The genome of cultivated sweet potato contains <i>Agree expressed genes: An example of a naturally transgenic f

Proceedings of the National Academy of Sciences of the Unite 112, 5844-5849

DOI: 10.1073/pnas.1419685112

Citation Report

#	Article	IF	CITATIONS
2	Cyclotides in a Biotechnological Context. Advances in Botanical Research, 2015, , 305-333.	0.5	4
3	Domestication: Sweet! A naturally transgenic crop. Nature Plants, 2015, 1, 15077.	4.7	0
4	GM crops in the media. GM Crops and Food, 2015, 6, 63-68.	2.0	3
5	Horizontal gene transfer: building the web of life. Nature Reviews Genetics, 2015, 16, 472-482.	7.7	1,018
6	Feasibility of new breeding techniques for organic farming. Trends in Plant Science, 2015, 20, 426-434.	4.3	94
7	Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers. Research in Microbiology, 2015, 166, 753-763.	1.0	10
8	Politics, Economics, and Demographics of Food Sustainability and Security. , 2016, , .		0
9	Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making. Sustainability, 2016, 8, 495.	1.6	29
10	Effect of Organic Potato Farming on Human and Environmental Health and Benefits from New Plant Breeding Techniques. Is It Only a Matter of Public Acceptance?. Sustainability, 2016, 8, 1054.	1.6	30
11	The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. Frontiers in Plant Science, 2016, 7, 506.	1.7	196
12	A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70Â% rule. BMC Biology, 2016, 14, 89.	1.7	83
13	Evolutionary Histories of Gene Families in Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, 2016, , 121-137.	0.3	0
14	A critical assessment of regulatory triggers for products of biotechnology: Product vs. process. GM Crops and Food, 2016, 7, 125-158.	2.0	42
15	Agrobacterium rhizogenes-Mediated Transformation of Plants for Improvement of Yields of Secondary Metabolites. , 2016, , 1-42.		5
16	Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Reports, 2016, 35, 1493-1506.	2.8	216
17	Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products. Analytical and Bioanalytical Chemistry, 2016, 408, 4595-4614.	1.9	43
18	Further studies on crown gall of stone fruit. Australasian Plant Pathology, 2016, 45, 443-445.	0.5	0
19	Quarantine Regulations and the Impact of Modern Detection Methods. Annual Review of Phytopathology, 2016, 54, 189-205.	3.5	61

ATION RED

	СІТАТ	CITATION REPORT	
#	Article	IF	CITATIONS
20	Crop biotechnology: a pivotal moment for global acceptance. Food and Energy Security, 2016, 5, 3-17.	2.0	16
21	Transfer of DNA from Bacteria to Eukaryotes. MBio, 2016, 7, .	1.8	112
22	Plant genome editing in the European Union—to be or not to be—a GMO. Plant Biotechnology Report 2016, 10, 345-351.	s, 0.9	18
23	Editing EU legislation to fit plant genome editing. EMBO Reports, 2016, 17, 1365-1369.	2.0	28
24	DNA Transfer to Plants by Agrobacterium rhizogenes: A Model for Genetic Communication Between Species and Biospheres. , 2016, , 1-41.		1
25	The Global Importance of Transgenic Cotton. Sustainable Development and Biodiversity, 2016, , 17-33.	1.4	3
26	Naturally transgenic plants as a model for the study of the delayed environmental risks of GMO cultivation. Russian Journal of Genetics: Applied Research, 2016, 6, 698-704.	0.4	2
27	Adventitious rooting of conifers: influence of biological factors. Trees - Structure and Function, 2016, 30, 1021-1032.	0.9	16
28	Rootâ€specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism <i>Nicotiana tabacum</i> . Plant Journal, 2016, 87, 258-269.	2.8	27
29	Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector. Journal of Agricultural and Food Chemistry, 2016, 64, 394-402.	2.4	30
31	Exogenous Transposable Elements Circumvent Identity-Based Silencing, Permitting the Dissection of Expression-Dependent Silencing. Plant Cell, 2017, 29, 360-376.	3.1	57
32	DNA Transfer to Plants by Agrobacterium rhizogenes: A Model for Genetic Communication Between Species and Biospheres. Reference Series in Phytochemistry, 2017, , 3-43.	0.2	4
33	Unconscious selection drove seed enlargement in vegetable crops. Evolution Letters, 2017, 1, 64-72.	1.6	37
34	Cannabis sativa L Botany and Biotechnology. , 2017, , .		78
35	Transformation of Campanula by wild type Agrobacterium rhizogenes. Euphytica, 2017, 213, 1.	0.6	15
36	The Role of Agrobacterium-Mediated and Other Gene-Transfer Technologies in Cannabis Research and Product Development. , 2017, , 343-363.		6
37	Environmental impacts of genetically modified plants: A review. Environmental Research, 2017, 156, 818-833.	3.7	103
38	Structural Variation and the Soybean Genome. Compendium of Plant Genomes, 2017, , 57-72.	0.3	0

