Drivers of hospitalization cost after craniotomy for tun validation of a predictive model

BMC Health Services Research 15, 85 DOI: 10.1186/s12913-015-0742-2

Citation Report

#	Article	IF	CITATIONS
1	Length of hospital stay after craniotomy for tumor: a National Surgical Quality Improvement Program analysis. Neurosurgical Focus, 2015, 39, E12.	2.3	118
2	Day of Surgery Impacts Outcome: Rehabilitation Utilization on Hospital Length of Stay in Patients Undergoing Elective Meningioma Resection. World Neurosurgery, 2016, 93, 127-132.	1.3	7
3	Regional disparities in hospitalization charges for patients undergoing craniotomy for tumor resection in New York State: correlation with outcomes. Journal of Neuro-Oncology, 2016, 128, 365-371.	2.9	5
4	Emergency department evaluation and 30-day readmission after craniotomy for primary brain tumor resection in New York State. Journal of Neurosurgery, 2017, 127, 1213-1218.	1.6	5
5	Does scope of practice correlate with the outcomes of craniotomy for tumor resection in children?. Acta Neurochirurgica, 2017, 159, 975-979.	1.7	1
6	Analysis of Cost Variation in Craniotomy for Tumor Using 2 National Databases. Neurosurgery, 2017, 81, 972-979.	1.1	20
7	Non-routine discharge disposition is associated with post-discharge complications and 30-day readmissions following craniotomy for brain tumor resection. Journal of Neuro-Oncology, 2018, 136, 595-604.	2.9	28
8	Predicting Inpatient Length of Stay After Brain Tumor Surgery: Developing Machine Learning Ensembles to Improve Predictive Performance. Neurosurgery, 2019, 85, 384-393.	1.1	55
9	Commentary: Predicting Inpatient Length of Stay After Brain Tumor Surgery: Developing Machine Learning Ensembles to Improve Predictive Performance. Neurosurgery, 2019, 85, E444-E445.	1.1	1
10	Length of Stay Beyond Medical Readiness in Neurosurgical Patients: A Prospective Analysis. Neurosurgery, 2019, 85, E60-E65.	1.1	8
11	Insurance type impacts the economic burden and survival of patients with newly diagnosed glioblastoma. Journal of Neurosurgery, 2020, 133, 89-99.	1.6	8
12	Predictors of an Extended Length of Stay following an Elective Craniotomy in Children and Young Adults. Pediatric Neurosurgery, 2020, 55, 259-267.	0.7	3
13	Predictors of Nonroutine Discharge Disposition Among Patients with Parasagittal/Parafalcine Meningioma. World Neurosurgery, 2020, 142, e344-e349.	1.3	11
14	Hospital teaching status associated with reduced inpatient mortality and perioperative complications in surgical neuro-oncology. Journal of Neuro-Oncology, 2020, 146, 389-396.	2.9	24
15	Predictive Model and Online Calculator for Discharge Disposition in Brain Tumor Patients. World Neurosurgery, 2021, 146, e786-e798.	1.3	19
16	Machine learning models to predict length of stay and discharge destination in complex head and neck, surgery. Head and Neck, 2021, 43, 788-797.	2.0	8
17	Predicting High-Value Care Outcomes After Surgery for Skull Base Meningiomas. World Neurosurgery, 2021, 149, e427-e436.	1.3	7
18	Racial Disparities Affecting Postoperative Outcomes After Brain Tumor Resection. World Neurosurgery, 2021, 155, e665-e673.	1.3	10

CITATION REPORT

#	Article	IF	CITATIONS
19	Length of Stay Beyond Medical Readiness in a Neurosurgical Patient Population and Associated Healthcare Costs. Neurosurgery, 2021, 88, E259-E264.	1.1	7
20	Proposing a validated clinical app predicting hospitalization cost for extracranial-intracranial bypass surgery. PLoS ONE, 2017, 12, e0186758.	2.5	7
21	The 5-factor modified frailty index: an effective predictor of mortality in brain tumor patients. Journal of Neurosurgery, 2020, 135, 78-86.	1.6	47
22	The impact of presurgical comorbidities on discharge disposition and length of hospitalization following craniotomy for brain tumor. , 2017, 8, 220.		20
23	Correlation of perioperative risk scores with hospital costs in neurosurgical patients. Journal of Neurosurgery, 2020, 132, 818-824.	1.6	1
24	Systematic Review of Enhanced Recovery After Surgery in Patients Undergoing Cranial Surgery. World Neurosurgery, 2022, 158, 279-289.e1.	1.3	10
25	Healthcare Data Analytics for Parkinson's Disease Patients: A Study of Hospital Cost and Utilization in the United States. AMIA Annual Symposium proceedings, 2016, 2016, 1950-1958.	0.2	0
26	Novel Predictive Models for High-Value Care Outcomes Following Glioblastoma Resection. World Neurosurgery, 2022, 161, e572-e579.	1.3	4
27	Predicting High-Value Care Outcomes After Surgery for Non–Skull Base Meningiomas. World Neurosurgery, 2022, 159, e130-e138.	1.3	3
28	Association between Preoperative Medication Lists and Postoperative Hospital Length of Stay after Endoscopic Transsphenoidal Pituitary Surgery. Journal of Clinical Medicine, 2022, 11, 5829.	2.4	2
29	Reduced time to imaging, length of stay, and hospital charges following implementation of a novel postoperative pathway for craniotomy. Journal of Neurosurgery, 2023, , 1-12.	1.6	0
30	An economic study of neuro-oncological patients in a large developing country: a cost analysis. Arquivos De Neuro-Psiquiatria, 2022, 80, 1149-1158.	0.8	0
31	Early costs and complications of first-line low-grade glioma treatment using a large national database: Limitations and future perspectives. Frontiers in Surgery, 0, 10, .	1.4	1
32	Predictors of extended length of stay related to craniotomy for tumor resection. World Neurosurgery: X, 2023, 19, 100176.	1.1	1
33	A Comparison of Surgery Wait Times and Postoperative Length of Hospital Stay Among Patients with Brain Tumors by Country-Level Income and Healthcare System: A Systematic Review and Meta-analysis. World Neurosurgery, 2023, 177, 152-164.e13.	1.3	2