The significance of Lactobacillus crispatus and L. vagina negative effect of recent sex: a cross-sectional descripti women

BMC Infectious Diseases 15, 115 DOI: 10.1186/s12879-015-0825-z

Citation Report

#	Article	IF	CITATIONS
1	Cross-Sectional Analysis of Selected Genital Tract Immunological Markers and Molecular Vaginal Microbiota in Sub-Saharan African Women, with Relevance to HIV Risk and Prevention. Vaccine Journal, 2015, 22, 526-538.	3.1	72
2	Gynecologic health and disease inÂrelation to the microbiome of the female reproductive tract. Fertility and Sterility, 2015, 104, 1351-1357.	1.0	95
3	A fruitful alliance: the synergy between <i>Atopobium vaginae</i> and <i>Gardnerella vaginalis</i> in bacterial vaginosis-associated biofilm. Sexually Transmitted Infections, 2016, 92, 487-491.	1.9	83
4	Impact of periodic presumptive treatment for bacterial vaginosis on the vaginal microbiome among women participating in the Preventing Vaginal Infections trial. Journal of Infectious Diseases, 2016, 215, jiw622.	4.0	27
5	Association of Sexual Debut in Adolescents With Microbiota and Inflammatory Markers. Obstetrics and Gynecology, 2016, 128, 22-31.	2.4	20
6	Prevalence of reproductive tract infections and the predictive value of girls' symptom-based reporting: findings from a cross-sectional survey in rural western Kenya. Sexually Transmitted Infections, 2016, 92, 251-256.	1.9	28
7	Incorporating microbiota data into epidemiologic models: examples from vaginal microbiota research. Annals of Epidemiology, 2016, 26, 360-365.	1.9	17
8	Can one size fit all? Approach to bacterial vaginosis in sub-Saharan Africa. Annals of Clinical Microbiology and Antimicrobials, 2016, 15, 16.	3.8	8
9	A DNA tool for early detection of vaginal dysbiosis in African women. Research in Microbiology, 2016, 167, 133-141.	2.1	12
10	Bacterial species colonizing the vagina of healthy women are not associated with race. Anaerobe, 2017, 45, 40-43.	2.1	32
11	Vaginal Microbiome and Its Relationship to Behavior, Sexual Health, and Sexually Transmitted Diseases. Obstetrics and Gynecology, 2017, 129, 643-654.	2.4	163
12	Improvement of abnormal vaginal flora in Ugandan women by self-testing and short use of intravaginal antimicrobials. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 731-738.	2.9	6
13	Role of HIV exposure and infection in relation to neonatal GBS disease and rectovaginal GBS carriage: a systematic review and meta-analysis. Scientific Reports, 2017, 7, 13820.	3.3	19
14	Lactobacillus iners, the unusual suspect. Research in Microbiology, 2017, 168, 826-836.	2.1	80
15	A longitudinal analysis of the vaginal microbiota and vaginal immune mediators in women from sub-Saharan Africa. Scientific Reports, 2017, 7, 11974.	3.3	112
16	The Cervicovaginal Microbiota in Women Notified for <i>Chlamydia trachomatis</i> Infection: A Case-Control Study at the Sexually Transmitted Infection Outpatient Clinic in Amsterdam, The Netherlands. Clinical Infectious Diseases, 2017, 64, 24-31.	5.8	66
17	Bacterial Vaginosis and Sexually Transmitted Diseases: Relationship and Management. , 0, , .		7
18	Association of high-risk sexual behaviour with diversity of the vaginal microbiota and abundance of	2.5	38

