.5	29
521	Synergistic modulation of mobility and thermal conductivity in (Bi,Sb) ₂ Te ₃ towards high thermoelectric performance. Energy and Environmental Science, 2019, 12, 624-630.	15.6	120
522	Origin of high thermoelectric performance with a wide range of compositions for Bi _x Sb _{2â^x} Te ₃ single quintuple layers. Physical Chemistry Chemical Physics, 2019, 21, 1315-1323.	1.3	7
523	Cross-plane thermoelectric Seebeck coefficients in nanoscale Al2O3/ZnO superlattice films. Journal of Materials Chemistry C, 2019, 7, 1670-1680.	2.7	11
524	Synergistic Influence of Cu Intercalation on Electronic and Thermal Properties of n-Type CuxBi2Te2.7Se0.3 Polycrystalline Alloys. Journal of Electronic Materials, 2019, 48, 1951-1957.	1.0	3
525	High Thermoelectric Power Factor and Efficiency from a Highly Dispersive Band in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mi>Ba</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>BiPhysical Review Applied, 2019, 11</mml:mi></mml:math 	ni> ^{1,5} mml:r	ni>49 Au
526	Optimized orientation and enhanced thermoelectric performance in Sn _{0.97} Na _{0.03} Se with Te addition. Journal of Materials Chemistry C, 2019, 7, 2653-2658.	2.7	19
527	Thermoelectric Transport Properties of Interface-Controlled p-type Bismuth Antimony Telluride Composites by Reduced Graphene Oxide. Electronic Materials Letters, 2019, 15, 605-612.	1.0	11
528	Enhancement of thermoelectric properties over a wide temperature range by lattice disorder and chemical potential tuning in a ((CuI) _y (Bi ₂ Te ₃) _{0.95â^'x} (Bi ₂ Se ₃) ₁₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀₀	sub>x <td>o>(Bi_{2∘}</td>	o>(Bi _{2∘}
529	Enhanced thermoelectric performance of higher manganese silicides by shock-induced high-density dislocations. Journal of Materials Chemistry A, 2019, 7, 3384-3390.	5.2	26
530	Role of graphite on the thermoelectric performance of Sb2Te3/graphite nanocomposite. Journal of Applied Physics, 2019, 125, .	1.1	13
531	Thermoelectric properties of BiSbTe/graphene nanocomposites. Journal of Materials Science: Materials in Electronics, 2019, 30, 11923-11930.	1.1	17
532	Performance of a fresh-food storage box based on semiconductor refrigeration. Sustainable Cities and Society, 2019, 49, 101599.	5.1	8
533	Human Body Micro-power plant. Energy, 2019, 183, 16-24.	4.5	6

#	Article	IF	CITATIONS
534	Tin Acceptor Doping Enhanced Thermoelectric Performance of n-Type Yb Single-Filled Skutterudites via Reduced Electronic Thermal Conductivity. ACS Applied Materials & Interfaces, 2019, 11, 25133-25139.	4.0	19
535	Phonon–Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS2. ACS Applied Materials & Interfaces, 2019, 11, 25547-25555.	4.0	22
536	Silver content dependent thermal conductivity and thermoelectric properties of electrodeposited antimony telluride thin films. Scientific Reports, 2019, 9, 9242.	1.6	13
537	The effect of Ni/Sn doping on the thermoelectric properties of BiSbTe polycrystalline bulks. Journal of Solid State Chemistry, 2019, 277, 175-181.	1.4	17
538	Precision Interface Engineering of an Atomic Layer in Bulk Bi ₂ Te ₃ Alloys for High Thermoelectric Performance. ACS Nano, 2019, 13, 7146-7154.	7.3	66
539	Strategies and challenges of high-pressure methods applied to thermoelectric materials. Journal of Applied Physics, 2019, 125, .	1.1	46
540	Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics. Materials Today Physics, 2019, 9, 100096.	2.9	74
541	Bi ₂ Te ₃ single crystals with high room-temperature thermoelectric performance enhanced by manipulating point defects based on first-principles calculation. RSC Advances, 2019, 9, 14422-14431.	1.7	28
542	High-performance YbAl3/Bi0.5Sb1.5Te3 artificially tilted multilayer thermoelectric devices via material genome engineering method. Journal of Power Sources, 2019, 430, 193-200.	4.0	12
543	Reduction of thermal conductivity in Al2O3 dispersed p-type bismuth antimony telluride composites. Materials Chemistry and Physics, 2019, 233, 9-15.	2.0	10
544	Atomic Layer Deposition of Inorganic Thin Films on 3D Polymer Nanonetworks. Applied Sciences (Switzerland), 2019, 9, 1990.	1.3	28
545	Novel n-type thermoelectric material of ZnIn2Se4. Journal of Alloys and Compounds, 2019, 797, 940-944.	2.8	22
546	New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more. Journal of Applied Physics, 2019, 125, .	1.1	50
547	N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications. Materials, 2019, 12, 1529.	1.3	35
548	lon Beam Induced Artifacts in Lead-Based Chalcogenides. Microscopy and Microanalysis, 2019, 25, 831-839.	0.2	6
549	Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. Journal of Materials Chemistry C, 2019, 7, 6836-6859.	2.7	58
550	Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi ₂ Te ₃ Alloying. ACS Applied Materials & Interfaces, 2019, 11, 20064-20072.	4.0	57
551	Enhanced thermoelectric transport properties of n-type InSe due to the emergence of the flat band by Si doping. Inorganic Chemistry Frontiers, 2019, 6, 1475-1481.	3.0	39

#	Article	IF	CITATIONS
552	Formation of a partially ordered CuPt-type structure and twinning in Zn-doped SnTe-based thermoelectric materials. Materials Letters, 2019, 249, 189-192.	1.3	6
553	Present and future thermoelectric materials toward wearable energy harvesting. Applied Materials Today, 2019, 15, 543-557.	2.3	119
554	Thermoelectric polymer composite yarns and an energy harvesting wearable textile. Smart Materials and Structures, 2019, 28, 095006.	1.8	21
555	Characterization of commercial thermoelectric organic composite thin films. Journal of Materials Science, 2019, 54, 9565-9572.	1.7	6
556	Finite Element Analysis of the 3ï‰ Method for Characterising High Thermal Conductivity Ultra-Thin Film/Substrate System. Coatings, 2019, 9, 87.	1.2	3
557	Unraveling the dislocation core structure at a van der Waals gap in bismuth telluride. Nature Communications, 2019, 10, 1820.	5.8	29
558	Fabrication and Thermoelectric Properties of Single-Crystal Argyrodite Ag ₈ SnSe ₆ . Chemistry of Materials, 2019, 31, 2603-2610.	3.2	35
559	Thermoelectric (Bi,Sb)2Te3–Ge0.5Mn0.5Te composites with excellent mechanical properties. Journal of Materials Chemistry A, 2019, 7, 9241-9246.	5.2	37
560	Potential-current co-adjusted pulse electrodeposition for highly (110)-oriented Bi2Te3-Se films. Journal of Alloys and Compounds, 2019, 787, 767-771.	2.8	13
561	Structurally nanocrystalline electrically monocrystalline Sb2Te3 with high thermoelectric performance. Scripta Materialia, 2019, 166, 81-86.	2.6	9
562	Electronic, and thermoelectric properties of half-heusler compounds MCoSb (M = Ti, Zr, Hf): a first principles study. Materials Research Express, 2019, 6, 066307.	0.8	25
563	Thermoelectric properties of p-type MnSe. Journal of Alloys and Compounds, 2019, 789, 953-959.	2.8	14
564	Large figure of merit <i>ZT</i> = 1.88 at 873 K achieved with nanostructured Si _{0.55} Ge _{0.35} (P _{0.10} Fe _{0.01}). Applied Physics Express, 2019, 12, 045507.	1.1	21
565	Dramatically reduced lattice thermal conductivity of Mg2Si thermoelectric material from nanotwinning. Acta Materialia, 2019, 169, 9-14.	3.8	30
566	Superior soft magnetic properties and mechanical strength in nanocomposites employing a double-percolating microstructure. Journal of Alloys and Compounds, 2019, 791, 1138-1145.	2.8	4
567	First-principles assessment of thermoelectric properties of CuFeS2. Journal of Applied Physics, 2019, 125, .	1.1	22
568	Enhancing Thermoelectric Properties of InTe Nanoprecipitate-Embedded Sn _{1–<i>x</i>} In _{<i>x</i>} Te Microcrystals through Anharmonicity and Strain Engineering. ACS Applied Energy Materials, 2019, 2, 2965-2971.	2.5	43
569	Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy and Environmental Science, 2019, 12, 1396-1403.	15.6	233

#	Article	IF	CITATIONS
570	Correlation between thermoelectric transport properties and crystal structure in two-dimensional CrSiTe3. Journal of Alloys and Compounds, 2019, 790, 93-98.	2.8	3
571	Lattice Strain Advances Thermoelectrics. Joule, 2019, 3, 1276-1288.	11.7	333
573	High thermoelectric performance from high carrier mobility and reduced lattice thermal conductivity in Ba, Yb double-filled Skutterudites. Materials Today Physics, 2019, 8, 128-137.	2.9	40
574	Thermoelectric Cu-doped (Bi,Sb)2Te3: Performance enhancement and stability against high electric current pulse. Nano Energy, 2019, 60, 857-865.	8.2	48
575	Thermoelectric energy conversion and topological materials based on heavy metal chalcogenides. Journal of Solid State Chemistry, 2019, 275, 103-123.	1.4	33
576	Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. Materials Today Physics, 2019, 9, 100091.	2.9	45
577	From thermoelectricity to phonoelectricity. Applied Physics Reviews, 2019, 6, 021305.	5.5	13
578	Rare earth ytterbium enhanced thermoelectric properties of p-type Bi0.5Sb1.5Te3. Applied Physics Letters, 2019, 114, .	1.5	15
579	Beneficial Influence of Coâ€Doping on Thermoelectric Efficiency with Respect to Electronic and Thermal Transport Properties. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900039.	0.8	2
580	Dislocation Evolution and Migration at Grain Boundaries in Thermoelectric SnTe. ACS Applied Energy Materials, 2019, 2, 2392-2397.	2.5	27
581	The Thermoelectric Properties of Bismuth Telluride. Advanced Electronic Materials, 2019, 5, 1800904.	2.6	446
582	Chemically synthesized Cu2Te incorporated Bi-Sb-Te p-type thermoelectric materials for low temperature energy harvesting. Scripta Materialia, 2019, 165, 78-83.	2.6	19
583	Design, Performance, and Application of Thermoelectric Nanogenerators. Small, 2019, 15, e1805241.	5.2	74
584	Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy, 2019, 59, 311-320.	8.2	59
585	Highâ€Performance Solutionâ€Processable Flexible SnSe Nanosheet Films for Lower Grade Waste Heat Recovery. Advanced Electronic Materials, 2019, 5, 1800774.	2.6	32
586	Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance. Annalen Der Physik, 2019, 531, 1800437.	0.9	83
587	Designing high-performance thermoelectrics in two-dimensional tetradymites. Nano Energy, 2019, 58, 743-749.	8.2	50
588	Electron Sandwich Doubles the Thermoelectric Power Factor of SrTiO ₃ . Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800832.	0.8	4

#	Article	IF	CITATIONS
589	Effects of the cross-sectional area ratios and contact resistance on the performance of a cascaded thermoelectric generator. International Journal of Energy Research, 2019, 43, 2172-2187.	2.2	19
590	Growth of CuSbS ₂ Single Crystal as an Environmentally Friendly Thermoelectric Material. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800861.	0.8	10
591	Kondo-like phonon scattering in thermoelectric clathrates. Nature Communications, 2019, 10, 887.	5.8	35
592	Electron Monte Carlo simulations of nanoporous Si thin films—The influence of pore-edge charges. Journal of Applied Physics, 2019, 125, .	1.1	4
593	Exceptional thermoelectric performance in Mg ₃ Sb _{0.6} Bi _{1.4} for low-grade waste heat recovery. Energy and Environmental Science, 2019, 12, 965-971.	15.6	177
594	Nanostructuring and Creation of Nanocomposites as a Promising Way to Increase Thermoelectric Efficiency. Nanotechnologies in Russia, 2019, 14, 334-345.	0.7	4
595	Simultaneous Enhancement of Thermopower and Electrical Conductivity through Isovalent Substitution of Cerium in Bismuth Selenide Thermoelectric Materials. ACS Applied Materials & Interfaces, 2019, 11, 44026-44035.	4.0	18
596	Improvement of thermoelectric performance of Bi2Te2.7Se0.3 via grain boundary engineering with melting KOH. Functional Materials Letters, 2019, 12, 1950082.	0.7	5
597	High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy and Environmental Science, 2019, 12, 3390-3399.	15.6	135
598	New insights into the role of dislocation engineering in N-type filled skutterudite CoSb ₃ . Journal of Materials Chemistry C, 2019, 7, 13622-13631.	2.7	25
599	Recent advances of n-type low-cost PbSe-based thermoelectric materials. Materials Today Advances, 2019, 4, 100029.	2.5	9
600	Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors. Materials Today Physics, 2019, 11, 100159.	2.9	18
601	Achieving an Ultrahigh Power Factor in Sb ₂ Te ₂ Se Monolayers via Valence Band Convergence. ACS Applied Materials & Interfaces, 2019, 11, 46688-46695.	4.0	21
602	Novel Thermoelectric Materials and Device Design Concepts. , 2019, , .		12
603	Inhomogeneity in thermoelectrics caused by Peltier effect-induced temperature gradient during spark plasma sintering. Scripta Materialia, 2019, 158, 46-49.	2.6	7
604	Clarification of electronic and thermal transport properties of Pb-, Ag-, and Cu-doped p-type Bi0.52Sb1.48Te3. Journal of Alloys and Compounds, 2019, 772, 593-602.	2.8	34
605	Ink Processing for Thermoelectric Materials and Powerâ€Generating Devices. Advanced Materials, 2019, 31, e1804930.	11.1	48
606	Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films. Materials and Design, 2019, 163, 107549.	3.3	61

ARTICLE IF CITATIONS Enhanced thermoelectric properties of Bi0.5Sb1.5Te3 composites with in-situ formed senarmontite 607 2.8 33 Sb2O3 nanophase. Journal of Alloys and Compounds, 2019, 777, 703-711. Band manipulation for high thermoelectric performance in SnTe through heavy CdSe-alloying. Journal 608 2.8 of Materiomics, 2019, 5, 111-117. Improved thermoelectric properties of n-type Bi2Te3 alloy deriving from two-phased heterostructure 609 by the reduction of Cul with Sn. Journal of Materials Science: Materials in Electronics, 2019, 30, 1.1 15 1282-1291. Mechanistic study of energy dependent scattering and hole-phonon interaction at hybrid polymer composite interfaces for optimized thermoelectric performance. Composites Part B: Engineering, 2019, 610 5.9 24 164, 54-60. Discovery of colossal Seebeck effect in metallic Cu2Se. Nature Communications, 2019, 10, 72. 611 5.8 122 Tuning phonon transport spectrum for better thermoelectric materials. Science and Technology of Advanced Materials, 2019, 20, 10-25. 2.8 Thermoelectrics: From history, a window to the future. Materials Science and Engineering Reports, 613 14.8 341 2019, 138, 100501. Strain-mediated point defects in thermoelectric p-type bismuth telluride polycrystalline. Nano Energy, 614 8.2 2019, 55, 486-493. High thermoelectric performance of Bi2-xSbxTe3 bulk alloys prepared from non-nanostructured 615 1.4 12 starting powders. Journal of Solid State Chemistry, 2019, 270, 388-397. Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. 6.6 Journal of the American Chemical Society, 2019, 141, 1141-1149. Thermoelectric properties of nano-bulk bismuth telluride prepared with spark plasma sintered 617 1.1 8 nano-plates. Current Applied Physics, 2019, 19, 97-101. Mg₃₊<i><sub></i>Sb<i>_x</i>Bi_{2â^}<i>_x</i> Family: A Promising Substitute for the Stateâ€ofâ€theâ€Art nâ€Type Thermoelectric Materials near Room 98 Temperature. Advanced Functional Materials, 2019, 29, 1807235 Effects of Addition of Si and Sb on the Microstructure and Thermoelectric Properties of GeTe. Metals 619 1.8 13 and Materials International, 2019, 25, 528-538. Oxide Reduction Process for the Synthesis of p-Type BixSb2â^'xTe3 Compounds and Related 1.0 Thermoelectric Transport Properties. Electronic Materials Letters, 2019, 15, 49-55. Effects of melting time and temperature on the microstructure and thermoelectric properties of 621 1.9 8 p-type Bi0.3Sb1.7Te3 alloy. Journal of Physics and Chemistry of Solids, 2019, 124, 281-288. zT = 1.1 in CuInTe2 Solid Solutions Enabled by Rational Defect Engineering. ACS Applied Energy Materials, 2020, 3, 2039-2048. Enhancement of the Thermoelectric Properties of BiCuSeO via In Doping and Powder Size Controlling. 623 1.0 2 Journal of Electronic Materials, 2020, 49, 611-620. Radiative sky cooling-assisted thermoelectric cooling system for building applications. Energy, 2020, 624 4.5 190, 116322.