#	Article	IF	CITATIONS
39	Biological traits of naturally transgenic plants and their evolutional roles. Russian Journal of Plant Physiology, 2017, 64, 635-648.	0.5	14
40	The allergenicity of genetically modified foods from genetically engineered crops. Annals of Allergy, Asthma and Immunology, 2017, 119, 214-222.e3.	0.5	39
41	Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nature Plants, 2017, 3, 696-703.	4.7	228
42	The never ending story of rol genes: a century after. Plant Cell, Tissue and Organ Culture, 2017, 131, 201-212.	1.2	33
44	Bioactive Compounds From Microalgae: Current Development and Prospects. Studies in Natural Products Chemistry, 2017, , 199-225.	0.8	68
45	Utilization of engineered resistance to viruses in crops of the developing world, with emphasis on sub-Saharan Africa. Current Opinion in Virology, 2017, 26, 90-97.	2.6	26
46	The central dogma, "GMO―and defective epistemology. GM Crops and Food, 2017, 8, 209-215.	2.0	1
48	Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food. Food and Chemical Toxicology, 2017, 107, 108-121.	1.8	74
49	The Unknowns and Possible Implications of Mandatory Labeling. Trends in Biotechnology, 2017, 35, 1-3.	4.9	24
50	Foreign DNA acquisition by invertebrate genomes. Journal of Invertebrate Pathology, 2017, 147, 157-168.	1.5	32
51	Genetic control of dry matter, starch and sugar content in sweetpotato. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 110-118.	0.3	2
52	Hybrids and horizontal transfer: introgression allows adaptive allele discovery. Journal of Experimental Botany, 2017, 68, 5453-5470.	2.4	24
53	Hairy Root Cultures of Rhodiola rosea to Increase Valuable Bioactive Compounds. , 2017, , 65-88.		1
54	Recent Scientific Developments in Genetic Technologies: Implications for Future Regulation of GMOs in Developing Countries. , 0, , 13-25.		0
55	Production of Plant Derived Natural Compounds through Hairy Root Culture. , 2017, , .		6
56	Challenges to genome sequence dissection in sweetpotato. Breeding Science, 2017, 67, 35-40.	0.9	23
57	A Universally Acceptable View on the Adoption of Improved Plant Breeding Techniques. Frontiers in Plant Science, 2017, 7, 1999.	1.7	8
58	Natural Agrobacterium Transformants: Recent Results and Some Theoretical Considerations. Frontiers in Plant Science, 2017, 8, 1600.	1.7	34