#	Article	IF	Citations
19	The Application of Molecular Methods Towards an Understanding of the Role of the Vaginal Microbiome in Health and Disease. Methods in Microbiology, 2017, 44, 37-91.	0.8	7
20	Mid-gestational changes in cervicovaginal fluid cytokine levels in asymptomatic pregnant women are predictive markers of inflammation-associated spontaneous preterm birth. Journal of Reproductive Immunology, 2018, 126, 1-10.	1.9	27
21	Cervicovaginal Microbiota and Reproductive Health: The Virtue of Simplicity. Cell Host and Microbe, 2018, 23, 159-168.	11.0	182
22	Species Diversity of Lactobacilli of Vaginal Microbiome: How to Observe It. Molecular Genetics, Microbiology and Virology, 2018, 33, 157-168.	0.3	2
23	Metabolomics as a clinical testing method for the diagnosis of vaginal dysbiosis. American Journal of Reproductive Immunology, 2018, 80, e12979.	1.2	21
24	Long-term Lactobacillus rhamnosus BMX 54 application to restore a balanced vaginal ecosystem: a promising solution against HPV-infection. BMC Infectious Diseases, 2018, 18, 13.	2.9	73
25	Microbiota-based analysis reveals specific bacterial traits and a novel strategy for the diagnosis of infectious infertility. PLoS ONE, 2018, 13, e0191047.	2.5	42
26	Preterm Birth: A Narrative Review of the Current Evidence on Nutritional and Bioactive Solutions for Risk Reduction. Nutrients, 2019, 11, 1811.	4.1	24
27	Effects of an over-the-counter lactic-acid containing intra-vaginal douching product on the vaginal microbiota. BMC Microbiology, 2019, 19, 168.	3.3	17
28	Menstrual cups and cash transfer to reduce sexual and reproductive harm and school dropout in adolescent schoolgirls: study protocol of a cluster-randomised controlled trial in western Kenya. BMC Public Health, 2019, 19, 1317.	2.9	17
29	An exploratory pilot study evaluating the supplementation of standard antibiotic therapy with probiotic lactobacilli in south African women with bacterial vaginosis. BMC Infectious Diseases, 2019, 19, 824.	2.9	21
30	Association between preterm delivery and bacterial vaginosis with or without treatment. Scientific Reports, 2019, 9, 509.	3.3	48
31	Association between vaginal washing and detection of <i>Lactobacillus</i> by culture and quantitative PCR in HIV-seronegative Kenyan women: a cross-sectional analysis. Sexually Transmitted Infections, 2019, 95, 455-461.	1.9	12
32	Diversity of vaginal microbiota in sub-Saharan Africa and its effects on HIV transmission and prevention. American Journal of Obstetrics and Gynecology, 2019, 220, 155-166.	1.3	58
33	Identification and evaluation of the microbiome in the female and male reproductive tracts. Human Reproduction Update, 2019, 25, 298-325.	10.8	115
34	Determinants of Vaginal Microbiota Composition. Frontiers in Cellular and Infection Microbiology, 2020, 10, 467.	3.9	48
35	Characterization of the Vaginal Microbiome in Women of Reproductive Age From 5 Regions in Brazil. Sexually Transmitted Diseases, 2020, 47, 562-569.	1.7	33
36	Changes in the vaginal microbiota across a gradient of urbanization. Scientific Reports, 2020, 10, 12487.	3.3	25