#	Article	IF	CITATIONS
625	Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Advanced Functional Materials, 2020, 30, 1904862.	7.8	148
626	Thermoelectric generators for wearable body heat harvesting: Material and device concurrent optimization. Nano Energy, 2020, 67, 104265.	8.2	65
627	Enhanced thermoelectric and mechanical properties in hierarchical tubular porous cuprous selenide. Scripta Materialia, 2020, 176, 104-107.	2.6	22
628	High temperature creepâ€mediated functionality in polycrystalline barium titanate. Journal of the American Ceramic Society, 2020, 103, 1891-1902.	1.9	26
629	Lattice distortion and anisotropic thermoelectric properties in hot-deformed Cul-doped Bi2Te2·7Se0.3. Journal of Alloys and Compounds, 2020, 815, 152649.	2.8	19
630	Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Progress in Materials Science, 2020, 108, 100616.	16.0	355
631	Characterization of multiple-filled skutterudites with high thermoelectric performance. Journal of Alloys and Compounds, 2020, 814, 152272.	2.8	43
632	Sn Doped FeNbSb Half-Heusler Compounds for Tuning Thermoelectric Performance. Journal of Electronic Materials, 2020, 49, 2862-2871.	1.0	8
633	First-principles prediction of large thermoelectric efficiency in superionic Li ₂ SnX ₃ (X = S, Se). Physical Chemistry Chemical Physics, 2020, 22, 878-889.	1.3	9
634	Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials. Energy and Environmental Science, 2020, 13, 579-591.	15.6	101
635	Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys. Energy and Environmental Science, 2020, 13, 535-544.	15.6	109
636	Role of excess tellurium on the electrical and thermal properties in Te-doped paracostibite. Journal of Materials Chemistry C, 2020, 8, 1811-1818.	2.7	10
637	Origin of inhomogeneity in spark plasma sintered bismuth antimony telluride thermoelectric nanocomposites. Nano Research, 2020, 13, 1339-1346.	5.8	4
638	Thermoelectric properties of Sn doped GeTe thin films. Applied Surface Science, 2020, 507, 145025.	3.1	21
639	Ternary thermoelectric AB2C2 Zintls. Journal of Alloys and Compounds, 2020, 821, 153497.	2.8	19
640	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Materials Today, 2020, 32, 260-274.	8.3	73
641	Band Structure Modification and Mass Fluctuation Effects of Isoelectronic Germanium-Doping on Thermoelectric Properties of ZrNiSn. ACS Applied Energy Materials, 2020, 3, 1349-1357.	2.5	27
642	Improved Thermoelectric Performance through Double Substitution in Shandite-Type Mixed-Metal Sulfides. ACS Applied Energy Materials, 2020, 3, 2168-2174.	2.5	17

#	Article	IF	CITATIONS
643	Tuning the Thermoelectric Material's Parameter: A Comprehensive Review. Journal of Nanoscience and Nanotechnology, 2020, 20, 3636-3646.	0.9	24
644	Artificial Perspiration Membrane by Programmed Deformation of Thermoresponsive Hydrogels. Advanced Materials, 2020, 32, e1905901.	11.1	17
645	Long-Term Stability of the Colossal Seebeck Effect in Metallic Cu2Se. Journal of Electronic Materials, 2020, 49, 2855-2861.	1.0	11
646	Realising the potential of thermoelectric technology: a Roadmap. Journal of Materials Chemistry C, 2020, 8, 441-463.	2.7	186
647	Enhanced Thermoelectric Performance of Bi ₂ Te _{2.7} Se _{0.3} /Bi ₂ S ₃ Synthesized by Anion Exchange Method. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900679.	1.2	8
648	Effect of abnormal grain growth on thermoelectric properties of hot-pressed Bi0.5Sb1.5Te3 alloys. Journal of Alloys and Compounds, 2020, 817, 153284.	2.8	14
649	Achieving a High Average <i>zT</i> Value in Sb ₂ Te ₃ -Based Segmented Thermoelectric Materials. ACS Applied Materials & Interfaces, 2020, 12, 945-952.	4.0	26
650	A review on recent developments of thermoelectric materials for room-temperature applications. Sustainable Energy Technologies and Assessments, 2020, 37, 100604.	1.7	71
651	An approach of enhancing thermoelectric performance for p-type PbS: Decreasing electronic thermal conductivity. Journal of Alloys and Compounds, 2020, 820, 153453.	2.8	22
652	High thermoelectric figure of merit ZT > 1 in SnS polycrystals. Journal of Materiomics, 2020, 6, 77-85.	2.8	46
653	Poly(3,4â€Ethylene Dioxythiophene)/Poly(Styrene Sulfonate) Electrodes in Electrochemical Cells for Harvesting Waste Heat. Energy Technology, 2020, 8, 1900998.	1.8	8
654	Band inversion induced multiple electronic valleys for high thermoelectric performance of SnTe with strong lattice softening. Nano Energy, 2020, 69, 104395.	8.2	80
655	Preparation and Thermoelectric Performance of BaTiO3/Bi0.5Sb1.5Te3 Composite Materials. Journal of Electronic Materials, 2020, 49, 2794-2801.	1.0	4
656	Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, 2020, 258, 114069.	5.1	356
657	High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule, 2020, 4, 159-175.	11.7	103
658	Improvement of thermoelectric and mechanical properties of BiCuSeO-based materials by SiC nanodispersion. Journal of Alloys and Compounds, 2020, 818, 152899.	2.8	17
659	Study on high temperature deformation behavior of WC-10Âwt %Ni3Al cemented carbide. Journal of Alloys and Compounds, 2020, 820, 153156.	2.8	14
660	Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials. Nano Energy, 2020, 68, 104347.	8.2	77

#	Article	IF	Citations
661	Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6, 1.	1.3	24
662	Artificial porous structure: An effective method to improve thermoelectric performance of Bi2Te3 based alloys. Journal of Solid State Chemistry, 2020, 282, 121060.	1.4	17
663	Success and breakdown of the T-matrix approximation for phonon-disorder scattering. Physical Review B, 2020, 102, .	1.1	8
664	Localized dimers drive strong anharmonicity and low lattice thermal conductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Zn</mml:mi><mml:msub><mml:n Physical Review B, 2020, 102, .</mml:n </mml:msub></mml:mrow></mml:math 	ni> £e <td>า1:ชาร < mm<mark>l:</mark>r</td>	า 1:ชา ร < mm <mark>l:</mark> r
665	Expression of interfacial Seebeck coefficient through grain boundary engineering with multi-layer graphene nanoplatelets. Energy and Environmental Science, 2020, 13, 4114-4121.	15.6	78
666	Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review, 2020, 7, 1856-1858.	4.6	170
667	Crystalline anharmonicity and ultralow thermal conductivity in layered Bi2GeTe4 for thermoelectric applications. Applied Physics Letters, 2020, 117, .	1.5	17
668	Bismuth Telluride Thermoelectrics with 8% Module Efficiency for Waste Heat Recovery Application. IScience, 2020, 23, 101340.	1.9	53
669	Dynamic drags acting on moving defects in discrete dispersive media: From dislocation to low-angle grain boundary. Journal of the Mechanics and Physics of Solids, 2020, 145, 104166.	2.3	7
670	Near-room-temperature rhombohedral Ge1-Pb Te thermoelectrics. Materials Today Physics, 2020, 15, 100260.	2.9	20
671	In situ crystal-amorphous compositing inducing ultrahigh thermoelectric performance of p-type Bi0.5Sb1.5Te3 hybrid thin films. Nano Energy, 2020, 78, 105379.	8.2	23
672	Achieving High Thermoelectric Performance in p-Type BST/PbSe Nanocomposites through the Scattering Engineering Strategy. ACS Applied Materials & Interfaces, 2020, 12, 46181-46189.	4.0	20
673	Analyzing thermoelectric transport in n-type Mg2Si0.4Sn0.6 and correlation with microstructural effects: An insight on the role of Mg. Acta Materialia, 2020, 199, 85-95.	3.8	23
674	Dynamical variation of carrier concentration and colossal Seebeck effect in Cu2S low-temperature phase. Journal of Alloys and Compounds, 2020, 826, 154155.	2.8	11
675	Influence of dislocations on thermal conductivity of strontium titanate. Applied Physics Letters, 2020, 117, .	1.5	32
676	Size-Controlled Au–Cu ₂ Se Core–Shell Nanoparticles and Their Thermoelectric Properties. ACS Applied Materials & Interfaces, 2020, 12, 36589-36599.	4.0	9
677	Enhanced Thermoelectric Properties of p-Type Bi _{0.48} Sb _{1.52} Te ₃ /Sb ₂ Te ₃ Composite. ACS Applied Materials & Interfaces, 2020, 12, 52922-52928.	4.0	18
678	Effect of ZnO and SnO2 Nanolayers at Grain Boundaries on Thermoelectric Properties of Polycrystalline Skutterudites. Nanomaterials, 2020, 10, 2270.	1.9	5

#	Article	IF	CITATIONS
679	Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides. Nature Communications, 2020, 11, 5923.	5.8	20
680	High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nature Communications, 2020, 11, 5948.	5.8	169
681	Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factors. European Physical Journal B, 2020, 93, 1.	0.6	12
682	How Severe Plastic Deformation Changes the Mechanical Properties of Thermoelectric Skutterudites and Half Heusler Alloys. Frontiers in Materials, 2020, 7, .	1.2	8
683	Origin of Low Thermal Conductivity in In4Se3. ACS Applied Energy Materials, 2020, 3, 12549-12556.	2.5	14
684	Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal. Nature Communications, 2020, 11, 6167.	5.8	43
685	Robust Metallic Nanolaminates Having Phonon-Glass Thermal Conductivity. Materials, 2020, 13, 4954.	1.3	3
686	SrTiO3-based thermoelectrics: Progress and challenges. Nano Energy, 2020, 78, 105195.	8.2	127
687	Effective phonon scattering and enhancement of thermoelectric performance in Ga-excess Bi0.4Sb1.6Te3 compounds. Current Applied Physics, 2020, 20, 1036-1040.	1.1	5
688	Role of excess Te in Bi0.5Sb1.5Te3+x(x= 0, 0.01, 0.015 and 0.020) on the optimization of thermoelectric properties. Materials Science in Semiconductor Processing, 2020, 120, 105292.	1.9	9
689	Rational structural design and manipulation advance SnSe thermoelectrics. Materials Horizons, 2020, 7, 3065-3096.	6.4	73
690	Grape juice: an effective liquid additive for significant enhancement of thermoelectric performance of Cu ₂ Se. Journal of Materials Chemistry A, 2020, 8, 16913-16919.	5.2	14
691	Routes for advancing SnTe thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 16790-16813.	5.2	87
692	Thermoelectric Generators: Alternative Power Supply for Wearable Electrocardiographic Systems. Advanced Science, 2020, 7, 2001362.	5.6	146
693	Vacancy engineering in rock-salt type (IV-VI)x(V-VI) materials for high thermoelectric performance. Nano Energy, 2020, 78, 105198.	8.2	14
694	Ternary Compounds Cu ₃ <i>R</i> Te ₃ (<i>R</i> = Y, Sm, and Dy): A Family of New Thermoelectric Materials with Trigonal Structures. ACS Applied Materials & Interfaces, 2020, 12, 40486-40494.	4.0	3
695	Enhanced thermoelectric performance of n-type Bi2Te3 alloyed with low cost and highly abundant sulfur. Materials Chemistry and Physics, 2020, 255, 123598.	2.0	23
696	Enhanced mechanical and thermoelectric properties enabled by hierarchical structure in medium-temperature Sb2Te3 based alloys. Nano Energy, 2020, 78, 105228.	8.2	26

		CITATION REPOR	Т	
#	Article	IF	Сітат	rions
697	High thermoelectric performance of two-dimensional α-GeTe bilayer. Energy, 2020, 211, 118	693. 4.5	9	
698	Scalable colloidal synthesis of Bi ₂ Te _{2.7} Se _{0.3} plate-like give access to a high-performing n-type thermoelectric material for low temperature application Nanoscale Advances, 2020, 2, 5699-5709.	e particles on. 2.2	: 13	
699	Optimized Strategies for Advancing n-Type PbTe Thermoelectrics: A Review. ACS Applied Mate Interfaces, 2020, 12, 49323-49334.	erials & 4.0) 51	
700	Thermal Conductivity Reduction by Tuning the Rattler Fraction in a p-type CeyYb1â^'yFe3CoS Double-filled Skutterudite. Journal of the Korean Physical Society, 2020, 77, 667-672.	b12 0.3	3 3	
701	Deep tuning of photo-thermoelectricity in topological surface states. Scientific Reports, 2020 16761.	, 10, 1.6	7	
702	Physical vapor deposited 2D bismuth for CMOS technology. Journal of Semiconductors, 2020 081001.	, 41, 2.0) 7	
703	Growth of Interface Region in 2D Wet Foam. Crystals, 2020, 10, 703.	1.0	0	
704	Ultraâ€High Thermoelectric Performance in Bulk BiSbTe/Amorphous Boron Composites with N Architectures. Advanced Energy Materials, 2020, 10, 2000757.	Nanoâ€Defect 10.	.2 67	
705	Growth and Properties of Dislocated Two-dimensional Layered Materials. MRS Advances, 2020 3437-3452.	0, 5, 0.5	5 3	
706	Leveraging Deep Levels in Narrow Bandgap Bi _{0.5} Sb _{1.5} Te _{3Recordâ€High <i>zT</i>_{ave} Near Room Temperature. Advanced Functional Mate 2005202.}		57	
707	From Dislocation to Nanoâ€Precipitation: Evolution to Low Thermal Conductivity and High Thermoelectric Performance in <i>n</i> ‶ype PbTe. Advanced Functional Materials, 2020, 3	0, 2005479.	36	
708	Boosted carrier mobility and enhanced thermoelectric properties of polycrystalline Na _{0.03} Sn _{0.97} Se by liquid-phase hot deformation. Materials Advand 1092-1098.	ces, 2020, 1, 2.6	9 3	
709	Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. S 2020, 370, 342-346.	cience, 6.0) 289	
710	Nanostructured monoclinic Cu ₂ Se as a near-room-temperature thermoelectric m Nanoscale, 2020, 12, 20536-20542.	naterial. 2.8	26	
711	Cu ₂ Se-Based liquid-like thermoelectric materials: looking back and stepping forv Energy and Environmental Science, 2020, 13, 3307-3329.	vard. 15.	6 106	
712	High Thermoelectric Performance and Defect Energetics of Multipocketed Full Heusler Compo Physical Review Applied, 2020, 14, .	ounds. 1.5	25	
713	Effect of plastic deformation on phonon thermal conductivity of <i>α</i> -Ag2S. Ap Physics Letters, 2020, 117, .	plied 1.5	6	
714	Bridging the Cap between Bulk Compression and Indentation Test on Room-Temperature Plas Oxides: Case Study on SrTiO3. Crystals, 2020, 10, 933.	sticity in 1.0) 19	

#	Article	IF	CITATIONS
715	Effect of Microwave Processing and Glass Inclusions on Thermoelectric Properties of P-Type Bismuth Antimony Telluride Alloys for Wearable Applications. Energies, 2020, 13, 4524.	1.6	8
716	Enhanced power factor of n-type Bi ₂ Te _{2.8} Se _{0.2} alloys through an efficient one-step sintering strategy for low-grade heat harvesting. Journal of Materials Chemistry A, 2020, 8, 24524-24535.	5.2	7
717	Realization of high thermoelectric power factor in Ta-doped ZnO by grain boundary engineering. Journal of Applied Physics, 2020, 128, .	1.1	3
718	High <i>zT</i> and Its Origin in Sbâ€doped GeTe Single Crystals. Advanced Science, 2020, 7, 2002494.	5.6	36
719	Thermoelectric Oxide Ceramics Outperforming Single Crystals Enabled by Dopant Segregations. Chemistry of Materials, 2020, 32, 9730-9739.	3.2	18
720	Composition Tuning of Nanostructured Binary Copper Selenides through Rapid Chemical Synthesis and Their Thermoelectric Property Evaluation. Nanomaterials, 2020, 10, 854.	1.9	17
721	Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Nano Letters, 2020, 20, 4445-4453.	4.5	106
722	Pre-oxidation effects on properties of bismuth telluride thermoelectric composites compacted by spark plasma sintering. Journal of Asian Ceramic Societies, 2020, 8, 211-221.	1.0	15
723	Thermoelectric properties of polycrystalline Bi2Se3â^'x by powder compaction sintering. Modern Physics Letters B, 2020, 34, 2050206.	1.0	2
724	Enhanced performance nanostructured thermoelectric converter for self-powering health sensors. Nano Energy, 2020, 74, 104854.	8.2	18
725	Enhanced Thermoelectric Performance of Bi _{0.46} Sb _{1.54} Te ₃ Nanostructured with CdTe. ACS Applied Materials & Interfaces, 2020, 12, 26330-26341.	4.0	26
726	Thermoelectric Enhancements in PbTe Alloys Due to Dislocationâ€Induced Strains and Converged Bands. Advanced Science, 2020, 7, 1902628.	5.6	78
727	New paradigm for efficient thermoelectrics. , 2020, , 183-196.		5
728	Layered materials with 2D connectivity for thermoelectric energy conversion. Journal of Materials Chemistry A, 2020, 8, 12226-12261.	5.2	74
729	Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Metals, 2020, 39, 887-894.	3.6	33
730	Recrystallization stimulated hierarchical structures for the simultaneous enhancement of Seebeck coefficient and electrical conductivity in Bi-Sb-Te alloys. Journal of Alloys and Compounds, 2020, 842, 155804.	2.8	5
731	Realizing high thermoelectricity in polycrystalline tin sulfide via manipulating fermi surface anisotropy and phonon dispersion. Materials Today Physics, 2020, 14, 100221.	2.9	21
732	Structural stability enables high thermoelectric performance in room temperature Ag ₂ Se. Journal of Materials Chemistry A, 2020, 8, 13024-13037.	5.2	76