#	Article	IF	CITATIONS
59	Horizontal Gene Transfer Contributes to Plant Evolution: The Case of Agrobacterium T-DNAs. Frontiers in Plant Science, 2017, 8, 2015.	1.7	44
60	Why Organic Farming Should Embrace Co-Existence with Cisgenic Late Blight–Resistant Potato. Sustainability, 2017, 9, 172.	1.6	16
61	An overview of agriculture, nutrition and fortification, supplementation and biofortification: Golden Rice as an example for enhancing micronutrient intake. Agriculture and Food Security, 2017, 6,	1.6	31
62	A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biology and Biotechnology, 2017, 4, 6.	2.5	63
63	Bringing New Plant Varieties to Market: Plant Breeding and Selection Practices Advance Beneficial Characteristics while Minimizing Unintended Changes. Crop Science, 2017, 57, 2906-2921.	0.8	57
64	An Insight into T-DNA Integration Events in Medicago sativa. International Journal of Molecular Sciences, 2017, 18, 1951.	1.8	8
65	Increasing genetic variability in oilseed rape (Brassica napus) – Genotypes and phenotypes of oilseed rape transformed by wild type Agrobacterium rhizogenes. Plant Science, 2018, 271, 20-26.	1.7	17
66	Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes. Current Topics in Microbiology and Immunology, 2018, 418, 443-462.	0.7	17
67	Agrobacterium-Mediated Transformation in the Evolution of Plants. Current Topics in Microbiology and Immunology, 2018, 418, 421-441.	0.7	17
68	Transformation of Mecardonia (Plantaginaceae) with wild-type Agrobacterium rhizogenes efficiently improves compact growth, branching and flower related ornamental traits. Scientia Horticulturae, 2018, 234, 300-311.	1.7	17
69	Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia. Current Biology, 2018, 28, 1246-1256.e12.	1.8	133
70	Organization of the <scp>TC</scp> and <scp>TE</scp> cellular Tâ€ <scp>DNA</scp> regions in <i>Nicotiana otophora</i> and functional analysis of three diverged <scp>TE</scp> â€ <i>6b</i> genes. Plant Journal, 2018, 94, 274-287.	2.8	16
72	Some Basis for a Renewed Regulation of Agri-Food Biotechnology in the EU. Journal of Agricultural and Environmental Ethics, 2018, 31, 39-53.	0.9	7
73	How Agrobacterium , a Natural Genetic Engineer, Became a Tool for Modern Agriculture. Advances in Botanical Research, 2018, 86, 17-44.	0.5	9
74	Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Current Topics in Microbiology and Immunology, 2018, 418, 55-86.	0.7	28
75	Metagenomicâ€based impact study of transgenic grapevine rootstock on its associated virome and soil bacteriome. Plant Biotechnology Journal, 2018, 16, 208-220.	4.1	31
76	Electroretinography is a prognostic indicator for postoperative vision in dogs undergoing retinal reattachment surgery. Veterinary Ophthalmology, 2018, 21, 273-280.	0.6	6
77	A Plea for the Renewal of the ISBR. Trends in Biotechnology, 2018, 36, 229-231.	4.9	1

#	Article	IF	CITATIONS
78	The Maize Pan-Genome. Compendium of Plant Genomes, 2018, , 13-29.	0.3	8
79	Emerging RNA Suppression Technologies to Protect Citrus Trees From Citrus Greening Disease Bacteria. Advances in Insect Physiology, 2018, 55, 163-197.	1.1	16
80	Transgenic Plants: New Biological System or New Properties of Plant-Agrobacterium Symbiosis?. Russian Journal of Plant Physiology, 2018, 65, 621-627.	0.5	3
81	Agrobacterium-Mediated Transformation of Yeast and Fungi. Current Topics in Microbiology and Immunology, 2018, 418, 349-374.	0.7	18
82	The Agrobacterium Phenotypic Plasticity (Plast) Genes. Current Topics in Microbiology and Immunology, 2018, 418, 375-419.	0.7	23
83	Transgenic Research in Tuber and Root Crops. , 2018, , 225-248.		2
84	Microbial Genes in Crop Improvement. , 2018, , 39-56.		6
85	Agrobacterium rhizogenes-Mediated Transformation of Plants for Improvement of Yields of Secondary Metabolites. Reference Series in Phytochemistry, 2018, , 161-202.	0.2	3
86	Future Agricultural Animals: The Need for Biotechnology. , 2018, , 27-35.		0
87	Regulating Safety of Novel Food and Genetically Modified Crops. Advances in Botanical Research, 2018, 86, 89-110.	0.5	2
88	The Rhizobiaceae Bacteria Transferring Genes to Higher Plants. , 2019, , 269-289.		1
89	Role of Horizontal Gene Transfer in Evolution of the Plant Genome. , 2019, , 291-314.		1
90	The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development. BMC Plant Biology, 2019, 19, 119.	1.6	33
91	The horizontal gene transfer of Agrobacterium T-DNAs into the series Batatas (Genus Ipomoea) genome is not confined to hexaploid sweetpotato. Scientific Reports, 2019, 9, 12584.	1.6	18
92	Widespread occurrence of natural genetic transformation of plants by Agrobacterium. Plant Molecular Biology, 2019, 101, 415-437.	2.0	63
93	Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing. Plant Biotechnology Reports, 2019, 13, 423-445.	0.9	43
94	Genetically Modified Organisms as a Food Source: History, Controversy, and Hope. ACS Symposium Series, 2019, , 203-209.	0.5	1
95	Rapid functional activation of a horizontally transferred eukaryotic gene in a bacterial genome in the absence of selection. Nucleic Acids Research, 2019, 47, 6351-6359.	6.5	7

