Seed coating with a neonicotinoid insecticide negatively

Nature 521, 77-80 DOI: 10.1038/nature14420

Citation Report

#	Article	IF	CITATIONS
1	Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Current Opinion in Insect Science, 2015, 12, 109-112.	4.4	105
2	Arthropod ecosystem services in apple orchards and their economic benefits. Ecological Entomology, 2015, 40, 82-96.	2.2	51

3 Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 66

4	Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Scientific Reports, 2015, 5, 16508.	3.3	141
5	Authors' response on Hoppe et al. (2015) "Effects of a neonicotinoid pesticide on honey bee colonies: a response to the field study by Pilling et al. (2013)― Environ Sci Eur (2015) 27–28. Environmental Sciences Europe, 2015, 27, 31.	5.5	3
6	ãfē,ªãf‹ā,³ãfēfŽā,₿f‰ç³»è¾²è−¬ã® å±é™ºæ€§ã,'ã,ēē,‹èºè«−ã•æ¬¡ã®æ®µéšŽã«. Nature Digest, 2015, 12, 13-1	. 40. 0	0
7	Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth. Journal of Insect Conservation, 2015, 19, 999-1010.	1.4	33
8	Toxicity of Spirotetramat on Solitary Bee Larvae, Osmia Cornuta (Hymenoptera: Megachilidae), in Laboratory Conditions. Journal of Apicultural Science, 2015, 59, 73-83.	0.4	14
9	Similar Comparative Low and High Doses of Deltamethrin and Acetamiprid Differently Impair the Retrieval of the Proboscis Extension Reflex in the Forager Honey Bee (Apis mellifera). Insects, 2015, 6, 805-814.	2.2	18
10	Fears for bees as UK lifts insecticide ban. Nature, 2015, , .	27.8	3
11	Causes of variation in wild bee responses to anthropogenic drivers. Current Opinion in Insect Science, 2015, 10, 104-109.	4.4	89
12	Pesticides: Seeking answers amid a toxic debate. Nature, 2015, 521, S52-S55.	27.8	28
13	Effects of a neonicotinoid pesticide on honey bee colonies: a response to the field study by Pilling et al. (2013). Environmental Sciences Europe, 2015, 27, 28.	5.5	12
14	Insect responses to interacting global change drivers in managed ecosystems. Current Opinion in Insect Science, 2015, 11, 56-62.	4.4	14
15	Interaction between <i>Varroa destructor</i> and imidacloprid reduces flight capacity of honeybees. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151738.	2.6	62
16	Quantum Yields for Direct Photolysis of Neonicotinoid Insecticides in Water: Implications for Exposure to Nontarget Aquatic Organisms. Environmental Science and Technology Letters, 2015, 2, 188-192.	8.7	83
17	Response surface methodology for the enantioseparation of dinotefuran and its chiral metabolite in bee products and environmental samples by supercritical fluid chromatography/tandem mass spectrometry. Journal of Chromatography A, 2015, 1410, 181-189.	3.7	47
18	The neonicotinoid clothianidin interferes with navigation of the solitary bee <i>Osmia cornuta</i> in a laboratory test. Journal of Experimental Biology, 2015, 218, 2821-5.	1.7	42

ARTICLE IF CITATIONS # Tasteless pesticides affect bees in the field. Nature, 2015, 521, 38-39. 27.8 36 19 A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 2.6 20151821. Environmental impact classification for alien insects: a review of mechanisms and their biodiversity 21 4.4 20 outcomes. Current Opinion in Insect Science, 2015, 12, 46-53. Neonicotinoid Residues in Wildflowers, a Potential Route of Chronic Exposure for Bees. 324 Environmental Science & amp; Technology, 2015, 49, 12731-12740. Road mortality potentially responsible for billions of pollinating insect deaths annually. Journal of 23 1.4 78 Insect Conservation, 2015, 19, 1029-1035. Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides. Environmental Science & Amp; Technology, 2015, 49, 12879-12887. Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single 25 bumblebees using a scaled down QuEChERS method for exposure assessment. Analytical and 3.7 79 Bioanalytical Chemistry, 2015, 407, 8151-8162. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proceedings of 26 2.6 131 the Royal Šociety B: Biological Sciences, 2015, 282, 20152110. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature, 27 27.8 249 2015, 528, 548-550. Enfraquecimento e perda de colÃínias de abelhas no Brasil: hÃ; casos de CCD?. Pesquisa Agropecuaria Brasileira, 2016, 51, 422-442. Current Pesticide Risk Assessment Protocols Do Not Adequately Address Differences between Honey 29 3.3 26 Bees (Apis mellifera) and Bumble Bees (Bombus spp.). Frontiers in Environmental Science, 2016, 4, . Sparing Land for Biodiversity at Multiple Spatial Scales. Frontiers in Ecology and Evolution, 2016, 3, . 2.2 30 119 Maintaining the Restriction on Neonicotinoids in the European Union $\hat{a} \in \mathcal{C}$ Benefits and Risks to Bees and $\mathbf{31}$ 2.2 16 Pollination Services. Frontiers in Ecology and Evolution, 2016, 4, . Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids. PLoS ONE, 2016, 11, e0156886. 2.5 Enhancing Legume Ecosystem Services through an Understanding of Plantâ€"Pollinator Interplay. 33 38 3.6 Frontiers in Plant Science, 2016, 7, 333. Global biodiversity report warns pollinators are under threat. Nature, 0, , . 34 35 Controversial insecticides linked to wild bee declines. Nature, 0, , . 27.8 1 Neonicotinoids, bees and opportunity costs for conservation. Insect Conservation and Diversity, 2016, 9,375-383.

#	Article	IF	CITATIONS
38	Investigating the impacts of fieldâ€realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. Journal of Applied Ecology, 2016, 53, 1440-1449.	4.0	139
39	Dissipation dynamics of clothianidin and its control efficacy against <i>Bradysia odoriphaga</i> Yang and Zhang in Chinese chive ecosystems. Pest Management Science, 2016, 72, 1396-1404.	3.4	27
40	Monitoring the effects of thiamethoxam applied as a seed treatment to winter oilseed rape on the development of bumblebee (<i>Bombus terrestris</i>) colonies. Pest Management Science, 2016, 72, 1737-1742.	3.4	14
41	Replication, effect sizes and identifying the biological impacts of pesticides on bees under field conditions. Journal of Applied Ecology, 2016, 53, 1358-1362.	4.0	31
42	Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytologist, 2016, 210, 717-730.	7.3	58
43	Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material. BMC Ecology, 2016, 16, 37.	3.0	47
44	Large-scale monitoring of effects of clothianidin-dressed OSR seeds on pollinating insects in Northern Germany: effects on large earth bumble bees (Bombus terrestris). Ecotoxicology, 2016, 25, 1666-1678.	2.4	31
46	Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees. Scientific Reports, 2016, 6, 24764.	3.3	83
47	Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Scientific Reports, 2016, 6, 38957.	3.3	58
48	Pollination Services to Agriculture. , 0, , .		4
49	How Agricultural Intensification Affects Biodiversity and Ecosystem Services. Advances in Ecological Research, 2016, 55, 43-97.	2.7	234
50	Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160246.	2.6	67
51	Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Science of the Total Environment, 2016, 566-567, 269-278.	8.0	168
52	Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Functional Ecology, 2016, 30, 1132-1139.	3.6	83
53	Uptake of Neonicotinoid Insecticides by Water-Foraging Honey Bees (Hymenoptera: Apidae) Through Guttation Fluid of Winter Oilseed Rape. Journal of Economic Entomology, 2016, 109, 31-40.	1.8	22
54	Impacts of chronic sublethal exposure to clothianidin on winter honeybees. Ecotoxicology, 2016, 25, 1000-1010.	2.4	41
55	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	2.7	115
56	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis). Ecotoxicology. 2016. 25. 1679-1690.	2.4	40

#	Article	IF	CITATIONS
57	Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera). Ecotoxicology, 2016, 25, 1617-1629.	2.4	52
58	Initial recommendations for higherâ€tier risk assessment protocols for bumble bees, <i>Bombus</i> spp. (Hymenoptera: Apidae). Integrated Environmental Assessment and Management, 2016, 12, 222-229.	2.9	32
59	Extrapolation of acute toxicity across bee species. Integrated Environmental Assessment and Management, 2016, 12, 622-626.	2.9	35
60	Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10430-10435.	7.1	151
61	Massâ€flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecology Letters, 2016, 19, 1228-1236.	6.4	195
62	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	27.8	1,204
63	The Persistence of Bumble Bees (Hymenoptera: Apidae) in Northeastern Texas. Proceedings of the Entomological Society of Washington, 2016, 118, 481-497.	0.2	2
64	Evolutionary traps as keys to understanding behavioral maladapation. Current Opinion in Behavioral Sciences, 2016, 12, 12-17.	3.9	35
65	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology, 2016, 25, 1691-1701.	2.4	43
66	Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160506.	2.6	93
67	Effects of agricultural fungicides on microorganisms associated with floral nectar: susceptibility assays and field experiments. Environmental Science and Pollution Research, 2016, 23, 19776-19786.	5.3	27
68	Status, Threats and Conservation Recommendations for Wild Bumble Bees (<i>Bombus</i> spp.) in Ontario, Canada: A Review for Policymakers and Practitioners. Natural Areas Journal, 2016, 36, 412-426.	0.5	27
69	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera). Ecotoxicology, 2016, 25, 1648-1665.	2.4	52
70	Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Scientific Reports, 2016, 6, 29608.	3.3	87
71	Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 2016, 7, 12459.	12.8	367
72	Computational electronic structure of the bee killer insecticide imidacloprid. New Journal of Chemistry, 2016, 40, 10353-10362.	2.8	12
73	Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment. Scientific Reports, 2016, 6, 34439.	3.3	35
74	Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Scientific Reports, 2016, 6, 32108.	3.3	156

#	Article	IF	CITATIONS
75	Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nature Communications, 2016, 7, 11629.	12.8	211
76	Common Methods for Tallgrass Prairie Restoration and Their Potential Effects on Bee Diversity. Natural Areas Journal, 2016, 36, 400-411.	0.5	27
77	Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness. Ecotoxicology, 2016, 25, 1630-1647.	2.4	26
78	Evidence for the effects of neonicotinoids used in arable crop production on non-target organisms and concentrations of residues in relevant matrices: a systematic map protocol. Environmental Evidence, 2016, 5, .	2.7	7
79	Honey Bees' Behavior Is Impaired by Chronic Exposure to the Neonicotinoid Thiacloprid in the Field. Environmental Science & Technology, 2016, 50, 7218-7227.	10.0	157
80	Inclusion of Specialist and Generalist Stimuli in Attract-and-Kill Programs: Their Relative Efficacy in Apple Maggot Fly (Diptera: Tephritidae) Pest Management. Environmental Entomology, 2016, 45, 974-982.	1.4	20
81	Pollinators and Global Food Security: the Need for Holistic Global Stewardship. Food Ethics, 2016, 1, 75-91.	1.9	96
82	Economics of beekeeping as pollination management practices adopted by farmers in Chitwan district of Nepal. Agriculture and Food Security, 2016, 5, .	4.2	14
83	Chance, Variation and the Nature of Causality in Ecological Communities. The Frontiers Collection, 2016, , 197-214.	0.2	2
85	Survey and Risk Assessment of <i>Apis mellifera</i> (Hymenoptera: Apidae) Exposure to Neonicotinoid Pesticides in Urban, Rural, and Agricultural Settings. Journal of Economic Entomology, 2016, 109, 520-528.	1.8	31
86	Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environment International, 2016, 88, 169-178.	10.0	291
87	Are bee diseases linked to pesticides? — A brief review. Environment International, 2016, 89-90, 7-11.	10.0	350
88	Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 2016, 351, 388-391.	12.6	342
89	Molecular Effects of Neonicotinoids in Honey Bees (<i>Apis mellifera</i>). Environmental Science & Technology, 2016, 50, 4071-4081.	10.0	116
90	Underestimating neonicotinoid exposure: how extent and magnitude may be affected by land-use change. Environmental Science and Pollution Research, 2016, 23, 7050-7054.	5.3	9
91	System-level approach needed to evaluate the transition to more sustainable agriculture. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152913.	2.6	27
92	Response to Comment on "Neonicotinoid Residues in Wildflowers, A Potential Route of Chronic Exposure for Bees― Environmental Science & Technology, 2016, 50, 1630-1631.	10.0	4
93	Effects of Deltamethrin on crayfish motor axon activity and neuromuscular transmission. Neuroscience Letters, 2016, 617, 32-38.	2.1	3

#	Article	IF	CITATIONS
94	Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions. Journal of Chemical Ecology, 2016, 42, 127-138.	1.8	53
95	Tracking pan-continental trends in environmental contaminationÂusing sentinel raptors—what types of samples should we use?. Ecotoxicology, 2016, 25, 777-801.	2.4	149
96	Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Science of the Total Environment, 2016, 542, 469-477.	8.0	177
97	Pollinators, pests, and predators: Recognizing ecological trade-offs in agroecosystems. Ambio, 2016, 45, 4-14.	5.5	70
98	Pollinators in life cycle assessment: towards a framework for impact assessment. Journal of Cleaner Production, 2017, 140, 525-536.	9.3	38
99	Differences in the strengths of evidence matters in risk–risk trade-offs. Journal of Risk Research, 2017, 20, 988-994.	2.6	1
100	A facile graphene oxide based sensor for electrochemical detection of neonicotinoids. Biosensors and Bioelectronics, 2017, 89, 532-537.	10.1	64
101	Using BEEHAVE to explore pesticide protection goals for European honeybee (<i>Apis melifera</i> L.) worker losses at different forage qualities. Environmental Toxicology and Chemistry, 2017, 36, 254-264.	4.3	23
102	Enhanced yeast feeding following mating facilitates control of the invasive fruit pest <i>Drosophila suzukii</i> . Journal of Applied Ecology, 2017, 54, 170-177.	4.0	73
103	Why Bees Are So Vulnerable to Environmental Stressors. Trends in Ecology and Evolution, 2017, 32, 268-278.	8.7	177
104	Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Scientific Reports, 2017, 7, 40853.	3.3	49
105	Nonâ€neuronal acetylcholine involved in reproduction in mammals and honeybees. Journal of Neurochemistry, 2017, 142, 144-150.	3.9	32
106	Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environmental Pollution, 2017, 222, 73-82.	7.5	107
107	The Neonicotinoid Insecticide Thiacloprid Impacts upon Bumblebee Colony Development under Field Conditions. Environmental Science & Technology, 2017, 51, 1727-1732.	10.0	74
108	Sublethal doses of imidacloprid disrupt sexual communication and host finding in a parasitoid wasp. Scientific Reports, 2017, 7, 42756.	3.3	64
109	<i>The Challenge</i> : Assessment of risks posed by systemic insecticides to hymenopteran pollinators: New perception when we move from laboratory via (semiâ€)field to landscape scale testing?. Environmental Toxicology and Chemistry, 2017, 36, 17-24.	4.3	10
110	Monitoring the conservation status of bumble bee populations across an elevation gradient in the Front Range of Colorado. Journal of Insect Conservation, 2017, 21, 65-74.	1.4	5
111	Poisoning a Society: A Superorganism Perspective on Honey Bee Toxicology. Bee World, 2017, 94, 30-32.	0.8	2