#	Article	IF	CITATIONS
733	Phonon Engineering for Thermoelectric Enhancement of p-Type Bismuth Telluride by a Hot-Pressing Texture Method. ACS Applied Materials & Interfaces, 2020, 12, 31612-31618.	4.0	41
734	n-Bi _{2–<i>x</i>} Sb <i>_x</i> Te ₃ : A Promising Alternative to Mainstream Thermoelectric Material n-Bi ₂ Te _{3<i>–x</i>} Se <i>_x</i> near Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 31619-31627.	4.0	33
735	Review of current high-ZT thermoelectric materials. Journal of Materials Science, 2020, 55, 12642-12704.	1.7	187
736	Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying. Nano Energy, 2020, 76, 105084.	8.2	39
737	Bi ₈ Se ₇ : Delocalized Interlayer π-Bond Interactions Enhancing Carrier Mobility and Thermoelectric Performance near Room Temperature. Journal of the American Chemical Society, 2020, 142, 12536-12543.	6.6	27
738	Important role of Cu in suppressing bipolar conduction in Bi-rich (Bi,Sb)2Te3. Scripta Materialia, 2020, 186, 225-229.	2.6	6
739	Carrier Modulation in Bi2Te3-Based Alloys via Interfacial Doping with Atomic Layer Deposition. Coatings, 2020, 10, 572.	1.2	10
740	Thermoelectric Properties and Stability of Nanocomposites Type I Clathrate Ba uâ€ s i with SiC. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1055-1061.	0.6	3
741	Crowding-out effect strategy using AgCl for realizing a super low lattice thermal conductivity of SnTe. Sustainable Materials and Technologies, 2020, 25, e00183.	1.7	6
742	Realizing record high performance in n-type Bi ₂ Te ₃ -based thermoelectric materials. Energy and Environmental Science, 2020, 13, 2106-2114.	15.6	249
743	Advances in Atomic Layer Deposition (ALD) Nanolaminate Synthesis of Thermoelectric Films in Porous Templates for Improved Seebeck Coefficient. Materials, 2020, 13, 1283.	1.3	12
744	Rapid fabrication of pure p-type filled skutterudites with enhanced thermoelectric properties via a reactive liquid-phase sintering. Journal of Materials Science, 2020, 55, 7432-7440.	1.7	9
745	Simultaneously increased carrier concentration and mobility in p-type Bi0.5Sb1.5Te3 throng Cd doping. Journal of Alloys and Compounds, 2020, 830, 154625.	2.8	23
746	Scattering Mechanisms and Compositional Optimization of Highâ€Performance Elemental Te as a Thermoelectric Material. Advanced Electronic Materials, 2020, 6, 2000038.	2.6	13
747	Inorganic thermoelectric materials: A review. International Journal of Energy Research, 2020, 44, 6170-6222.	2.2	119
748	Synchronized enhancement of thermoelectric properties of higher manganese silicide by introducing Fe and Co nanoparticles. Nano Energy, 2020, 72, 104698.	8.2	24
749	Nanostructure Engineering and Performance Enhancement in Fe ₂ O ₃ -Dispersed Cu ₁₂ Sb ₄ S ₁₃ Thermoelectric Composites with Earth-Abundant Elements. ACS Applied Materials & Interfaces, 2020, 12, 17852-17860.	4.0	22
750	Waste Recycling in Thermoelectric Materials. Advanced Energy Materials, 2020, 10, 1904159.	10.2	62

		CITATION REPORT		
#	Article		IF	Citations
751	Fabrication of Skutterudite-Based Tubular Thermoelectric Generator. Energies, 2020, 13	3, 1106.	1.6	9
752	Realizing a High <i>ZT</i> of 1.6 in N-Type Mg ₃ Sb ₂ -Based Zin through Mn and Se Codoping. ACS Applied Materials & Interfaces, 2020, 12, 2179	ntl Compounds 9-21807.	4.0	26
753	Practical High-Performance (Bi,Sb) ₂ Te ₃ -Based Thermoelectric Nanocomposites Fabricated by Nanoparticle Mixing and Scrap Recycling. ACS Applied N Interfaces, 2020, 12, 16426-16435.		4.0	33
754	Na-doping enables both dislocations and holes in EuMg ₂ Sb ₂ thermoelectric enhancements. Journal of Materials Chemistry A, 2020, 8, 8345-8351.	for	5.2	20
755	Enhanced thermoelectric performance in polycrystalline N-type Pr-doped SnSe by hot fo Materialia, 2020, 190, 1-7.	orging. Acta	3.8	35
756	Thermoelectric applications of chalcogenides. , 2020, , 31-56.			6
757	Improved carrier transport properties by I-doping in n-type Cu0.008Bi2Te2.7Se0.3 ther Scripta Materialia, 2020, 186, 357-361.	noelectric alloys.	2.6	8
758	Comparison of Cooling Methods for a Thermoelectric Generator with Forced Convectio 2020, 13, 3185.	n. Energies,	1.6	8
759	Atomic disordering advances thermoelectric group IV telluride alloys with a multiband t Materials Today Physics, 2020, 15, 100247.	ransport.	2.9	22
760	Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical R 120, 7399-7515.	Reviews, 2020,	23.0	1,248
761	Thermoelectric Properties of Substoichiometric Electron Beam Patterned Bismuth Sulfic Applied Materials & amp; Interfaces, 2020, 12, 33647-33655.	le. ACS	4.0	17
762	Mechanical, thermal, and corrosion properties of Cu-10Sn alloy prepared by laser-powd additive manufacturing. Additive Manufacturing, 2020, 35, 101411.	er-bed-fusion	1.7	18
763	A Comprehensive Review of Strategies and Approaches for Enhancing the Performance Thermoelectric Module. Energies, 2020, 13, 3142.	of	1.6	38
764	Effect of thermal annealing on thermoelectric properties of BixSb2â^'xTe3 thin films gro sputtering. Journal of Applied Physics, 2020, 127, 245108.	wn by	1.1	6
765	Thermoelectric properties of Pb0.833Na0.017(Zn0.85Al0.15)0.15Te-Te composite. Cer 2020, 46, 18683-18689.	amics International,	2.3	6
766	Promoted application potential of p-type Mg3Sb1.5Bi0.5 for the matched thermal expa n-type counterpart. Journal of Materiomics, 2020, 6, 729-735.	nsion with its	2.8	13
767	Formation of five-fold twinning electron diffraction pattern and twinning bands in bulk hot deformation. Materials Letters, 2020, 276, 128251.	Culn3Se5 via	1.3	0
768	Control of the Thermoelectric Properties of Mg2Sn Single Crystals via Point-Defect Eng Scientific Reports, 2020, 10, 2020.	ineering.	1.6	32

#	Article	IF	CITATIONS
769	Bi _{0.5} Sb _{1.5} Te ₃ -based films for flexible thermoelectric devices. Journal of Materials Chemistry A, 2020, 8, 4552-4561.	5.2	53
770	Effect of Co content on [Ca2CoO3â~`Î]0.62[CoO2] thermoelectric properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 5353-5359.	1.1	2
771	Phase tailoring and wafer-scale uniform hetero-epitaxy of metastable-phased corundum α-Ga2O3 on sapphire. Applied Surface Science, 2020, 513, 145871.	3.1	28
772	Enhancement of thermoelectric performance of N-type Bi2Te3 based thin films via in situ annealing during magnetron sputtering. Ceramics International, 2020, 46, 13365-13371.	2.3	16
773	Confinement Effect in Thermoelectric Properties of Two–Dimensional Materials. MRS Advances, 2020, 5, 469-479.	0.5	16
774	α-CsCu ₅ Se ₃ : Discovery of a Low-Cost Bulk Selenide with High Thermoelectric Performance. Journal of the American Chemical Society, 2020, 142, 5293-5303.	6.6	46
775	Enhancement of thermoelectric performances of BiCuSeO through Y doping and grain refining. Journal of Materials Science: Materials in Electronics, 2020, 31, 4915-4923.	1.1	4
776	Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference. Energy Conversion and Management, 2020, 207, 112516.	4.4	28
777	Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25. CheM, 2020, 6, 523-537.	5.8	69
778	Evaluation of Thermoelectric Properties of Ag _{0.366} Sb _{0.558} Te. Annalen Der Physik, 2020, 532, 1900561.	0.9	5
779	Development of Indium-Tin Oxide Diffusion Barrier for Attaining High Reliability of Skutterudite Modules. ACS Applied Energy Materials, 2020, 3, 2989-2995.	2.5	2
780	Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron. Journal of Applied Physics, 2020, 127, 045106.	1.1	11
781	Highâ€Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. Advanced Science, 2020, 7, 1902923.	5.6	156
782	Promising and Ecoâ€Friendly Cu ₂ Xâ€Based Thermoelectric Materials: Progress and Applications. Advanced Materials, 2020, 32, e1905703.	11.1	165
783	A Review on Silicide-Based Materials: Thermoelectric and Mechanical Properties. Metals and Materials International, 2021, 27, 2205.	1.8	21
784	Rational Design of Spinel-Type Cu ₄ Mn ₂ Te ₄ /TMTe (TM = Co, Ni) Composites with Synergistically Manipulated Electrical and Thermal Transport Properties. ACS Applied Energy Materials, 2020, 3, 2096-2102.	2.5	5
785	Intrinsically Low Thermal Conductivity and High Carrier Mobility in Dual Topological Quantum Material, nâ€∓ype BiTe. Angewandte Chemie, 2020, 132, 4852-4859.	1.6	19
786	Intrinsically Low Thermal Conductivity and High Carrier Mobility in Dual Topological Quantum Material, nâ€Type BiTe. Angewandte Chemie - International Edition, 2020, 59, 4822-4829.	7.2	45

ARTICLE IF CITATIONS High-pressure synthesis and excellent thermoelectric performance of Ni/BiTeSe magnetic 787 5.2 55 nanocomposites. Journal of Materials Chemistry A, 2020, 8, 4816-4826. Toward Accelerated Thermoelectric Materials and Process Discovery. ACS Applied Energy Materials, 788 2.5 2020, 3, 2240-2257. Realizing both n- and p-types of high thermoelectric performance in Fe1â⁻¹xNixTiSb half-Heusler 789 2.7 11 compounds. Journal of Materials Chemistry C, 2020, 8, 3156-3164. Cu3ErTe3: a new promising thermoelectric material predicated by high-throughput screening. 790 Materials Today Physics, 2020, 12, 100180. Thermoelectric properties of Cu4Ge3Se5 with an intrinsic disordered zinc blende structure. Journal 791 5.2 9 of Materials Chemistry A, 2020, 8, 3431-3437. Enhanced thermoelectric performance of n-type PbTe through the introduction of low-dimensional C60 nanodots. Journal of Alloys and Compounds, 2020, 823, 153863. 792 2.8 Thermoelectric p-Type Ag₉GaTe₆ with an Intrinsically Low Lattice Thermal 793 2.519 Conductivity. ACS Applied Energy Materials, 2020, 3, 1892-1898. Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chemical Engineering 794 6.6 142 Journal, 2020, 388, 124295. Mechanical and thermoelectric properties of environment friendly higher manganese silicide 795 7 1.8 fabricated using water atomization and spark plasma sintering. Intermetallics, 2020, 119, 106705. A coupled electrical-thermal impedance matching model for design optimization of thermoelectric 796 5.1 generator. Applied Energy, 2020, 269, 115037. Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, 2020, , . 797 2 0.4 Microstructural Refinement and Performance Improvement of Cast n-Type Bi2Te2.79Se0.21 Ingot by 798 1.8 Equal Channel Angular Extrusion. Metals and Materials International, 2021, 27, 3070-3078. Thermoelectric transport enhancement of Te-rich bismuth antimony telluride (Bi0.5Sb1.5Te3+x) 799 2.8 36 through controlled porosity. Journal of Materiomics, 2020, 6, 532-544. Enhancing the figure of merit in thermoelectric materials by adding silicate aerogel. Materials Today Physics, 2020, 13, 100215. Equal channel angular extrusion: An effective method to refine the microstructure of cast n-type 801 Bi2Te3 based ingot to co-optimize thermoelectric and mechanical properties. Solid State Sciences, 1.5 6 2020, 103, 106191. Enhancing the average thermoelectric figure of merit of elemental Te by suppressing grain boundary scattering. Journal of Materials Chemistry A, 2020, 8, 8455-8461. High thermoelectric figure of merit and thermopower of HfTe₅ at room temperature. 803 0.7 3 Journal of Physics Condensed Matter, 2020, 32, 345501. Enhanced Thermoelectric Performance of SnxBi0.5-xSb1.5Te3 Through the Synergistic Effects of 804 Carrier and Phonon Engineering. Journal of Electronic Materials, 2020, 49, 4282-4290.

#	Article	IF	CITATIONS
805	Room temperature Bi2Te3-based thermoelectric materials with high performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 8607-8617.	1.1	16
806	Enhanced thermal stability of Bi2Te3-based alloys via interface engineering with atomic layer deposition. Journal of the European Ceramic Society, 2020, 40, 3592-3599.	2.8	11
807	Stress-induced change of Cu-doped Bi2Te3 thin films for flexible thermoelectric applications. Materials Letters, 2020, 270, 127697.	1.3	10
808	Evolution of microstructure and performance of n-type BiTeSe thermoelectric materials fabricated by multi-path equal channel angular extrusion. Materials Today Communications, 2020, 24, 101121.	0.9	1
809	Anisotropic thermoelectric figure-of-merit in Mg3Sb2. Materials Today Physics, 2020, 13, 100217.	2.9	36
810	Quantitative prediction of grain boundary thermal conductivities from local atomic environments. Nature Communications, 2020, 11, 1854.	5.8	46
811	Effect of surface nanopatterning on the thermoelectric properties of bismuth antimony telluride films. Materials Today: Proceedings, 2021, 36, 416-420.	0.9	5
812	Improved thermoelectric performance of n-type Mg3Sb2–Mg3Bi2 alloy with Co element doping. Current Applied Physics, 2021, 21, 25-30.	1.1	13
813	HPT production of large bulk skutterudites. Journal of Alloys and Compounds, 2021, 854, 156678.	2.8	12
814	Review of experimental approaches for improving zT of thermoelectric materials. Materials Science in Semiconductor Processing, 2021, 121, 105303.	1.9	91
815	Heterostructured Bismuth Telluride Selenide Nanosheets for Enhanced Thermoelectric Performance. Small Science, 2021, 1, 2000021.	5.8	16
816	Influence of shear strain on HPT-processed n-type skutterudites yielding ZT=2.1. Journal of Alloys and Compounds, 2021, 855, 157409.	2.8	17
817	Decoupling Seebeck coefficient and resistivity, and simultaneously optimizing thermoelectric and mechanical performances for n-type BiTeSe alloy by multi-pass equal channel angular extrusion. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114846.	1.7	2
818	Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement. Materials Today Physics, 2021, 16, 100298.	2.9	20
819	Exploring the thermoelectric behavior of intrinsic and defect induced LaCoO3 with selected alkaline earth metals. Journal of Alloys and Compounds, 2021, 857, 157507.	2.8	12
820	Impact of particle size and surfactant on electrical resistivity and thermopower of silver nanoparticles. Physica B: Condensed Matter, 2021, 600, 412453.	1.3	3
821	Sb2Te3/graphite nanocomposite: A comprehensive study of thermal conductivity. Journal of Materiomics, 2021, 7, 545-555.	2.8	5
822	Anisotropic thermoelectric transport in textured Sb1.5Bi0.5Te3 nanomaterial synthesized by facile bottom-up physical process. Journal of Alloys and Compounds, 2021, 859, 157828.	2.8	5

#	Article	IF	CITATIONS
823	Properties and influence of microstructure and crystal defects in Fe2VAl modified by laser surface remelting. Scripta Materialia, 2021, 193, 153-157.	2.6	16
824	Morphology and seebeck coefficients of electrodeposited Bi2Se3 films grown onto Au(111)/Si substrates. Electrochimica Acta, 2021, 368, 137554.	2.6	12
825	Embedded in-situ nanodomains from chemical composition fluctuation in thermoelectric A2Cu3In3Te8 (AÂ= Zn, Cd). Materials Today Physics, 2021, 17, 100333.	2.9	8
826	Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films. Nano Energy, 2021, 81, 105683.	8.2	82
827	Order-disorder transition-induced band nestification in AgBiSe ₂ –CuBiSe ₂ solid solutions for superior thermoelectric performance. Journal of Materials Chemistry A, 2021, 9, 4648-4657.	5.2	22
828	Unusual thermal performance in Cu-60Ag by WC nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 115010.	1.7	8
829	Recent developments in high-performance thermoelectric sulphides: an overview of the promising synthetic colusites. Journal of Materials Chemistry C, 2021, 9, 773-795.	2.7	33
830	Enhanced thermoelectric performance in Mg _{3+x} Sb _{1.5} Bi _{0.49} Te _{0.01} <i>via</i> engineering microstructure through melt-centrifugation. Journal of Materials Chemistry A, 2021, 9, 1733-1742.	5.2	20
831	Enhancing room-temperature thermoelectric performance of n-type Bi2Te3-based alloys via sulfur alloying. Rare Metals, 2021, 40, 513-520.	3.6	12
832	Drastic Modification of Lattice Thermal Conductivity in Thermoelectrics Induced by Electron–Hole Pairs. ACS Applied Materials & Interfaces, 2021, 13, 3911-3918.	4.0	2
833	Segregation of NiTe2 and NbTe2 in p-Type Thermoelectric Bi0.5Sb1.5Te3 Alloys for Carrier Energy Filtering Effect by Melt Spinning. Applied Sciences (Switzerland), 2021, 11, 910.	1.3	8
834	Electronic transport descriptors for the rapid screening of thermoelectric materials. Materials Horizons, 2021, 8, 2463-2474.	6.4	16
835	Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. Science China Materials, 2021, 64, 1507-1520.	3.5	20
836	Advances in half-Heusler alloys for thermoelectric power generation. Materials Advances, 2021, 2, 6246-6266.	2.6	90
837	SnSe, the rising star thermoelectric material: a new paradigm in atomic blocks, building intriguing physical properties. Materials Horizons, 2021, 8, 1847-1865.	6.4	29
838	Room-Temperature Thermoelectric Conversion by Dipole-Enhanced Rashba Spin-Orbit Coupling. Cell Reports Physical Science, 2021, 2, 100284.	2.8	5
839	Enhancement of thermoelectric performance in a non-toxic CulnTe ₂ /SnTe coated grain nanocomposite. Journal of Materials Chemistry A, 2021, 9, 14851-14858.	5.2	12
840	Nanostructured thermoelectric materials. , 2021, , 261-311.		1

