Complete genome sequence of Bacillus sp. YP1, a polyet waxworm's gut

Journal of Biotechnology 200, 77-78 DOI: 10.1016/j.jbiotec.2015.02.034

Citation Report

#	ARTICLE	IF	CITATIONS
1	Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science & Technology, 2015, 49, 12080-12086.	4.6	405
2	Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science & Technology, 2015, 49, 12087-12093.	4.6	426
3	Treatments and Uses. , 2017, , 215-315.		0
4	Fungal-mediated deterioration and biodegradation study of low-density polyethylene (LDPE) isolated from municipal dump yard in Chennai, India. Energy, Ecology and Environment, 2018, 3, 229-236.	1.9	21
5	Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Applied and Environmental Microbiology, 2019, 85, .	1.4	461
6	The Problem of Plastic Waste and Microplastics in the Seas and Oceans: Impact on Marine Organisms. Ribarstvo, Croatian Journal of Fisheries, 2019, 77, 51-56.	0.2	20
7	Are ecosystem services provided by insects "bugged―by micro (nano)plastics?. TrAC - Trends in Analytical Chemistry, 2019, 113, 317-320.	5.8	40
8	Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environment International, 2020, 145, 106144.	4.8	116
9	Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in Microbiology, 2020, 11, 580709.	1.5	412
10	Microbial Degradation and Valorization of Plastic Wastes. Frontiers in Microbiology, 2020, 11, 442.	1.5	287
11	Biodegradation of Plastics in Tenebrio Genus (Mealworms). Handbook of Environmental Chemistry, 2020, , 385-422.	0.2	9
12	Biodegradation of Polyethylene and Polystyrene by Greater Wax Moth Larvae (<i>Galleria) Tj ETQq1 1 0.784314 Environmental Science & amp; Technology, 2020, 54, 2821-2831.</i>	rgBT /Ovei 4.6	rlock 10 Tf 5 154
13	The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chemistry, 2021, 345, 128846.	4.2	21
14	In vitro degradation of low-density polyethylene by new bacteria from larvae of the greater wax moth, <i>Galleria mellonella</i> . Canadian Journal of Microbiology, 2021, 67, 249-258.	0.8	23
15	Isolation and Identification of Polystyrene Degrading Bacteria from Zophobas morio's Gut. Walailak Journal of Science and Technology, 2021, 18, .	0.5	1
16	Synergistic biodegradation of poly(ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase. Applied Microbiology and Biotechnology, 2021, 105, 4551-4560.	1.7	15
17	Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of the Total Environment, 2021, 771, 144719.	3.9	258
18	Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis. Science of the Total Environment, 2021, 774, 145002.	3.9	45

#	Article	IF	CITATIONS
19	Plastic waste: Status, degradation and microbial management options for Africa. Journal of Environmental Management, 2021, 292, 112758.	3.8	40
20	Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Science of the Total Environment, 2021, 780, 146590.	3.9	173
21	Tenebrio molitor in the circular economy: a novel approach for plastic valorisation and PHA biological recovery. Environmental Science and Pollution Research, 2021, 28, 52689-52701.	2.7	10
22	Rapid colonization and biodegradation of untreated commercial polyethylene wrap by a new strain of Bacillus velezensis C5. Journal of Environmental Management, 2022, 301, 113848.	3.8	10
23	Characterization of the gut microbes of greater wax moth (Galleria mellonella Linnaeus) shows presence of potential polymer degraders. Folia Microbiologica, 2022, 67, 133-141.	1.1	5
24	POSSIBLE PLASTIC DEGRADATION BY PSB (PHOSPHATE SOLUBILIZING BACTERIA): ANSWER WITH NOTICED DISSIMILARITIES IN PHYSICAL TEXTURE DURING THE COURSE OF THREE MONTHS INCUBATION INSIDE A CIRCLET SOIL. Global Journal of Biology Agriculture & Health Sciences, 2017, 6, 15-18.	0.1	0
25	Study on the Biodegradation of Plastic Mulch Film Residue of Farmland by <i>Galleria mellonella</i> . Hans Journal of Agricultural Sciences, 2020, 10, 255-262.	0.0	0
26	Role of microbiome and biofilm in environmental plastic degradation. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102263.	1.5	29
27	A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. Environmental Science & Technology, 2022, 56, 2071-2095.	4.6	33
28	Biotechnological Aspects and Mathematical Modeling of the Biodegradation of Plastics under Controlled Conditions. Polymers, 2022, 14, 375.	2.0	20
29	Hydrocarbon-based plastics: Progress and perspectives on consumption and biodegradation by insect larvae. Chemosphere, 2022, 293, 133600.	4.2	25
31	Degradation of newly developed date palm agro-residues-filled polyethylene biocomposites in the planktonic and benthic zones of a marine environment. Biomass Conversion and Biorefinery, 2024, 14, 1793-1808.	2.9	5
32	The first evidence of the Indian meal moth (Plodia interpunctella) interaction with the silicone moulds. Chemosphere, 2022, 299, 134451.	4.2	0
33	Recent endeavors in microbial remediation of micro- and nanoplastics. ChemistrySelect, 2022, .	0.7	0
35	Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Frontiers in Microbiology, 2022, 13, .	1.5	5
36	Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). Science of the Total Environment, 2022, 853, 158604.	3.9	16
37	Microbes and environment sustainability: An in-depth review on the role of insect gut microbiota in plastic biodegradation. , 2022, , 1-25.		1
38	An assessment on the potential of tenebrio molitor used for biodepolymerization of plastics and polystyrene: influencing factors, various feeding cases and gut microbiota. IOP Conference Series: Earth and Environmental Science, 2022, 1074, 012029.	0.2	2

CITATION REPORT

#	Article	IF	CITATIONS
39	Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microbial Biotechnology, 2023, 16, 195-217.	2.0	31
40	Thiol-ene eugenol polymer networks with chemical Degradation, thermal degradation and biodegradability. Chemical Engineering Journal, 2023, 454, 140051.	6.6	7
41	Polymer and its effect on environment. Journal of the Indian Chemical Society, 2023, 100, 100821.	1.3	2
42	A Review of Cross-Disciplinary Approaches for the Identification of Novel Industrially Relevant Plastic-Degrading Enzymes. Sustainability, 2022, 14, 15898.	1.6	6
43	Effects of the oversized microplastic pollution layer on soil aggregates and organic carbon at different soil depths. Journal of Hazardous Materials, 2023, 450, 131014.	6.5	9
44	The Ability of Insects to Degrade Complex Synthetic Polymers. , 0, , .		0
45	Chironomus riparius Larval Gut Bacteriobiota and Its Potential in Microplastic Degradation. Microbial Ecology, 2023, 86, 1909-1922.	1.4	3