		CITATION REPORT		
#	Article		IF	CITATIONS
96	Meiosis Research in Orphan and Non-orphan Tropical Crops. Frontiers in Plant Science	, 2019, 10, 74.	1.7	3
97	Are current EU policies on GMOs justified?. Transgenic Research, 2019, 28, 267-286.		1.3	12
98	Detection and Identification of Genome Editing in Plants: Challenges and Opportunitie Plant Science, 2019, 10, 236.	2s. Frontiers in	1.7	81
99	Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological applic potential risk and forestalling strategy. Biotechnology Advances, 2019, 37, 259-270.	cation,	6.0	64
100	Addressing concerns over the fate of DNA derived from genetically modified food in th A review. Food and Chemical Toxicology, 2019, 124, 423-430.	e human body:	1.8	49
101	Genetic Alterations That Do or Do Not Occur Naturally; Consequences for Genome Ed in the Context of Regulatory Oversight. Frontiers in Bioengineering and Biotechnology	ited Organisms , 2019, 6, 213.	2.0	25
102	Metabolic diversity in sweet potato (Ipomoea batatas, Lam.) leaves and storage roots. Research, 2019, 6, 2.	Horticulture	2.9	37
103	Risk-Only Assessment of Genetically Engineered Crops Is Risky. Trends in Plant Science	e, 2019, 24, 58-68.	4.3	18
104	New Breeding Techniques: Detection and Identification of the Techniques andÂDerived , 320-336.	d Products. , 2019,		3
105	Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Progr and Eye Research, 2020, 74, 100771.	ress in Retinal	7.3	104
106	Parasitic plant dodder (Cuscuta spp.): A new natural Agrobacterium-to-plant horizonta species. Science China Life Sciences, 2020, 63, 312-316.	Il gene transfer	2.3	15
107	Ancient horizontal gene transfer from Rhizobium rhizogenes to European genera of th family (Scrophulariaceae). Euphytica, 2020, 216, 1.	e Figwort	0.6	3
108	Fungus-originated genes in the genomes of cereal and pasture grasses acquired throug lateral transfer. Scientific Reports, 2020, 10, 19883.	gh ancient	1.6	6
109	Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends in Parasitol 927-941.	ogy, 2020, 36,	1.5	41
110	Ethephon-induced changes in antioxidants and phenolic compounds in anthocyanin-pi carrot hairy root cultures. Journal of Experimental Botany, 2020, 71, 7030-7045.	roducing black	2.4	23
111	Selecting for useful properties of plants and fungi – Novel approaches, opportunitie Plants People Planet, 2020, 2, 409-420.	s, and challenges.	1.6	17
112	Peptide conjugated morpholinos for management of the huanglongbing pathosystem. Management Science, 2020, 76, 3217-3224.	. Pest	1.7	9
113	Influence of some <i>rol</i> genes on sugar content in <i>Nicotiana</i> and <i>Vaccir Web of Conferences, 2020, 18, 00020.</i>	hium. BIO	0.1	3

