Ag Nanowire Reinforced Highly Stretchable Conductive

Advanced Functional Materials 25, 3114-3121 DOI: 10.1002/adfm.201500628

Citation Report

#	Article	IF	CITATIONS
1	Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective. Nanomaterials, 2015, 5, 1493-1531.	1.9	81
2	Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions. ACS Applied Materials & Interfaces, 2015, 7, 27562-27570.	4.0	139
3	Highly Stable and Sensitive Paper-Based Bending Sensor Using Silver Nanowires/Layered Double Hydroxides Hybrids. ACS Applied Materials & Interfaces, 2015, 7, 14182-14191.	4.0	120
4	Anomalous Stretchable Conductivity Using an Engineered Tricot Weave. ACS Nano, 2015, 9, 12214-12223.	7.3	35
5	High-Quality Graphene Ribbons Prepared from Graphene Oxide Hydrogels and Their Application for Strain Sensors. ACS Nano, 2015, 9, 12320-12326.	7.3	148
6	Foldable Transparent Substrates with Embedded Electrodes for Flexible Electronics. ACS Applied Materials & Interfaces, 2015, 7, 18574-18580.	4.0	38
7	Mesoporous Pt Nanotubes as a Novel Sensing Platform for Sensitive Detection of Intracellular Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2015, 7, 24288-24295.	4.0	57
8	Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials & Interfaces, 2015, 7, 19700-19708.	4.0	273
9	Multiscale Wrinkled Microstructures for Piezoresistive Fibers. Advanced Functional Materials, 2016, 26, 5078-5085.	7.8	146
10	Smart Electronic Textiles. Angewandte Chemie - International Edition, 2016, 55, 6140-6169.	7.2	460
11	Stretchableâ€Fiber onfined Wetting Conductive Liquids as Wearable Human Health Monitors. Advanced Functional Materials, 2016, 26, 4511-4517.	7.8	79
12	Textile-based wearable sensors using metal-nanowire embedded conductive fibers. , 2016, , .		2
13	Wearable strain sensors fabricated by silver nanowire patterning method based on parylene stencil technique. , 2016, 2016, 6066-6069.		1
14	A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. Journal of Materials Chemistry C, 2016, 4, 4304-4311.	2.7	207
15	Supercritical carbon dioxide anchored highly dispersed silver nanoparticles on 4A-zeolite and selective oxidation of styrene performance. CrystEngComm, 2016, 18, 2469-2476.	1.3	19
16	Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection. Journal of Materials Chemistry C, 2016, 4, 5642-5647.	2.7	89
17	From stretchable to reconfigurable inorganic electronics. Extreme Mechanics Letters, 2016, 9, 245-268.	2.0	52
18	Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles. ACS Applied Materials & Interfaces, 2016, 8, 25563-25570.	4.0	223