#	Article	IF	CITATIONS
841	Achievements and Prospects of Thermoelectric and Hybrid Energy Harvesters for Wearable Electronic Applications. , 2021, , 3-40.		1
842	CALPHAD as a powerful technique for design and fabrication of thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 6634-6649.	5.2	16
843	Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: a mini review. Nanoscale, 2021, 13, 18032-18043.	2.8	10
844	Porous bismuth antimony telluride alloys with excellent thermoelectric and mechanical properties. Journal of Materials Chemistry A, 2021, 9, 4990-4999.	5.2	32
845	Anion exchanged Cl doping achieving band sharpening and low lattice thermal conductivity for improving thermoelectric performance in SnTe. Inorganic Chemistry Frontiers, 2021, 8, 4666-4675.	3.0	5
846	Advances in the applications of thermoelectric materials. , 2021, , 313-337.		0
847	Bismuth-based nanomaterials for energy applications. , 2021, , 3-35.		0
848	Strategies for Manipulating Phonon Transport in Solids. ACS Nano, 2021, 15, 2182-2196.	7.3	22
849	Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe ₂ . Science, 2021, 371, 722-727.	6.0	306
850	Thermal conductivity of Mg ₂ Si _{1â^²x} Sn _x nanowire assemblies synthesized using solid-state phase transformation of silicon nanowires. Materials Research Express, 2021, 8, 025005.	0.8	4
851	Effect of defect interactions with interstitial Ag in the lattice of Bi <i>x</i> Sb2â^' <i>x</i> Te3 alloys and their thermoelectric properties. Applied Physics Letters, 2021, 118, .	1.5	8
852	Atomic mechanism of ionic confinement in the thermoelectric Cu2Se based on a low-cost electric-current method. Cell Reports Physical Science, 2021, 2, 100345.	2.8	12
853	Emerging Thermal Technology Enabled Augmented Reality. Advanced Functional Materials, 2021, 31, 2007952.	7.8	35
855	Significant Enhancement of Thermoelectric Figure of Merit in BiSbTeâ€Based Composites by Incorporating Carbon Microfiber. Advanced Functional Materials, 2021, 31, 2008851.	7.8	57
856	Probing the phonon mean free paths in dislocation core by molecular dynamics simulation. Journal of Applied Physics, 2021, 129, .	1.1	9
857	Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase. Advanced Functional Materials, 2021, 31, 2009681.	7.8	84
858	Sulfide Perovskites for Thermoelectricity. ACS Applied Materials & amp; Interfaces, 2021, 13, 14189-14197.	4.0	12
859	Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy, 2021, 81, 105638.	8.2	43

#	Article	IF	CITATIONS
860	Implications of doping on microstructure, processing, and thermoelectric performance: The case of PbSe. Journal of Materials Research, 2021, 36, 1272-1284.	1.2	8
861	Cu ₂ Se as Textured Adjuvant for Pb-Doped BiCuSeO Materials Leading to High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2021, 13, 11977-11984.	4.0	14
862	Substitutions and dislocations enabled extraordinary n-type thermoelectric PbTe. Materials Today Physics, 2021, 17, 100355.	2.9	44
863	Weighted Mobility Ratio Engineering for Highâ€Performance Bi–Teâ€Based Thermoelectric Materials via Suppression of Minority Carrier Transport. Advanced Materials, 2021, 33, e2005931.	11.1	39
864	Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101214.	7.8	41
865	3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications. Journal of the Korean Ceramic Society, 2021, 58, 379-398.	1.1	12
866	Achieving High Thermoelectric Performance of n-Type Bi ₂ Te _{2.79} Se _{0.21} Sintered Materials by Hot-Stacked Deformation. ACS Applied Materials & Interfaces, 2021, 13, 15429-15436.	4.0	18
867	Multiple Roles of Unconventional Heteroatom Dopants in Chalcogenide Thermoelectrics: The Influence of Nb on Transport and Defects in Bi ₂ Te ₃ . ACS Applied Materials & Interfaces, 2021, 13, 13400-13409.	4.0	15
868	Optical Chirality Detection Using a Topological Insulator Transistor. Advanced Optical Materials, 2021, 9, 2002210.	3.6	13
869	Ultra-high thermoelectric performance in SnTe by the integration of several optimization strategies. Materials Today Physics, 2021, 17, 100350.	2.9	29
870	Realizing ranged performance in SnTe through integrating bands convergence and DOS distortion. Journal of Materiomics, 2022, 8, 184-194.	2.8	17
871	Fracture toughness of thermoelectric materials. Materials Science and Engineering Reports, 2021, 144, 100607.	14.8	39
872	Enhanced Thermoelectric Performance in High Entropy Alloys Sn _{0.25} Pb _{0.25} Mn _{0.25} Ge _{0.25} Te. ACS Applied Materials & Interfaces, 2021, 13, 18638-18647.	4.0	43
873	Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu _{1–<i>x</i>} Ag _{<i>x</i>})(ln _{1–<i>y</i>} Ga _{<i>y</i>})Te <s Journal of the American Chemical Society, 2021, 143, 5978-5989.</s 	ubo&& <td>)>49</td>)>49
875	Properties of HPT-Processed Large Bulks of p-Type Skutterudite DD _{0.7} Fe ₃ CoSb ₁₂ with ZT > 1.3. ACS Applied Energy Materials, 2021, 4, 4831-4844.	2.5	8
877	Allâ€Scale Hierarchical Structure Contributing to Ultralow Thermal Conductivity of Zintl Phase CaAg _{0.2} Zn _{0.4} Sb. Advanced Science, 2021, 8, 2100109.	5.6	12
878	Versatile Vanadium Doping Induces High Thermoelectric Performance in GeTe via Band Alignment and Structural Modulation. Advanced Energy Materials, 2021, 11, 2100544.	10.2	43
879	Rational Electronic and Structural Designs Advance BiCuSeO Thermoelectrics. Advanced Functional Materials, 2021, 31, 2101289.	7.8	48

#	Article	IF	CITATIONS
880	Impact of Graphene or Reduced Graphene Oxide on Performance of Thermoelectric Composites. Journal of Carbon Research, 2021, 7, 37.	1.4	8
881	Simultaneous Regulation of Electrical and Thermal Transport Properties of N-Type Bi ₂ Te ₃ via Adding Excessive Te Followed by Se Doping. ACS Applied Energy Materials, 2021, 4, 4986-4992.	2.5	17
882	CuPbBi5S9 thermoelectric material with an intrinsic low thermal conductivity: Synthesis and properties. Journal of Materiomics, 2022, 8, 174-183.	2.8	6
883	Sustainable fabrication of Cu/Nb composites with continuous laminated structure to achieve ultrahigh strength and excellent electrical conductivity. Composites Part B: Engineering, 2021, 211, 108662.	5.9	33
884	Manipulation of Defects for Highâ€Performance Thermoelectric PbTeâ€Based Alloys. Small Structures, 2021, 2, 2100016.	6.9	10
885	Exceptional Performance Driven by Planar Honeycomb Structure in a New High Temperature Thermoelectric Material BaAgAs. Advanced Functional Materials, 2021, 31, 2100583.	7.8	25
886	Unprecedently low thermal conductivity of unique tellurium nanoribbons. Nano Research, 2021, 14, 4725-4731.	5.8	14
887	Dislocations in ceramic electrolytes for solid-state Li batteries. Scientific Reports, 2021, 11, 8949.	1.6	14
888	Thermoelectricity and electronic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">Y <mml:mrow> <mml:mn> 1 </mml:mn> <mml:mo> â^' </mml:mo> <mml:mi> x < Physical Review B, 2021, 103, .</mml:mi></mml:mrow></mml:mi </mml:msub></mml:mrow></mml:math 	/mml ¹ .11i> <td>nml:mrow><,</td>	nml:mrow><,
889	Soft anharmonic phonons and ultralow thermal conductivity in Mg ₃ (Sb, Bi) ₂ thermoelectrics. Science Advances, 2021, 7, .	4.7	52
890	Synthesis and Properties of Thermoelectric Nanomaterial AgInSe2 with a Chalcopyrite Structure. Nanobiotechnology Reports, 2021, 16, 357-362.	0.2	1
891	Interfacial thermal conductance of in situ aluminum-matrix nanocomposites. Journal of Materials Science, 2021, 56, 13646-13658.	1.7	15
892	Compromise between band structure and phonon scattering in efficient n-Mg3Sb2-Bi thermoelectrics. Materials Today Physics, 2021, 18, 100362.	2.9	41
893	Dimensionality effects in highâ€performance thermoelectric materials: Computational and experimental progress in energy harvesting applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1547.	6.2	20
894	Simultaneously Improved Thermoelectric and Mechanical Properties Driven by MgB ₂ Doping in Bi _{0.4} Sb _{1.6} Te ₃ Based Alloys. Advanced Electronic Materials, 2021, 7, 2100173.	2.6	11
895	Evaluation of Magnesium Tin Silicide Sintered Bodies Prepared by Liquid-Phase Pressure-Less Sintering. Materials Transactions, 2021, 62, 661-666.	0.4	0
896	Eliciting Highâ€Performance Thermoelectric Materials via Phase Diagram Engineering: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2100054.	2.8	10
897	Structural Evolution of Highâ€Performance Mnâ€Alloyed Thermoelectric Materials: A Case Study of SnTe. Small, 2021, 17, e2100525.	5.2	21

#	Article	IF	CITATIONS
898	Enhanced Thermoelectric and Mechanical Performances in Sintered Bi _{0.48} Sb _{1.52} Te ₃ –AgSbSe ₂ Composite. ACS Applied Materials & Interfaces, 2021, 13, 24937-24944.	4.0	23
899	(Bi,Sb)2Te3/SiC nanocomposites with enhanced thermoelectric performance: Effect of SiC nanoparticle size and compositional modulation. Science China Materials, 2021, 64, 2551-2562.	3.5	13
900	Nanoindentation popâ€in in oxides at room temperature: Dislocation activation or crack formation?. Journal of the American Ceramic Society, 2021, 104, 4728-4741.	1.9	28
901	Investigation of homogeneity in microstructure and thermoelectric properties at various positions in high-thickness sintered bulks of p-type 20%Bi2Te3–80%Sb2Te3 alloys. Journal of Materials Science: Materials in Electronics, 2021, 32, 16302-16310.	1.1	3
902	Control of polarization in bulk ferroelectrics by mechanical dislocation imprint. Science, 2021, 372, 961-964.	6.0	84
903	High-efficiency thermoelectrochemical conversion system based on H+-ion concentration cell stack. International Journal of Hydrogen Energy, 2021, 46, 20848-20857.	3.8	1
904	Single-phase duodenary high-entropy fluorite/pyrochlore oxides with an order-disorder transition. Acta Materialia, 2021, 211, 116858.	3.8	48
905	A review on GeTe thin film-based phase-change materials. Applied Nanoscience (Switzerland), 2023, 13, 95-110.	1.6	15
906	Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation. Nature Communications, 2021, 12, 3550.	5.8	41
907	Contrasting Cu Roles Lead to High Ranged Thermoelectric Performance of PbS. Advanced Functional Materials, 2021, 31, 2102185.	7.8	33
908	Preparation and thermoelectric properties of screen-printable rGO/Sb2Te3/SV4/PEDOT:PSS composite thermoelectric film. Materials Research Express, 2021, 8, 065503.	0.8	5
909	Enhanced Thermoelectric Properties of Cu3SbSe4 Compounds by Isovalent Bismuth Doping. Journal of Materials Science: Materials in Electronics, 2021, 32, 18849-18861.	1.1	3
910	Point Defect Engineering: Coâ€Doping Synergy Realizing Superior Performance in nâ€Type Bi ₂ Te ₃ Thermoelectric Materials. Small, 2021, 17, e2101328.	5.2	45
911	Optimal carrier concentration for FeSb2 colossal thermopower. Applied Physics Letters, 2021, 118, 233901.	1.5	4
912	High-Performance Bismuth Antimony Telluride Thermoelectric Membrane on Curved and Flexible Supports. ACS Energy Letters, 2021, 6, 2378-2385.	8.8	19
913	Role of intrinsic defects on thermoelectric properties of ZnO:Al films. Ceramics International, 2021, 47, 17760-17767.	2.3	8
914	Interfacial Decoration Tailoring the Thermoelectric Performance of TiCoNi _{<i>x</i>} Sb Half-Heusler Compounds. ACS Applied Energy Materials, 2021, 4, 7148-7156.	2.5	6
915	Melt-spun Sn1â~'â~'Sb Mn Te with unique multiscale microstructures approaching exceptional average thermoelectric zT. Nano Energy, 2021, 84, 105879.	8.2	46

#	Article	IF	CITATIONS
916	Slowing down the heat in thermoelectrics. InformaÄnÃ-Materiály, 2021, 3, 755-789.	8.5	57
917	An Update Review on N-Type Layered Oxyselenide Thermoelectric Materials. Materials, 2021, 14, 3905.	1.3	12
918	Finite Element Analysis of Thermoelectric Power Generation from Human Wrist. , 2021, , .		0
919	Ionic transport properties and their empirical correlations for thermal-to-electrical energy conversion. Materials Today Physics, 2021, 19, 100433.	2.9	12
920	Lead-free SnTe-based compounds as advanced thermoelectrics. Materials Today Physics, 2021, 19, 100405.	2.9	38
921	Large plastic deformability of bulk ferroelectric KNbO3 single crystals. Journal of the European Ceramic Society, 2021, 41, 4098-4107.	2.8	17
922	Nanostructured Inorganic Chalcogenide-Carbon Nanotube Yarn having a High Thermoelectric Power Factor at Low Temperature. ACS Nano, 2021, 15, 13118-13128.	7.3	24
923	Thermoelectric Transport Properties of TmAg Cu1-Te2 solid solutions. Journal of Materiomics, 2021, 7, 886-893.	2.8	3
924	Liquid-Phase Manipulation Securing Enhanced Thermoelectric Performance of Ag ₂ Se. ACS Applied Materials & Interfaces, 2021, 13, 34543-34549.	4.0	22
925	Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping. ACS Applied Materials & Interfaces, 2021, 13, 37273-37279.	4.0	15
926	Spark plasma sintered Bi-Sb-Te alloys derived from ingot scrap: Maximizing thermoelectric performance by tailoring their composition and optimizing sintering time. Nano Energy, 2021, 85, 106040.	8.2	36
927	Donor and acceptor-like self-doping by mechanically induced dislocations in bulk TiO2. Nano Energy, 2021, 85, 105944.	8.2	31
928	An integrated thermoelectric heating-cooling system for air sterilization— a simulation study. Materials Today Physics, 2021, 19, 100430.	2.9	10
929	Abnormal thermal conduction in argyrodite-type Ag9FeS6-Te materials. Materials Today Physics, 2021, 19, 100410.	2.9	8
930	Weak-ferromagnetism for room temperature thermoelectric performance enhancement in p-type (Bi,Sb)2Te3. Materials Today Physics, 2021, 19, 100423.	2.9	15
931	High-Performance Thermoelectric Energy Conversion: A Tale of Atomic Ordering in AgSbTe ₂ . ACS Energy Letters, 2021, 6, 2825-2837.	8.8	42
932	Interfacial reactions between pure Cu, Ni, and Ni–Cu alloys and p-type Bi2Te3 bulk thermoelectric material. Journal of Materials Science, 2021, 56, 16545-16557.	1.7	5
933	Thermoelectric properties of phosphorus-doped van der Waals crystal Ta4SiTe4. Materials Today Physics, 2021, 19, 100417.	2.9	13

#	Article	IF	CITATIONS
934	Origin of low thermal conductivity in Nb1-xTixFe1.02Sb half-Heusler thermoelectric materials. Journal of the European Ceramic Society, 2021, 41, 4175-4181.	2.8	9
935	Some Thermoelectric Phenomena in Copper Chalcogenides Replaced by Lithium and Sodium Alkaline Metals. Nanomaterials, 2021, 11, 2238.	1.9	14
936	Cation-Exchange Synthesis of Lead Bismuth Sulfide Quantum Dots and Nanorods for Thermoelectric Applications. Chemistry of Materials, 2021, 33, 6804-6812.	3.2	9
937	Regulating Te Vacancies through Dopant Balancing via Excess Ag Enables Rebounding Power Factor and High Thermoelectric Performance in p‶ype PbTe. Advanced Science, 2021, 8, e2100895.	5.6	18
938	Research status and performance optimization of medium-temperature thermoelectric material SnTe. Chinese Physics B, 2022, 31, 047307.	0.7	6
939	Highly Suppressed Thermal Conductivity in Diamond-like Cu ₂ SnS ₃ by Dense Dislocation. ACS Applied Energy Materials, 2021, 4, 8728-8733.	2.5	8
940	High Thermoelectric Performance Achieved in Bulk Selenium with Nanostructural Building Blocks. ACS Applied Electronic Materials, 2021, 3, 3824-3834.	2.0	5
941	Research progress of p-type Fe-based skutterudite thermoelectric materials. Frontiers of Materials Science, 2021, 15, 317-333.	1.1	13
942	Achievement of Excellent Thermoelectric Properties in Cu–Se–S Compounds via In Situ Phase Separation. Inorganic Chemistry, 2021, 60, 13269-13277.	1.9	7
943	Development of High-Performance Thermoelectric Materials by Microstructure Control of P-Type BiSbTe Based Alloys Fabricated by Water Atomization. Materials, 2021, 14, 4870.	1.3	8
944	A magnetic ionic liquid redox couple for harvesting waste heat and mechanical energy. Chemical Physics Letters, 2021, 776, 138663.	1.2	4
945	Performance analysis of a novel Two-stage automobile thermoelectric generator with the Temperature-dependent materials. Applied Thermal Engineering, 2021, 195, 117249.	3.0	26
946	Investigation on Low-Temperature Thermoelectric Properties of Ag ₂ Se Polycrystal Fabricated by Using Zone-Melting Method. Journal of Physical Chemistry Letters, 2021, 12, 8246-8255.	2.1	37
947	Realize High Thermoelectric Properties in n-Type Bi ₂ Te _{2.7} Se _{0.3} /Y ₂ O ₃ Nanocomposites by Constructing Heterointerfaces. ACS Applied Materials & Interfaces, 2021, 13, 38526-38533.	4.0	38
948	Decoupling of the Electrical and Thermal Transports in Strongly Coupled Interlayer Materials. Journal of Physical Chemistry Letters, 2021, 12, 7832-7839.	2.1	8
949	Tuning Ag content to achieve high thermoelectric properties of Bi-doped p-type Cu3SbSe4-based materials. Journal of Alloys and Compounds, 2021, 872, 159659.	2.8	14
950	Enhancing the figure of merit of n-type PbTe materials through multi-scale graphene induced interfacial engineering. Nano Today, 2021, 39, 101176.	6.2	20
951	Hidden role of intrinsic Sb-rich nano-precipitates for high-performance Bi2-Sb Te3 thermoelectric alloys. Acta Materialia, 2021, 215, 117058.	3.8	13