#	Article	IF	CITATIONS
114	Assessment of the life cycle of genetically modified and non-genetically modified rice cultivars. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	4
115	Breeding a fungal gene into wheat. Science, 2020, 368, 822-823.	6.0	8
116	Biotransformation of xenobiotics by hairy roots. Phytochemistry, 2020, 176, 112421.	1.4	11
117	The Tobacco Plant Genome. Compendium of Plant Genomes, 2020, , .	0.3	5
118	Plant tumors: a hundred years of study. Planta, 2020, 251, 82.	1.6	35
119	Rhizogenic agrobacteria as an innovative tool for plant breeding: current achievements and limitations. Applied Microbiology and Biotechnology, 2020, 104, 2435-2451.	1.7	31
120	How are genes modified? Crossbreeding, mutagenesis, and CRISPR-Cas9. , 2020, , 39-54.		4
121	Genetically modified (GM) food in South Africa. , 2020, , 101-115.		1
123	Horizontal gene transfer of <i>Fhb7</i> from fungus underlies <i>Fusarium</i> head blight resistance in wheat. Science, 2020, 368, .	6.0	398
124	Badnaviruses of Sweet Potato: Symptomless Coinhabitants on a Clobal Scale. Frontiers in Plant Science, 2020, 11, 313.	1.7	18
125	Crop wild relatives: know how past and present to improve future research, conservation and utilization strategies, especially in Italy: a review. Genetic Resources and Crop Evolution, 2020, 67, 1067-1105.	0.8	35
126	Genetically modified organisms and food security in Southern Africa: conundrum and discourse. GM Crops and Food, 2021, 12, 25-35.	2.0	33
127	Adaptive innovation of green plants by horizontal gene transfer. Biotechnology Advances, 2021, 46, 107671.	6.0	22
128	Gene and Genome Editing with CRISPR/Cas Systems for Fruit and Vegetable Improvement. Concepts and Strategies in Plant Sciences, 2021, , 227-245.	0.6	0
129	Food safety, food security and genetically modified organisms in Africa: a current perspective. Biotechnology and Genetic Engineering Reviews, 2021, 37, 30-63.	2.4	26
130	Humanity in the Living, the Living in Humans. The International Library of Environmental, Agricultural and Food Ethics, 2021, , 141-154.	0.1	0
131	Genetic Variation and Unintended Risk in the Context of Old and New Breeding Techniques. Critical Reviews in Plant Sciences, 2021, 40, 68-108.	2.7	20
133	Differentiated impacts of human interventions on nature. Elementa, 2021, 9, .	1.1	8

#	Article	IF	CITATIONS
134	Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta. Scientific Reports, 2021, 11, 5993.	1.6	14
135	Drawing Lines in the Sand? Paths Forward for Triggering Regulation of Gene-Edited Crops. Science and Public Policy, 2021, 48, 246-256.	1.2	5
136	New naturally transgenic plants: 2020 update. Biological Communications, 2021, 66, .	0.4	18
138	T-DNA regions from 350 Agrobacterium genomes: maps and phylogeny. Plant Molecular Biology, 2021, 106, 239-258.	2.0	15
139	Agrobacterium-Mediated Capsicum annuum Gene Editing in Two Cultivars, Hot Pepper CM334 and Bell Pepper Dempsey. International Journal of Molecular Sciences, 2021, 22, 3921.	1.8	14
140	Removing politics from innovations that improve food security. Transgenic Research, 2021, 30, 601-612.	1.3	13
141	History of plant genetic mutations ± human influences. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 554.	0.9	1
142	Survey of attitude towards biotechnology among the members of an Ethiopian university fraternity. African Journal of Science, Technology, Innovation and Development, 0, , 1-11.	0.8	0
143	Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp Current Microbiology, 2021, 78, 2839-2849.	1.0	16
144	Extension of Plant Phenotypes by the Foliar Microbiome. Annual Review of Plant Biology, 2021, 72, 823-846.	8.6	27
145	Horizontal Gene Transfers in Plants. Life, 2021, 11, 857.	1.1	18
146	Production of Agrocinopine A by <i>Ipomoea batatas</i> Agrocinopine Synthase in Transgenic Tobacco and Its Effect on the Rhizosphere Microbial Community. Molecular Plant-Microbe Interactions, 2022, 35, 73-84.	1.4	3
147	Opine biosynthesis in naturally transgenic plants: Genes and products. Phytochemistry, 2021, 189, 112813.	1.4	12
148	Evolution of Holobionts: The Hologenome Concept. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 317-352.	0.2	1
149	Genetically Modified Crops. , 2016, , 561-590.		1
150	Plant Genetic Engineering and GM Crops: Merits and Demerits. , 2019, , 155-229.		4
151	Food Sustainability, Security, and Effects of Global Change. , 2016, , .		4
154	Structure of Exogenous Gene Integration and Event-Specific Detection in the Glyphosate-Tolerant Transgenic Cotton Line BG2-7. PLoS ONE, 2016, 11, e0158384.	1.1	5