#	Article	IF	CITATIONS
19	Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization. ACS Nano, 2016, 10, 9287-9296.	7.3	351
20	Flexible and multifunctional electronics fabricated by a solvent-free and user-friendly method. RSC Advances, 2016, 6, 77267-77274.	1.7	27
21	Polymerâ€Enhanced Highly Stretchable Conductive Fiber Strain Sensor Used for Electronic Data Gloves. Advanced Materials Technologies, 2016, 1, 1600136.	3.0	122
22	Multifunctional Wearable Device Based on Flexible and Conductive Carbon Sponge/Polydimethylsiloxane Composite. ACS Applied Materials & Interfaces, 2016, 8, 33189-33196.	4.0	179
23	Highly conductive and flexible fiber for textile electronics obtained by extremely low-temperature atomic layer deposition of Pt. NPG Asia Materials, 2016, 8, e331-e331.	3.8	51
24	Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Advances, 2016, 6, 67771-67777.	1.7	43
25	Dramatically Enhanced Mechanosensitivity and Signalâ€ŧoâ€Noise Ratio of Nanoscale Crackâ€Based Sensors: Effect of Crack Depth. Advanced Materials, 2016, 28, 8130-8137.	11.1	276
26	Shear induced alignment of short nanofibers in 3D printed polymer composites. Nanotechnology, 2016, 27, 495302.	1.3	57
27	Printed Stretchable Interconnects for Smart Garments: Design, Fabrication, and Characterization. IEEE Sensors Journal, 2016, 16, 7967-7976.	2.4	72
28	Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials. Scientific Reports, 2016, 6, 34632.	1.6	25
29	Highly Flexible Strain Sensor from Tissue Paper for Wearable Electronics. ACS Sustainable Chemistry and Engineering, 2016, 4, 4288-4295.	3.2	204
30	Highly Elastic Fibers Made from Hydrogen-Bonded Polymer Complex. ACS Macro Letters, 2016, 5, 814-818.	2.3	46
31	Low cost and highly conductive elastic composites for flexible and printable electronics. Journal of Materials Chemistry C, 2016, 4, 5839-5848.	2.7	64
32	Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. Journal of Materials Chemistry C, 2016, 4, 6666-6674.	2.7	58
33	Smarte elektronische Textilien. Angewandte Chemie, 2016, 128, 6248-6277.	1.6	11
34	Conductive Fabric-Based Stretchable Hybridized Nanogenerator for Scavenging Biomechanical Energy. ACS Nano, 2016, 10, 4728-4734.	7.3	78
35	Toward the Synthesis of Sub-15 nm Ag Nanocubes with Sharp Corners and Edges: The Roles of Heterogeneous Nucleation and Surface Capping. Journal of the American Chemical Society, 2016, 138, 3161-3167.	6.6	100
36	Spin-capable carbon nanotube sheet as a substitute for TCO in transparent electronics and displays. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 305-312.	1.0	7

#	Article	IF	CITATIONS
37	Bridging Oriented Copper Nanowire–Graphene Composites for Solution-Processable, Annealing-Free, and Air-Stable Flexible Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 1733-1741.	4.0	40
38	Durable Microstructured Surfaces: Combining Electrical Conductivity with Superoleophobicity. ACS Applied Materials & Interfaces, 2016, 8, 1795-1804.	4.0	18
39	Electronic Applications of Styrene–Butadiene Rubber and Its Composites. Springer Series on Polymer and Composite Materials, 2016, , 261-277.	0.5	2
40	Highly conductive polymer/metal/carbon nanotube composite fiber prepared by the melt-spinning process. Textile Reseach Journal, 2017, 87, 593-606.	1.1	29
41	Highly Stretchable and Waterproof Electroluminescence Device Based on Superstable Stretchable Transparent Electrode. ACS Applied Materials & Interfaces, 2017, 9, 5486-5494.	4.0	63
42	Smooth ZnO:Al-AgNWs Composite Electrode for Flexible Organic Light-Emitting Device. Nanoscale Research Letters, 2017, 12, 77.	3.1	26
43	A systematic and effective research procedure for silver nanowire ink. Journal of Alloys and Compounds, 2017, 706, 164-175.	2.8	14
44	Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin. Nanotechnology, 2017, 28, 115501.	1.3	34
45	Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Applied Materials & Interfaces, 2017, 9, 12147-12164.	4.0	359
46	Highly Conductive Stretchable Allâ€Plastic Electrodes Using a Novel Dippingâ€Embedded Transfer Method for Highâ€Performance Wearable Sensors and Semitransparent Organic Solar Cells. Advanced Electronic Materials, 2017, 3, 1600471.	2.6	62
47	A pre-strain strategy for developing a highly stretchable and foldable one-dimensional conductive cord based on a Ag nanowire network. Nanoscale, 2017, 9, 5773-5778.	2.8	41
48	Structural and Functional Fibers. Annual Review of Materials Research, 2017, 47, 331-359.	4.3	62
49	Carbon-Based Pressure Sensors With Wavy Configuration. IEEE Electron Device Letters, 2017, 38, 979-982.	2.2	7
50	Magnetic/conductive composite fibre: A multifunctional strain sensor with magnetically driven property. Composites Part A: Applied Science and Manufacturing, 2017, 100, 97-105.	3.8	36
51	Biaxially stretchable silver nanowire conductive film embedded in a taro leaf-templated PDMS surface. Nanotechnology, 2017, 28, 01LT01.	1.3	9
52	Curving silver nanowires using liquid droplets for highly stretchable and durable percolation networks. Nanoscale, 2017, 9, 8938-8944.	2.8	19
53	Binary Synergistic Sensitivity Strengthening of Bioinspired Hierarchical Architectures based on Fragmentized Reduced Graphene Oxide Sponge and Silver Nanoparticles for Strain Sensors and Beyond. Small, 2017, 13, 1700944.	5.2	97
54	Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Scientific Reports, 2017, 7, 45013.	1.6	103