CITATION REPORT

#	Article	IF	CITATIONS
37	Bacterial Vaginosis: Current Diagnostic Avenues and Future Opportunities. Frontiers in Cellular and Infection Microbiology, 2020, 10, 354.	3.9	92
38	Development of multipurpose technologies products for pregnancy and STI prevention: update on polyphenylene carboxymethylene MPT gel developmentâ€. Biology of Reproduction, 2020, 103, 299-309.	2.7	8
39	Vaginal microbiota diversity and paucity of Lactobacillus species are associated with persistent hrHPV infection in HIV negative but not in HIV positive women. Scientific Reports, 2020, 10, 19095.	3.3	14
40	Mycoplasma Co-Infection Is Associated with Cervical Cancer Risk. Cancers, 2020, 12, 1093.	3.7	21
41	How the Cervical Microbiota Contributes to Cervical Cancer Risk in Sub-Saharan Africa. Frontiers in Cellular and Infection Microbiology, 2020, 10, 23.	3.9	27
42	The Vaginal Microbiota Among Adolescent Girls in Tanzania Around the Time of Sexual Debut. Frontiers in Cellular and Infection Microbiology, 2020, 10, 305.	3.9	7
43	Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients, 2020, 12, 419.	4.1	75
44	The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Frontiers in Immunology, 2020, 11, 378.	4.8	89
45	Microbiome and Cervical Cancer. Pathobiology, 2021, 88, 187-197.	3.8	50
46	Cervicovaginal Immune Activation in Zambian Women With Female Genital Schistosomiasis. Frontiers in Immunology, 2021, 12, 620657.	4.8	12
47	The Complex Link between the Female Genital Microbiota, Genital Infections, and Inflammation. Infection and Immunity, 2021, 89, .	2.2	24
48	Recent Semen Exposure Impacts the Cytokine Response and Bacterial Vaginosis in Women. Frontiers in Immunology, 2021, 12, 695201.	4.8	7
49	Probiotic Lacticaseibacillus rhamnosus GR-1 and Limosilactobacillus reuteri RC-14 as an Adjunctive Treatment for Bacterial Vaginosis Do Not Increase the Cure Rate in a Chinese Cohort: A Prospective, Parallelâ€Group, Randomized, Controlled Study. Frontiers in Cellular and Infection Microbiology, 2021, 11, 669901.	3.9	10
50	Association of Female Genital Schistosomiasis With the Cervicovaginal Microbiota and Sexually Transmitted Infections in Zambian Women. Open Forum Infectious Diseases, 2021, 8, ofab438.	0.9	7
51	A Combination of Cervicovaginal Fluid Glutamate, Acetate and D-Lactate Identified Asymptomatic Low-Risk Women Destined to Deliver Preterm: a Prospective Cohort Study. Reproductive Sciences, 2022, 29, 915-922.	2.5	2
52	Characteristics associated with <i>Lactobacillus iners</i> dominated vaginal microbiota. Sexually Transmitted Infections, 2022, 98, 353-359.	1.9	14
53	Composition of the vaginal microbiota during pregnancy in women living in sub-Saharan Africa: a PRISMA-compliant review. BMC Pregnancy and Childbirth, 2021, 21, 596.	2.4	9
54	Accuracy of a commercial multiplex PCR for the diagnosis of bacterial vaginosis. Journal of Medical Microbiology, 2018, 67, 1265-1270.	1.8	28

#	Article	IF	CITATIONS
55	A Multi-Country Cross-Sectional Study of Vaginal Carriage of Group B Streptococci (GBS) and Escherichia coli in Resource-Poor Settings: Prevalences and Risk Factors. PLoS ONE, 2016, 11, e0148052.	2.5	61
56	The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS ONE, 2017, 12, e0181135.	2.5	138
57	Current views on vaginal lactobacilli in women of reproductive age. Journal of Obstetrics and Women's Diseases, 2016, 65, 34-43.	0.2	4
58	Protocol for a Longitudinal Analysis of the Vaginal Microbiome from a Pregnant Cohort of African Women in Nigeria. International Journal of MCH and AIDS, 2020, 9, 173-181.	0.8	1
59	Prevalence of bacterial vaginosis in Portuguese pregnant women and vaginal colonization by <i>Gardnerella vaginalis</i> . PeerJ, 2017, 5, e3750.	2.0	12
60	Species diversity of vaginal lactobacilli in norm and in dysbiotic states. Journal of Obstetrics and Women's Diseases, 2017, 66, 24-32.	0.2	2
61	Species diversity of lactobacillus of vaginal microbiom: how to see. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2018, 36, 3.	0.4	2
62	Microbiome Of The Women'S Genital System. Postepy Mikrobiologii, 2019, 58, 227-236.	0.1	6
63	EVALUATING THE CHANGES IN SEXUAL QUALITY OF WOMEN WITH LOWER GENITAL TRACT INFECTION AT HUE UNIVERSITY OF MEDICINE AND PHARMACY HOSPITAL. Journal of Medicine and Pharmacy, 2019, , 46-51.	0.0	0
64	Deciphering the Role of Mucosal Immune Responses and the Cervicovaginal Microbiome in Resistance to HIV Infection in HIV-Exposed Seronegative (HESN) Women. Microbiology Spectrum, 2021, 9, e0047021.	3.0	7
65	Influence of Intramuscular Depot Medroxyprogesterone Acetate Initiation on Vaginal Microbiota in the Postpartum Period. Clinical Infectious Diseases, 2021, 72, e1093-e1102.	5.8	6
66	Impact of Vaginal Microbiota on Gestation and Labour. Kuban Scientific Medical Bulletin, 2020, 27, 30-43.	0.4	2
67	Bacterial Vaginitis and Vaginosis. , 2020, , 277-294.		0
69	The Vaginal Microbiome: I. Research Development, Lexicon, Defining "Normal―and the Dynamics Throughout Women's Lives. Journal of Lower Genital Tract Disease, 2022, 26, 73-78.	1.9	15
70	Log (<i>Lactobacillus crispatus</i> / <i>Gardnerella vaginalis</i>): a new indicator of diagnosing bacterial vaginosis. Bioengineered, 2022, 13, 2981-2991.	3.2	3
71	The Vaginal Microbiota Composition and Genital Infections during and after Pregnancy among Women in Pemba Island, Tanzania. Microorganisms, 2022, 10, 509.	3.6	3
73	Vaginal Infections' Etiologies in South-Eastern Gabon – An Overview. International Journal of Women's Health, 2022, Volume 14, 505-515.	2.6	3
75	Ðоль вагРй⁄₂альй⁄₂ой й4Ð ĐªÑ€Ð¾Ð±Ð Đ¾Ñ.Ñ‹ в ÑоÑрай⁄₂Ðuй⁄₂РРжÐI	୲Đᠯ∕ͽÑ₽≌₽)3/0F)3F)3/4 N