#	Article	IF	CITATIONS
112	A sublethal dose of a neonicotinoid insecticide disrupts visual processing and collision avoidance behaviour in Locusta migratoria. Scientific Reports, 2017, 7, 936.	3.3	18
113	An experiment on the impact of a neonicotinoid pesticide on honeybees: the value of a formal analysis of the data. Environmental Sciences Europe, 2017, 29, 4.	5.5	5
114	Modeling Effects of Honeybee Behaviors on the Distribution of Pesticide in Nectar within a Hive and Resultant in-Hive Exposure. Environmental Science & Technology, 2017, 51, 6908-6917.	10.0	15
115	General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170123.	2.6	74
116	Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). Journal of Insect Conservation, 2017, 21, 357-366.	1.4	51
117	Do drivers of biodiversity change differ in importance across marine and terrestrial systems — Or is it just different research communities' perspectives?. Science of the Total Environment, 2017, 574, 191-203.	8.0	32
118	Management matters: A comparison of ant assemblages in organic and conventional vineyards. Agriculture, Ecosystems and Environment, 2017, 246, 175-183.	5.3	23
119	Fate and transport of furrow-applied granular tefluthrin and seed-coated clothianidin insecticides: Comparison of field-scale observations and model estimates. Ecotoxicology, 2017, 26, 876-888.	2.4	16
120	Big city <i>Bombus</i> : using natural history and land-use history to find significant environmental drivers in bumble-bee declines in urban development. Royal Society Open Science, 2017, 4, 170156.	2.4	51
121	The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environmental Science and Pollution Research, 2017, 24, 17285-17325.	5.3	405
122	Planting of neonicotinoidâ€treated maize poses risks for honey bees and other nonâ€target organisms over a wide area without consistent crop yield benefit. Journal of Applied Ecology, 2017, 54, 1449-1458.	4.0	81
123	Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects. Environmental Pollution, 2017, 228, 297-304.	7.5	72
124	The vibrational properties of the bee-killer imidacloprid insecticide: A molecular description. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 185, 245-255.	3.9	20
125	The role of pollinators, pests and different yield components for organic and conventional white clover seed yields. Field Crops Research, 2017, 210, 1-8.	5.1	13
126	Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, Apis mellifera. Chemosphere, 2017, 184, 806-811.	8.2	24
127	Chronic exposure to a neonicotinoid increases expression of antimicrobial peptide genes in the bumblebee Bombus impatiens. Scientific Reports, 2017, 7, 44773.	3.3	13
128	Postregistration monitoring of pesticides is urgently required to protect ecosystems. Environmental Toxicology and Chemistry, 2017, 36, 860-865.	4.3	43
129	The costs of beekeeping for pollination services in the UK – an explorative study. Journal of Apicultural Research, 2017, 56, 310-317.	1.5	11

ARTICLE IF CITATIONS Spring mortality in honey bees in northeastern Italy: detection of pesticides and viruses in dead honey 130 1.5 22 bees and other matrices. Journal of Apicultural Research, 2017, 56, 239-254. A method for the objective selection of landscapeâ€scale study regions and sites at the national level. 5.2 23 Methods in Ecology and Evolution, 2017, 8, 1468-1476. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and 132 237 6.4 pollination. Ecology Letters, 2017, 20, 673-689. Photochemistry of Thin Solid Films of the Neonicotinoid Imidacloprid on Surfaces. Environmental Science & amp; Technology, 2017, 51, 2660-2668. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg 134 3.4 9 predation, pest abundance or soybean yield. Pest Management Science, 2017, 73, 1625-1632. Using the waggle dance to determine the spatial ecology of honey bees during commercial crop pollination. Agricultural and Forest Entomology, 2017, 19, 210-216. 1.3 Predictive systems models can help elucidate bee declines driven by multiple combined stressors. 136 2.0 40 Apidologie, 2017, 48, 328-339. Seed Coating: Science or Marketing Spin?. Trends in Plant Science, 2017, 22, 106-116. 137 8.8 177 Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. Journal of 138 1.9 30 Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 273-283. A worldwide survey of neonicotinoids in honey. Science, 2017, 358, 109-111. 12.6 A cocktail of poisons. Science, 2017, 356, 1331-1332. 140 12.6 15 Landscape Scale Study of the Net Effect of Proximity to a Neonicotinoid-Treated Crop on Bee Colony 10.0 Health. Environmental Science & amp; Technology, 2017, 51, 10825-10833. Effects of sublethal doses of thiacloprid and its formulation Calypso® on the learning and memory 142 1.7 49 performance of honey bees. Journal of Experimental Biology, 2017, 220, 3695-3705. The impact of honey bee colony quality on crop yield and farmers' profit in apples and pears. Agriculture, Ecosystems and Environment, 2017, 248, 153-161. 143 5.3 76 Neonicotinoids act like endocrine disrupting chemicals in newly-emerged bees and winter bees. 144 3.3 58 Scientific Reports, 2017, 7, 10979. Bumblebee colony development following chronic exposure to field-realistic levels of the 145 neonicotinoid pesticide thiamethoxam under laboratory conditions. Scientific Reports, 2017, 7, 8005. Ecological and evolutionary approaches to managing honeybee disease. Nature Ecology and Evolution, 146 7.8 73 2017, 1, 1250-1262. Effect of fenpropathrin on the viability and homing ability of worker bees Apis mellifera. Journal of Asia-Pacific Entomology, 2017, 20, 1063-1066.

# 148	ARTICLE Integrated Crop Pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops. Basic and Applied Ecology, 2017, 22, 44-60.	IF 2.7	CITATIONS
149	Pesticides and bees: Ecological-economic modelling of bee populations on farmland. Ecological Modelling, 2017, 360, 53-62.	2.5	15
150	Quantification of differences in germination behaviour of pelleted and coated sugar beet seeds using x-ray computed tomography (x-ray CT). Biomedical Physics and Engineering Express, 2017, 3, 044001.	1.2	19
151	Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Scientific Reports, 2017, 7, 4673.	3.3	56
152	Neonicotinoids override a parasite exposure impact onÂhibernation success of a key bumblebee pollinator. Ecological Entomology, 2017, 42, 306-314.	2.2	71
153	Temporal dynamics of whole body residues of the neonicotinoid insecticide imidacloprid in live or dead honeybees. Scientific Reports, 2017, 7, 6288.	3.3	16
154	Neonicotinoid Seed Treatments: Limitations and Compatibility with Integrated Pest Management. Agricultural and Environmental Letters, 2017, 2, ael2017.08.0026.	1.2	49
155	Quantitative weight of evidence assessment of higher tier studies on the toxicity and risks of neonicotinoids in honeybees. 3. Clothianidin. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2017, 20, 346-364.	6.5	13
156	Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172181.	2.6	70
157	Neonicotinoid pesticide limits improvement in buzz pollination by bumblebees. Scientific Reports, 2017, 7, 15562.	3.3	28
158	Effects of global change on insect pollinators: multiple drivers lead to novel communities. Current Opinion in Insect Science, 2017, 23, 22-27.	4.4	58
159	Insecticide Susceptibility in Asian Honey Bees (Apis cerana (Hymenoptera: Apidae)) and Implications for Wild Honey Bees in Asia. Journal of Economic Entomology, 2017, 110, 447-452.	1.8	16
160	Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 2017, 356, 1393-1395.	12.6	510
161	Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science, 2017, 356, 1395-1397.	12.6	385
162	Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. Journal of Applied Ecology, 2017, 54, 1199-1208.	4.0	54
163	Effects of pollen species composition on the foraging behaviour and offspring performance of the mason bee Osmia bicornis (L.). Basic and Applied Ecology, 2017, 18, 21-30.	2.7	44
164	Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology. Environmental Toxicology and Chemistry, 2017, 36, 871-881.	4.3	65
165	Colony impact of pesticideâ€induced sublethal effects on honeybee workers: A simulation study using BEEHAVE. Environmental Toxicology and Chemistry, 2017, 36, 831-840.	4.3	25

#	Article	IF	CITATIONS
166	A Tool for Selecting Plants When Restoring Habitat for Pollinators. Conservation Letters, 2017, 10, 105-111.	5.7	56
167	Human welfare and its connection to nature: What have we learned from crop pollination studies?. Austral Ecology, 2017, 42, 2-8.	1.5	6
168	Synergistic mortality between a neonicotinoid insecticide and an ergosterolâ€biosynthesisâ€inhibiting fungicide in three bee species. Pest Management Science, 2017, 73, 1236-1243.	3.4	164
169	Providing foraging resources for solitary bees on farmland: current schemes for pollinators benefit a limited suite of species. Journal of Applied Ecology, 2017, 54, 323-333.	4.0	90
170	Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecology and Sustainable Food Systems, 2017, 41, 101-142.	1.9	61
171	Sublethal exposure to neonicotinoids and related side effects on insect pollinators: honeybees, bumblebees, and solitary bees. Journal of Plant Diseases and Protection, 2017, 124, 1-30.	2.9	60
172	Trojan Females and Judas Goats: Evolutionary Traps as Tools in Wildlife Management. BioScience, 2017, 67, 983-994.	4.9	30
173	Integrative behavioral ecotoxicology: bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Environmental Epigenetics, 2017, 63, 185-194.	1.8	82
174	Optimizing Pest Management Practices to Conserve Pollinators in Turf Landscapes: Current Practices and Future Research Needs. Journal of Integrated Pest Management, 2017, 8, .	2.0	16
175	Direct and Pollinator-Mediated Effects of Herbivory on Strawberry and the Potential for Improved Resistance. Frontiers in Plant Science, 2017, 8, 823.	3.6	39
176	Bee Community of Commercial Potato Fields in Michigan and Bombus impatiens Visitation to Neonicotinoid-Treated Potato Plants. Insects, 2017, 8, 30.	2.2	19
177	5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems. Sustainability, 2017, 9, 1594.	3.2	20
178	Pest Control Compounds Targeting Insect Chemoreceptors: Another Silent Spring?. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	23
179	The bitter battle over the world's most popular insecticides. Nature, 2017, 551, 156-158.	27.8	58
180	An updated understanding of Texas bumble bee (Hymenoptera: Apidae) species presence and potential distributions in Texas, USA. PeerJ, 2017, 5, e3612.	2.0	9
181	Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review. Environmental Health Perspectives, 2017, 125, 155-162.	6.0	336
182	Safe-Guarding Bee Diversity and Food Provisioning. , 2017, , .		1
183	Benzimidazole fungicides are detrimental to common farmland ants. Biological Conservation, 2018, 221, 114-117.	4.1	19

#	Article	IF	CITATIONS
184	Comparison of uptake, translocation and accumulation of several neonicotinoids in komatsuna (Brassica rapa var. perviridis) from contaminated soils. Chemosphere, 2018, 200, 603-611.	8.2	75
185	Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms. Environmental Pollution, 2018, 236, 158-167.	7.5	128
186	Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environmental Science & amp; Technology, 2018, 52, 3329-3335.	10.0	316
187	Interactions between immunotoxicants and parasite stress: Implications for host health. Journal of Theoretical Biology, 2018, 445, 120-127.	1.7	7
188	Pesticide diversity in rice growing areas of Northern Vietnam. Paddy and Water Environment, 2018, 16, 339-352.	1.8	21
189	Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L.). Chemosphere, 2018, 201, 159-167.	8.2	65
190	Routes of Pesticide Exposure in Solitary, Cavity-Nesting Bees. Environmental Entomology, 2018, 47, 499-510.	1.4	56
191	Neonicotinoid insecticides negatively affect performance measures of nonâ€target terrestrial arthropods: a metaâ€analysis. Ecological Applications, 2018, 28, 1232-1244.	3.8	52
192	Complementarity and synergisms among ecosystem services supporting crop yield. Global Food Security, 2018, 17, 38-47.	8.1	66
193	Indirect effects of agricultural pesticide use on parasite prevalence in wild pollinators. Agriculture, Ecosystems and Environment, 2018, 258, 40-48.	5.3	25
194	Neonicotinoid Residues in Fruits and Vegetables: An Integrated Dietary Exposure Assessment Approach. Environmental Science & Technology, 2018, 52, 3175-3184.	10.0	177
195	Lifetime eco-nanotoxicology in an adult organism: where and when is the invertebrate <i>C. elegans</i> vulnerable?. Environmental Science: Nano, 2018, 5, 616-622.	4.3	17
196	Photochemistry of Solid Films of the Neonicotinoid Nitenpyram. Environmental Science & Technology, 2018, 52, 2760-2767.	10.0	21
197	Effects of neonicotinoid imidacloprid exposure on bumble bee (Hymenoptera: Apidae) queen survival and nest initiation. Environmental Entomology, 2018, 47, 55-62.	1.4	44
198	Drivers of colony losses. Current Opinion in Insect Science, 2018, 26, 142-148.	4.4	208
199	Interaction effects of different drivers of wild bee decline and their influence on host–pathogen dynamics. Current Opinion in Insect Science, 2018, 26, 136-141.	4.4	47
200	Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. Environmental Pollution, 2018, 234, 812-820.	7.5	94
201	Imidacloprid slows the development of preference for rewarding food sources in bumblebees (Bombus impatiens). Ecotoxicology, 2018, 27, 175-187.	2.4	18

#	Article	IF	CITATIONS
202	Thiamethoxam seed treatments reduce foliar predator and pollinator populations in sunflowers () Tj ETQq0 0 0 r the predator, Coleomegilla maculata (Coleoptera: Coccinellidae). Crop Protection, 2018, 106, 86-92.	gBT /Over 2.1	lock 10 Tf 50 20
203	The effects of reduced tillage and earlier seeding on flea beetle (Phyllotreta spp.) crop damage in spring oilseed rape (Brassica napus L.). Crop Protection, 2018, 107, 104-107.	2.1	10
204	Thiamethoxam honey bee colony feeding study: Linking effects at the level of the individual to those at the colony level. Environmental Toxicology and Chemistry, 2018, 37, 816-828.	4.3	20
205	Letter to the editor "The resilience of the beehive― Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 1-4.	6.5	0
206	Apis cerana Is Less Sensitive to Most Neonicotinoids, Despite of Their Smaller Body Mass. Journal of Economic Entomology, 2018, 111, 39-42.	1.8	29
207	A long-term field study on the effects of dietary exposure of clothianidin to varroosis-weakened honey bee colonies. Ecotoxicology, 2018, 27, 772-783.	2.4	19
208	Neonicotinoid detection in wild turkeys (Meleagris gallopavo silvestris) in Ontario, Canada. Environmental Science and Pollution Research, 2018, 25, 16254-16260.	5.3	26
209	Rapid Trace Detection and Isomer Quantitation of Pesticide Residues via Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2018, 66, 3966-3974.	5.2	15
210	Effects of Field-Relevant Concentrations of Clothianidin on Larval Development of the Butterfly <i>Polyommatus icarus</i> (Lepidoptera, Lycaenidae). Environmental Science & Technology, 2018, 52, 3990-3996.	10.0	26
211	Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species. Land Use Policy, 2018, 75, 70-76.	5.6	10
212	Sublethal effects of clothianidin and Nosema spp. on the longevity and foraging activity of free flying honey bees. Ecotoxicology, 2018, 27, 527-538.	2.4	28
213	Enhancement of chronic bee paralysis virus levels in honeybees acute exposed to imidacloprid: A Chinese case study. Science of the Total Environment, 2018, 630, 487-494.	8.0	34
214	Loops D, E and G in the <i>Drosophila</i> Dα1 subunit contribute to high neonicotinoid sensitivity of Dα1â€chicken β2 nicotinic acetylcholine receptor. British Journal of Pharmacology, 2018, 175, 1999-2012.	5.4	22
215	Effect of the Storage Conditions (Light and Temperature) on the Detection of Thiamethoxam and Clothianidin Content in Rapeseeds by LC-DAD. Food Analytical Methods, 2018, 11, 161-169.	2.6	4
216	The Lancet Commission on pollution and health. Lancet, The, 2018, 391, 462-512.	13.7	2,747
217	Assessment of acute sublethal effects of clothianidin on motor function of honeybee workers using video-tracking analysis. Ecotoxicology and Environmental Safety, 2018, 147, 200-205.	6.0	14
218	Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Science of the Total Environment, 2018, 615, 59-69.	8.0	148
219	A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Science of the Total Environment, 2018, 615, 208-218.	8.0	183