		CITATION F	Report	
#	Article		IF	CITATIONS
55	Oneâ€Ðimensional Nanomaterials for Soft Electronics. Advanced Electronic Materials,	2017, 3, 1600314.	2.6	271
56	Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applic Applied Materials & amp; Interfaces, 2017, 9, 40580-40592.	ations. ACS	4.0	15
57	High conductive and scalable Ag nanowires flexible transparent electrode by nanoweld physical methods. IOP Conference Series: Materials Science and Engineering, 2017, 24	ing with 2, 012006.	0.3	2
58	Smart wearable heaters with high durability, flexibility, water-repellent and shape memory characteristics. Composites Science and Technology, 2017, 152, 173-180.	bry	3.8	32
59	Wet-spinning of highly conductive nanocellulose–silver fibers. Journal of Materials Cl 2017, 5, 9673-9679.	nemistry C,	2.7	33
60	Celluloseâ€Nanofiberâ€Enabled 3D Printing of a Carbonâ€Nanotube Microfiber Netwo 2017, 1, 1700222.	rk. Small Methods,	4.6	130
61	A flexible and highly sensitive capacitive pressure sensor based on conductive fibers wi microporous dielectric for wearable electronics. Journal of Materials Chemistry C, 2017 10068-10076.	th a , 5,	2.7	123
62	An extremely simple macroscale electronic skin realized by deep machine learning. Scie 2017, 7, 11061.	ntific Reports,	1.6	38
63	Wearable and Transparent Capacitive Strain Sensor with High Sensitivity Based on Pat Nanowire Networks. ACS Applied Materials & Interfaces, 2017, 9, 26407-26416.	erned Ag	4.0	158
64	Three-Dimensional Highly Stretchable Conductors from Elastic Fiber Mat with Conduct Coating. ACS Applied Materials & amp; Interfaces, 2017, 9, 30772-30778.	ive Polymer	4.0	28
65	Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embec films. Journal of Materials Chemistry C, 2017, 5, 8714-8722.	lded polymer	2.7	63
66	Copper-embedded reduced graphene oxide fibers for multi-sensors. Journal of Materials 2017, 5, 12825-12832.	s Chemistry C,	2.7	17
67	Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ult sensors. Nanoscale, 2017, 9, 18507-18515.	rathin	2.8	48
68	Continuously Producible Ultrasensitive Wearable Strain Sensor Assembled with Three-I Interpenetrating Ag Nanowires/Polyolefin Elastomer Nanofibrous Composite Yarn. ACS Materials & Interfaces, 2017, 9, 42058-42066.	Dimensional Applied	4.0	91
69	Highly flexible fabric strain sensor based on graphene nanoplatelet–polyaniline nano human gesture recognition. Journal of Applied Polymer Science, 2017, 134, 45340.	composites for	1.3	75
70	Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Elec Healthcare. Scientific Reports, 2017, 7, 1753.	tronics, and	1.6	71
71	Towards conductive textiles: coating polymeric fibres with graphene. Scientific Reports	s, 2017, 7, 4250.	1.6	45
72	Carbonized Cotton Fabric for Highâ€Performance Wearable Strain Sensors. Advanced Materials, 2017, 27, 1604795.	Functional	7.8	383

