Phylogenomic analyses data of the avian phylogenomic

GigaScience

4, 4

DOI: 10.1186/s13742-014-0038-1

Citation Report

#	Article	IF	CITATIONS
1	Divergence and gene flow among Darwin's finches: A genomeâ€wide view of adaptive radiation driven by interspecies allele sharing. BioEssays, 2015, 37, 968-974.	1.2	16
2	Avianbase: a community resource for bird genomics. Genome Biology, 2015, 16, 21.	3.8	28
3	Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences. Current Biology, 2015, 25, 1375-1380.	1.8	243
4	Phylogenomic analyses data of the avian phylogenomics project. GigaScience, 2015, 4, 4.	3.3	72
5	A new look at the LTR retrotransposon content of the chicken genome. BMC Genomics, 2016, 17, 688.	1.2	35
6	The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zoologica Scripta, 2016, 45, 50-62.	0.7	122
7	Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nature Communications, 2016, 7, 11396.	5.8	76
8	Computing the Internode Certainty and Related Measures from Partial Gene Trees. Molecular Biology and Evolution, 2016, 33, 1606-1617.	3.5	73
9	Conserved Nonexonic Elements: A Novel Class of Marker for Phylogenomics. Systematic Biology, 2017, 66, 1028-1044.	2.7	46
10	Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders. Infection, Genetics and Evolution, 2017, 53, 135-145.	1.0	15
11	Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling. Systematic Biology, 2017, 66, 857-879.	2.7	242
12	Evolution of ribosomal internal transcribed spacers in Deuterostomia. Molecular Phylogenetics and Evolution, 2017, 116, 87-96.	1.2	5
13	Experiences in integrated data and research object publishing using GigaDB. International Journal on Digital Libraries, 2017, 18, 99-111.	1.1	14
14	Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes. BMC Evolutionary Biology, 2017, 17, 163.	3.2	39
15	Phylogenomic Insights into Mouse Evolution Using a Pseudoreference Approach. Genome Biology and Evolution, 2017, 9, 726-739.	1.1	47
16	Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris. GigaScience, 2018, 7, 1-12.	3.3	67
17	Few mitochondrial <scp>DNA</scp> sequences are inserted into the turkey (<i>Meleagris) Tj ETQq0 0 0 rgBT /Or Animal Genetics, 2018, 49, 259-264.</i>	verlock 10 0.6) Tf 50 107 Td 5
18	Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Molecular Phylogenetics and Evolution, 2018, 126, 116-128.	1.2	19

#	Article	IF	Citations
19	So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PLoS ONE, 2018, 13, e0197433.	1.1	167
20	An evolutionary model motivated by physicochemical properties of amino acids reveals variation among proteins. Bioinformatics, 2018, 34, i350-i356.	1.8	12
21	Phylogenetic Signal of Indels and the Neoavian Radiation. Diversity, 2019, 11, 108.	0.7	33
22	A Multireference-Based Whole Genome Assembly for the Obligate Ant-Following Antbird, Rhegmatorhina melanosticta (Thamnophilidae). Diversity, 2019, 11, 144.	0.7	13
23	Supergene validation: A model-based protocol for assessing the accuracy of non-model-based supergene methods. MethodsX, 2019, 6, 2181-2188.	0.7	1
24	A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl. Zoological Journal of the Linnean Society, 2019, 186, 673-700.	1.0	25
25	De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing. GigaScience, 2019, 8, .	3.3	25
26	Whole-Genome Analyses Resolve the Phylogeny of Flightless Birds (Palaeognathae) in the Presence of an Empirical Anomaly Zone. Systematic Biology, 2019, 68, 937-955.	2.7	88
27	Statistical binning leads to profound model violation due to gene tree error incurred by trying to avoid gene tree error. Molecular Phylogenetics and Evolution, 2019, 134, 164-171.	1.2	20
28	Skmer: assembly-free and alignment-free sample identification using genome skims. Genome Biology, 2019, 20, 34.	3.8	70
29	Physicochemical Amino Acid Properties Better Describe Substitution Rates in Large Populations. Molecular Biology and Evolution, 2019, 36, 679-690.	3.5	20
30	A new zygodactylid species indicates the persistence of stem passerines into the early Oligocene in North America. BMC Evolutionary Biology, 2019, 19, 3.	3.2	8
31	Understanding the Evolution of Reptile Chromosomes through Applications of Combined Cytogenetics and Genomics Approaches. Cytogenetic and Genome Research, 2019, 157, 7-20.	0.6	56
32	SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica). GigaScience, 2019, 8, .	3.3	23
33	The lacrimal/ectethmoid region of waterfowl (Aves, Anseriformes): Phylogenetic signal and major evolutionary patterns. Journal of Morphology, 2020, 281, 1486-1500.	0.6	3
34	Introducing the Bird Chromosome Database: An Overview of Cytogenetic Studies in Birds. Cytogenetic and Genome Research, 2020, 160, 199-205.	0.6	45
35	New Methods to Calculate Concordance Factors for Phylogenomic Datasets. Molecular Biology and Evolution, 2020, 37, 2727-2733.	3.5	354
36	Variations of Mesozoic feathers: Insights from the morphogenesis of extant feather rachises. Evolution; International Journal of Organic Evolution, 2020, 74, 2121-2133.	1.1	4

