Spatial-temporal patterns of major ion chemistry and it Manasarovar Basin, Tibet

Journal of Chinese Geography 25, 687-700

DOI: 10.1007/s11442-015-1196-5

Citation Report

#	Article	IF	CITATIONS
1	Loading processes of major ions in a forested catchment: Observations and modelling. Journal of Japanese Association of Hydrological Sciences, 2016, 46, 39-57.	0.2	1
2	Characteristics and seasonal variations in the hydrochemistry of the Tangra Yumco basin, central Tibetan Plateau, and responses to the Indian summer monsoon. Environmental Earth Sciences, 2017, 76, 1.	2.7	11
3	Hydrochemical regime and its mechanism in Yamzhog Yumco Basin, South Tibet. Journal of Chinese Geography, 2017, 27, 1111-1122.	3.9	10
4	Hydrochemistry and water quality of Rewalsar Lake of Lesser Himalaya, Himachal Pradesh, India. Environmental Monitoring and Assessment, 2018, 190, 84.	2.7	39
5	Classification of Southern Basin shore water by multivariate statistical techniques of Lake Biwa, Japan. Sustainable Water Resources Management, 2018, 4, 789-807.	2.1	4
6	Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai–Tibet Plateau: using ²²² Rn and stable isotopes. Hydrology and Earth System Sciences, 2018, 22, 5579-5598.	4.9	26
7	Growth pattern and oxygen isotopic systematics of modern freshwater mollusks along an elevation transect: Implications for paleoclimate reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532, 109243.	2.3	11
8	Hydrochemical characteristics and controlling factors of natural water in the border areas of the Qinghai-Tibet Plateau. Journal of Chinese Geography, 2019, 29, 1876-1894.	3.9	12
9	Major ion chemistry, catchment weathering and water quality of Renuka Lake, north-west Himalaya, India. Environmental Earth Sciences, 2019, 78, 1.	2.7	30
10	Inorganic components in lake waters in the Third Pole. , 2020, , 239-259.		О
11	Groundwater geochemical facie: implications of rock-water interaction at the Chamba city (HP), northwest Himalaya, India. Environmental Science and Pollution Research, 2020, 27, 9012-9026.	5.3	26
12	Hydrochemistry Differences and Causes of Tectonic Lakes and Glacial Lakes in Tibetan Plateau. Water (Switzerland), 2020, 12, 3165.	2.7	5
13	Change of Contributions from Different Natural Processes to the Ionic Budget in the Yarlung Tsangpo River. Water (Switzerland), 2020, 12, 616.	2.7	0
14	Hydrogeochemistry of River Water in the Upper Reaches of the Datong River Basin, China: Implications of Anthropogenic Inputs and Chemical Weathering. Acta Geologica Sinica, 2021, 95, 962-975.	1.4	9
15	The increasing water clarity of Tibetan lakes over last 20Âyears according to MODIS data. Remote Sensing of Environment, 2021, 253, 112199.	11.0	31
16	In-situ water quality investigation of the lakes on the Tibetan Plateau. Science Bulletin, 2021, 66, 1727-1730.	9.0	40
17	Hydrochemistry of Rara Lake: A Ramsar lake from the southern slope of the central Himalayas, Nepal. Journal of Mountain Science, 2021, 18, 141-158.	2.0	9
18	Physicochemical Characterization of the Quality of Groundwater: Case Study of the Tebessa Plain (North-East Algeria). Civil and Environmental Engineering Reports, 2021, 31, 18-36.	0.3	1

#	Article	IF	CITATIONS
19	STUDY OF SOME MINERAL WATER OF UVS NURSKOY AYMAK OF MONGOLIA. ChemChemTech, 2018, 61, 126.	0.3	0
20	Environmental Pollution of Potentially Toxic Elements (PTEs) and its Human Health Risk Assessment in Delhi Urban Environs, India. Urban Climate, 2022, 46, 101309.	5.7	4
21	Hydrogeochemical facie and solute acquisition at Dal Lake of Kashmir and Dal Lake of Mcleodganj, northwest Himalaya, India. Journal of Earth System Science, 2023, 132, .	1.3	1
22	The decrease of salinity in lakes on the Tibetan Plateau between 2000 and 2019 based on remote sensing model inversions. International Journal of Digital Earth, 2023, 16, 2644-2659.	3.9	2
23	Analysis of Water Chemistry Characteristics and Main Ion Controlling Factors of Lakes in the Nagqu Area of the Qinghai–Tibet Plateau in Summer. Water (Switzerland), 2023, 15, 2900.	2.7	1
24	Water quality of the southern Tibetan Plateau: hydrogeochemistry assessment of the Yarlungzangbo River. Journal of the Geological Society, 0, , .	2.1	0
25	Hydrochemistry and Irrigation Quality of High-Altitude Lakes: A Case Study of the Ramaroshan Lake Complex, Nepal Himalayas. Limnological Review, 2024, 24, 30-52.	0.5	0
26	Water quality and geochemical facie of high-altitude lakes in Tawang, Eastern Himalaya, India. Environmental Science and Pollution Research, 2024, 31, 24492-24511.	5.3	0