#	Article	IF	CITATIONS
73	Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components. Advanced Materials, 2017, 29, 1603167.	11.1	367
74	Graphene oxide directed in-situ deposition of electroactive silver nanoparticles and its electrochemical sensing application for DNA analysis. Analytica Chimica Acta, 2017, 951, 58-67.	2.6	49
75	The Elongation Performance of Spirulina-templated Silver Micro Springs Embedded in the Polydimethylsiloxane. Journal of Bionic Engineering, 2017, 14, 631-639.	2.7	7
76	Polyurethane-based flexible conductive adhesives. , 2017, , .		Ο
77	Highly conductive, flexible and stretchable conductors based on fractal silver nanostructures. Journal of Materials Chemistry C, 2018, 6, 3999-4006.	2.7	45
78	Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale, 2018, 10, 7116-7126.	2.8	243
79	A Soft Three-Axis Load Cell Using Liquid-Filled Three-Dimensional Microchannels in a Highly Deformable Elastomer. IEEE Robotics and Automation Letters, 2018, 3, 881-887.	3.3	21
80	A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale, 2018, 10, 10033-10040.	2.8	255
81	Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires. ACS Applied Materials & Interfaces, 2018, 10, 14087-14096.	4.0	87
82	Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. ACS Nano, 2018, 12, 4259-4268.	7.3	207
83	Fully flexible strain sensor from core-spun elastic threads with integrated electrode and sensing cell based on conductive nanocomposite. Composites Science and Technology, 2018, 159, 42-49.	3.8	47
84	Low-cost ultra-stretchable strain sensors for monitoring human motion and bio-signals. Sensors and Actuators A: Physical, 2018, 271, 182-191.	2.0	72
85	Flexible fiber-shaped energy storage devices: principles, progress, applications and challenges. Flexible and Printed Electronics, 2018, 3, 013001.	1.5	34
86	Fabrication of highly conductive silver nanowires flexible conductor based on polydopamine-modified goose down network. Journal of Materials Science: Materials in Electronics, 2018, 29, 6388-6396.	1.1	4
87	Flexible Interconnects for Electronic Textiles. Advanced Materials Technologies, 2018, 3, 1700277.	3.0	109
88	Highly Stretchable Core–Sheath Fibers via Wet-Spinning for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 6624-6635.	4.0	228
89	Coaxial Thermoplastic Elastomerâ€Wrapped Carbon Nanotube Fibers for Deformable and Wearable Strain Sensors. Advanced Functional Materials, 2018, 28, 1705591.	7.8	207
90	High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning. ACS Applied Materials & Interfaces, 2018, 10, 2093-2104	4.0	117

#	Article	IF	CITATIONS
91	Recent Developments in Grapheneâ€Based Tactile Sensors and E‣kins. Advanced Materials Technologies, 2018, 3, 1700248.	3.0	153
92	Highly Sensitive and Very Stretchable Strain Sensor Based on a Rubbery Semiconductor. ACS Applied Materials & Interfaces, 2018, 10, 5000-5006.	4.0	103
93	Continuous production of stretchable conductive multifilaments in kilometer scale enables facile knitting of wearable strain sensing textiles. Applied Materials Today, 2018, 11, 255-263.	2.3	59
94	Spray-Processed Composites with High Conductivity and Elasticity. ACS Applied Materials & Interfaces, 2018, 10, 13953-13962.	4.0	10
95	Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Research, 2018, 11, 5799-5811.	5.8	99
96	2.5/3D dynamically stretchable and permanently shaped electronic circuits. Microsystem Technologies, 2018, 24, 831-853.	1.2	9
97	Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries. Nano Research, 2018, 11, 1554-1562.	5.8	51
98	A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Research, 2018, 11, 1938-1955.	5.8	99
99	Kinetics of dyeing natural protein fibers with silver nanoparticles. Dyes and Pigments, 2018, 148, 224-235.	2.0	23
100	Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Composites Part A: Applied Science and Manufacturing, 2018, 105, 291-299.	3.8	157
101	Recent Progress of Textileâ€Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications. Small, 2018, 14, 1703034.	5.2	470
102	Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping. Journal of Materials Science, 2018, 53, 2995-3005.	1.7	70
103	Facile synthesis of Ag@ZIF-8 core-shell heterostructure nanowires for improved antibacterial activities. Applied Surface Science, 2018, 435, 149-155.	3.1	61
104	Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. Nanoscale, 2018, 10, 118-123.	2.8	58
105	Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368.	11.1	445
106	Electrically conductive polymer composites for smart flexible strain sensors: a critical review. Journal of Materials Chemistry C, 2018, 6, 12121-12141.	2.7	522
107	Highly Stretchable Fiber-Shaped Supercapacitors Based on Ultrathin Gold Nanowires with Double-Helix Winding Design. ACS Applied Materials & Interfaces, 2018, 10, 42612-42620.	4.0	47
109	FUNCTIONAL FILLERS – STRUCTURE. , 2018, , 101-151.		8