#	Article	IF	CITATIONS
952	Direct ink writing of three-dimensional thermoelectric microarchitectures. Nature Electronics, 2021, 4, 579-587.	13.1	56
953	Rare Earth Element Doping Introduces Pores to Improve Thermoelectric Properties of p-Type Bi0.46Sb1.54Te3. ACS Applied Energy Materials, 2021, 4, 9751-9757.	2.5	3
954	Performance analysis and design optimization of a compact thermoelectric generator with T-Shaped configuration. Energy, 2021, 229, 120652.	4.5	20
955	Material pairing and selection considerations for thermoelectric cooling devices with components dissimilar to Bi2Te3 based alloys. Materials Today Physics, 2021, 20, 100457.	2.9	7
956	Manipulation of hole and band for thermoelectric enhancements in SrCd2Sb2 Zintl compound. Chemical Engineering Journal, 2021, 420, 130530.	6.6	19
957	Effects of SiC doping on the thermoelectric properties of Bi1.9Ba0.1Sr2Co2Oy ceramics. Ceramics International, 2021, 47, 25045-25050.	2.3	9
958	The origin of ultra-low thermal conductivity of the Bi2Te2S compound and boosting the thermoelectric performance via carrier engineering. Materials Today Physics, 2021, 20, 100472.	2.9	15
959	Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys. Materials Today Energy, 2021, 21, 100795.	2.5	27
960	Compositional Fluctuations Mediated by Excess Tellurium in Bismuth Antimony Telluride Nanocomposites Yield High Thermoelectric Performance. Journal of Physical Chemistry C, 2021, 125, 20184-20194.	1.5	10
961	Thermoelectric degrees of freedom determining thermoelectric efficiency. IScience, 2021, 24, 102934.	1.9	15
962	Study on Enhancing the Thermoelectric Properties of Ti2CrSn Alloys. Metals, 2021, 11, 1503.	1.0	0
963	Insight into the effects of dislocations in nanoscale titanium niobium oxide (Ti2Nb14O39) anode for boosting lithium-ion storage. Journal of Colloid and Interface Science, 2022, 608, 90-102.	5.0	16
964	Enhanced thermoelectric performance of solution-grown Bi2Te3 nanorods. Materials Today Energy, 2021, 21, 100700.	2.5	10
965	Boronâ€Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in Nâ€Type Bi ₂ Te ₃ . Small, 2021, 17, e2104067.	5.2	30
966	Synergistic effects of B-In codoping in zone-melted Bi0.48Sb1.52Te3-based thermoelectric. Chemical Engineering Journal, 2021, 420, 130381.	6.6	20
967	Optimizing thermocouple's ZT through design innovation. Scientific Reports, 2021, 11, 19338.	1.6	2
968	Thermoelectric properties of (GeTe)1-x[(Ag2Te)0.4(Sb2Te3)0.6]x alloys. Rare Metals, 2022, 41, 921-930.	3.6	15
969	Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization. Nano Energy, 2021, 87, 106171.	8.2	39

#	Article	IF	CITATIONS
970	Thermoelectric Cu ₁₂ Sb ₄ S ₁₃ â€Based Synthetic Minerals with a Sublimationâ€Derived Porous Network. Advanced Materials, 2021, 33, e2103633.	11.1	46
971	Direct numerical analyses of nanoscale thermal transport near MgO edge dislocations. Scripta Materialia, 2021, 202, 113991.	2.6	4
972	Emerging two-dimensional tellurides. Materials Today, 2021, 51, 402-426.	8.3	27
973	High thermoelectric performance of (Bi 1―x Pr x) 2 (Te 0.9 Se 0.1) 3 alloys prepared by highâ€pressure sintering method. International Journal of Applied Ceramic Technology, 2021, 18, 2075.	1.1	0
974	Control of Cu-doping behavior in n-type Cu0.01Bi1.99Te2.7Se0.3 polycrystalline bulk via fabrication technique change. Journal of Materials Research and Technology, 2021, 14, 765-771.	2.6	3
975	Nanoengineering Approaches to Tune Thermal and Electrical Conductivity of a BiSbTe Thermoelectric Alloy. Advanced Engineering Materials, 2022, 24, 2100955.	1.6	4
976	Understanding bipolar thermal conductivity in terms of concentration ratio of minority to majority carriers. Journal of Materials Research and Technology, 2021, 14, 639-646.	2.6	6
977	Morphology and nanostructured features in BiSbTe and BiSeTe solid solutions obtained by hot extrusion. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115270.	1.7	6
978	Colossal thermo-hydro-electrochemical voltage generation for self-sustainable operation of electronics. Nature Communications, 2021, 12, 5269.	5.8	13
979	Advanced materials for personal thermal and moisture management of health care workers wearing PPE. Materials Science and Engineering Reports, 2021, 146, 100639.	14.8	32
980	Formation of pyrophosphates across grain boundaries induces the formation of mismatched but oriented interfaces in silver phosphate polypods. Applied Surface Science, 2021, 563, 149980.	3.1	1
981	High electrical transport performance and ultralow thermal conductivity realized in Ga doped single-layer octagon-square nitrogene. Applied Surface Science, 2021, 563, 150244.	3.1	0
982	Achievement of extra-high thermoelectric performance in doped copper (I) sulfide. Journal of Alloys and Compounds, 2021, 878, 160128.	2.8	9
983	Expand band gap and suppress bipolar excitation to optimize thermoelectric performance of Bi0.35Sb1.65Te3 sintered materials. Materials Today Physics, 2021, 21, 100544.	2.9	15
984	Nearly isotropic transport properties in anisotropically structured n-type single-crystalline Mg3Sb2. Materials Today Physics, 2021, 21, 100508.	2.9	17
985	High temperature Si–Ge alloy towards thermoelectric applications: A comprehensive review. Materials Today Physics, 2021, 21, 100468.	2.9	38
986	Different point defects originated from dissimilar deposition conditions in n-type Cu-doped Bi2Te3 films; crystal structure and thermoelectric property depending on Te-vacancy concentration. Journal of Materials Research and Technology, 2021, 15, 606-613.	2.6	3
987	Synthesis and characterization of G/TiO1.80 bulk composite thermoelectric material under high temperature and high pressure. Ceramics International, 2021, 47, 31852-31859.	2.3	2

#	Article	IF	CITATIONS
988	Optimising the thermoelectric properties of Bi2Sr2Co2Oy using Ag substitution and Nano-SiC doping. Ceramics International, 2021, 47, 30657-30664.	2.3	17
989	High thermoelectric performance bismuth telluride prepared by cold pressing and annealing facilitating large scale application. Materials Today Physics, 2021, 21, 100522.	2.9	6
990	Effect of particle-size distribution and pressure-induced densification on the microstructure and properties of printable thermoelectric composites and high energy density flexible devices. Nano Energy, 2021, 89, 106482.	8.2	5
991	Superior thermoelectric cooling performance by suppressing bipolar diffusion effect and enhancing anisotropic texture in p-/n-type Bi2Te3 based compounds. Journal of Alloys and Compounds, 2021, 888, 161572.	2.8	14
992	Critical role of tellurium self-compensation in enhancing the thermoelectric performance of p-Type Bi0.4Sb1.6Te3 alloy. Chemical Engineering Journal, 2021, 425, 130670.	6.6	19
993	Broadening the optimum thermoelectric power generation range of p-type sintered Bi0.4Sb1.6Te3 by suppressing bipolar effect. Chemical Engineering Journal, 2021, 426, 131853.	6.6	16
994	Cu nanoparticle-processed n-type Bi2Te2.7Se0.3 alloys for low-temperature thermoelectric power generation. Journal of Alloys and Compounds, 2021, 884, 161060.	2.8	7
995	Constructing multi-type defects in In0.1Sb1.9Te3-(MgB2) composites: Simultaneously enhancing the thermoelectric and mechanical properties. Nano Energy, 2021, 90, 106530.	8.2	10
996	Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix. Journal of Materials Science and Technology, 2021, 94, 175-182.	5.6	16
997	Electronic structure, elastic and optical properties of Bi2Te3/Sb2Te3 thermoelectric composites in the periodic-superlattice thin films. Composites Communications, 2021, 28, 100917.	3.3	8
998	Thermoelectric properties of co-doped (Bi0.98In0.02)2Te2.7Se0.3 /reduced graphene oxide composites prepared by solid-state reaction. Materials Research Bulletin, 2022, 145, 111517.	2.7	10
999	Thermoelectricity. , 2022, , 187-247.		2
1000	High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications. Journal of Materials Science and Technology, 2022, 97, 182-189.	5.6	62
1001	Bismuth telluride. , 2021, , 45-67.		1
1002	Mixed-phase effect of a high Seebeck coefficient and low electrical resistivity in Ag ₂ S. Journal Physics D: Applied Physics, 2021, 54, 115503.	1.3	10
1003	Structural and Optical Studies on Strontium-Filled CoSb3 Nanoparticles Via a Solvo-/Hydrothermal Method. Journal of Electronic Materials, 2021, 50, 1735-1741.	1.0	5
1004	Synergistically Optimized Thermoelectric and Mechanical Properties in p â€Type BiSbTe by a Microdroplet Deposition Technique. Energy Technology, 2021, 9, 2001024.	1.8	1
1005	Two-dimensional (2D) thermoelectric materials. , 2021, , 233-260.		3

#	Article	IF	CITATIONS
1006	Defect engineering in thermoelectric materials: what have we learned?. Chemical Society Reviews, 2021, 50, 9022-9054.	18.7	201
1007	Recent Advances in Functional Thermoelectric Materials for Printed Electronics. , 2021, , 79-122.		0
1008	Beyond 3D-traditional materials thermoelectric materials. , 2021, , 163-193.		1
1009	Phonon scattering in the complex strain field of a dislocation in PbTe. Journal of Materials Chemistry C, 2021, 9, 8506-8514.	2.7	7
1010	High In-Plane Seebeck Coefficients of Bi–Sb–Te Alloy Thin Films with Growth Texture and Their Field-Controlled Seebeck Coefficients. Journal of Physical Chemistry C, 2021, 125, 2373-2381.	1.5	3
1011	Dislocation-based crack initiation and propagation in single-crystal SrTiO3. Journal of Materials Science, 2021, 56, 5479-5492.	1.7	17
1012	Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance. Advanced Materials, 2020, 32, e1906457.	11.1	71
1013	Anisotropic thermoelectric transport properties of Bi0.5Sb1.5Te2.96+x zone melted ingots. Journal of Solid State Chemistry, 2020, 288, 121433.	1.4	8
1014	Cu2Se thermoelectrics: property, methodology, and device. Nano Today, 2020, 35, 100938.	6.2	119
1015	Preparation and thermoelectric properties of flexible SWCNT/PEDOT:PSS composite film. Synthetic Metals, 2020, 261, 116318.	2.1	37
1016	Triboelectric Charge-Driven Enhancement of the Output Voltage of BiSbTe-Based Thermoelectric Generators. ACS Energy Letters, 2021, 6, 1095-1103.	8.8	18
1017	Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nature Communications, 2018, 9, 2497.	5.8	243
1018	Chalcogenide Thermoelectric Materials. RSC Energy and Environment Series, 2016, , 27-59.	0.2	8
1019	Chapter 3. Thermoelectric Oxides. RSC Energy and Environment Series, 2016, , 60-82.	0.2	4
1020	Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. Journal of Materials Chemistry A, 2020, 8, 11370-11380.	5.2	41
1021	The unique evolution of transport bands and thermoelectric performance enhancement by extending low-symmetry phase to high temperature in tin selenide. Journal of Materials Chemistry C, 2020, 8, 9345-9351.	2.7	8
1022	Variation of thermoelectric figure-of-merits for Mg2Si x Sn1-x solid solutions. Journal Physics D: Applied Physics, 2021, 54, 055504.	1.3	6
1023	First-principles investigation on the thermoelectric performance of half-Heusler compound CuLiX(X = Se, Te). Journal of Physics Condensed Matter, 2021, 33, 095501.	0.7	12

#	Article	IF	CITATIONS
1024	Anisotropic thermoelectric effect and field-effect devices in epitaxial bismuthene on Si (111). Nanotechnology, 2020, 31, 475202.	1.3	17
1025	High thermoelectric performance in two dimensional chalcogenides systems: GaSe and GaTe. Nanotechnology, 2021, 32, 115702.	1.3	22
1026	Thermoelectric Properties of In <i>_x</i> FeCo ₃ Sb ₁₂ Consisting Mainly of In-Filled <i>p</i> -Type Skutterudites. Materials Transactions, 2017, 58, 1207-1211.	0.4	4
1027	Thermoelectric Transport Properties of Interface-Controlled <i>n</i> -type Bismuth Telluride Selenide Composites by Reduced Graphene Oxide. Journal of Korean Institute of Metals and Materials, 2019, 57, 603-608.	0.4	5
1028	Highly Textured N-Type SnSe Polycrystals with Enhanced Thermoelectric Performance. Research, 2019, 2019, 9253132.	2.8	39
1029	The Thermoelectric Properties of n-Type Bismuth Telluride: Bismuth Selenide Alloys Bi2Te3â^'xSex. Research, 2020, 2020, 4361703.	2.8	61
1030	Manipulation of Band Degeneracy and Lattice Strain for Extraordinary PbTe Thermoelectrics. Research, 2020, 2020, 8151059.	2.8	23
1031	Defects Engineering with Multiple Dimensions in Thermoelectric Materials. Research, 2020, 2020, 9652749.	2.8	56
1032	Investigation on the Thermoelectric Properties of Bismuth Telluride Matrix Composites by Addition of Graphene Oxide Powders. Journal of Korean Powder Metallurgy Institute, 2016, 23, 263-269.	0.2	4
1033	Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures. Journal of the Korean Ceramic Society, 2017, 54, 75-85.	1.1	25
1034	Effect of Density-of-States Effective Mass on Transport Properties of Two Converging Valence Bands. Journal of the Korean Ceramic Society, 2019, 56, 325-330.	1.1	8
1035	Electrothermal Simulation and Optimal Design of Thermoelectric Cooler Using Analytical Approach. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 3066-3077.	1.9	1
1036	Tuning the electric transport behavior of AgCrSe2 by intrinsic defects. Science China Chemistry, 2021, 64, 1970-1975.	4.2	3
1037	The Electrical and Thermal Transport Properties of La-Doped SrTiO3 with Sc2O3 Composite. Materials, 2021, 14, 6279.	1.3	1
1038	Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium. Energy, 2022, 239, 122440.	4.5	12
1039	Metal Halide Perovskites as Emerging Thermoelectric Materials. ACS Energy Letters, 2021, 6, 3882-3905.	8.8	40
1040	High-performance thermoelectrics and challenges for practical devices. Nature Materials, 2022, 21, 503-513.	13.3	248
1041	Grain boundary velocity and curvature are not correlated in Ni polycrystals. Science, 2021, 374, 189-193.	6.0	63

#	Article	IF	CITATIONS
1042	Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 107201.	0.2	4
1043	Electronic and Optoelectronic Materials and Device Innovations. , 2016, , 1-38.		0
1044	A Numerical Study on the Anisotropic Thermal Conduction by Phonon Mean Free Path Spectrum of Silicon in Silicon-on-Insulator Transistor. Transactions of the Korean Society of Mechanical Engineers, B, 2016, 40, 111-117.	0.0	1
1045	Current Status of Thermoelectric Power Generation Technology. Applied Chemistry for Engineering, 2016, 27, 353-357.	0.2	3
1046	Research for Controlled Thermal Conductivity of p-Type Skutterudite Materials. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2016, 29, 671-675.	0.0	0
1047	Mechanical Properties of Thermoelectric Materials. , 2017, , 555-602.		0
1048	Polymer-Derived Ceramics: A Novel Inorganic Thermoelectric Material System. , 2019, , 229-252.		0
1049	SnTe-Based Thermoelectrics. , 2019, , 63-81.		1
1050	Chapter 5. Properties and Applications of Layered Thermoelectric Materials. RSC Smart Materials, 2019, , 129-164.	0.1	0
1052	High Dimensionless Figure of Merit <i>ZT</i> = 1.38 Achieved in p-Type Si–Ge–Au–B Thin Film. Materials Transactions, 2020, 61, 1014-1019.	0.4	4
1053	Mixed-Valence CsCu ₄ Se ₃ : Large Phonon Anharmonicity Driven by the Hierarchy of the Rigid [(Cu ⁺) ₄ (Se ^{2–}) ₂](Se [–]) Double Anti-CaF ₂ Layer and the Soft Cs ⁺ Sublattice. Journal of the American Chemical Society, 2021, 143, 18490-18501.	6.6	25
1054	Prediction of thermoelectric performance for layered IV-V-VI semiconductors by high-throughput ab initio calculations and machine learning. Npj Computational Materials, 2021, 7, .	3.5	33
1055	Multi-parameter optimization and uncertainty analysis of multi-stage thermoelectric generator with temperature-dependent materials. Energy Reports, 2021, 7, 7212-7223.	2.5	15
1056	Porous Thermoelectric Zintl: YbCd ₂ Sb ₂ . ACS Applied Energy Materials, 2021, 4, 913-920.	2.5	9
1057	Quasi-commercial production of SnS-based nanosheets with enhanced thermoelectric performance via a wet chemical synthesis. Chemical Engineering Journal, 2022, 430, 133049.	6.6	4
1058	Effect of In As Sb substitute on thermoelectric properties of Yb filled CoSb3 skutterudite. AIP Conference Proceedings, 2020, , .	0.3	1
1059	Thermo-Responsive Nanomaterials for Thermoelectric Generation. Springer Series in Materials Science, 2020, , 269-293.	0.4	1
1060	Growth and Thermoelectric Properties of Cl Doped SnSe Single Crystal. Material Sciences, 2020, 10, 877-884.	0.0	0