#	Article	IF	Citations
220	Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 2018, 8, 441-451.	1.9	106
221	Effects of exposure to winter oilseed rape grown from thiamethoxamâ€ŧreated seed on the red mason bee <i>Osmia bicornis</i> . Environmental Toxicology and Chemistry, 2018, 37, 1071-1083.	4.3	35
222	Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: justification of study design and statistical analysis. Ecotoxicology, 2018, 27, 8-11.	2.4	1
223	Simultaneous Determination of Five Neonicotinoid Insecticides in Edible Fungi Using Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Food Analytical Methods, 2018, 11, 1086-1094.	2.6	12
224	Effects of neonicotinoids on Bees: an invalid experiment. Ecotoxicology, 2018, 27, 1-7.	2.4	15
225	Daño colateral en abejas por la exposición a pesticidas de uso agrÃcola. Entramado, 2018, 14, 232-240.	0.3	6
226	A Review of Research Needs for Pollinators in Managed Conifer Forests. Journal of Forestry, 2018, 116, 563-572.	1.0	29
227	Were the sharp declines of dragonfly populations in the 1990s in Japan caused by fipronil and imidacloprid? An analysis of Hill's causality for the case of Sympetrum frequens. Environmental Science and Pollution Research, 2018, 25, 35352-35364.	5.3	39
228	æµ,逿€§è¾²è−¬ã®æ¹æ·±ã,å•題. Nature Digest, 2018, 15, 31-33.	0.0	0
229	Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science, 2018, 362, 683-686.	12.6	178
230	The Impact of Integrated Pest Management and Regulation on Agricultural Pesticide Use in California. ACS Symposium Series, 2018, , 203-224.	0.5	0
231	Potential Pesticide Use Risks to Honeybees during Almond Pollination in California. ACS Symposium Series, 2018, , 379-404.	0.5	0
232	Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nature Communications, 2018, 9, 5446.	12.8	45
233	Neonicotinoids: molecular mechanisms of action, insights into resistance and impact on pollinators. Current Opinion in Insect Science, 2018, 30, 86-92.	4.4	85
234	Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators?. Environmental Pollution, 2018, 243, 1588-1601.	7.5	21
235	Queen bee acceptance under threat: Neurotoxic insecticides provoke deep damage in queen-worker relationships. Ecotoxicology and Environmental Safety, 2018, 166, 42-47.	6.0	10
236	Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Frontiers in Plant Science, 2018, 9, 1425.	3.6	85
237	Synergistic effects of pathogen and pesticide exposure on honey bee (Apis mellifera) survival and immunity. Journal of Invertebrate Pathology, 2018, 159, 78-86.	3.2	66

#	Article	IF	CITATIONS
238	Effects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditions. Aquatic Toxicology, 2018, 204, 130-143.	4.0	50
239	Conformations and Binding Properties of Thiametoxam and Clothianidin Neonicotinoid Insecticides to Nicotinic Acetylcholine Receptors: The Contribution of Ïfâ€Hole Interactions. ChemPhysChem, 2018, 19, 3069-3083.	2.1	7
240	Rethink RNAi in Insect Pest Control: Challenges and Perspectives. Advances in Insect Physiology, 2018, , 1-17.	2.7	62
241	Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180655.	2.6	53
242	Single and interactive effects of <i>Varroa destructor</i> , <i> Nosema</i> spp., and imidacloprid on honey bee colonies (<i>Apis mellifera</i>). Ecosphere, 2018, 9, e02378.	2.2	31
244	Getting ready for battle: do cabbage seeds treated with jasmonic acid and chitosan affect chewing and sapâ€feeding insects?. Entomologia Experimentalis Et Applicata, 2018, 166, 412-419.	1.4	29
245	Effects of heterospecific pollen from a windâ€pollinated and pesticideâ€ŧreated plant on reproductive success of an insectâ€pollinated species. American Journal of Botany, 2018, 105, 836-841.	1.7	9
246	Global Transcriptomic Effects of Environmentally Relevant Concentrations of the Neonicotinoids Clothianidin, Imidacloprid, and Thiamethoxam in the Brain of Honey Bees (<i>Apis mellifera</i>). Environmental Science & Technology, 2018, 52, 7534-7544.	10.0	68
247	Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180807.	2.6	73
248	Metabolism Distribution and Effect of Thiamethoxam after Oral Exposure in Mongolian Racerunner (<i>Eremias argus</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 7376-7383.	5.2	13
249	Monitoring Neonicotinoid Exposure for Bees in Rural and Peri-urban Areas of the U.K. during the Transition from Pre- to Post-moratorium. Environmental Science & Technology, 2018, 52, 9391-9402.	10.0	34
250	Reflections on, and visions for, the changing field of pollination ecology. Ecology Letters, 2018, 21, 1282-1295.	6.4	50
251	Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180506.	2.6	53
252	Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles. Frontiers in Physiology, 2018, 9, 728.	2.8	47
253	Review: Have suitable experimental designs been used to determine the effects of neonicotinoid insecticides on bee colony performance in the field?. Journal of Apicultural Research, 2018, 57, 586-592.	1.5	6
254	A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional Ecology, 2018, 32, 1921-1930.	3.6	23
255	Quantifying the impact of pesticides on learning and memory in bees. Journal of Applied Ecology, 2018, 55, 2812-2821.	4.0	114
256	Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE, 2018, 13, e0199995.	2.5	84

#	Article	IF	CITATIONS
257	Evidence for multi-trophic effects of pesticide seed treatments on non-targeted soil fauna. Soil Biology and Biochemistry, 2018, 125, 144-155.	8.8	21
258	Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC–MS/MS with anion exchanger-disposable pipette extraction. Journal of Chromatography A, 2018, 1557, 51-61.	3.7	70
259	Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180887.	2.6	59
260	An alternative to controversial pesticides still harms bumblebees. Nature, 2018, 561, 40-41.	27.8	22
261	Sulfoxaflor exposure reduces bumblebee reproductive success. Nature, 2018, 561, 109-112.	27.8	152
262	The impacts of chlorothalonil and diflubenzuron on Apis mellifera L. larvae reared in vitro. Ecotoxicology and Environmental Safety, 2018, 164, 283-288.	6.0	18
263	Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180761.	2.6	51
264	Neonicotinoid residues in UK honey despite European Union moratorium. PLoS ONE, 2018, 13, e0189681.	2.5	31
265	Responses of Honey Bees to Lethal and Sublethal Doses of Formulated Clothianidin Alone and Mixtures. Journal of Economic Entomology, 2018, 111, 1517-1525.	1.8	35
266	Emerging Viruses in Bees: From Molecules to Ecology. Advances in Virus Research, 2018, 101, 251-291.	2.1	35
267	Bee communities in forestry production landscapes: interactive effects of local-level management and landscape context. Landscape Ecology, 2019, 34, 1015-1032.	4.2	17
268	Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to <scp><i>Apis mellifera</i></scp> L. larvae reared <i>in vitro</i> . Pest Management Science, 2019, 75, 29-36.	3.4	47
269	Color polarization vision mediates the strength of an evolutionary trap. Evolutionary Applications, 2019, 12, 175-186.	3.1	8
270	ls Osmia bicornis an adequate regulatory surrogate? Comparing its acute contact sensitivity to Apis mellifera. PLoS ONE, 2019, 14, e0201081.	2.5	18
271	The Impact of Pesticides on Flowerâ€Visiting Insects: A Review with Regard to European Risk Assessment. Environmental Toxicology and Chemistry, 2019, 38, 2355-2370.	4.3	58
272	Agrochemicals in the wild: Identifying links between pesticide use and declines of nontarget organisms. Current Opinion in Environmental Science and Health, 2019, 11, 53-58.	4.1	36
273	Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects, 2019, 10, 233.	2.2	76
274	Seed coating with beneficial microorganisms for precision agriculture. Biotechnology Advances, 2019, 37, 107423.	11.7	107

ARTICLE IF CITATIONS # Assessment of risk to hoary squash bees (Peponapis pruinosa) and other ground-nesting bees from 275 3.3 69 systemic insecticides in agricultural soil. Scientific Reports, 2019, 9, 11870. A Novel Water-Swelling Sampling Probe for in Vivo Detection of Neonicotinoids in Plants. 276 10.0 Environmental Science & amp; Technology, 2019, 53, 9686-9694. Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and 277 2.9 17 Bumblebees. Genetics, 2019, 212, 1101-1119. Comparative survival and fitness of bumble bee colonies in natural, suburban, and agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 284, 106594. Honeybee dietary neonicotinoid exposure is associated with pollen collection from agricultural 279 2.6 24 weeds. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190989. The effects of the neonicotinoid imidacloprid on gene expression and DNA methylation in the 280 buff-tailed bumblebee <i>Bombus terrestris</i>. Proceedings of the Royal Society B: Biological 2.6 Sciences, 2019, 286, 20190718. Toward the protection of bees and pollination under global change: present and future perspectives 282 4.4 53 in a challenging applied science. Current Opinion in Insect Science, 2019, 35, 123-131. Development and Application of Seed Coating Agent for the Control of Major Soil-Borne Diseases Infecting Wheat. Agronomy, 2019, 9, 413. 284 The Welfare of Invertebrate Animals. Animal Welfare, 2019, , . 1.0 21 Welfare of Managed Honey Bees. Animal Welfare, 2019, , 69-104. 1.0 Distribution, Dissipation, and Metabolism of Neonicotinoid Insecticides in the Cotton Ecosystem under Foliar Spray and Root Irrigation. Journal of Agricultural and Food Chemistry, 2019, 67, 286 5.2 34 12374-12381. Foraging strategies are maintained despite workforce reduction: A multidisciplinary survey on the 2.5 30 pollen collected by a social pollinator. PLoS ONE, 2019, 14, e0224037. 288 How to disarm an evolutionary trap. Conservation Science and Practice, 2019, 1, e116. 2.0 24 Experimental and Theoretical Studies of the Environmental Sensitivity of the Absorption Spectra and 2.7 Photochemistry of Nitenpyram and Analogs. ACS Earth and Space Chemistry, 2019, 3, 2063-2075. Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends in Microbiology, 2019, 27, 291 7.7 57 1034-1044. 20Âyears SETAC GLB: increasing realism of pesticide risk assessment. Environmental Sciences Europe, 292 2019, 31, . Future pesticide risk assessment: narrowing the gap between intention and reality. Environmental 293 5.580 Sciences Europe, 2019, 31, . 294 Aging by pollutants: introducing the aging dose (AD)50. Environmental Sciences Europe, 2019, 31, .

#	Article	IF	CITATIONS
295	The Economics of Honey Bee (Hymenoptera: Apidae) Management and Overwintering Strategies for Colonies Used to Pollinate Almonds. Journal of Economic Entomology, 2019, 112, 2524-2533.	1.8	39
296	Harnessing tipping points in complex ecological networks. Journal of the Royal Society Interface, 2019, 16, 20190345.	3.4	32
297	An Environmental Model of Honey Bee Colony Collapse Due to Pesticide Contamination. Bulletin of Mathematical Biology, 2019, 81, 4908-4931.	1.9	21
298	A nationwide survey of urinary concentrations of neonicotinoid insecticides in China. Environment International, 2019, 132, 105114.	10.0	89
299	Development of a high-performance tactile feedback display for three-dimensional shape rendering. International Journal of Advanced Robotic Systems, 2019, 16, 172988141986318.	2.1	2
300	Moving beyond honeybee-centric pesticide risk assessments to protect all pollinators. Nature Ecology and Evolution, 2019, 3, 1373-1375.	7.8	60
301	Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Scientific Reports, 2019, 9, 13770.	3.3	60
302	Characterization of olfactory sensory neurons in the red clover seed weevil, Protapion trifolii (Coleoptera: Brentidae) and comparison to the closely related species P. fulvipes. Journal of Insect Physiology, 2019, 119, 103948.	2.0	5
303	Pesticide Exposure Assessment Paradigm for Solitary Bees. Environmental Entomology, 2019, 48, 22-35.	1.4	129
304	Quantum Yields and N ₂ O Formation from Photolysis of Solid Films of Neonicotinoids. Journal of Agricultural and Food Chemistry, 2019, 67, 1638-1646.	5.2	9
305	A short note on extreme sex ratio in solitary bees <i>Osmia cornuta</i> in semi-field trials testing the impact of neonicotinoids. Journal of Apicultural Research, 2019, 58, 469-470.	1.5	7
306	Late flowering time enhances insect pollination of turnip rape. Journal of Applied Ecology, 2019, 56, 1164-1175.	4.0	9
307	Human health safety studies of a new insecticide: Dissipation kinetics and dietary risk assessment of afidopyropen and one of its metabolites in cucumber and nectarine. Regulatory Toxicology and Pharmacology, 2019, 103, 150-157.	2.7	13
308	Pollen-borne microbes shape bee fitness. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182894.	2.6	67
309	Multiphase chemistry in the troposphere: It all starts … and ends … with gases. International Journal of Chemical Kinetics, 2019, 51, 736-752.	1.6	6
310	Does winter oilseed rape grown from clothianidin-coated seeds affect experimental populations of mason bees and bumblebees? A semi-field and field study. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2019, 14, 223-238.	1.4	12
311	A review of methods for the study of bumble bee movement. Apidologie, 2019, 50, 497-514.	2.0	18
312	Organic farming positively affects honeybee colonies in a flowerâ€poor period in agricultural landscapes, lournal of Applied Ecology, 2019, 56, 1960-1969	4.0	26