#	Article	IF	CITATIONS
110	Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor. Nano, 2018, 13, 1850146.	0.5	4
111	Fabric-based self-powered noncontact smart gloves for gesture recognition. Journal of Materials Chemistry A, 2018, 6, 20277-20288.	5.2	36
112	High-Performance Structural Flexible Strain Sensors Based on Graphene-Coated Glass Fabric/Silicone Composite. ACS Applied Materials & Interfaces, 2018, 10, 35503-35509.	4.0	68
113	Nanowire Assemblies for Flexible Electronic Devices: Recent Advances and Perspectives. Advanced Materials, 2018, 30, e1803430.	11.1	124
114	Synthesis of percolative hyperelastic conducting composite and demonstrations of application in wearable strain sensors. Materials Letters, 2018, 233, 306-309.	1.3	13
115	Rapid room-temperature self-healing conductive nanocomposites based on naturally dried graphene aerogels. Journal of Materials Chemistry C, 2018, 6, 10184-10191.	2.7	11
116	Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. Journal of Materials Chemistry C, 2018, 6, 10524-10531.	2.7	80
117	Highly Conductive Fiber with Waterproof and Self-Cleaning Properties for Textile Electronics. ACS Applied Materials & Interfaces, 2018, 10, 36094-36101.	4.0	53
118	Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications. Applied Physics Letters, 2018, 113, .	1.5	6
119	Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nature Communications, 2018, 9, 3579.	5.8	201
120	Inkjet Printing of Silver Nanowires for Stretchable Heaters. ACS Applied Nano Materials, 2018, 1, 4528-4536.	2.4	87
121	Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics. ACS Applied Materials & Interfaces, 2018, 10, 20845-20853.	4.0	128
122	Wearable strain sensors based on electrically conductive natural fiber yarns. Materials and Design, 2018, 154, 217-227.	3.3	76
123	Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sensors and Actuators A: Physical, 2018, 279, 46-52.	2.0	96
124	Solid-state synthesis of silver nanowires using biopolymer thin films. Materials Today Nano, 2018, 1, 22-28.	2.3	10
125	Allâ€Solutionâ€Processed Metalâ€Oxideâ€Free Flexible Organic Solar Cells with Over 10% Efficiency. Advanced Materials, 2018, 30, e1800075.	11.1	165
126	Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Science Advances, 2018, 4, eaas8772.	4.7	155
127	Wearable Sensors for Upper Limb Monitoring. , 2018, , 113-134.		5