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
76	The effects of microbiota on reproductive health: A review. Critical Reviews in Food Science and Nutrition, 2024, 64, 1486-1507.	10.3	5
78	Lactobacillus crispatus M247 oral administration: Is it really an effective strategy in the management of papillomavirus-infected women?. Infectious Agents and Cancer, 2022, 17, .	2.6	26
80	Compositional Changes in the Vaginal Bacterial Microbiome of Healthy Pregnant Women across the Three Gestational Trimesters in Ismailia, Egypt. Microorganisms, 2023, 11, 139.	3.6	2
82	Genital Herpes Simplex Virus Type 2 Suppression With Valacyclovir Is Not Associated With Changes in Nugent Score or Absolute Abundance of Key Vaginal Bacteria. Open Forum Infectious Diseases, 2023, 10,	0.9	0
83	Changes in vaginal bacteria and inflammatory mediators from periconception through early-postpartum in a cohort of HIV-negative Kenyan women. Journal of Infectious Diseases, 0, , .	4.0	0
84	Impact of a Lactobacillus dominant cervical microbiome, based on 16S-FAST profiling, on the reproductive outcomes of IVF patients. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
85	Prophylactic application of vaginal lactic acid bacteria against urogenital pathogens and its prospective use in sanitary suppositories. International Microbiology, 2024, 27, 179-202.	2.4	1
86	Low prevalence of bacterial vaginosis in Kenyan adolescent girls and rapid incidence after first sex. American Journal of Obstetrics and Gynecology, 2023, 229, 282.e1-282.e11.	1.3	0
87	The Vaginal Microbiota of Pregnant Women Varies with Gestational Age, Maternal Age, and Parity. Microbiology Spectrum, 2023, 11, .	3.0	2
88	A Review on Microbial Species for Forensic Body Fluid Identification in Healthy and Diseased Humans. Current Microbiology, 2023, 80, .	2.2	1
89	Bacteroides uniformis-induced perturbations in colonic microbiota and bile acid levels inhibit TH17 differentiation and ameliorate colitis developments. Npj Biofilms and Microbiomes, 2023, 9, .	6.4	13
92	Deciphering the role of female reproductive tract microbiome in reproductive health: a review. Frontiers in Cellular and Infection Microbiology, 0, 14, .	3.9	0