#	Article	IF	Citations
313	Alternatives to neonicotinoids. Environment International, 2019, 129, 423-429.	10.0	103
314	Simultaneous determination of neonicotinoids and fipronil and its metabolites in environmental water from coastal bay using disk-based solid-phase extraction and high-performance liquid chromatography–tandem mass spectrometry. Chemosphere, 2019, 234, 224-231.	8.2	63
315	Ecological toxicity reduction of dinotefuran to honeybee: New perspective from an enantiomeric level. Environment International, 2019, 130, 104854.	10.0	69
316	Long-term dynamics of honey bee colonies following exposure to chemical stress. Science of the Total Environment, 2019, 677, 660-670.	8.0	39
317	Keeping invertebrate research ethical in a landscape of shifting public opinion. Methods in Ecology and Evolution, 2019, 10, 1265-1273.	5.2	66
318	Exposure of the wild bee <i>Osmia bicornis</i> to the honey bee pathogen <i>Nosema ceranae</i> . Agricultural and Forest Entomology, 2019, 21, 363-371.	1.3	21
319	Low maize pollen collection and low pesticide risk to honey bees in heterogeneous agricultural landscapes. Apidologie, 2019, 50, 379-390.	2.0	16
320	Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields. Environmental Pollution, 2019, 251, 591-599.	7.5	47
321	Sub-lethal concentrations of neonicotinoid insecticides at the field level affect negatively honey yield: Evidence from a 6-year survey of Greek apiaries. PLoS ONE, 2019, 14, e0215363.	2.5	9
322	Disentangling host-parasite-pathogen interactions in a varroa-resistant honeybee population reveals virus tolerance as an independent, naturally adapted survival mechanism. Scientific Reports, 2019, 9, 6221.	3.3	36
323	A new, practicable and economical cage design for experimental studies on small honey bee colonies. Journal of Experimental Biology, 2019, 222, .	1.7	3
324	Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecology and Evolution, 2019, 9, 5637-5650.	1.9	41
325	Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems and Environment, 2019, 280, 16-23.	5.3	62
326	Contact application of neonicotinoids suppresses the predation rate in different densities of prey and induces paralysis of common farmland spiders. Scientific Reports, 2019, 9, 5724.	3.3	17
327	Bruceine D Isolated from <i>Brucea Javanica</i> (L.) Merr. as a Systemic Feeding Deterrent for Three Major Lepidopteran Pests. Journal of Agricultural and Food Chemistry, 2019, 67, 4232-4239.	5.2	19
328	Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodiversity and Conservation, 2019, 28, 1343-1360.	2.6	159
329	A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Scientific Reports, 2019, 9, 4764.	3.3	64
330	Coviability of Social and Ecological Systems: Reconnecting Mankind to the Biosphere in an Era of Global Change. , 2019, , .		4

#	Article	IF	CITATIONS
331	The spread of resistance to imidacloprid is restricted by thermotolerance in natural populations of Drosophila melanogaster. Nature Ecology and Evolution, 2019, 3, 647-656.	7.8	26
332	The Man and the Bees: A Coviability Issue – Beekeeping Can It Be Intensively Farmed?. , 2019, , 305-327.		1
333	Urinary monitoring of neonicotinoid imidacloprid exposure to pesticide applicators. Science of the Total Environment, 2019, 669, 721-728.	8.0	50
334	The need for coordinated transdisciplinary research infrastructures for pollinator conservation and crop pollination resilience. Environmental Research Letters, 2019, 14, 045017.	5.2	25
335	Is there a best woodland strawberry? A consumer survey of preferred sensory properties and cultivation characteristics. International Journal of Gastronomy and Food Science, 2019, 16, 100151.	3.0	12
336	Dietary risk of neonicotinoid insecticides through fruit and vegetable consumption in school-age children. Environment International, 2019, 126, 672-681.	10.0	115
337	Tracking Pesticide Residues to a Plant Genus Using Palynology in Pollen Trapped from Honey Bees (Hymenoptera: Apidae) at Ornamental Plant Nurseries. Environmental Entomology, 2019, 48, 351-362.	1.4	23
338	Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. Advances in Ecological Research, 2019, , 59-123.	2.7	32
339	Scientific note: first global report of a bee nest built only with plastic. Apidologie, 2019, 50, 230-233.	2.0	23
340	Social Buffering of Pesticides in Bumblebees: Agent-Based Modeling of the Effects of Colony Size and Neonicotinoid Exposure on Behavior Within Nests. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	20
341	Pesticides and pollinators: A socioecological synthesis. Science of the Total Environment, 2019, 662, 1012-1027.	8.0	130
342	Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nature Communications, 2019, 10, 692.	12.8	57
343	Challenges of Pest Management in the Twenty First Century: New Tools and Strategies to Combat Old and New Foes Alike. Frontiers in Agronomy, 2019, 1, .	3.3	21
344	Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People and Nature, 2019, 1, 562-572.	3.7	32
345	Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Affects Life History. Insects, 2019, 10, 380.	2.2	19
346	Can Costs of Pesticide Exposure for Bumblebees Be Balanced by Benefits from a Mass-Flowering Crop?. Environmental Science & Technology, 2019, 53, 14144-14151.	10.0	14
347	Acetylcholine and Its Receptors in Honeybees: Involvement in Development and Impairments by Neonicotinoids. Insects, 2019, 10, 420.	2.2	40
348	Risk of potential pesticide use to honeybee and bumblebee survival and distribution: A countryâ€wide analysis for The Netherlands. Diversity and Distributions, 2019, 25, 1709-1720.	4.1	14

ARTICLE

IF CITATIONS

Biotic and Abiotic Factors Associated with Colonies Mortalities of Managed Honey Bee (Apis) Tj ETQq0 0 0 rgBT /Overlock 10, Tf 50 742

350	Fungicides, herbicides and bees: A systematic review of existing research and methods. PLoS ONE, 2019, 14, e0225743.	2.5	125
351	Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 2019, 294, 131-153.	9.9	424
352	Maizeâ€dominated landscapes reduce bumblebee colony growth through pollen diversity loss. Journal of Applied Ecology, 2019, 56, 294-304.	4.0	38
353	A higher efficiency removal of neonicotinoid insecticides by modified cellulose-based complex particle. International Journal of Biological Macromolecules, 2019, 126, 857-866.	7.5	14
354	Effects of glufosinateâ€ammonium herbicide and pod sealant on spider <i>Pardosa agrestis</i> . Journal of Applied Entomology, 2019, 143, 196-203.	1.8	11
355	Explaining the variability in the response of annual eusocial insects to massâ€flowering events. Journal of Animal Ecology, 2019, 88, 178-188.	2.8	6
356	Contamination of the guttation liquid of two common weeds with neonicotinoids from coated maize seeds planted in close proximity. Science of the Total Environment, 2019, 649, 1137-1143.	8.0	11
357	Fast oxidation of the neonicotinoid pesticides listed in the EU Decision 2018/840 from aqueous solutions. Separation and Purification Technology, 2020, 235, 116168.	7.9	25
358	Reduced species richness of native bees in field margins associated with neonicotinoid concentrations in non-target soils. Agriculture, Ecosystems and Environment, 2020, 287, 106693.	5.3	47
359	Global Trends in Bumble Bee Health. Annual Review of Entomology, 2020, 65, 209-232.	11.8	189
360	A biodegradable water-triggered chitosan/hydroxypropyl methylcellulose pesticide mulch film for sustained control of Phytophthora sojae in soybean (Glycine max L. Merr.). Journal of Cleaner Production, 2020, 245, 118943.	9.3	29
361	Environmental impacts of reduced-risk and conventional pesticide programs differ in commercial apple orchards, but similarly influence pollinator community. Chemosphere, 2020, 240, 124926.	8.2	14
362	Sulfoxaflor exposure reduces egg laying in bumblebees <i>Bombus terrestris</i> . Journal of Applied Ecology, 2020, 57, 160-169.	4.0	40
363	Sublethal larval exposure to imidacloprid impacts adult behaviour in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2020, 33, 151-164.	1.7	13
364	How to disguise evolutionary traps created by solar panels. Journal of Insect Conservation, 2020, 24, 241-247.	1.4	7
365	Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity. Annual Review of Pharmacology and Toxicology, 2020, 60, 241-255.	9.4	168
366	Potential Impacts of Translocation of Neonicotinoid Insecticides to Cotton (Gossypium hirsutum) Tj ETQq1 1 0.78 159-168.	84314 rgB 1.4	T /Overloc 8

#	Article	IF	CITATIONS
367	Labels of insecticides to which Oregon honey bee (<scp><i>Apis mellifera</i></scp> L.) hives could be exposed do not align with federal recommendations in their communication of acute and residual toxicity to honey bees. Pest Management Science, 2020, 76, 1664-1672.	3.4	4
368	Neonicotinoid-induced mortality risk for bees foraging on oilseed rape nectar persists despite EU moratorium. Science of the Total Environment, 2020, 704, 135400.	8.0	60
369	Bees and pesticide regulation: Lessons from the neonicotinoid experience. Biological Conservation, 2020, 241, 108356.	4.1	91
370	Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology, 2020, 20, 430.	3.6	18
371	Exposure Level of Neonicotinoid Insecticides in the Food Chain and the Evaluation of Their Human Health Impact and Environmental Risk: An Overview. Sustainability, 2020, 12, 7523.	3.2	15
372	Neonicotinoids in global agriculture: evidence for a new pesticide treadmill?. Ecology and Society, 2020, 25, .	2.3	39
373	Evaluating imidacloprid exposure among grape field male workers using biological and environmental assessment tools: An exploratory study. International Journal of Hygiene and Environmental Health, 2020, 230, 113625.	4.3	8
374	Pollination Services to <i>Impatiens capensis</i> (Balsaminaceae) Are Maintained across an Urbanization Gradient. International Journal of Plant Sciences, 2020, 181, 937-944.	1.3	5
375	Plant protection product residues in plant pollen and nectar: A review of current knowledge. Environmental Research, 2020, 189, 109873.	7.5	100
376	Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116.	2.0	58
376 377		2.0 8.2	58
	Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee		
377	Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere, 2020, 260, 127542. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite	8.2	11
377 378	 Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere, 2020, 260, 127542. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nature Communications, 2020, 11, 5887. Species Sensitivity to Toxic Substances: Evolution, Ecology and Applications. Frontiers in 	8.2 12.8	11 32
377 378 379	Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere, 2020, 260, 127542. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nature Communications, 2020, 11, 5887. Species Sensitivity to Toxic Substances: Evolution, Ecology and Applications. Frontiers in Environmental Science, 2020, 8, . Architecting neonicotinoid-scavenging nanocomposite hydrogels for environmental remediation.	8.2 12.8 3.3	11 32 65
377 378 379 380	Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere, 2020, 260, 127542. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nature Communications, 2020, 11, 5887. Species Sensitivity to Toxic Substances: Evolution, Ecology and Applications. Frontiers in Environmental Science, 2020, 8, . Architecting neonicotinoid-scavenging nanocomposite hydrogels for environmental remediation. Applied Materials Today, 2020, 21, 100878. Annual flowers strips benefit bumble bee colony growth and reproduction. Biological Conservation,	 8.2 12.8 3.3 4.3 	11 32 65 69
377 378 379 380 381	Managed honey bees as a radar for wild bee decline?. Apidologie, 2020, 51, 1100-1116. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere, 2020, 260, 127542. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nature Communications, 2020, 11, 5887. Species Sensitivity to Toxic Substances: Evolution, Ecology and Applications. Frontiers in Environmental Science, 2020, 8, . Architecting neonicotinoid-scavenging nanocomposite hydrogels for environmental remediation. Applied Materials Today, 2020, 21, 100878. Annual flowers strips benefit bumble bee colony growth and reproduction. Biological Conservation, 2020, 252, 108814. Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticidesã€"An Urban-Rural Case Study	 8.2 12.8 3.3 4.3 4.1 	11 32 65 69 24

#	Article	IF	CITATIONS
385	Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200935.	2.6	18
386	Bumblebee Re-Identification Dataset. , 2020, , .		1
388	Sorption and degradation of imidacloprid and clothianidin in Chinese paddy soil and red soil amended with biochars. Biochar, 2020, 2, 329-341.	12.6	18
389	The neonicotinoid thiacloprid causes transcriptional alteration of genes associated with mitochondria at environmental concentrations in honey bees. Environmental Pollution, 2020, 266, 115297.	7.5	24
390	Hydrogel baits pose minimal risk to nonâ€ŧarget insects and beneficial species. Entomologia Experimentalis Et Applicata, 2020, 168, 948-955.	1.4	7
391	Insect decline, an emerging global environmental risk. Current Opinion in Environmental Sustainability, 2020, 46, 39-42.	6.3	72
392	Do novel insecticides pose a threat to beneficial insects?. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201265.	2.6	70
393	Making sense of Integrated Pest Management (IPM) in the light of evolution. Evolutionary Applications, 2020, 13, 1791-1805.	3.1	52
394	Agricultural landscape composition affects the development and life expectancy of colonies of <i>Bombus impatiens</i> . Ecosphere, 2020, 11, e03142.	2.2	4
395	Pesticide dosing must be guided by ecological principles. Nature Ecology and Evolution, 2020, 4, 1575-1577.	7.8	10
396	Reliably predicting pollinator abundance: Challenges of calibrating processâ€based ecological models. Methods in Ecology and Evolution, 2020, 11, 1673-1689.	5.2	22
397	The Neonicotinoid Insecticide Imidacloprid Disrupts Bumblebee Foraging Rhythms and Sleep. IScience, 2020, 23, 101827.	4.1	24
398	Research on the distribution of neonicotinoid and fipronil pollution in the Yangtze River by high-performance liquid chromatography. Analytical Methods, 2020, 12, 5581-5590.	2.7	14
399	Profiles of urinary neonicotinoids and dialkylphosphates in populations in nine countries. Environment International, 2020, 145, 106120.	10.0	57
400	Detecting landscape scale consequences of insecticide use on invertebrate communities. Advances in Ecological Research, 2020, 63, 93-126.	2.7	4
401	Sugar content of diet does not buffer against chronic oral imidacloprid exposure in the alfalfa leafcutting bee (Hymenoptera: Megachilidae). Journal of Economic Entomology, 2020, 113, 2705-2712.	1.8	4
402	Honey bee (<i>Apis mellifera</i>) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microbial Biotechnology, 2020, 13, 1201-1212.	4.2	68
403	Comparing response of buff-tailed bumblebees and red mason bees to application of a thiacloprid-prochloraz mixture under semi-field conditions. Ecotoxicology, 2020, 29, 846-855.	2.4	12