#	Article	IF	CITATIONS
155	Naturally transgenic plants as a model for the study of delayed environmental risks of cultivation of GMOs. Ecological Genetics, 2015, 13, 118.	0.1	1
156	Genetically modified organisms authorized for cultivation and breeding in Russia. Ecological Genetics, 2016, 14, 32.	0.1	2
157	Homologs of the rolC gene ofÂnaturally transgenic toadflaxes Linaria vulgaris andÂLinariaÂcreticola are expressed in vitro. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 273-278.	0.4	6
158	GMOs in Russia: Research, Society and Legislation. Acta Naturae, 2016, 8, 6-13.	1.7	17
159	OPINION PIECE Counterproductive consequences of â€~anti-GMO' activism. Ethics in Science and Environmental Politics, 2018, 18, 61-74.	4.6	4
160	Sweet Potato Leaf Curl Virus: Coat Protein Gene Expression in <i>Escherichia coli</i> and Product Identification by Mass Spectrometry. American Journal of Plant Sciences, 2015, 06, 3013-3024.	0.3	0
162	Functional analysis of cT-DNAs in naturally transformed plants, recent findings and general considerations. Ecological Genetics, 2016, 14, 26.	0.1	0
163	Plant Genome Editing Governance. , 2018, , 1-5.		0
164	Der Ursprung und die explosive Entwicklung von GMOs. , 2018, , 25-45.		0
165	Characterization and identification of naturally transgenic species Linaria vulgaris pathogenic mycromycetes. Ecological Genetics, 2018, 16, 27-34.	0.1	2
167	Common Bean (Phaseolus vulgaris L.) Breeding. , 2019, , 151-200.		2
168	A Science-Informed Ethics for Agricultural Biotechnology. , 0, , .		3
169	Plant Genome Editing Governance. , 2019, , 1980-1985.		0
171	The <i>rolC</i> gene of agrobacteria: towards the understanding of its functions. Plant Biotechnology and Breeding, 2020, 4, 36-46.	0.9	2
173	Natural Agrobacterium-Mediated Transformation in the Genus Nicotiana. Compendium of Plant Genomes, 2020, , 195-209.	0.3	3
174	Breeding farmer and consumer preferred sweetpotatoes using accelerated breeding scheme and mother–baby trials. Open Agriculture, 2020, 5, 548-557.	0.7	1
175	GM Farm Animals: Potential Impact on Biodiversity Including Ethical Concerns. Topics in Biodiversity and Conservation, 2020, , 277-285.	0.3	1
177	Spinning the Facts against Genetically Engineered Foods?. Theoretical Economics Letters, 2020, 10, 458-480.	0.2	0