#	Article	IF	CITATIONS
37	Deep-Time Demographic Inference Suggests Ecological Release as Driver of Neoavian Adaptive Radiation. Diversity, 2020, 12, 164.	0.7	11
38	Integrating Sequence Capture and Restriction Site-Associated DNA Sequencing to Resolve Recent Radiations of Pelagic Seabirds. Systematic Biology, 2021, 70, 976-996.	2.7	12
39	Chromosome-Level Genome Assembly of the Common Chaffinch (Aves: <i>Fringilla coelebs</i>): A Valuable Resource for Evolutionary Biology. Genome Biology and Evolution, 2021, 13, .	1.1	12
40	Transcriptomic analysis to infer key molecular players involved during host response to NDV challenge in Gallus gallus (Leghorn & Eayoumi). Scientific Reports, 2021, 11, 8486.	1.6	4
47	Protein evolution is structure dependent and non-homogeneous across the tree of life. , 2020, , .		4
48	The Dynamics of Incomplete Lineage Sorting across the Ancient Adaptive Radiation of Neoavian Birds. PLoS Biology, 2015, 13, e1002224.	2.6	223
49	AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ, 2016, 4, e1660.	0.9	535
51	Genetic diversity and population history of eight Italian beef cattle breeds using measures of autozygosity. PLoS ONE, 2021, 16, e0248087.	1.1	10
57	Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. Molecules and Cells, 2020, 43, 86-95.	1.0	6
58	nQMaker: Estimating Time Nonreversible Amino Acid Substitution Models. Systematic Biology, 2022, 71, 1110-1123.	2.7	9
60	Evaluation of four methods to identify the homozygotic sex chromosome in small populations. BMC Genomics, 2022, 23, 160.	1.2	2
61	Olfactory receptor subgenome and expression in a highly olfactory procellariiform seabird. Genetics, 2022, 220, .	1.2	8
63	CHAPAO: Likelihood and hierarchical reference-based representation of biomolecular sequences and applications to compressing multiple sequence alignments. PLoS ONE, 2022, 17, e0265360.	1,1	0
64	Genome Assembly and Evolutionary Analysis of the Mandarin Duck <i>Aix galericulata</i> Reveal Strong Genome Conservation among Ducks. Genome Biology and Evolution, 2022, 14, .	1.1	1
65	Categorical edge-based analyses of phylogenomic data reveal conflicting signals for difficult relationships in the avian tree. Molecular Phylogenetics and Evolution, 2022, 174, 107550.	1.2	1
66	Species delimitation using genomic data to resolve taxonomic uncertainties in a speciation continuum of pelagic seabirds. Molecular Phylogenetics and Evolution, 2023, 179, 107671.	1.2	7
67	Estimating phylogenies from genomes: A beginners review of commonly used genomic data in vertebrate phylogenomics. Journal of Heredity, 2023, 114, 1-13.	1.0	2
70	Phylogenomics using Compression Distances: Incorporating Rate Heterogeneity and Amino Acid Properties., 2023,,.		0

Article IF Citations