#	Article	IF	CITATIONS
404	Neonicotinoid insecticides hinder the pupation and metamorphosis into adults in a crabronid wasp. Scientific Reports, 2020, 10, 7077.	3.3	11
405	Oneâ€size does not fit all: atâ€risk bumble bee habitat management requires speciesâ€specific local and landscape considerations. Insect Conservation and Diversity, 2020, 13, 558-570.	3.0	14
406	Antibacterial coatings on vegetable ivory obtained by cold plasma jet activation of silicone and copaiba oils. Plasma Processes and Polymers, 2020, 17, 2000035.	3.0	7
407	Temporal variation of the effects of landscape composition onÂlacewings (Chrysopidae: Neuroptera) in vineyards. Agricultural and Forest Entomology, 2020, 22, 274-283.	1.3	14
408	Understanding public and stakeholder attitudes in pollinator conservation policy development. Environmental Science and Policy, 2020, 111, 27-34.	4.9	9
409	Appearance of Thiacloprid in the Guttation Liquid of Coated Maize Seeds. International Journal of Environmental Research and Public Health, 2020, 17, 3290.	2.6	2
410	The impact of pollen quality on the sensitivity of bumblebees to pesticides. Acta Oecologica, 2020, 105, 103552.	1.1	15
411	A spatial model of honey bee colony collapse due to pesticide contamination of foraging bees. Journal of Mathematical Biology, 2020, 80, 2363-2393.	1.9	12
412	Chronic within-hive video recordings detect altered nursing behaviour and retarded larval development of neonicotinoid treated honey bees. Scientific Reports, 2020, 10, 8727.	3.3	13
413	The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biological Reviews, 2020, 95, 1418-1441.	10.4	60
414	Mining the effect of the neonicotinoids imidacloprid and clothianidin on the chemical homeostasis and energy equilibrium of primary mouse neural stem/progenitor cells using metabolomics. Pesticide Biochemistry and Physiology, 2020, 168, 104617.	3.6	6
415	Pest management and yield in spring oilseed rape without neonicotinoid seed treatments. Crop Protection, 2020, 137, 105261.	2.1	13
416	Evaluation of physiological and biochemical effects of two <i>Sophora alopecuroides</i> alkaloids on pea aphids <i>Acyrthosiphon pisum</i> . Pest Management Science, 2020, 76, 4000-4008.	3.4	12
417	Chemicals: pesticides. , 2020, , 203-220.		0
418	Can anthophilous hover flies (Diptera: Syrphidae) discriminate neonicotinoid insecticides in sucrose solution?. PLoS ONE, 2020, 15, e0234820.	2.5	3
419	Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology, 2020, 147, 1290-1304.	1.5	35
420	Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions. Insects, 2020, 11, 373.	2.2	23
421	Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L Scientific Reports, 2020, 10, 4670.	3.3	23

#	Article	IF	CITATIONS
422	Sowing Uncertainty: What We Do and Don't Know about the Planting of Pesticide-Treated Seed. BioScience, 2020, 70, 390-403.	4.9	50
423	Population Growth and Insecticide Residues of Honey Bees in Tropical Agricultural Landscapes. Diversity, 2020, 12, 1.	1.7	31
424	Imidacloprid impairs performance on a model flower handling task in bumblebees (Bombus impatiens). Ecotoxicology, 2020, 29, 359-374.	2.4	9
425	Reprotoxic effects of the systemic insecticide fipronil on the butterfly <i>Pieris brassicae</i> . Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192665.	2.6	8
427	Surface-enhanced Raman spectroscopy of neonicotinoid insecticide imidacloprid, assisted by gold and silver nanostructures. Spectroscopy Letters, 2020, 53, 184-193.	1.0	5
428	Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192442.	2.6	39
429	Assessing the acute toxicity of insecticides to the buff-tailed bumblebee (Bombus terrestris audax). Pesticide Biochemistry and Physiology, 2020, 166, 104562.	3.6	18
430	Long-term effects of neonicotinoid insecticides on ants. Communications Biology, 2020, 3, 335.	4.4	28
431	Cofactor-enabled functional expression of fruit fly, honeybee, and bumblebee nicotinic receptors reveals picomolar neonicotinoid actions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16283-16291.	7.1	61
432	No evidence for neonicotinoid preferences in the bumblebee <i>Bombus impatiens</i> . Royal Society Open Science, 2020, 7, 191883.	2.4	23
433	Pesticides Hazardous Hotspots: Empirical Evidences from North India. Environmental Management, 2020, 66, 899-915.	2.7	9
434	Agriâ€environment schemes enhance pollinator richness and abundance but bumblebee reproduction depends on field size. Journal of Applied Ecology, 2020, 57, 1818-1828.	4.0	39
435	Beyond neonicotinoids – Wild pollinators are exposed to a range of pesticides while foraging in agroecosystems. Science of the Total Environment, 2020, 742, 140436.	8.0	50
436	Lethal and sublethal effects of toxicants on bumble bee populations: a modelling approach. Ecotoxicology, 2020, 29, 237-245.	2.4	6
437	Neonicotinoid and sulfoximine pesticides differentially impair insect escape behavior and motion detection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5510-5515.	7.1	23
438	Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants. Nano Research, 2020, 13, 611-620.	10.4	47
439	Impact of insecticide and pollinator-enhancing substrate applications on cocoa (Theobroma cacao) cherelle and pod production in CÑte d'lvoire. Agriculture, Ecosystems and Environment, 2020, 293, 106855.	5.3	7
440	Quantifying the relative predation pressure on bumblebee nests by the European badger (<i>Meles) Tj ETQq1 1 (</i>	D.784314	rgBJT /Overloo

#	ARTICLE	IF	CITATIONS
441	Diet diversity and pesticide risk mediate the negative effects of land use change on solitary bee offspring production. Journal of Applied Ecology, 2020, 57, 1031-1042.	4.0	27
442	Ecological impacts of pesticide seed treatments on arthropod communities in a grain crop rotation. Journal of Applied Ecology, 2020, 57, 936-951.	4.0	19
443	Honeybees fail to discriminate floral scents in a complex learning task after consuming a neonicotinoid pesticide. Journal of Experimental Biology, 2020, 223, .	1.7	24
444	Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nature Communications, 2020, 11, 576.	12.8	177
445	The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology, 2020, 57, 599-608.	4.0	39
446	Chloronicotinyl insecticide imidacloprid: Agricultural relevance, pitfalls and emerging opportunities. Crop Protection, 2020, 131, 105097.	2.1	13
447	Urbanisation is associated with reduced Nosema sp. infection, higher colony strength and higher richness of foraged pollen in honeybees. Apidologie, 2020, 51, 746-762.	2.0	16
448	Austrian COLOSS Survey of Honey Bee Colony Winter Losses 2018/19 and Analysis of Hive Management Practices. Diversity, 2020, 12, 99.	1.7	27
449	Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosystems, 2020, 23, 689-702.	2.4	22
450	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. Environmental Science and Pollution Research, 2021, 28, 11716-11748.	5.3	67
451	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science and Pollution Research, 2021, 28, 11749-11797.	5.3	155
452	Occurrence of neonicotinoid insecticides and their metabolites in tooth samples collected from south China: Associations with periodontitis. Chemosphere, 2021, 264, 128498.	8.2	23
453	Results of 2â€Year Ring Testing of a Semifield Study Design to Investigate Potential Impacts of Plant Protection Products on the Solitary Bees <i>Osmia Bicornis</i> and <i>Osmia Cornuta</i> and a Proposal for a Suitable Test Design. Environmental Toxicology and Chemistry, 2021, 40, 236-250.	4.3	14
454	Influence of neonicotinoids on pollinators: A review. Journal of Apicultural Research, 2021, 60, 19-32.	1.5	14
455	Multiple stressors interact to impair the performance of bumblebee <i>Bombus terrestris</i> colonies. Journal of Animal Ecology, 2021, 90, 415-431.	2.8	24
456	Urban colonies are more resistant to a trace metal than their forest counterparts in the ant Temnothorax nylanderi. Urban Ecosystems, 2021, 24, 561-570.	2.4	8
457	Combining land-sparing and land-sharing in European landscapes. Advances in Ecological Research, 2021, , 251-303.	2.7	39
458	Potential regional declines in species richness of tomato pollinators in North America under climate change. Ecological Applications, 2021, 31, e02259.	3.8	4

#	Article	IF	CITATIONS
459	Impacts of Neonicotinoids on the Bumble Bees <i>Bombus terrestris</i> and <i>Bombus impatiens</i> Examined through the Lens of an Adverse Outcome Pathway Framework. Environmental Toxicology and Chemistry, 2021, 40, 309-322.	4.3	17
460	Cascading extinctions as a hidden driver ofÂinsect decline. Ecological Entomology, 2021, 46, 743-756.	2.2	49
461	Influence of the neonicotinoid insecticide thiamethoxam on soil bacterial community composition and metabolic function. Journal of Hazardous Materials, 2021, 405, 124275.	12.4	40
462	Short-term lab assessments and microcolonies are insufficient for the risk assessment of insecticides for bees. Chemosphere, 2021, 273, 128518.	8.2	18

Assessing chemical control options and their effects on the lesser clover leaf weevil (Hypera) Tj ETQq000 rgBT /Overlock 10 If 50 582 T 2.1

464	What role should randomized control trials play in providing the evidence base for conservation?. Oryx, 2021, 55, 235-244.	1.0	21
465	Honeybee colonies compensate for pesticide-induced effects on royal jelly composition and brood survival with increased brood production. Scientific Reports, 2021, 11, 62.	3.3	17
466	No impact of neonicotinoids on male solitary bees Osmia cornuta under semiâ€field conditions. Physiological Entomology, 2021, 46, 105-109.	1.5	8
467	Scales matter: Maximising the effectiveness of interventions for pollinators and pollination. Advances in Ecological Research, 2021, 64, 105-147.	2.7	7
468	Advances in automatic identification of flying insects using optical sensors and machine learning. Scientific Reports, 2021, 11, 1555.	3.3	39
469	Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo). Scientific Reports, 2021, 11, 4241.	3.3	62
470	Reduced nest development of reared Bombus terrestris within apiary dense human-modified landscapes. Scientific Reports, 2021, 11, 3755.	3.3	7
471	Organic winter cereals benefit bumblebee colonies in agricultural landscapes with massâ€flowering crops. Insect Conservation and Diversity, 2021, 14, 504-514.	3.0	3
472	Film seeds coating with hexane extracts from <scp> <i>Illicium verum</i> </scp> Hook.f. and <scp><i>Syzygium aromaticum</i> </scp> (L.) Merrill & Perry for controlling <scp><i>Callosobruchus maculatus</i> </scp> (F.) and <scp><i>Callosobruchus chinensis</i> </scp> L. Pest Management Science, 2021, 77, 2512-2521.	3.4	3
473	Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects – evidence from a semiâ€field experiment. Ecology Letters, 2021, 24, 668-675.	6.4	58
474	Dysphania ambrosioides essential oils: from pharmacological agents to uses in modern crop protection—a review. Phytochemistry Reviews, 2022, 21, 141-159.	6.5	7
475	Analysis of background variability of honey bee colony size. EFSA Supporting Publications, 2021, 18, 6518E.	0.7	6
476	Testing the multiple stressor hypothesis: chlorothalonil exposure alters transmission potential of a bumblebee pathogen but not individual host health. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202922.	2.6	9

#	Article	IF	CITATIONS
477	Consequences of the neonicotinoid seed treatment ban on oilseed rape production – what can be learnt from the Swedish experience?. Pest Management Science, 2021, 77, 3815-3819.	3.4	16
478	Whole-Body Acute Contact Toxicity of Formulated Insecticide Mixtures to Blue Orchard Bees (Osmia) Tj ETQq1	1 0,784314 3.7	4 rgBT /Over
479	Integrated pest and pollinator management – expanding the concept. Frontiers in Ecology and the Environment, 2021, 19, 283-291.	4.0	50
481	Color pan traps often catch less when there are more flowers around. Ecology and Evolution, 2021, 11, 3830-3840.	1.9	16
482	Survival rate and changes in foraging performances of solitary bees exposed to a novel insecticide. Ecotoxicology and Environmental Safety, 2021, 211, 111869.	6.0	19
483	Probing Matrix Effects on the Heterogeneous Photochemistry of Neonicotinoid Pesticides, Dinotefuran and Nitenpyram. ACS Earth and Space Chemistry, 2021, 5, 1196-1209.	2.7	4
484	Monitoring of Neonicotinoid Pesticides in Water-Soil Systems Along the Agro-Landscapes of the Cauvery Delta Region, South India. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 1065-1070.	2.7	9
485	The sublethal effects of neonicotinoids on spiders are independent of their nutritional status. Scientific Reports, 2021, 11, 8496.	3.3	5
486	The Effects of Exposure to Flupyradifurone on Survival, Development, and Foraging Activity of Honey Bees (Apis mellifera L.) under Field Conditions. Insects, 2021, 12, 357.	2.2	9
487	Experimental field evidence shows milkweed contaminated with a common neonicotinoid decreases larval survival of monarch butterflies. Journal of Animal Ecology, 2021, 90, 1742-1752.	2.8	7
488	Roundup causes high levels of mortality following contact exposure in bumble bees. Journal of Applied Ecology, 2021, 58, 1167-1176.	4.0	55
489	Comparative ecotoxicity of insecticides with different modes of action to Osmia excavata (Hymenoptera: Megachilidae). Ecotoxicology and Environmental Safety, 2021, 212, 112015.	6.0	7
490	Calibration of the SPEARpesticides bioindicator for cost-effective pesticide monitoring in East African streams. Environmental Sciences Europe, 2021, 33, .	5.5	8
491	Bees and pesticides: the research impact and scientometrics relations. Environmental Science and Pollution Research, 2021, 28, 32282-32298.	5.3	29
492	A systematic scoping review of the methodological approaches and effects of pesticide exposure on solitary bees. PLoS ONE, 2021, 16, e0251197.	2.5	19
493	Reduced crop density increases floral resources to pollinators without affecting crop yield in organic and conventional fields. Journal of Applied Ecology, 2021, 58, 1421-1430.	4.0	12
494	Financing on-farm ecosystem services in southern Quebec, Canada: A public call for pesticides reduction. Ecological Economics, 2021, 184, 106997.	5.7	8
495	Larval oral exposure to thiacloprid: Dose-response toxicity testing in solitary bees, Osmia spp. (Hymenoptera: Megachilidae). Ecotoxicology and Environmental Safety, 2021, 215, 112143.	6.0	14

#	Article	IF	CITATIONS
496	When the adaptive value of intraguild predation between an indigenous and an invasive ladybeetle is altered by an insecticide. Journal of Pest Science, 2022, 95, 797-810.	3.7	2
497	Multi-community effects of organic and conventional farming practices in vineyards. Scientific Reports, 2021, 11, 11979.	3.3	22
498	Pollinators and plant nurseries: how irrigation and pesticide treatment of native ornamental plants impact solitary bees. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211287.	2.6	11
499	Natural variation in wild tomato trichomes; selecting metabolites that contribute to insect resistance using a random forest approach. BMC Plant Biology, 2021, 21, 315.	3.6	19
500	Maximizing ecosystem services to the oil crop <i>Brassica carinata</i> through landscape heterogeneity and arthropod diversity. Ecosphere, 2021, 12, e03624.	2.2	6
501	Sulfoxaflor insecticide and azoxystrobin fungicide have no major impact on honeybees in a realistic-exposure semi-field experiment. Science of the Total Environment, 2021, 778, 146084.	8.0	26
502	Large variability in response to projected climate and landâ€use changes among European bumblebee species. Global Change Biology, 2021, 27, 4530-4545.	9.5	12
503	Epigenetic Effects Promoted by Neonicotinoid Thiacloprid Exposure. Frontiers in Cell and Developmental Biology, 2021, 9, 691060.	3.7	12
504	Ecological-economic modeling of pollination complexity and pesticide use in agricultural crops. Journal of Bioeconomics, 0, , 1.	3.3	4
505	Sublethal neonicotinoid exposure attenuates the effects of electromagnetic fields on honey bee flight and learning. Environmental Advances, 2021, 4, 100051.	4.8	8
506	Opportunities to enhance pollinator biodiversity in solar parks. Renewable and Sustainable Energy Reviews, 2021, 145, 111065.	16.4	31
507	Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee <i>Bombus terricola</i> . Molecular Ecology, 2021, 30, 4220-4230.	3.9	20
508	Controlling insecticide resistant clones of the aphid, Myzus persicae , using the entomopathogenic fungus Akanthomyces muscarius : Fitness cost of resistance under pathogen challenge. Pest Management Science, 2021, 77, 5286-5293.	3.4	8
509	A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology and Evolution, 2021, 5, 1453-1461.	7.8	173
510	Newer characters, same story: neonicotinoid insecticides disrupt food webs through direct and indirect effects. Current Opinion in Insect Science, 2021, 46, 50-56.	4.4	36
511	Conflicts of interest and improvement through peer review: the case of IPBES report on pollinators. Current Opinion in Insect Science, 2021, 46, 57-63.	4.4	2
512	Determination of the Content of Selected Pesticides in Surface Waters as a Marker of Environmental Pollution. Sustainability, 2021, 13, 8942.	3.2	0
513	Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. Insects, 2021, 12, 780.	2.2	11