#	Article	IF	CITATIONS
179	Scientific considerations for the biosafety of the off-target effects of gene editing in crops. Journal of Plant Biotechnology, 2020, 47, 185-193.	0.1	2
180	GMOs in Russia: Research, Society and Legislation. Acta Naturae, 2016, 8, 6-13.	1.7	8
181	Contribution of plant–bacteria interactions to horizontal gene transfer in plants. Biotechnology and Biotechnological Equipment, 2021, 35, 1587-1592.	0.5	1
182	Agrocinopine C, a Ti-plasmid-coded enzyme-product, is a 2-O, 6-O linked phosphodiester of D-Glucose and sucrose. Phytochemistry, 2022, 194, 113013.	1.4	2
183	Rhizobium rhizogenes-Mediated Genetic Transformation of Antidiabetic Plants. , 2021, , 341-382.		0
185	Agricultural biotechnology—challenges and cautions. , 2022, , 191-225.		0
186	Genetic Modification and Application in Cassava, Sweetpotato and Yams. , 0, , .		0
187	Study of Superoxide Dismutase Activity in Long-Term Cultivated Artemisia and Althaea "hairy―Roots. Current Microbiology, 2022, 79, 14.	1.0	8
188	Current status on the molecular biological research for the origin of cultivated sweetpotato [<i>lpomoea batatas</i> L. (Lam)]. Journal of Plant Biotechnology, 2021, 48, 223-227.	0.1	0
189	Why do plants need agrobacterial genes?. Ecological Genetics, 2021, 19, 365-375.	0.1	11
196	Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. Plant Communications, 2022, 3, 100332.	3.6	33
197	CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update. Molecular Biology Reports, 2022, , 1.	1.0	4
198	Genome editing and beyond: what does it mean for the future of plant breeding?. Planta, 2022, 255, 130.	1.6	17
199	Flexible and digestible wood caused by viral-induced alteration of cell wall composition. Current Biology, 2022, , .	1.8	0
201	Altered carbon status in <i>Glycine max</i> hairy roots induced by <i>Agrobacterium rhizogenes</i> . Plant Signaling and Behavior, 2022, 17, .	1.2	1
203	Genome-Wide Characterization of Nitrogenase Reductase (nifH) Genes in the Sweet Potato [Ipomoea batatas (L.) Lam] and Its Wild Ancestors. Genes, 2022, 13, 1428.	1.0	1
205	Horizontal gene transfer from genetically modified plants - Regulatory considerations. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6
207	Cloning and Characterization of Eukaryotic Translation Initiation Factor 4E (eIF4E) Gene Family in <i>lpomoea batatas</i> L. (Lam) for Understanding Hexaploid Sweetpotato-Virus Interactions. American Journal of Molecular Biology, 2022, 12, 203-244.	0.1	0

#	Article	IF	CITATIONS
208	Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. International Journal of Molecular Sciences, 2022, 23, 12053.	1.8	20
209	The RolB/RolC homolog from sweet potato promotes early flowering and triggers premature leaf senescence in transgenic Arabidopsis thaliana plants. Plant Physiology and Biochemistry, 2022, 193, 50-60.	2.8	5
210	Recent Advances in Antibiotic-Free Markers; Novel Technologies to Enhance Safe Human Food Production in the World. Molecular Biotechnology, 0, , .	1.3	1
211	Conservation of an Agrobacterium cT-DNA insert in Camellia section Thea reveals the ancient origin of tea plants from a genetically modified ancestor. Frontiers in Plant Science, 0, 13, .	1.7	5
212	Effect of Stress Signals and Ib-rolB/C Overexpression on Secondary Metabolite Biosynthesis in Cell Cultures of IpomoeaÂbatatas. International Journal of Molecular Sciences, 2022, 23, 15100.	1.8	3
213	Fast track to obtain heritable transgenic sweet potato inspired by its evolutionary history as a naturally transgenic plant. Plant Biotechnology Journal, 2023, 21, 671-673.	4.1	4
215	The mechanisms underpinning lateral gene transfer between grasses. Plants People Planet, 2023, 5, 672-682.	1.6	3
216	Overexpression of the <i>lb-rolB/C</i> gene perturbs biosynthesis of caffeoylquinic acid derivatives in transgenic calli of sweet potato. Ecological Genetics, 2022, 20, 28-29.	0.1	0
218	Recommendations for Maximum Incorporation Rates of Whole Food in 90-Day Rat Feeding Studies. , 2021, 9, 1-16.		1
219	Biodiversity of rolB/C-like Natural Transgene in the Genus Vaccinium L. and Its Application for Phylogenetic Studies. International Journal of Molecular Sciences, 2023, 24, 6932.	1.8	2
220	Animal Transgenesis and Cloning: Combined Development and Future Perspectives. Methods in Molecular Biology, 2023, , 121-149.	0.4	1
221	Expression sequences of opine synthase genes in natural GMOs based on analysis of their transcriptomes. Plant Biotechnology and Breeding, 2023, 5, 15-24.	0.9	2
223	Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Molecular Biotechnology, 0, , .	1.3	5
228	Landwirtschaftliche Nutztiere der Zukunft: Die Notwendigkeit der Biotechnologie. , 2023, , 31-41.		0
234	Biofortified sweet potato—an ideal source of mitigating hidden hunger. , 2024, , 239-253.		0