ARTICLE

1062	Realizing Enhanced Thermoelectric Performance and Hardness in Icosahedral Cu ₅ FeS _{4â^'} <i>_x</i> Se <i>_x</i> With Highâ€Density Twin Boundaries. Small, 2022, 18, e2104592.	5.2	15
1063	Nanometric phonon spectroscopy for diamond and cubic boron nitride. Physical Review B, 2021, 104, .	1.1	3
1064	Novel two-dimensional beta-XTe (X = Ge, Sn, Pb) as promising room-temperature thermoelectrics. Journal of Chemical Physics, 2021, 155, 204701.	1.2	7
10/5	Combined effect of donor doping and RGO (reduced graphene oxide) coating in La/Nb-doped SrTiO3		

1061 ĐаĐ¼2Đ¾ŇŇ,Ñ€ŇƒĐ⁰Ň,ŇƒŇ€Đ,Ň€Đ,Ň€Đ¾Đ2аĐ½2Đ,Đμ Đ, ŇĐ¾ĐĐаĐ½D,Đμ Đ½D°Đ½2Đ34Đ₽34Đ4Đ;Đ¾Đ4Đ,Ň**,Ď**34Đ2 â**€**" Đ;ĐμŇ€

1065	Combined effect of donor doping and RGO (reduced graphene oxide) coating in La/Nb-doped SrTiO3 thermoelectrics. Solid State Sciences, 2021, 122, 106774.	1.5	2
1066	Thermoelectric converter: Strategies from materials to device application. Nano Energy, 2022, 91, 106692.	8.2	127
1067	Contribution of 1D topological states to the extraordinary thermoelectric properties of Bi ₂ Te ₃ . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200088.	1.0	0
1068	Influence of Te Vacancies on the Thermoelectric Properties of n-type Cu0.008Bi2Te2.7-xSe0.3. Journal of Korean Institute of Metals and Materials, 2020, 58, 721-727.	0.4	5
1069	Nanoarchitectonics of p-type BiSbTe with improved figure of merit <i>via</i> introducing PbTe nanoparticles. RSC Advances, 2021, 11, 36636-36643.	1.7	2
1070	Thermoelectric Generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering, 2022, 201, 117793.	3.0	153
1071	Enhancing the room temperature thermoelectric performance of n-type Bismuth-telluride-based polycrystalline materials by low-angle grain boundaries. Materials Today Physics, 2022, 22, 100573.	2.9	19
1072	Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano Energy, 2022, 92, 106738.	8.2	30
1073	Synthesis of Cu2 – nSe via Autowave Combustion of an Elemental Powder Mixture. Inorganic Materials, 2021, 57, 1124-1134.	0.2	1
1074	Thermoelectric Ag ₂ Se: Imperfection, Homogeneity, and Reproducibility. ACS Applied Materials & Interfaces, 2021, 13, 60192-60199.	4.0	28
1075	Engineering Electronic Band Structure of Binary Thermoelectric Nanocatalysts for Augmented Pyrocatalytic Tumor Nanotherapy. Advanced Materials, 2022, 34, e2106773.	11.1	42
1076	High seebeck coefficient and low thermal conductivity in Bi and In co-doped GeTe thermoelectric material. Journal of Materials Research and Technology, 2021, 15, 6312-6318.	2.6	17
1077	Advances in thermoelectric (GeTe) x (AgSbTe2)100-x. Chinese Physics B, 0, , .	0.7	1
1078	Enhanced Thermoelectric Performance by Strong Phonon Scattering at the Heterogeneous Interfaces of the Mg ₂ Sn/Mg ₃ Sb ₂ High-Content Nanocomposite. ACS Applied Materials & Materials	4.0	11

#	Article	IF	CITATIONS
1079	Optimized Thermoelectric Properties of Bi _{0.48} Sb _{1.52} Te ₃ through AgCuTe Doping for Low-Grade Heat Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 57514-57520.	4.0	19
1080	Ultrafast dynamics of photoexcited carriers and coherent phonons in ultrathin Bi2Te3 thermoelectric films. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	2
1081	Rational Composition and Structural Control for Enhancing Thermoelectric Properties in pâ€Type Bi 0.4 Sb 1.6 Te 3 Thin Films. Advanced Materials Interfaces, 0, , 2101812.	1.9	1
1082	Enhancing the Thermoelectric and Mechanical Properties of Bi _{0.5} Sb _{1.5} Te ₃ Modulated by the Texture and Dense Dislocation Networks. ACS Applied Materials & Interfaces, 2021, 13, 58974-58981.	4.0	13
1083	Achieving Highâ€Performance Ge _{0.92} Bi _{0.08} Te Thermoelectrics via LaB ₆ â€Alloyingâ€Induced Band Engineering and Multiâ€Scale Structure Manipulation. Small, 2022, 18, e2105923.	5.2	5
1084	Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe. ACS Applied Materials & Interfaces, 2021, 13, 58701-58711.	4.0	14
1085	(Ti _{0.2} V _{0.2} Cr _{0.2} Nb _{0.2} Ta _{0.2}) ₂ AlCa highâ€entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 2022, 105, 2764-2771.	–(Ti <sub 1.9</sub 	>0.2' 13
1086	Multiband Transport Enables Thermoelectric Enhancements in SrMg ₂ Bi ₂ Compound. SSRN Electronic Journal, 0, , .	0.4	0
1087	Ultralow lattice thermal conductivity enables high thermoelectric performance in BaAg2Te2 alloys. Materials Today Physics, 2022, 22, 100591.	2.9	14
1088	Comparative Study of Thermoelectric Properties of Sb ₂ Si ₂ Te ₆ and Bi ₂ Si ₂ Te ₆ . ACS Applied Materials & amp; Interfaces, 2022, 14, 1270-1279.	4.0	15
1089	Grain boundary in NbCo(Pt)Sn half-Heusler compounds: Segregation and solute drag on grain boundary migration. Acta Materialia, 2022, 226, 117604.	3.8	5
1090	Influence of dislocations on domain walls in perovskite ferroelectrics: Phase-field simulation and driving force calculation. International Journal of Solids and Structures, 2022, 238, 111391.	1.3	5
1091	High thermoelectric performance of Cu2Se-based thin films with adjustable element ratios by pulsed laser deposition. Materials Today Energy, 2022, 24, 100929.	2.5	11
1092	Excellent dispersion effects of carbon nanodots on the thermoelectric properties of Bi2Te2.7Se0.3 with excessive Te. Journal of Alloys and Compounds, 2022, 899, 163296.	2.8	15
1093	Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Applied Physics Reviews, 2022, 9, .	5.5	25
1094	Thermoelectric transport effects beyond single parabolic band and acoustic phonon scattering. Materials Advances, 2022, 3, 734-755.	2.6	21
1095	Improved thermoelectric properties of zone-melted p-type bismuth-telluride-based alloys for power generation. Rare Metals, 2022, 41, 1490-1495.	3.6	15
1096	Thermoelectric Coolers: Progress, Challenges, and Opportunities. Small Methods, 2022, 6, e2101235.	4.6	77

#	Article	IF	CITATIONS
1097	Nanostructured Bulk Thermoelectric Materials for Energy Harvesting. NIMS Monographs, 2022, , 199-231.	0.1	5
1098	High-temperature plastic deformation of \$\$langle 110angle\$\$-oriented BaTiO3 single crystals. Journal of Materials Research, 2022, 37, 737-746.	1.2	6
1100	Printing thermoelectric inks toward next-generation energy and thermal devices. Chemical Society Reviews, 2022, 51, 485-512.	18.7	39
1101	Realizing High Thermoelectric Performance in p-Type SnSe Crystals via Convergence of Multiple Electronic Valence Bands. ACS Applied Materials & Interfaces, 2022, 14, 4091-4099.	4.0	8
1102	Key properties of inorganic thermoelectric materials—tables (version 1). JPhys Energy, 2022, 4, 022002.	2.3	51
1103	Cold-Sintered Bi ₂ Te ₃ -Based Materials for Engineering Nanograined Thermoelectrics. ACS Applied Energy Materials, 2022, 5, 2002-2010.	2.5	25
1104	Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material. Joule, 2022, 6, 193-204.	11.7	89
1105	ds-Block Element-Enabled Cooperative Regulation of Electrical and Thermal Transport for Extraordinary N- and P-Type PbSe Thermoelectrics near Room Temperature. Chemistry of Materials, 2022, 34, 1862-1874.	3.2	8
1106	Boosting thermoelectric performance in Cu3SbS4-based compounds through incorporating SiC nanoparticles. Journal of Materials Science: Materials in Electronics, 2022, 33, 5214-5223.	1.1	3
1107	Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Letters, 2022, 7, 720-735.	8.8	40
1108	Strong enhancement of room-temperature thermoelectric properties of Cu-doped Bi2Te2.7Se0.3. Applied Physics Letters, 2022, 120, .	1.5	6
1109	A comprehensive review on Bi ₂ Te ₃ â€based thin films: Thermoelectrics and beyond. , 2022, 1, 88-115.		119
1110	Enhanced thermoelectric performance at elevated temperature via suppression of intrinsic excitation in p-type Bi0.5â^'xSnxSb1.5Te3 thermoelectric material. Journal of Materials Science: Materials in Electronics, 2022, 33, 6018-6030.	1.1	4
1111	Flexible thermoelectric films based on interconnected magnetic nanowire networks. Journal Physics D: Applied Physics, 2022, 55, 223001.	1.3	6
1112	Dislocation-mediated electronic conductivity in rutile. Materials Today Nano, 2022, 17, 100171.	2.3	9
1113	Enhancing the shear strength of single-crystalline In4Se3 through point defects. Scripta Materialia, 2022, 211, 114507.	2.6	2
1114	Melt solidification rate-dependent structural and thermoelectric properties of Sb2Te3/Te nanocomposites. Journal of Alloys and Compounds, 2022, 902, 163767.	2.8	4
1115	Maximizing phonon scattering efficiency by Cu ₂ Se alloying in AgCuTe thermoelectric materials. Journal of Materials Chemistry A, 2022, 10, 6701-6712.	5.2	17

#	Article	IF	CITATIONS
1116	High Thermoelectric Performance SnTe with a Segregated and Percolated Structure. ACS Applied Materials & Interfaces, 2022, , .	4.0	21
1117	In situ generation of flower-like and microspherical dendrites to improve thermoelectric properties of p-type Bi0.46Sb1.54Te3. Materials Today Physics, 2022, 23, 100633.	2.9	2
1118	Modification of electronic and thermoelectric properties of InSe/GaSe superlattices by strain engineering. Physical Review Materials, 2022, 6, .	0.9	6
1119	Ultrahigh in-plane thermoelectric performance in self-assembled PbSe:Au films with vertically aligned nanopillars. Acta Materialia, 2022, 227, 117692.	3.8	4
1120	High thermoelectric performance of BixSb2â^'xTe3 alloy achieved via structural manipulation under optimized heat treatment. Chemical Engineering Journal, 2022, 435, 135062.	6.6	8
1121	Thermoelectric Generator: Materials and Applications in Wearable Health Monitoring Sensors and Internet of Things Devices. Advanced Materials Technologies, 2022, 7, .	3.0	42
1123	High <i>ZT</i> in p-type thermoelectric (Bi,Sb) ₂ Te ₃ with built-in nanopores. Energy and Environmental Science, 2022, 15, 2039-2048.	15.6	46
1124	Conformation-Dependent Thermoelectric Power Factor of Multilayer Nanocomposites. SSRN Electronic Journal, 0, , .	0.4	0
1125	Thermal-Electric and Stress Analysis of Thermoelectric Coolers Under Continuous Pulse Input Current. SSRN Electronic Journal, 0, , .	0.4	1
1126	General strategies to improve thermoelectric performance with an emphasis on tin and germanium chalcogenides as thermoelectric materials. Journal of Materials Chemistry A, 2022, 10, 6872-6926.	5.2	26
1127	Weak donor-like effect to enhance the thermoelectric performance of Bi ₂ Te2.79Se0.21 near room temperature. Functional Materials Letters, 2022, 15, .	0.7	0
1128	Operation of Wearable Thermoelectric Generators Using Dual Sources of Heat and Light. Advanced Science, 2022, 9, e2104915.	5.6	17
1129	Giant Roomâ€Temperature Power Factor in <i>p</i> â€Type Thermoelectric SnSe under High Pressure. Advanced Science, 2022, 9, e2103720.	5.6	7
1130	Synergistic Optimization of the Thermoelectric and Mechanical Properties of Large-Size Homogeneous Bi _{0.5} Sb _{1.5} Te ₃ Bulk Samples via Carrier Engineering for Efficient Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 10394-10406.	4.0	12
1131	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	4.1	215
1132	Nanotwins Strengthening High Thermoelectric Performance Bismuth Antimony Telluride Alloys. Advanced Science, 2022, 9, e2200432.	5.6	23
1133	Enhanced thermoelectric properties of 2H–MoS2 thin film by tuning post sulfurization temperature. Ceramics International, 2022, 48, 18944-18948.	2.3	7
1134	Enhancing the thermoelectric properties through hierarchical structured materials fabricated through successive arrangement of different microstructure. Journal of Alloys and Compounds, 2022, , 164803.	2.8	1

#	Article	IF	CITATIONS
1135	Synergistically optimizing carrier and phonon transport properties in n-type PbTe through I doping and SnSe alloying. Materials Today Energy, 2022, 26, 100983.	2.5	5
1136	Multifunctional Wearable Thermoelectrics for Personal Thermal Management. Advanced Functional Materials, 2022, 32, .	7.8	75
1137	Exceptionally Heavy Doping Boosts the Performance of Iron Silicide for Refractory Thermoelectrics. Advanced Energy Materials, 2022, 12, .	10.2	17
1138	Synergistically Optimized Thermal Conductivity and Carrier Concentration in GeTe by Bi–Se Codoping. ACS Applied Materials & Interfaces, 2022, 14, 14359-14366.	4.0	9
1139	Imprints of interfaces in thermoelectric materials. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 361-410.	6.8	6
1140	Thermoelectric Properties of Cu2Te Nanoparticle Incorporated N-Type Bi2Te2.7Se0.3. Materials, 2022, 15, 2284.	1.3	7
1141	Improved Thermoelectric Performance of Inâ€Doped Quaternary Cu ₂ MnSnSe ₄ Alloys. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	1.2	1
1142	Electronic Topological Transition as a Route to Improve Thermoelectric Performance in Bi _{0.5} Sb _{1.5} Te ₃ . Advanced Science, 2022, 9, e2105709.	5.6	6
1143	Multiband transport enables thermoelectric enhancements in the SrMg ₂ Bi ₂ compound. Journal of Applied Physics, 2022, 131, 135101.	1.1	0
1144	Structural Modularization of Cu ₂ Te Leading to High Thermoelectric Performance near the Mott–Ioffe–Regel Limit. Advanced Materials, 2022, 34, e2108573.	11.1	20
1145	Thermodynamic approaches to determine the vacancy concentration in defective Nb1-CoSb half-Heusler thermoelectric materials. Acta Materialia, 2022, 228, 117736.	3.8	5
1146	Mobility-enhanced thermoelectric performance in textured nanograin Bi2Se3, effect on scattering and surface-like transport. Materials Today Physics, 2022, 24, 100669.	2.9	5
1147	Utilizing twin interfaces to reduce lattice thermal conductivity of superlattice. International Journal of Heat and Mass Transfer, 2022, 189, 122700.	2.5	4
1148	Relationship between the density of states effective mass and carrier concentration of thermoelectric phosphide Ag6Ge10P12 with strong mechanical robustness. Materials Today Sustainability, 2022, 18, 100116.	1.9	11
1149	Enhanced thermoelectric performance of n-type (PbSe)n(Sb2Te3) pseudo-binary via Zn filling and Ag2Se compositing. Journal of Alloys and Compounds, 2022, 907, 164416.	2.8	3
1150	Thermoelectrics for medical applications: Progress, challenges, and perspectives. Chemical Engineering Journal, 2022, 437, 135268.	6.6	101
1151	Transparent spin thermoelectricity with enhanced energy conversion. Nano Energy, 2022, 98, 107224.	8.2	2
1152	Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation. Journal of Materials Science and Technology, 2022, 117, 251-258.	5.6	12

#	Article	IF	CITATIONS
1153	Thermoelectric coolers: Infinite potentials for finite localized microchip cooling. Journal of Materials Science and Technology, 2022, 121, 256-262.	5.6	54
1154	Enhanced thermoelectric properties of polycrystalline CuCrS _{2â^x} Se _x (x = 0,) Tj ETQq1 55, 135302.	1 0.7843 1.3	14 rgBT /Ov 5
1155	Thermoelectric performance of XI ₂ (X = Ge, Sn, Pb) bilayers. Chinese Physics B, O, , .	0.7	1
1156	Beneficial Effect of Na ₂ CO ₃ Additions on the Thermoelectric Performance of Meltâ€Route Cu ₂ Se. Advanced Electronic Materials, 2022, 8, .	2.6	4
1157	Suppressing thermal conductivity of nano-grained thermoelectric material using acoustically hard nanoparticles. Journal of Applied Physics, 2021, 130, .	1.1	4
1158	High-performance thermoelectric properties of strained two-dimensional tellurium. Physical Review Materials, 2021, 5, .	0.9	5
1159	Ultralow thermal conductivity of thermoelectric compound Ag ₂ BaGeSe ₄ . AIP Advances, 2021, 11, 125320.	0.6	1
1160	Exceptional thermoelectric power factors in hyperdoped, fully dehydrogenated nanocrystalline silicon thin films. Applied Physics Letters, 2021, 119, .	1.5	11
1161	The Roles of Grain Boundaries in Thermoelectric Transports. , 0, 1, .		11
1162	Bi2S3 as a Promising ThermoelectricMaterial:Back and Forth. , 0, 1, .		6
1163	Challenges for Thermoelectric Power Generation: From a Material Perspective. , 0, 1, .		14
1164	Remarkable Thermoelectric Performance in K ₂ CdPb Crystals with 1D Building Blocks via Structure Particularity and Bond Heterogeneity. ACS Applied Energy Materials, 2022, 5, 5146-5158.	2.5	6
1165	Low-temperature densification of high-entropy (Ti,Zr,Nb,Ta,Mo)C—Co composites with high hardness and high toughness. Journal of Advanced Ceramics, 2022, 11, 805-813.	8.9	29
1166	Mediating Point Defects Endows nâ€Type Bi ₂ Te ₃ with High Thermoelectric Performance and Superior Mechanical Robustness for Power Generation Application. Small, 2022, 18, e2201352.	5.2	51
1167	Synthesis, Neutron Diffraction, and DFT Studies of NaLa(WO ₄) ₂ : Yb ³⁺ /Er ³⁺ ; NIR Induced Green Fluorescent Bifunctional Probes for In Vitro Cell Imaging and Solid State Lighting. ChemistrySelect, 2022, 7, .	0.7	1
1168	Temperature- and pressure-dependent phonon transport properties of SnS across phase transition from machine-learning interatomic potential. International Journal of Heat and Mass Transfer, 2022, 192, 122859.	2.5	9
1169	Phonon anharmonicity in binary chalcogenides for efficient energy harvesting. Materials Horizons, 2022, 9, 1602-1622.	6.4	5
1170	Unraveling the relationships between chemical bonding and thermoelectric properties: n-type ABO ₃ perovskites. Journal of Materials Chemistry A, 2022, 10, 11039-11045.	5.2	10