#	Article	IF	CITATIONS
514	A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms. Land Use Policy, 2021, 107, 105462.	5.6	6
515	Negative effects of neonicotinoids on male honeybee survival, behaviour and physiology in the field. Journal of Applied Ecology, 2021, 58, 2515-2528.	4.0	13
516	Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Molecules, 2021, 26, 5080.	3.8	26
517	Natural habitat partially mitigates negative pesticide effects on tropical pollinator communities. Global Ecology and Conservation, 2021, 28, e01668.	2.1	11
518	Negative Effects of the Neonicotinoid Clothianidin on Foraging Behavior and Antennal Sensitivity in Two Common Pollinator Species, Osmia bicornis and Bombus terrestris. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	13
519	The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta. Environmental Pollution, 2021, 284, 117106.	7.5	16
520	Current insights into the microbial degradation for pyrethroids: strain safety, biochemical pathway, and genetic engineering. Chemosphere, 2021, 279, 130542.	8.2	26
521	Impacts of neonicotinoid seed treatments on the wild bee community in agricultural field margins. Science of the Total Environment, 2021, 786, 147299.	8.0	20
522	Fieldâ€realistic neonicotinoid exposure has subâ€lethal effects on nonâ€≺i>Apis bees: A metaâ€analysis. Ecology Letters, 2021, 24, 2586-2597.	6.4	47
523	Bumblebees Exposed to a Neonicotinoid Pesticide Make Suboptimal Foraging Decisions. Environmental Entomology, 2021, 50, 1299-1303.	1.4	12
524	Colony Collapse and the Global Swarm to save the Bees: Sacred Relations with Bees in Film and Literature. World Futures, 0, , 1-27.	1.0	1
525	Exposure of wild boars (Sus scrofa L) to neonicotinoid insecticides. Chemosphere, 2021, 279, 130519.	8.2	4
526	Biodegradation and detoxification of neonicotinoid insecticide thiamethoxam by white-rot fungus Phanerochaete chrysosporium. Journal of Hazardous Materials, 2021, 417, 126017.	12.4	37
528	Pollinator conservation in the context of global changes with a focus on France and Belgium. Acta Oecologica, 2021, 112, 103765.	1.1	9
529	Ultraviolet polarized light pollution and evolutionary traps for aquatic insects. Animal Behaviour, 2021, 180, 239-247.	1.9	5
530	Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents. Environmental Pollution, 2021, 289, 117813.	7.5	9
531	Fungicide and insecticide exposure adversely impacts bumblebees and pollination services under semi-field conditions. Environment International, 2021, 157, 106813.	10.0	45
532	Pollution status, influencing factors and environmental risks of neonicotinoids, fipronil and its metabolites in a typical semi-closed bay in China. Environmental Pollution, 2021, 291, 118210.	7.5	13

#	Article	IF	CITATIONS
533	Thiamethoxam exposure deregulates short ORF gene expression in the honey bee and compromises immune response to bacteria. Scientific Reports, 2021, 11, 1489.	3.3	13
534	Screening and Optimization of Novel Low Bee-Toxicity Phenylace- tohydrazone Compounds Based on Insect nAChR Selectivity. Chinese Journal of Organic Chemistry, 2021, 41, 2774.	1.3	2
535	OUP accepted manuscript. Annals of the Entomological Society of America, 2022, 115, 69-94.	2.5	4
536	Possible Spillover of Pathogens between Bee Communities Foraging on the Same Floral Resource. Insects, 2021, 12, 122.	2.2	28
538	Wild Pollinators in Arable Habitats: Trends, Threats and Opportunities. , 2020, , 187-201.		1
539	Understanding how changing soil nitrogen affects plant–pollinator interactions. Arthropod-Plant Interactions, 2019, 13, 671-684.	1.1	35
540	Bee studies stir up pesticide debate. Nature, 2015, 520, 416-416.	27.8	13
541	Largest-ever study of controversial pesticides finds harm to bees. Nature, 0, , .	27.8	1
542	Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology and Evolution, 2017, 1, 1308-1316.	7.8	123
543	Occurrence of neonicotinoids in guttation liquid of maize – soil mobility and cross-contamination. International Journal of Environmental Analytical Chemistry, 2017, 97, 868-884.	3.3	5
544	Pesticide and resource stressors additively impair wild bee reproduction. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201390.	2.6	47
551	A new method to assess the acute toxicity toward honeybees of the abrasion particles generated from seeds coated with insecticides. Environmental Sciences Europe, 2020, 32, .	5.5	11
552	Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS ONE, 2015, 10, e0136928.	2.5	236
553	Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONE, 2020, 15, e0241134.	2.5	14
554	EVALUATES THE POSSIBLE RISK OF POLLEN GRAINS CONTAMINATION BY PESTICIDE RESIDUES AND THEIR AFFECTS ON HONEY BEE SURVIVAL. Journal of Productivity and Development, 2019, 24, 869-883.	0.1	3
555	Residues of neonicotinoid insecticides in pollen and nectar from model plants1. Journal of Environmental Horticulture, 2017, 35, 24-34.	0.5	22
556	Neonikotinoidlerin Zehir Etkilerini Belirlemede LD50 Değerleri Farklı Arı Türleri İçin Yanıltıcı Bir Öngösterge Olabilir. Uludag Aricilik Dergisi, 0, , 19-33.	1.3	5
557	Ecology of the Western Queen Butterfly Danaus gilippus thersippus (Lepidoptera: Nymphalidae) in the Mojave and Sonoran Deserts. Insects, 2020, 11, 315.	2.2	8

#	Article	IF	CITATIONS
558	Volatile Organic Compounds Role in Selective Pollinator Visits to Commercial Melon Types. Journal of Agricultural Science, 2019, 11, 93.	0.2	9
559	Use of video surveillance to measure the influences of habitat management and landscape composition on pollinator visitation and pollen deposition in pumpkin (<i>Cucurbita pepo</i>) agroecosystems. PeerJ, 2015, 3, e1342.	2.0	22
560	Are neonicotinoid insecticides driving declines of widespread butterflies?. PeerJ, 2015, 3, e1402.	2.0	85
561	No effect of low-level chronic neonicotinoid exposure on bumblebee learning and fecundity. PeerJ, 2016, 4, e1808.	2.0	27
562	A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ, 2016, 4, e2249.	2.0	115
563	Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, <i>Osmia bicornis</i> . PeerJ, 2017, 5, e3417.	2.0	37
564	Effects of chronic exposure to thiamethoxam on larvae of the hoverfly <i>Eristalis tenax</i> (Diptera,) Tj ETQq0 0 (0 rgBT /Ov	erlock 10 Tf
565	Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly <i>Pieris brassicae</i> . PeerJ, 2018, 6, e4772.	2.0	28
566	Potential surrogate plants for use in semi-field pesticide risk assessment with Megachile rotundata. PeerJ, 2019, 6, e6278.	2.0	2
567	No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ, 2019, 7, e7208.	2.0	43
568	Corporate bee accountability among Swedish companies. , 0, , 260-276.		4
569	Effects of agricultural landscape structure, insecticide residues, and pollen diversity on the life-history traits of the red mason bee Osmia bicornis. Science of the Total Environment, 2022, 809, 151142.	8.0	14
570	Early resources lead to persistent benefits for bumble bee colony dynamics. Ecology, 2022, 103, e03560.	3.2	11
571	IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
572	Pesticide residues in honeybee-collected pollen: does the EU regulation protect honeybees from pesticides?. Environmental Science and Pollution Research, 2022, 29, 18225-18244.	5.3	10
573	Can the regulation of neonicotinoids save honeybees?. Japanese Journal of Pesticide Science, 2015, 40, 191-198.	0.0	1

574	Fréquentation des cultures par les abeilles mellifères et sauvagesÂ: synthèse des connaissances pour réduire le risque d'intoxication aux pesticides. Cahiers Agricultures, 2016, 25, 44001.	0.9	3
576	Effects of Thiamethoxam on Vespula Germanica (F.) (Hymenoptera: Vespidae). International Journal of Agriculture Environment and Food Sciences, 2017, 1, 49-55.	0.6	1

#	Article	IF	CITATIONS
577	Honey bee (Apis mellifera L.) colony losses in Ukraine after the winter of 2016-2017 within the international monitoring. Biolohichni Systemy, 2018, 10, 37-46.	0.1	7
579	The â€~Sixth Mass Extinction Crisis' and Its Impact on Flowering Plants. Sustainable Development and Biodiversity, 2019, , 15-42.	1.7	1
583	Results of annual honey bee colony losses survey in Ukraine: winter 2017-2018. Biolohichni Systemy, 2019, 11, 60-70.	0.1	7
586	Pesticides' Impact on Pollinators. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-11.	0.1	3
587	Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees (Apis mellifera). Frontiers in Immunology, 2021, 12, 747848.	4.8	8
588	Landscape floral resources provided by rapeseed correlate with next-year reproduction of cavity-nesting pollinators in a national participatory monitoring program. Landscape Ecology, 0, , 1.	4.2	1
589	Fabrication of a 2D metal–organic framework (MOF) nanosheet colloidal system and investigation of its fluorescence response to pesticide molecules. Analytical Methods, 2021, 13, 5700-5710.	2.7	10
590	Pesticides' Impact on Pollinators. Encyclopedia of the UN Sustainable Development Goals, 2020, , 634-644.	0.1	0
591	â€~Global Pollinator Crisis' and Its Impact on Crop Productivity and Sustenance of Plant Diversity. , 2020, , 395-413.		2
592	Pesticide Impacts on the Environment and Humans. , 2020, , 127-221.		6
594	Co-formulant in a commercial fungicide product causes lethal and sub-lethal effects in bumble bees. Scientific Reports, 2021, 11, 21653.	3.3	36
595	Thermoregulation of Eremias argus alters temperature-dependent toxicity of beta-cyfluthrin: Ecotoxicological effects considering ectotherm behavior traits. Environmental Pollution, 2022, 293, 118461.	7.5	3
597	Balancing Bees and Pest Management: Projected Costs of Proposed Bee-Protective Neonicotinoid Regulation in California. Journal of Economic Entomology, 2022, 115, 10-25.	1.8	2
598	Toxicokinetics of three insecticides in the female adult solitary bee Osmia bicornis. Environmental Pollution, 2022, 293, 118610.	7.5	3
599	Past insecticide exposure reduces bee reproduction and population growth rate. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
600	Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project. PLoS ONE, 2021, 16, e0259748.	2.5	9
601	Integrated pest management can still deliver on its promise, with help from the bees. Proceedings of		
	the National Academy of Sciences of the United States of America, 2021, 118, e2118532118.	7.1	0

	Сітатіс	on Report	
#	Article	IF	CITATIONS
603	An Overview for the Nanoparticlesâ€Based Quantitative Lateral Flow Assay. Small Methods, 2022, 6, e2101143.	8.6	48
604	Flowering Resources Modulate the Sensitivity of Bumblebees to a Common Fungicide. SSRN Electronic Journal, 0, , .	0.4	0
605	Translocation and metabolism of the chiral neonicotinoid cycloxaprid in oilseed rape (Brassica napus) Tj ETG	Qq0 0 0 <u>rg</u> BT /Ov 12.4	erlock 10 Tf
606	Nicotinic acetylcholine receptor modulator insecticides act on diverse receptor subtypes with distinct subunit compositions. PLoS Genetics, 2022, 18, e1009920.	3.5	39
607	Beekeeping and Managed Bee Diversity in Indonesia: Perspective and Preference of Beekeepers. Diversity, 2022, 14, 52.	1.7	7
608	Analysis of the evidence to support the definition of Specific Protection Goals for bumble bees and solitary bees. EFSA Supporting Publications, 2022, 19, .	0.7	4
609	RNA-Seq analysis of Phanerochaete sordida YK-624 degrades neonicotinoid pesticide acetamiprid. Environmental Technology (United Kingdom), 2022, , 1-8.	2.2	1
610	Semi-natural habitats promote winter survival of wild-living honeybees in an agricultural landscape. Biological Conservation, 2022, 266, 109450.	4.1	12
611	Acute oral toxicity and risks of four classes of systemic insecticide to the Common Eastern Bumblebee (Bombus impatiens). Chemosphere, 2022, 295, 133771.	8.2	18
612	Amino-functional metal–organic framework as a general applicable adsorbent for simultaneous enrichment of nine neonicotinoids. Chemical Engineering Journal, 2022, 434, 134629.	12.7	21
613	Fate of the neonicotinoid insecticide cycloxaprid in different soils under oxic conditions. Science of the Total Environment, 2022, 821, 153448.	8.0	11
614	Major land use and vegetation influences on potential pollinator communities in the High Plains of Texas. Journal of Insect Conservation, 0, , 1.	1.4	1
615	Regard and protect groundâ€nesting pollinators as part of soil biodiversity. Ecological Applications, 2022, 32, e2564.	3.8	8
616	A global review of determinants of native bee assemblages in urbanised landscapes. Insect Conservation and Diversity, 2022, 15, 385-405.	3.0	39
617	Bayesian Multi-Targets Strategy to Track Apis mellifera Movements at Colony Level. Insects, 2022, 13, 181.	2.2	0
618	Sensitivity of Buff-Tailed Bumblebee (Bombus terrestris L.) to Insecticides with Different Mode of Action. Insects, 2022, 13, 184.	2.2	2
619	Pseudozyma aphidis Enhances Cucumber and Tomato Plant Growth and Yield. Agronomy, 2022, 12, 383.	3.0	1

620	Generic imprinted fiber array strategy for high-throughput and ultrasensitive simultaneous determination of multiple neonicotinoids. Food Chemistry, 2022, 382, 132407.	8.2	9
-----	---	-----	---