#	Article	IF	CITATIONS
1171	Synergistic effect of Zn doping on thermoelectric properties to realize a high figure-of-merit and conversion efficiency in Bi _{2â°'<i>x</i>} Zn _{<i>x</i>} Te ₃ based thermoelectric generators. Journal of Materials Chemistry C, 2022, 10, 7970-7979.	2.7	13
1172	Decoupling opposed thermoelectric properties. Ceramics International, 2022, 48, 22548-22553.	2.3	3
1173	Electronic Orbital Alignment and Hierarchical Phonon Scattering Enabling High Thermoelectric Performance p-Type Mg ₃ Sb ₂ Zintl Compounds. Research, 2022, 2022, 9842949.	2.8	5
1174	Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in nâ€Type Bi ₂ Te _{2.7} Se _{0.3} . Advanced Science, 2022, 9, e2201353.	5.6	19
1175	Enhancements of thermoelectric performance in n-type Bi2Te3-based nanocomposites through incorporating 2D Mxenes. Journal of the European Ceramic Society, 2022, 42, 4587-4593.	2.8	8
1176	Research Progress of Ionic Thermoelectric Materials for Energy Harvesting. , 0, , .		2
1177	Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies, 2022, 15, 3375.	1.6	28
1178	Energy band and charge-carrier engineering in skutterudite thermoelectric materials. Chinese Physics B, 2022, 31, 107303.	0.7	3
1179	Observation of nontrivial topological electronic structure of orthorhombic SnSe. Physical Review Materials, 2022, 6, .	0.9	0
1180	Thermoelectric properties of Sm-doped BiCuSeO oxyselenides fabricated by two-step reactive sintering. Journal of Alloys and Compounds, 2022, 912, 165208.	2.8	10
1181	Conformation-dependent thermoelectric power factor of multilayer nanocomposites. Applied Surface Science, 2022, 594, 153483.	3.1	4
1182	Unusual thermoelectric properties mediated by solute segregation in tellurium alloyed CoSbS. Journal of Materials Chemistry A, 2022, 10, 19829-19838.	5.2	2
1183	BiSbTe alloy with high thermoelectric and mechanical performance for power generation. Scripta Materialia, 2022, 218, 114801.	2.6	7
1184	Direct ink writing of high-performance Bi ₂ Te ₃ -based thermoelectric materials using quasi-inorganic inks and interface engineering. Journal of Materials Chemistry A, 2022, 10, 12921-12927.	5.2	8
1186	Design of additives with different physical properties to control nanostructures of n-type Bi2Te3 thermoelectric thin films grown by a sputtering process. Journal of the Korean Physical Society, 0, , .	0.3	0
1187	Solution-Processed Hole-Doped SnSe Thermoelectric Thin-Film Devices for Low-Temperature Power Generation. ACS Energy Letters, 2022, 7, 2092-2101.	8.8	17
1188	Neural network-assisted optimization of segmented thermoelectric power generators using active learning based on a genetic optimization algorithm. Energy Reports, 2022, 8, 6633-6644.	2.5	15
1189	Sb-Doped Snse2Â High-Performance Thermoelectric Material. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1190	Strategies to Improve the Thermoelectric Figure of Merit in Thermoelectric Functional Materials. Frontiers in Chemistry, 2022, 10, .	1.8	22
1191	Macro-Micro-Coupling Simulation and Space Experiment Study on Zone Melting Process of Bismuth Telluride-Based Crystal Materials. Metals, 2022, 12, 886.	1.0	1
1192	Insights into Low Thermal Conductivity in Inorganic Materials for Thermoelectrics. Journal of the American Chemical Society, 2022, 144, 10099-10118.	6.6	57
1193	Large Thermopower Enhanced by Spin Entropy in Antiferromagnet EuMnSb ₂ . Advanced Functional Materials, 2022, 32, .	7.8	4
1194	Synthesis of N-type Bi2Te2.7Se0.3 Compounds through Oxide-Reduction Process and Related Thermoelectric Transport Properties. Journal of Korean Institute of Metals and Materials, 2022, 60, 463-470.	0.4	5
1195	Topological insulator VxBi1.08-Sn0.02Sb0.9Te2S as a promising n-type thermoelectric material. Journal of Alloys and Compounds, 2022, 918, 165550.	2.8	3
1196	High-performance low-cost sulfide/selenide thermoelectric devices. , 2022, , 329-376.		2
1197	60 years of dislocations in ceramics: A conceptual framework for dislocation mechanics in ceramics. International Journal of Ceramic Engineering & Science, 2022, 4, 214-239.	0.5	6
1198	Three-dimensional imaging of grain boundaries via quantitative fluorescence X-ray tomography analysis. Communications Materials, 2022, 3, .	2.9	5
1199	Grain Size Dependence of the Thermoelectric Performance in Cu2.98Co0.02SbSe4. Journal of Electronic Materials, 0, , .	1.0	0
1200	Creating high-dense stacking faults and endo-grown nanoneedles to enhance phonon scattering and improve thermoelectric performance of Cu2SnSe3. Nano Energy, 2022, 100, 107510.	8.2	18
1201	Microstructure Evolution in Plastic Deformed Bismuth Telluride for the Enhancement of Thermoelectric Properties. Materials, 2022, 15, 4204.	1.3	1
1202	Decreased order-disorder transition temperature and enhanced phonon scattering in Ag-alloyed Cu3SbSe3. Journal of Alloys and Compounds, 2022, 919, 165829.	2.8	2
1203	Antisite defect manipulation enables the high thermoelectric performance of p-type Bi2-Sb Te3 alloys for solid-state refrigeration. Materials Today Physics, 2022, 27, 100764.	2.9	3
1204	Effects of sintering temperature on thermoelectric figure of merit of trace Al ₂ O ₃ doped n-type ZnO nanocomposites. Materials Chemistry Frontiers, 2022, 6, 2468-2477.	3.2	2
1205	Approach to Determine the Densityâ€ofâ€States Effective Mass with Carrier Concentrationâ€Dependent Seebeck Coefficient. Advanced Functional Materials, 2022, 32, .	7.8	49
1206	A facile way to optimize thermoelectric properties of SnSe thin films via sonication-assisted liquid-phase exfoliation. Journal of Materials Science: Materials in Electronics, 2022, 33, 15385-15392.	1.1	0
1207	Synthesis and characterization of Eu ₂ InTe ₅ : A new layered multiâ€ŧelluride and its thermoelectric properties. Physica Status Solidi - Rapid Research Letters, 0, , .	1.2	0

#	Article	IF	Citations
1208	Surface Functionalization of Surfactantâ€Free Particles: a Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance. Angewandte Chemie, 0, , .	1.6	2
1209	Thermoelectric Zintl Compound In1â€xGaxTe: Pure Acoustic Phonon Scattering and Dopantâ€Induced Deformation Potential Reduction and Lattice Shrink. Angewandte Chemie, 0, , .	1.6	0
1210	Surface Functionalization of Surfactantâ€Free Particles: A Strategy to Tailor the Properties of Nanocomposites for Enhanced Thermoelectric Performance. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
1211	Thermoelectric Zintl Compound In _{1â^'<i>x</i>} Ga _{<i>x</i>} Te: Pure Acoustic Phonon Scattering and Dopantâ€Induced Deformation Potential Reduction and Lattice Shrink. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
1212	Suppressing lone-pair expression endows room-temperature cubic structure and high thermoelectric performance in GeTe-based materials. Materials Today Physics, 2022, 27, 100780.	2.9	5
1213	Thermal-electric and stress analysis of thermoelectric coolers under continuous pulse input current. Applied Thermal Engineering, 2022, 214, 118910.	3.0	8
1214	Challenges and strategies to optimize the figure of merit: Keeping eyes on thermoelectric metamaterials. Materials Science in Semiconductor Processing, 2022, 150, 106944.	1.9	10
1215	Highly enhanced thermoelectric properties of Bi2S3 via (Se, Cl)-co doping in hydrothermal synthesis process. Journal of Alloys and Compounds, 2022, 922, 166252.	2.8	5
1216	High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites under tailored mechanical deformation. Frontiers in Energy, 2022, 16, 581-594.	1.2	6
1217	Enhanced thermoelectric performance of n-type Mg ₃ Bi ₂ -based materials by Se doping and alloying engineering. Journal Physics D: Applied Physics, 2022, 55, 434001.	1.3	3
1218	Thermoelectric Transport Properties of Pb(Bi1-xSnx)2Te4 (0≤â‰⊉) compounds. Journal of Korean Institute of Metals and Materials, 2022, 60, 587-592.	0.4	0
1219	Influence of biaxial strain on the electronic and thermoelectric properties of Sb2Te3 monolayer. Materials Research Bulletin, 2022, 156, 111979.	2.7	6
1220	Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe. Nature Communications, 2022, 13, .	5.8	37
1221	Tunable Electrical Conductivity and Simultaneously Enhanced Thermoelectric and Mechanical Properties in nâ€ŧype Bi ₂ Te ₃ . Advanced Science, 2022, 9, .	5.6	36
1222	Thermally Chargeable Supercapacitor with 3D Ti ₃ C ₂ T <i>_x</i> MXene Hollow Sphere Based Freestanding Electrodes. Advanced Materials Interfaces, 2022, 9, .	1.9	12
1223	Optimization of mixed grain size structure for enhancement of thermoelectric figure of merit in p-type BiSbTe-based alloys. Journal of Materials Science, 2022, 57, 18131-18141.	1.7	1
1224	Enhancing thermoelectric and mechanical properties of p-type Cu3SbSe4-based materials via embedding nanoscale Sb2Se3. Materials Chemistry and Physics, 2022, 292, 126669.	2.0	6
1225	Topology optimization design of deformable flexible thermoelectric devices for voltage enhancement. Engineering Optimization, 0, , 1-18.	1.5	1

#	Article	IF	CITATIONS
1226	Atomic-scale thermopower in charge density wave states. Nature Communications, 2022, 13, .	5.8	7
1227	A Correlative Study of Interfacial Segregation in a Cu-Doped TiNiSn Thermoelectric half-Heusler Alloy. ACS Applied Electronic Materials, 0, , .	2.0	0
1228	Multiple effects result in significantly improved thermoelectric figure-of-merit of InSb semiconductors via embedding metastable Ag/Pt nano particles. Materials Today Physics, 2022, 27, 100818.	2.9	0
1229	Advances in thermoelectric devices for localized cooling. Chemical Engineering Journal, 2022, 450, 138389.	6.6	34
1230	Synthesis and Characterization of New Multinary Selenides A ₁₀ B ₁₈ Se ₃₇ (A=Sn/Pb; B=In/Sb/Bi). European Journal of Inorganic Chemistry, 0, , .	1.0	1
1231	Effects of cation doping on thermoelectric properties of Bi2S3 materials. Journal of Materials Science: Materials in Electronics, 2022, 33, 22291-22299.	1.1	2
1232	Design and fabrication of thermopower and electrical resistivity setup for bulk and thin film systems. Cryogenics, 2022, 127, 103550.	0.9	1
1233	Electric field-assisted in situ fabrication of carbon/zirconia nanocomposites with tunable conductivity for electromagnetic interference shielding applications. Composites Part B: Engineering, 2022, 246, 110254.	5.9	2
1234	Tailoring the phase transition of silver selenide at the atomistic scale. Nanoscale, 0, , .	2.8	0
1235	Thermoelectric properties of Ag-doped Cul: a temperature dependent optical phonon study. Physical Chemistry Chemical Physics, 2022, 24, 24228-24237.	1.3	2
1236	Performance Optimization of Thermoelectric Devices and its Dependence on Materials Properties. , 0, 1, .		3
1237	Significantly (00 <i>l</i>)-textured Ag ₂ Se thin films with excellent thermoelectric performance for flexible power applications. Journal of Materials Chemistry A, 2022, 10, 21603-21610.	5.2	22
1238	Raising the solubility of Gd yields superior thermoelectric performance in n-type PbSe. Journal of Materials Chemistry A, 2022, 10, 20386-20395.	5.2	8
1239	Preparation, Characterization, Photoluminescence Spectra and Thermoelectric Properties of Nanostructured Pb1-Xsbxte Alloys. SSRN Electronic Journal, 0, , .	0.4	0
1240	Recent advances in designing thermoelectric materials. Journal of Materials Chemistry C, 2022, 10, 12524-12555.	2.7	33
1241	Chemical synthesis of single nanometer-sized Bi2â°'xSbxTe3.0 nanocrystals via direct precipitation process. Results in Chemistry, 2022, 4, 100485.	0.9	3
1242	Giant Reduction in the Thermal Conductivity of Porous β-Ga ₂ O ₃ with Multiple Heat-Blocking Mechanisms. ACS Applied Energy Materials, 2022, 5, 11441-11449.	2.5	2
1243	Fabrication and thermoelectric properties of SrTiO3–TiO2 composite ceramics. Ceramics International, 2022, 48, 36500-36514.	2.3	5

#	Article	IF	Citations
1244	Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation – A critical review. , 2022, , .		8
1245	Simultaneous Enhancement of Thermoelectric Power Factor and Phase Stability of Tin-Based Perovskites by Organic Cation Doping. ACS Applied Energy Materials, 2022, 5, 11191-11199.	2.5	6
1246	Realizing zT > 2 in Environmentâ€Friendly Monoclinic Cu2S – Tetragonal Cu1.96S Nanoâ€Phase Junctions for Thermoelectrics. Angewandte Chemie, 0, , .	1.6	0
1247	Observation of a Strong Decoupling Phenomenon in Pt/Si Hybrid Structures for In-Plane Thermoelectric Properties. Journal of Physical Chemistry C, 2022, 126, 17283-17290.	1.5	2
1248	Realizing <i>zT</i> >2 in Environmentâ€Friendly Monoclinic Cu ₂ S—Tetragonal Cu _{1.96} S Nanoâ€Phase Junctions for Thermoelectrics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
1249	Tuning Thermoelectric and Mechanical Properties of Zinc-Cupronickel via Hot Rolling Deformation. Journal of Electronic Materials, 0, , .	1.0	0
1250	Dislocation-Mediated Oxygen–lonic Conductivity in Yttria-Stabilized Zirconia. ACS Nano, 2022, 16, 16655-16667.	7.3	2
1251	Uncooled self-powered hemispherical biomimetic pit organ for mid- to long-infrared imaging. Science Advances, 2022, 8, .	4.7	7
1252	Enhancing thermoelectric properties of p-type (Bi,Sb)2Te3 via porous structures. Ceramics International, 2023, 49, 4305-4312.	2.3	5
1253	Crystal Structure and Thermoelectric Properties of Layered Van der Waals Semimetal ZrTiSe ₄ . Chemistry of Materials, 2022, 34, 8858-8867.	3.2	5
1254	Inhibiting the bipolar effect via band gap engineering to improve the thermoelectric performance in n-type Bi2-Sb Te3 for solid-state refrigeration. Journal of Materials Science and Technology, 2023, 138, 50-58.	5.6	10
1255	Synthetic Strategies, Thermal Stability, and Optical Properties for Nanostructured Famatinite with Cu-Site Doping. Chemistry of Materials, 2022, 34, 9086-9097.	3.2	2
1256	Inorganicâ€Based Printed Thermoelectric Materials and Devices. Advanced Engineering Materials, 2023, 25, .	1.6	5
1257	Metal chalcogenide materials: Synthesis, structure and properties. , 2022, , .		1
1258	Comprehensive Insight into <i>p</i> -Type Bi ₂ Te ₃ -Based Thermoelectrics near Room Temperature. ACS Applied Materials & Interfaces, 2022, 14, 49425-49445.	4.0	25
1259	Enhanced Thermoelectric Performance of Ni _{<i>x</i>} Bi _{0.5} Sb _{1.5} Te ₃ <i>via In Situ</i> Formation of NiTe ₂ Channels. ACS Applied Energy Materials, 2022, 5, 14127-14135.	2.5	0
1260	Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nature Communications, 2022, 13, .	5.8	59
1261	Enhanced thermoelectric performance of 3D-printed Bi2Te3-based materials via adding Te/Se. Journal of Materiomics, 2023, 9, 328-337.	2.8	3