#	Article	IF	CITATIONS
621	Pollination, seed predation, and seed dispersal. , 2022, , 623-665.		1
622	Could Europe Apply a Suitable Control Method for the Small Hive Beetle (Coleoptera: Nitidulidae)?. Journal of Economic Entomology, 2022, , .	1.8	1
623	Development of an isotope dilution liquid chromatography/tandem mass spectrometry method for the accurate determination of neonicotinoid pesticides, imidacloprid, clothianidin, and thiamethoxam in kimchi cabbage reference materials. Journal of Analytical Science and Technology, 2022, 13, .	2.1	3
624	â€~Inert' ingredients are understudied, potentially dangerous to bees and deserve more research attention. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212353.	2.6	38
625	Influence of honey bee seasonal phenotype and emerging conditions on diet behavior and susceptibility to imidacloprid. Apidologie, 2022, 53, 1.	2.0	7
626	Bee Tracker—an openâ€source machine learningâ€based video analysis software for the assessment of nesting and foraging performance of cavityâ€nesting solitary bees. Ecology and Evolution, 2022, 12, e8575.	1.9	3
627	Changed degradation behavior of pesticides when present in mixtures. , 2022, 1, 23-30.		21
628	Is acetamiprid really not that harmful to bumblebees (Apidae: Bombus spp.)?. Apidologie, 2022, 53, 1.	2.0	3
629	Combined toxicity of chlorpyrifos, abamectin, imidacloprid, and acetamiprid on earthworms (Eisenia) Tj ETQq0 C) 0 rggT /C	Overlock 10 Tf
630	The threat of pesticide and disease co-exposure to managed and wild bee larvae. International Journal for Parasitology: Parasites and Wildlife, 2022, 17, 319-326.	1.5	8
631	Buffered fitness components: Antagonism between malnutrition and an insecticide in bumble bees. Science of the Total Environment, 2022, 833, 155098.	8.0	6
632	The impact of maize-bean intercropping on insect biodiversity. Basic and Applied Ecology, 2022, 61, 1-9.	2.7	10
633	The importance and value of insect pollination to apples: A regional case study of key cultivars. Agriculture, Ecosystems and Environment, 2022, 331, 107911.	5.3	10
634	Synthesis of quantum dot encoded multicolour nanobeads for the ultrasensitive and multiplex immunochromatographic detection of neonicotinoid insecticides. Sensors and Actuators B: Chemical, 2022, 361, 131671.	7.8	9
635	Temporal and spatial patterns of systemic insecticides in avian and insect pollinators and flowers in western Canada (2018, 2019). Environmental Advances, 2022, 8, 100211.	4.8	5
636	Sublethal doses of imidacloprid and pyraclostrobin impair fat body of solitary bee Tetrapedia diversipes (Klug, 1810). Environmental Pollution, 2022, 304, 119140.	7.5	3
637	Flowering resources modulate the sensitivity of bumblebees to a common fungicide. Science of the Total Environment, 2022, 829, 154450.	8.0	19
638	Translocation of clothianidin to guttation fluid and its potential impact on honey bee, Apis mellifera anatoliaca Maa, 1953 (Hymenoptera: Apidae). Turkiye Entomoloji Dergisi, 2021, 45, 511-522.	0.6	1

#	Article	IF	CITATIONS
639	Sub-lethal effects of thiamethoxam on <i>Apis mellifera</i> Linnaeus. Toxin Reviews, 2022, 41, 1044-1057.	3.4	1
641	Pollen diet mediates how pesticide exposure impacts brain gene expression in nest-founding bumble bee queens. Science of the Total Environment, 2022, 833, 155216.	8.0	6
645	Low toxicity crop fungicide (fenbuconazole) impacts reproductive male quality signals leading to a reduction of mating success in a wild solitary bee. Journal of Applied Ecology, 2022, 59, 1596-1607.	4.0	11
646	Chronic exposure to a field-realistic concentration of Closer® SC (24% sulfoxaflor) insecticide impacted the growth and foraging activity of honey bee colonies. Apidologie, 2022, 53, 1.	2.0	5
647	Species-Enriched Grass-Clover Mixtures Can Promote Bumblebee Abundance Compared with Intensively Managed Conventional Pastures. Agronomy, 2022, 12, 1080.	3.0	7
648	Influence of some insecticides on the abundance and foraging activates of broad bean bee pollinators. Uludag Aricilik Dergisi, 0, , .	1.3	0
649	Landscape-scale drivers of pollinator communities may depend on land-use configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210172.	4.0	3
650	Towards a system-level causative knowledge of pollinator communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210159.	4.0	5
651	No evidence for impaired solitary bee fitness following pre-flowering sulfoxaflor application alone or in combination with a common fungicide in a semi-field experiment. Environment International, 2022, 164, 107252.	10.0	8
652	The pest control and pollinator protection dilemma: The case of thiamethoxam prophylactic applications in squash crops. PLoS ONE, 2022, 17, e0267984.	2.5	3
653	Biological seed treatments promote crop establishment and yield: a global meta-analysis. Agronomy for Sustainable Development, 2022, 42, .	5.3	13
654	The Plight of Bees and Other Pollinators, and its Consequences on Crop Productivity. Resonance - Journal of Science Education, 2022, 27, 785-799.	0.3	1
655	Network resilience. Physics Reports, 2022, 971, 1-108.	25.6	51
656	Fungicides and bees: a review of exposure and risk. Environment International, 2022, 165, 107311.	10.0	42
657	The effects of climate and land use on British bumblebees: Findings from a decade of citizenâ€science observations. Journal of Applied Ecology, 2022, 59, 1837-1851.	4.0	6
658	Flower plantings support wild bee reproduction and may also mitigate pesticide exposure effects. Journal of Applied Ecology, 2022, 59, 2117-2127.	4.0	25
659	Residue status and risk assessment of neonicotinoids under real field conditions: Based on a two-year survey of cotton fields throughout China. Environmental Technology and Innovation, 2022, , 102689.	6.1	3
660	Estimating Screening-Level Risks of Insecticide Exposure to Lepidopteran Species of Conservation Concern in Agroecosystems. ACS Symposium Series, 0, , 137-180.	0.5	0

#	Article	IF	CITATIONS
661	Acetamiprid fate in a sandy loam with contrasting soil organic matter contents: A comparison of the degradation, sorption and leaching of commercial neonicotinoid formulations. Science of the Total Environment, 2022, 842, 156711.	8.0	5
662	Do pesticide and pathogen interactions drive wild bee declines?. International Journal for Parasitology: Parasites and Wildlife, 2022, 18, 232-243.	1.5	10
663	Natural and Engineered Sex Ratio Distortion in Insects. Frontiers in Ecology and Evolution, 0, 10, .	2.2	3
664	Edible insects: A bibliometric analysis and current trends of published studies (1953–2021). International Journal of Tropical Insect Science, 2022, 42, 3335-3355.	1.0	4

665 Toxicidade de Imidacloprido + Beta Ciflutrina sobre a abelha africanizada Apis mellifera (Hymenoptera:) Tj ETQq0 0 8 rgBT /Overlock 10 T

666	Exposure to the novel insecticide flupyradifurone impairs bumblebee feeding motivation, learning, and memory retention. Environmental Pollution, 2022, 307, 119575.	7.5	7
667	Neonicotinoids: A critical assessment of the global research landscape of the most extensively used insecticide. Environmental Research, 2022, 213, 113727.	7.5	29
668	Recent advances in seed coating technologies: transitioning toward sustainable agriculture. Green Chemistry, 2022, 24, 6052-6085.	9.0	19
669	An Assessment of Exposure to Organophosphate, Pyrethroid, and Neonicotinoid Pesticides in Pet Dogs and Cats from New York, United States. SSRN Electronic Journal, 0, , .	0.4	0
670	Pollinators, pests and yield—Multiple tradeâ€offs from insecticide use in a massâ€flowering crop. Journal of Applied Ecology, 2022, 59, 2419-2429.	4.0	9
671	Emerging Contaminant Imidacloprid in Mediterranean Soils: The Risk of Accumulation Is Greater than the Risk of Leaching. Toxics, 2022, 10, 358.	3.7	9
672	Floral visitors in the crop Phaseolus coccineus (Fabaceae) on the Altiplano of Puebla, Mexico: importance of agricultural management and flower color. Acta Botanica Mexicana, 2022, , .	0.3	0
673	The Responsibility of Farmers, Public Authorities and Consumers for Safeguarding Bees Against Harmful Pesticides. Journal of Agricultural and Environmental Ethics, 2022, 35, .	1.7	2
674	Meta-analysis of neonicotinoid insecticides in global surface waters. Environmental Science and Pollution Research, 2023, 30, 1039-1047.	5.3	15
675	Chronic exposure to insecticides impairs honeybee optomotor behaviour. Frontiers in Insect Science, 0, 2, .	2.1	4
676	Design and Planning of a Transdisciplinary Investigation into Farmland Pollinators: Rationale, Co-Design, and Lessons Learned. Sustainability, 2022, 14, 10549.	3.2	7
678	The bee fauna (Hymenoptera: Apoidea: Anthophila) of allotments in downtown Lisbon. European Journal of Entomology, 0, 119, 327-336.	1.2	0
679	Effects of neonicotinoid seed treatments on wild bee populations in soybean and corn fields in eastern Ontario. Agricultural and Forest Entomology, 0, , .	1.3	0

#	Article	IF	CITATIONS
680	A Pilot Nationwide Survey on the Concentrations of Neonicotinoids and Their Metabolites in Indoor Dust from China: Application for Human Exposure. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 900-909.	2.7	11
681	Backyard buzz: human population density modifies the value of vegetation cover for insect pollinators in a subtropical city. Urban Ecosystems, 0, , .	2.4	0
682	Review on effects of some insecticides on honey bee health. Pesticide Biochemistry and Physiology, 2022, 188, 105219.	3.6	14
683	An assessment of exposure to several classes of pesticides in pet dogs and cats from New York, United States. Environment International, 2022, 169, 107526.	10.0	5
684	Pest Management Technology and Bee Pollinators' Integration. , 2022, , .		0
685	Contact exposure to neonicotinoid insecticides temporarily suppresses the locomotor activity of Pardosa lugubris agrobiont wolf spiders. Scientific Reports, 2022, 12, .	3.3	1
686	Seed-coating of rapeseed (Brassica napus) with the neonicotinoid clothianidin affects behaviour of red mason bees (Osmia bicornis) and pollination of strawberry flowers (Fragaria × ananassa). PLoS ONE, 2022, 17, e0273851.	2.5	6
687	Seed coating with fungicide causes a beneficial shift in rootâ€associated microbiomes of mature soybean. Soil Science Society of America Journal, 2023, 87, 43-62.	2.2	2
688	Three perspectives on the prediction of chemical effects in ecosystems. Global Change Biology, 2023, 29, 21-40.	9.5	10
689	Simultaneous Determination of Seven Pesticides and Metabolite Residues in Litchi and Longan through High-Performance Liquid Chromatography-Tandem Mass Spectrometry with Modified QuEChERS. Molecules, 2022, 27, 5737.	3.8	9
690	Neonicotinoid Microsphere Immunosensing for Profiling Applications in Honeybees and Bee-Related Matrices. Biosensors, 2022, 12, 792.	4.7	1
691	The sulfoximine insecticide sulfoxaflor exposure reduces the survival status and disrupts the intestinal metabolism of the honeybee Apis mellifera. Journal of Hazardous Materials, 2023, 442, 130109.	12.4	2
692	Enhanced Insecticidal Effect and Interface Behavior of Nicotine Hydrochloride Solution by a Vesicle Surfactant. Molecules, 2022, 27, 6916.	3.8	3
693	Tillage and pesticide seed treatments have distinct effects on soil microbial diversity and function. Soil Biology and Biochemistry, 2023, 176, 108860.	8.8	11
694	Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. Plants, 2022, 11, 2864.	3.5	4
695	Nutritional stress exacerbates impact of a novel insecticide on solitary bees' behaviour, reproduction and survival. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	9
696	Targeted Method for Quantifying Air-Borne Pesticide Residues from Conventional Seed Coat Treatments to Better Assess Exposure Risk During Maize Planting. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 1051-1058.	2.7	2
697	Field-realistic concentrations of a neonicotinoid insecticide influence socially regulated brood development in a bumblebee. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	3

ARTICLE IF CITATIONS Identifying wild bee visitors of major crops in North America with notes on potential threats from 698 3.9 3 agricultural practices. Frontiers in Sustainable Food Systems, 0, 6, . 699 Population Genomics for Insect Conservation. Annual Review of Animal Biosciences, 2023, 11, 115-140. 7.4 Biochemical responses, feeding and survival in the solitary bee Osmia bicornis following exposure to 700 an insecticide and a fungicide alone and in combination. Environmental Science and Pollution 5.3 1 Research, O, , . Prioritizing pollinators over pests: wild bees are more important than beetle damage for watermelon yield. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, . Agricultural Land Degradation in Sweden. Handbook of Environmental Chemistry, 2022, , . 702 0.4 0 Eusociality as a neglected aspect of wild bee αâ€diversity and its potential impact on diversity estimation. Insect Conservation and Diversity, 2023, 16, 1-15. Common pesticides disrupt critical ecological interactions. Trends in Ecology and Evolution, 2023, 38, 704 8.7 4 207-210. Method validation for simultaneous determination of four neonicotinoids in vegetables by liquid 1.6 chromatography. Analytical Sciences, 2023, 39, 431-439. Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. 706 5.3 25 Environmental Science and Pollution Research, 2023, 30, 9243-9270. Glyphosate used as desiccant contaminates plant pollen and nectar of non-target plant species. 3.2 Héliyon, 2022, 8, e12179. Protecting pollinators and our food supply: understanding and managing threats to pollinator 708 1.2 8 health. Insectes Sociaux, 2023, 70, 5-16. Efficacy of Imidacloprid Seed Treatments against Four Wheat Aphids under Laboratory and Field 3.5 Conditions. Plants, 2023, 12, 238. Using physiology to better support wild bee conservation., 2023, 11,. 710 1 Sublethal behavioral impacts of resource limitation and insecticide exposure reinforce negative fitness outcomes for a solitary bee. Science of the Total Environment, 2023, 867, 161392. 8.0 Pesticide licensing in the EU and protecting pollinators. Current Biology, 2023, 33, R44-R48. 712 3.9 7 Glyphosate residue in honey and impacts on Africanized bee hives under field conditions., 2023, 1, . In situ boron-doped cellulose-based biochar for effective removal of neonicotinoids: Adsorption 714 mechanism and safety evaluation. International Journal of Biological Macromolecules, 2023, 237, 7.5 7 124186. Pesticide mixtures detected in crop and non-target wild plant pollen and nectar. Science of the Total Environment, 2023, 879, 162971.