	CITATION REP	ORT	
#	Article	IF	CITATIONS
1262	Semiconductor Multimaterial Optical Fibers for Biomedical Applications. Biosensors, 2022, 12, 882.	2.3	5
1263	Roles of interface engineering in performance optimization of skutteruditeâ€based thermoelectric materials. , 2022, 1, 233-246.		6
1264	Thermoelectric Silverâ€Based Chalcogenides. Advanced Science, 2022, 9, .	5.6	29
1265	Revealing the Defect-Dominated Electron Scattering in Mg ₃ Sb ₂ -Based Thermoelectric Materials. Research, 2022, 2022, .	2.8	4
1266	Robust combined modeling of crystalline and amorphous silicon grain boundary conductance by machine learning. Npj Computational Materials, 2022, 8, .	3.5	2
1267	High temperature difference in a new flexible thermoelectric bismuth telluride microgenerator. Sensors and Actuators A: Physical, 2022, 347, 113961.	2.0	3
1268	Anisotropic magnetoelectric transport in AgCrSe ₂ single crystals. Applied Physics Letters, 2022, 121, 182405.	1.5	0
1269	Improving the mechanical properties of Bi2Te3â€based thermoelectric materials by K2Ti6O13 whisker. ChemNanoMat, 0, , .	1.5	0
1270	Enhanced thermoelectric performance of N-type Bi2Te2.7Se0.3-based materials by superparamagnetic Fe3O4 nanoparticles. Ceramics International, 2023, 49, 8271-8280.	2.3	5
1271	Boost thermoelectric properties of n-type PbSe:Ag2Se:Ag in the vicinity of the percolation threshold. Scripta Materialia, 2023, 224, 115139.	2.6	2
1272	Effect of Sintering Temperature on Electrical Transport Properties of Bi _{0.5} Sb _{1.5} Te ₃ Thermoelectric Materials. , 2022, , .		0
1273	Phonon Thermal Transport in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi: from a Deep-Neural-Network Interatomic Potential. Physical Review Applied. 2022. 18</mml:mi: </mml:msub></mml:math>	1 Te <td>:mi><mml:r< td=""></mml:r<></td>	:mi> <mml:r< td=""></mml:r<>
1274	Anisotropic dislocation-domain wall interactions in ferroelectrics. Nature Communications, 2022, 13, .	5.8	14
1275	Long- and short-range orders in 10-component compositionally complex ceramics. , 2023, 2, 100098.		3
1276	Numerical simulations and optimized design on the performance and thermal stress of a thermoelectric cooler. International Journal of Refrigeration, 2023, 146, 314-326.	1.8	7
1277	Advances in Versatile GeTe Thermoelectrics from Materials to Devices. Advanced Materials, 2023, 35, .	11.1	38
1278	Transport characteristics and lattice dynamics with phonon topology accentuation in layered CuTlX (X: S, Se). Physica Scripta, 2022, 97, 125820.	1.2	1
1279	High thermoelectric performance of two-dimensional layered AB ₂ Te ₄ (A = Sn,) Tj ETQq1	1.0.7843 1.3	14 rgBT /0

#	Article	IF	CITATIONS
1280	Twisted grain boundary leads to high thermoelectric performance in tellurium crystals. Energy and Environmental Science, 2023, 16, 125-137.	15.6	5
1281	High thermoelectric properties of shear-exfoliation-derived TiS2-AgSnSe2 nano-composites via ionized impurity scattering. Acta Materialia, 2023, 244, 118564.	3.8	2
1282	Cellular structured Cu ₂ Sn _{0.8} Co _{0.2} S ₃ with enhanced thermoelectric performance realized by liquid-phase sintering. Journal of Materials Chemistry A, 2023, 11, 1447-1454.	5.2	4
1283	Suppression of intrinsic thermal conductivity in Sr _{1â^'<i>x</i>} Gd _{<i>x</i>} TiO ₃ ceramics <i>via</i> phonon-point defect scattering for enhanced thermoelectric application. RSC Advances, 2022, 13, 665-673.	1.7	4
1284	Modification of the thermoelectric performance in Se alloyed CoSb1-xSexS. Solid State Sciences, 2023, 135, 107078.	1.5	1
1285	Effects of magnetism and size of nano-oxide inclusions on the thermoelectric properties of Ge _{0.96} Bi _{0.06} Te. Journal of Materials Chemistry A, 2023, 11, 1268-1280.	5.2	1
1286	High-performance bulk Bi0.4Sb1.6Te3.0 thermoelectrics prepared from nanocrystal precursor synthesized via chemical precipitation. Journal of Solid State Chemistry, 2023, 319, 123777.	1.4	2
1287	Boosting thermoelectric performance of n-type Bi2Te2.7Se0.3 alloy by 3D printing induced in-situ texture engineering. Journal of Alloys and Compounds, 2023, 937, 168172.	2.8	1
1288	High Thermoelectric Performance of p-Type Bi _{0.4} Sb _{1.6} Te _{3+<i>x</i>} Synthesized by Plasma-Assisted Ball Milling. ACS Applied Materials & Interfaces, 2022, 14, 54044-54050.	4.0	7
1289	Fine-Tuning Bi2Te3-Copper Selenide Alloys Enables an Efficient n-Type Thermoelectric Conversion. Molecules, 2022, 27, 8183.	1.7	3
1290	The effect of interdiffusion during formation of epitaxial Ca intercalated layered silicene film on its thermoelectric power factor. Japanese Journal of Applied Physics, 2023, 62, SD1004.	0.8	1
1291	Enhanced Thermoelectric Properties of p-Type Bi _{0.5} Sb _{1.5} Te ₃ -Cu ₈ GeSe ₆ Composite Materials. ACS Applied Materials & Interfaces, 2022, 14, 55780-55786.	4.0	6
1292	Broad Temperature Plateau for High Thermoelectric Properties of n-Type Bi ₂ Te _{2.7} Se _{0.3} by 3D Printing-Driven Defect Engineering. ACS Applied Materials & Interfaces, 2023, 15, 1296-1304.	4.0	5
1293	Low-cost preparation of highly-efficient thermoelectric BixSb2-xTe3 nanostructured powders via mechanical alloying. Journal of Solid State Chemistry, 2023, 319, 123823.	1.4	4
1295	Flexible thermoelectric Cu–Se nanowire/methyl cellulose composite films prepared via screen printing technology. Composites Communications, 2023, 38, 101467.	3.3	7
1296	Recent Developments in Thermoelectric Generation: A Review. Sustainability, 2022, 14, 16821.	1.6	11
1297	Interstitial Defects Facilitate Dense Dislocations and Band Convergence for High Thermoelectric Performance in SnTe. Chemistry of Materials, 2023, 35, 327-336.	3.2	4
1298	Boosted Output Voltage of BiSbTeâ€Based Thermoelectric Generators via Coupled Effect between Thermoelectric Carriers and Triboelectric Charges. Advanced Energy Materials, 2023, 13, .	10.2	6

# 1299	ARTICLE Enhanced thermoelectric performance of Bi ₂ Te ₃ by La ₂ O ₃ dispersion. Modern Physics Letters B, 2022, 36, .	IF 1.0	Citations 5
1300	Determining phonon transport properties of bismuth telluride thin films with extremely small grain size using nanoindentation and 3ï‰ method. Applied Physics Express, 2023, 16, 015004.	1.1	4
1301	Selective Dissolutionâ€Đerived Nanoporous Design of Impurityâ€Free Bi ₂ Te ₃ Alloys with High Thermoelectric Performance. Small, 2023, 19, .	5.2	4
1302	Tellurium/polymers for flexible thermoelectrics: status and challenges. Journal of Materials Chemistry A, 2023, 11, 3771-3788.	5.2	9
1303	Direct Visualization of Localized Vibrations at Complex Grain Boundaries. Advanced Materials, 2023, 35, .	11.1	7
1304	High-temperature oxidation mechanism of ZrCoSb-based half-Heusler thermoelectric compounds. Journal of Materials Science and Technology, 2023, 148, 242-249.	5.6	4
1305	Thermoelectric enhancement for <i>n</i> -type PbS via synergistic effect of Ti doping and Cu2S compositing. Applied Physics Letters, 2023, 122, .	1.5	4
1306	Ab initio investigation of the structural, optoelectronic, mechanical, vibrational, and thermoelectric properties of the SixSn1â^'xSe alloys. Journal of Materials Science, 2023, 58, 831-849.	1.7	0
1307	Realization of an ultra-low lattice thermal conductivity in Bi2AgxSe3 nanostructures for enhanced thermoelectric performance. Journal of Colloid and Interface Science, 2023, 637, 340-353.	5.0	9
1308	Approaches to Estimate the Magnitude of Phonon Scattering via Point Defects in Mo(Se _{1-x} Te _x) ₂ Thermoelectric Alloys. Journal of Korean Institute of Metals and Materials, 2023, 61, 38-45.	0.4	0
1309	Bismuth Telluride (Bi2Te3) nanocrystallites: Studies on growth morphology and its influence on the thermoelectric properties. Journal of Crystal Growth, 2023, 606, 127087.	0.7	6
1310	3D grain growth in nanocrystalline Al via molecular dynamics: Influence of size, topology and integral mean curvature on grain kinetics. Computational Materials Science, 2023, 219, 112009.	1.4	2
1311	Anisotropy engineering in solution-derived nanostructured Bi2Te3 thin films for high-performance flexible thermoelectric devices. Chemical Engineering Journal, 2023, 458, 141450.	6.6	11
1312	Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries. Renewable and Sustainable Energy Reviews, 2023, 175, 113186.	8.2	5
1313	Effect of Ce and Sm doping on optoelectronic and thermoelectric properties of Bi2Te3 alloy. , 2022, 19, 871-883.		1
1314	Entropy Engineering in Tellurium-Free Thermoelectric Cu ₈ GeSe ₆ with a Stable Cubic Structure. ACS Applied Energy Materials, 2023, 6, 580-587.	2.5	3
1315	High hardness and high fracture toughness B4C-diamond ceramics obtained by high-pressure sintering. Journal of the European Ceramic Society, 2023, 43, 3090-3095.	2.8	7
1316	Accessing the thermal conductivities of Sb ₂ Te ₃ and Bi ₂ Te ₃ /Sb ₂ Te ₃ superlattices by molecular dynamics simulations with a deep neural network potential. Physical Chemistry Chemical Physics, 2023, 25, 6164-6174.	1.3	4

\sim		<u> </u>	
Сітат	ION	IN E D O	DT
CITAL	ION.	NLFU	

#	Article	IF	CITATIONS
1317	Phonon transport in Janus monolayer siblings: a comparison of 1T and 2H-ISbTe. RSC Advances, 2023, 13, 4202-4210.	1.7	1
1318	Enhanced thermoelectric figure of merit in indium and ytterbium double-filled skutterudite bulk materials through simultaneously optimising power factor and reducing thermal conductivity. Journal of the European Ceramic Society, 2023, 43, 3370-3375.	2.8	2
1319	Thermoelectric energy conversion in buildings. Materials Today Energy, 2023, 32, 101257.	2.5	8
1320	Dislocation-based high-temperature plasticity of polycrystalline perovskite SrTiO3. Journal of Materials Science, 2023, 58, 2430-2438.	1.7	4
1321	Recent progress in phosphide materials for thermoelectric conversion. Journal of Materials Chemistry A, 2023, 11, 8453-8469.	5.2	3
1322	High Pressure Drives Microstructure Modification and <i>zT</i> Enhancement in Bismuth Telluride-Based Alloys. ACS Applied Materials & amp; Interfaces, 2023, 15, 19250-19257.	4.0	1
1323	Prominently optimized thermoelectric performance via possibly magnified carrier energy filtering effect in sandwich-structured p-type Cu-doped Bi0.5Sb1.5Te3 films. Current Applied Physics, 2023, 49, 143-150.	1.1	1
1324	Optimizing magnetocaloric and thermoelectric performance of MnCoGe/BiSbTe composites by regulating magnetostructural transition and element diffusion. Materials Characterization, 2023, 199, 112760.	1.9	3
1325	A review of the performance evaluation of thermoelectric nanostructure materials Bi2-xSbxTe3 (0.20≤â‰⊈.80). , 2023, 6, 100101.		1
1326	Coupling of electronic transport and defect engineering substantially enhances the thermoelectric performance of p-type TiCoSb HH alloy. Journal of Alloys and Compounds, 2023, 947, 169416.	2.8	6
1327	Small-data-based machine learning interatomic potentials for graphene grain boundaries enabled by structural unit model. Carbon Trends, 2023, 11, 100260.	1.4	1
1328	Band modification towards high thermoelectric performance of SnSb2Te4 with strong anharmonicity driven by cation disorder. Journal of Materials Science and Technology, 2023, 154, 140-148.	5.6	9
1329	High-entropy ferroelastic (10RE0.1)TaO4 ceramics with oxygen vacancies and improved thermophysical properties. Journal of Materials Science and Technology, 2023, 157, 98-106.	5.6	22
1330	Study on electronic structure and optical properties of bulk and monolayer Ag2Te. , 2022, , .		0
1331	Grain boundary engineering strategy for simultaneously reducing the electron concentration and lattice thermal conductivity in n-type Bi2Te2.7Se0.3-based thermoelectric materials. Journal of the European Ceramic Society, 2023, 43, 3376-3382.	2.8	7
1332	Theoretical study on spin-dependent zigzag-direction thermoelectric transport properties of Mn-doped blue phosphorene. Journal of Applied Physics, 2023, 133, .	1.1	3
1333	Enhanced Thermoelectric Performance of Mg-Doped AgSbTe ₂ by Inhibiting the Formation of Ag ₂ Te. ACS Applied Materials & Interfaces, 2023, 15, 9508-9516.	4.0	2
1334	Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization. Chinese Physics B, 2023, 32, 056301.	0.7	2

#	Article	IF	CITATIONS
1335	Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding. Nature Communications, 2023, 14, .	5.8	29
1336	Wearable Thermoelectric Generators: Materials, Structures, Fabrications, and Applications. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	1
1337	Powering internet-of-things from ambient energy: a review. JPhys Energy, 2023, 5, 022001.	2.3	11
1338	Ultra-fast synthesis of Bi2Te3â 'xSex based compounds with micro-nano composite structure at room temperature by reactive flash sintering. Journal of Crystal Growth, 2023, 608, 127135.	0.7	0
1339	Metavalent bonding impacts charge carrier transport across grain boundaries. , 2023, 2, e9120057.		13
1340	Realize high thermoelectric properties in n-type Bi2Te2.7Se0.3 materials via ZrO2 ceramic nanoparticles mediated heterogeneous interface. Ceramics International, 2023, 49, 18371-18378.	2.3	6
1341	Thermoelectric properties of ductile Ag2S0.7Te0.3 prepared via zone melting method. Solid State Communications, 2023, 364, 115123.	0.9	5
1342	Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications. Materials Today Physics, 2023, 32, 101035.	2.9	8
1343	Lead Vacancy Promotes Sodium Solubility to Achieve Ultraâ€High <i>zT</i> in Only Ternary Pb _{1â€} <i>_x</i> Na <i>_x</i> Te. Small, 2023, 19, .	5.2	5
1344	Development of Nanostructured Bi ₂ Te ₃ with High Thermoelectric Performance by Scalable Synthesis and Microstructure Manipulations. ACS Applied Materials & Interfaces, 2023, 15, 13012-13024.	4.0	8
1345	Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles. Advanced Fiber Materials, 2023, 5, 1105-1140.	7.9	7
1346	Revealing the promising near-room-temperature thermoelectric performance in Ag2Se single crystals. Journal of Materiomics, 2023, 9, 754-761.	2.8	7
1347	Electrical, Thermal, and Thermoelectric Transport Properties of Co-Doped <i>n</i> -type Cu _{0.008} Bi ₂ Te _{2.6} Se _{0.4Polycrystalline Alloys. Journal of Korean Institute of Metals and Materials, 2023, 61, 206-212.}	>#	2
1348	Biâ€Deficiency Leading to Highâ€Performance in Mg ₃ (Sb,Bi) ₂ â€Based Thermoelectric Materials. Advanced Materials, 2023, 35, .	11.1	6
1349	Large-Scale Colloidal Synthesis of Chalcogenides for Thermoelectric Applications. ACS Applied Materials & Interfaces, 2023, 15, 15498-15508.	4.0	2
1350	Thermal characterization for quantum materials. Journal of Applied Physics, 2023, 133, .	1.1	1
1351	Advances in Ag ₂ Se-based thermoelectrics from materials to applications. Energy and Environmental Science, 2023, 16, 1870-1906.	15.6	35
1352	Best thermoelectric efficiency of ever-explored materials. IScience, 2023, 26, 106494.	1.9	6

ARTICLE IF CITATIONS # Band Modification and Localized Lattice Engineering Leads to High Thermoelectric Performance in Ge 1353 5.2 4 and Bi Codoped SnTeâ€"AgBiTe₂ Alloys. Small, 2023, 19, . Physics and technology of thermoelectric materials and devices. Journal Physics D: Applied Physics, 1354 1.3 2023, 56, 333001. Sputtering Codeposition and Metal-Induced Crystallization to Enhance the Power Factor of 1355 2.0 0 Nanocrystalline Silicon. ACS Applied Electronic Materials, 0, , . Room-Temperature Thermoelectric Performance of n-Type Multiphase Pseudobinary Bi₂Te₃–Bi₂S₃ Compounds: Synergic Effects of 1356 4.0 Phonon Scattering and Energy Filtering. ACS Applied Materials & amp; Interfaces, 2023, 15, 19220-19229. Layer-Structured GaGeTe Compound as a Promising Thermoelectric Material. ACS Applied Energy 1357 2.5 5 Materials, 2023, 6, 4264-4270. Lone Pair Rotation and Bond Heterogeneity Leading to Ultralow Thermal Conductivity in Aikinite. Journal of the American Chemical Society, 2023, 145, 9313-9325. 1358 6.6 Strain-Induced Medium-Temperature Thermoelectric Performance of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" 1359 overflow="scroll"><mml:msub><mml:mi>Cu</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mipu : The Role of Four-Phonon Scattering. Physical Review Applied, 2023, 19, High-performance thermoelectric ceramics and their applications., 2023, , 347-362. 1360 Synthesis method of thermoelectrics., 2023, , 283-303. 0 1361 Fundamentals of thermoelectrics., 2023, , 259-281. High Performance BiSbTe Alloy for Superior Thermoelectric Cooling. Advanced Functional Materials, 1363 7.8 14 2023, 33, . Thermoelectric Borides: Review and Future Perspectives., 2023, 2, . 1364 Atomic-Resolution Mapping of Localized Phonon Modes at Grain Boundaries. Nano Letters, 0, , . 1383 4.5 1 Phonon engineering significantly reducing thermal conductivity of thermoelectric materials: a 1402 3.6 review. Rare Metals, 2023, 42, 2825-2839 Metal Oxide Based Thermoelectric Materials. Progress in Optical Science and Photonics, 2023, , 1440 0 0.3399-430. Thermal conductivity and thermoelectric power of semiconductors., 2024,,. 1504 Recent progress in thermoelectric layered cobalt oxide thin films. NPG Asia Materials, 2023, 15, . 1506 3.8 0 Unleashing the Potential. Advances in Chemical and Materials Engineering Book Series, 2024, , 138-169. 0.2

ARTICLE

IF CITATIONS