#	Article	IF	CITATIONS
716	Pesticide residues in nectar and pollen of melon crops: Risk to pollinators and effects of a specific pesticide mixture on Bombus terrestris (Hymenoptera: Apidae) micro-colonies. Environmental Pollution, 2023, 326, 121451.	7.5	4
717	Beyond generalists: The Brassicaceae pollen specialist Osmia brevicornis as a prospective model organism when exploring pesticide risk to bees. Environmental and Sustainability Indicators, 2023, 18, 100239.	3.3	0
718	Enantioselective activity and toxicity of chiral acaricide cyflumetofen toward target and non-target organisms. Chemosphere, 2023, 325, 138431.	8.2	0
719	The global challenge of improving bee protection and health. , 0, 1, .		1
720	Climate, pesticides, and landcover drive declines of the western bumble bee. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
721	Decision-making criteria for pesticide spraying considering the bees' presence on crops to reduce their exposure risk. Frontiers in Ecology and Evolution, 0, 11, .	2.2	1
722	Ecological traits interact with landscape context to determine bees' pesticide risk. Nature Ecology and Evolution, 2023, 7, 547-556.	7.8	27
723	Potential Risk of Residues From Neonicotinoidâ€Treated Sugar Beet in Flowering Weeds to Honey Bees (<i>Apis mellifera</i> L.). Environmental Toxicology and Chemistry, 2023, 42, 1167-1177.	4.3	3
724	Self-reported assessment of compliance with pesticide rules. Ecotoxicology and Environmental Safety, 2023, 254, 114692.	6.0	5
725	In plateaus, land cover replaced climate as the vital environmental factor on the spatial composition of bumblebees with the altitude rising. Ecological Entomology, 0, , .	2.2	0
726	Parasite and Pesticide Impacts on the Bumblebee (Bombus terrestris) Haemolymph Proteome. International Journal of Molecular Sciences, 2023, 24, 5384.	4.1	2
727	Colonization Mechanism of Endophytic <i>Enterobacter cloacae</i> TMX-6 on Rice Seedlings Mediated by Organic Acids Exudated from Roots. Journal of Agricultural and Food Chemistry, 2023, 71, 4802-4809.	5.2	2
728	How do neonicotinoids affect social bees? Linking proximate mechanisms to ecological impacts. Advances in Insect Physiology, 2023, , 191-253.	2.7	2
729	A Sublethal Concentration of Sulfoxaflor Has Minimal Impact on Buff-Tailed Bumblebee (Bombus) Tj ETQq1 1 0.	784 <u>31</u> 4 rg	BT /Overlock
730	Toxic temperatures: Bee behaviours exhibit divergent pesticide toxicity relationships with warming. Global Change Biology, 2023, 29, 2981-2998.	9.5	10
731	Bumblebee flower constancy and pollen diversity over time. Behavioral Ecology, 2023, 34, 602-612.	2.2	4
732	Climate warming inhibits neonicotinoid photodegradation on vegetable leaves: Important role of the olefin group in leaf wax. Science of the Total Environment, 2023, 882, 163399.	8.0	1
733	Adult monarch butterflies show high tolerance to neonicotinoid insecticides. Ecological Entomology, 2023, 48, 531-543.	2.2	3

#	Article	IF	CITATIONS
734	Chronic larval exposure to thiacloprid impairs honeybee antennal selectivity, learning and memory performances. Frontiers in Physiology, 0, 14, .	2.8	5
735	Pesticide contamination in an intensive insect predator of honey bees. Environment International, 2023, 176, 107975.	10.0	3
736	Ultra-low Esfenvalerate concentrations increase biomass and may reduce competitiveness of Daphnia magna populations. Science of the Total Environment, 2023, 886, 163916.	8.0	2
737	Revised guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus) Tj ETQq1	1 0,78431 1.8	l4.rgBT /Ov
738	Glyphosate-based formulation affects Tetragonisca angustula worker's locomotion, behavior and biology. Ecotoxicology, 2023, 32, 513-524.	2.4	1
740	Within-person variability of urinary neonicotinoids and their metabolites and recommendation for sampling strategy. Science of the Total Environment, 2023, 885, 163898.	8.0	1
741	Spatiotemporal isolation of oilseed rape fields reduces insect pest pressure and crop damage. Journal of Applied Ecology, 2023, 60, 1388-1398.	4.0	3
742	Effective disposal and remediation of chemical agents with designer living biofilm materials in soil and water. Fundamental Research, 2023, , .	3.3	0
743	Solitary bee behaviour and pollination service delivery is differentially impacted by neonicotinoid and pyrethroid insecticides. Science of the Total Environment, 2023, 894, 164399.	8.0	1
744	Neonicotinoid insecticides and their metabolites: Specimens tested, analytical methods and exposure characteristics in humans. Journal of Hazardous Materials, 2023, 457, 131728.	12.4	10
745	Effects of neonicotinoid seed treatment on maize anti-herbivore defenses vary across plant genotypes. Journal of Pest Science, 2024, 97, 199-212.	3.7	0
746	Methyl salicylate improves the effectiveness of the odor-baited trap tree approach for adult plum curculio, <i>Conotrachelus nenuphar</i> (Coleoptera: Curculionidae), monitoring and attract-and-kill. Journal of Economic Entomology, 0, , .	1.8	0
747	No impacts of glyphosate or Crithidia bombi, or their combination, on the bumblebee microbiome. Scientific Reports, 2023, 13, .	3.3	5
748	Population structure and insecticide response of Gammarus spp. in agricultural and upstream forested sites of small streams. Environmental Sciences Europe, 2023, 35, .	11.0	5
749	Neonicotinoid Sunflower Seed Treatment, While Not Detected in Pollen and Nectar, Still Impacts Wild Bees and Crop Yield. , 2023, 2, 279-295.		1
750	Exploring relationships between time of day and pollinator activity in the context of pesticide use. Basic and Applied Ecology, 2023, 72, 74-81.	2.7	3
751	Future Prospects of Insect Biotechnology. Learning Materials in Biosciences, 2023, , 117-134.	0.4	0
752	Nonâ€neonicotinoid pesticides impact bumblebee activity and pollen provisioning. Journal of Applied Ecology, 2023, 60, 1673-1683.	4.0	2

#	Article	IF	Citations
753	Rapid determination and health risk assessment of neonicotinoids in source water and tap water of the tropical Hainan Island, China. Environmental Science and Pollution Research, 0, , .	5.3	1
754	Thiacloprid impairs honeybee worker learning and memory with inducing neuronal apoptosis and downregulating memory-related genes. Science of the Total Environment, 2023, 885, 163820.	8.0	6
755	Seed treatment with neonicotinoid insecticides does not affect the foraging behavior of honey bees. Apidologie, 2023, 54, .	2.0	1
756	Weak evidence base for bee protective pesticide mitigation measures. Journal of Economic Entomology, 0, , .	1.8	1
757	Contrasting effects of wooded and herbaceous semi-natural habitats on supporting wild bee diversity. Agriculture, Ecosystems and Environment, 2023, 356, 108644.	5.3	0
758	Chronic exposure to environmentallyâ€relevant concentrations of imidacloprid impact survival and ecologicallyâ€relevant behaviors of fathead minnow larvae. Environmental Toxicology and Chemistry, 0, , .	4.3	1
759	Implementing IPM in crop management simultaneously improves the health of managed bees and enhances the diversity of wild pollinator communities. Scientific Reports, 2023, 13, .	3.3	1
760	Sublethal effects of thiamethoxam on immune system cells in the workers of Bombus terrestris (Hymenoptera: Apidae). Environmental Science and Pollution Research, 0, , .	5.3	0
762	Moving past neonicotinoids and honeybees: A systematic review of existing research on other insecticides and bees. Environmental Research, 2023, 235, 116612.	7.5	7
763	Extracellular enzyme mediated biotransformation of imidacloprid by white-rot fungus Phanerochaete chrysosporium: Mechanisms, pathways, and toxicity. Chemical Engineering Journal, 2023, 472, 144798.	12.7	4
764	Colony size buffers interactions between neonicotinoid exposure and cold stress in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	0
765	Direct and indirect effects of urbanization, pesticides and wild insect pollinators on mango yield. Journal of Applied Ecology, 2023, 60, 2132-2143.	4.0	3
766	Sub-lethal but potentially devastating - The novel insecticide flupyradifurone impairs collective brood care in bumblebees. Science of the Total Environment, 2023, 903, 166097.	8.0	1
767	A New Approach for Detecting Sublethal Effects of Neonicotinoids on Bumblebees Using Optical Sensor Technology. Insects, 2023, 14, 713.	2.2	0
768	The State of the World's Arable Land. Annual Review of Environment and Resources, 2023, 48, 451-475.	13.4	3
769	Techno-Economic Analysis for the Coating of Seeds with Sodium Alginate Plasticized by Glycerol Using the Wurster Fluid-Bed Bottom Spray Process. , 0, , .		0
770	Exposure to sublethal concentration of flupyradifurone alters sexual behavior and cuticular hydrocarbon profile in <i>Heriades truncorum</i> , an oligolectic solitary bee. Insect Science, 0, , .	3.0	0
771	Functional diversity of sodium channel variants in common eastern bumblebee, <i>Bombus impatiens</i> . Archives of Insect Biochemistry and Physiology, 2023, 114, .	1.5	Ο

#	ARTICLE	IF	CITATIONS
772	A critical review on the accumulation of neonicotinoid insecticides in pollen and nectar: Influencing factors and implications for pollinator exposure. Science of the Total Environment, 2023, 899, 165670.	8.0	8
773	Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. Science of the Total Environment, 2023, 896, 166214.	8.0	3
774	A novel polycaprolactone/polypyrrole/Ĵ²-cyclodextrin electrochemical flexible sensor for dinotefuran pesticide detection. Food Chemistry, 2024, 434, 137194.	8.2	1
775	Neonicotinoid pesticide applications affect pollinator abundance and visitation, leading to implications for sunflower production (<i>Helianthus annuus</i> L.). Cogent Food and Agriculture, 2023, 9, .	1.4	1
776	The global trend of nanomaterial usage to control the important agricultural arthropod pests: A comprehensive review. Plant Stress, 2023, 10, 100208.	5.5	1
777	Biological Seed Coating Innovations for Sustainable Healthy Crop Growth in Tomato. , 0, , .		0
778	Predicting crop injury caused by flea beetles in spring oilseed rape through pest monitoring in the autumn. Agricultural and Forest Entomology, 0, , .	1.3	0
779	Mitigating the One Health Impacts of Agrochemicals Through Sustainable Policies and Regulations. Sustainable Development and Biodiversity, 2023, , 211-243.	1.7	0
780	Global Biodiversity Decline and Loss from Agricultural Intensification Through Agrochemical Application. Sustainable Development and Biodiversity, 2023, , 77-103.	1.7	0
781	Agrochemicals and Pollinator Diversity: A Socio-ecological Synthesis. Sustainable Development and Biodiversity, 2023, , 137-159.	1.7	0
782	Biological invasions: a global threat to insect diversity. , 2024, , 1-15.		0
783	Winter is coming: Interactions of multiple stressors in winter and implications for the natural world. Global Change Biology, 2023, 29, 6834-6845.	9.5	3
784	Neither sulfoxaflor, Crithidia bombi, nor their combination impact bumble bee colony development or field bean pollination. Scientific Reports, 2023, 13, .	3.3	0
785	Pesticide Exposure and Effects on Non- <i>Apis</i> Bees. Annual Review of Entomology, 2024, 69, 551-576.	11.8	2
787	Breaking the cycle: Reforming pesticide regulation to protect pollinators. BioScience, 2023, 73, 808-813.	4.9	2
788	Recent technologies for glyphosate removal from aqueous environment: A critical review. Environmental Research, 2024, 240, 117477.	7.5	1
789	Roadmap for action on the environmental risk assessment of chemicals for insect pollinators (IPolâ€ERA). EFSA Supporting Publications, 2023, 20, .	0.7	0
790	Chronic acetamiprid exposure moderately affects the foraging behaviour of buffâ€ŧailed bumblebees (<i>Bombus terrestris</i>). Ethology, 0, , .	1.1	0

#	Article	IF	CITATIONS
791	Seed treatment with clothianidin induces changes in plant metabolism and alters pollinator foraging preferences. Ecotoxicology, 0, , .	2.4	0
793	Transgenerational epigenetic effects imposed by neonicotinoid thiacloprid exposure. Life Science Alliance, 2024, 7, e202302237.	2.8	0
794	Pesticide use negatively affects bumble bees across European landscapes. Nature, 0, , .	27.8	2
796	Ecotoxicological impact of dinotefuran insecticide and its metabolites on non-targets in agroecosystem: Harnessing nanotechnology- and bio-based management strategies to reduce its impact on non-target ecosystems. Environmental Research, 2024, 243, 117870.	7.5	1
797	Rapid development of increased neonicotinoid tolerance in non-target freshwater amphipods. Environment International, 2024, 183, 108368.	10.0	1
798	A deep-learning approach for identifying prospective chemical hazards. Toxicology, 2024, 501, 153708.	4.2	0
799	Honey Plants of Düzce University Ornamental and Medicinal Plants Botanical Garden. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 0, , .	0.7	0
800	Aiming for a Better Tomorrow. Indian Journal of Critical Care Medicine, 2023, 28, 11-12.	0.9	0
801	Impact of nanopesticides in the environment: Solutions, threats, and opportunities. , 2024, , 251-292.		0
802	Neonicotinoids: Advances in hazards of residues, screening of aptamers and design of aptasensors. Trends in Food Science and Technology, 2024, 144, 104342.	15.1	Ο
803	Use quantum mechanical computational methods to investigate interactions between imidacloprid and boron nitride nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685, 133088.	4.7	0
804	Accurate Quantification of Pure Thiacloprid with Mass Balance and Quantitative H-NMR. Journal of Analysis and Testing, 2024, 8, 1-8.	5.1	2
805	Revealing the cascade of pesticide effects from gene to community. Science of the Total Environment, 2024, 917, 170472.	8.0	0
806	Neonicotinoid insecticides in plant-derived Foodstuffs: A review of separation and determination methods based on liquid chromatography. Food Chemistry, 2024, 444, 138695.	8.2	0
807	Top–down versus bottom–up oxidation of a neonicotinoid pesticide by OH radicals. Proceedings of the United States of America, 2024, 121, .	7.1	0
808	Distribution of infectious and parasitic agents among three sentinel bee species across European agricultural landscapes. Scientific Reports, 2024, 14, .	3.3	0
810	Pesticide hazard, floral resource availability and natural enemies interactively drive the fitness of bee species depending on their crop fidelity. Science of the Total Environment, 2024, 922, 171058.	8.0	0
811	Neonicotinoid contamination in conservation areas affects bees more sharply than beetles. Frontiers in Ecology and Evolution, 0, 12, .	2.2	0

#	Article	IF	CITATIONS
812	High pesticide exposure and risk to bees in pollinator plantings adjacent to conventionally managed blueberry fields. Science of the Total Environment, 2024, 922, 171248.	8.0	0
813	Pesticide uptake and translocation in plants monitored in situ via laser ablation dielectric barrier discharge ionization mass spectrometry imaging. Sensors and Actuators B: Chemical, 2024, 409, 135532.	7.8	Ο
814	Ensifer adhaerens strain OV14 seed application enhances Triticum aestivum L. and Brassica napus L. development. Heliyon, 2024, 10, e27142.	3.2	0
815	Perspective Chapter: Wild Bees $\hat{a} \in$ " Importance, Threats, and Conservation Challenges. , 0, , .		Ο
816	Local floral abundance influences bumble bee occupancy more than urbanâ€agricultural landscape context. Insect Conservation and Diversity, 2024, 17, 215-228.	3.0	0