#	Article	IF	CITATIONS
128	Highly stretchable and conductive conductors based on Ag flakes and polyester composites. Microelectronic Engineering, 2018, 199, 16-23.	1.1	20
129	Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors, 2018, 18, 5.	2.1	32
130	Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nature Communications, 2018, 9, 2786.	5.8	195
131	Ultra-stretchable, sensitive and durable strain sensors based on polydopamine encapsulated carbon nanotubes/elastic bands. Journal of Materials Chemistry C, 2018, 6, 8160-8170.	2.7	131
132	Preparation of Ag Nanoparticles in Ammonia by Using EDM and a Study of the Relationships Between Ammonia and Silver Nanoparticles. Journal of Cluster Science, 2018, 29, 1115-1122.	1.7	5
133	A Transparent and Flexible Capacitiveâ€Force Touch Pad from Highâ€Aspectâ€Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics. Small Methods, 2018, 2, 1800077.	4.6	45
134	SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles. Optics Express, 2018, 26, 21784.	1.7	73
135	Study of Wearables with Embedded Electronics Through Experiments and Simulations. , 2018, , .		11
136	Stretchable, Printable and Electrically Conductive Composites for Wearable RF Antennas. , 2018, , .		5
137	High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network. ACS Applied Materials & Interfaces, 2018, 10, 19906-19913.	4.0	40
138	Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric. Journal of Materials Chemistry C, 2018, 6, 6840-6846.	2.7	64
139	Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosensors and Bioelectronics, 2019, 123, 167-177.	5.3	274
140	Wireless controlling of a toy robot using silver nanowire coated spandex yarns. Journal of Industrial Textiles, 2019, 49, 46-57.	1.1	3
141	In Vivo Restoration of Myocardial Conduction With Carbon Nanotube Fibers. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007256.	2.1	30
142	Ultraâ€Stretchable Porous Fiberâ€Shaped Strain Sensor with Exponential Response in Full Sensing Range and Excellent Antiâ€Interference Ability toward Buckling, Torsion, Temperature, and Humidity. Advanced Electronic Materials, 2019, 5, 1900538.	2.6	63
143	Dual-Core Capacitive Microfiber Sensor for Smart Textile Applications. ACS Applied Materials & Interfaces, 2019, 11, 33347-33355.	4.0	32
144	Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support. Advanced Science, 2019, 6, 1901229.	5.6	118
145	Multifunctional Fibers to Shape Future Biomedical Devices. Advanced Functional Materials, 2019, 29, 1902834.	7.8	74

#	Article	IF	CITATIONS
146	Conductive Hierarchical Hairy Fibers for Highly Sensitive, Stretchable, and Waterâ€Resistant Multimodal Gestureâ€Distinguishable Sensor, VR Applications. Advanced Functional Materials, 2019, 29, 1905808.	7.8	78
147	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	11.1	936
148	Direct Ink Writing of Wearable Thermoresponsive Supercapacitors with rGO/CNT Composite Electrodes. Advanced Materials Technologies, 2019, 4, 1900691.	3.0	36
149	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	3.0	37
150	Flexible knitted sensing device for identifying knee joint motion patterns. Smart Materials and Structures, 2019, 28, 115042.	1.8	19
152	Ultrastretchable and conductive core/sheath hydrogel fibers with multifunctionality. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 272-280.	2.4	26
153	Self-Powered Inhomogeneous Strain Sensor Enabled Joint Motion and Three-Dimensional Muscle Sensing. ACS Applied Materials & amp; Interfaces, 2019, 11, 34251-34257.	4.0	40
154	A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorganic Chemistry Frontiers, 2019, 6, 3119-3124.	3.0	55
155	A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system. Sensors and Actuators A: Physical, 2019, 299, 111575.	2.0	32
156	Soft and Deformable Sensors Based on Liquid Metals. Sensors, 2019, 19, 4250.	2.1	57
157	Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing. Advanced Functional Materials, 2019, 29, 1808509.	7.8	316
158	Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels. Chemical Engineering Journal, 2019, 365, 10-19.	6.6	223
159	Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 2019, 6, 219-249.	6.4	289
160	Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. ACS Applied Materials & Interfaces, 2019, 11, 21904-21914.	4.0	228
161	Intense pulse light sintering of an Ag microparticle-based, highly stretchable, and conductive electrode. Microelectronic Engineering, 2019, 215, 111012.	1.1	8
162	High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Science Advances, 2019, 5, eaaw2844.	4.7	215
163	Extremely Stretchable and Self-Healable Electrical Skin with Mechanical Adaptability, an Ultrawide Linear Response Range, and Excellent Temperature Tolerance. ACS Applied Materials & Interfaces, 2019, 11, 24639-24647.	4.0	67
164	Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors. Chemical Engineering Journal, 2019, 375, 121915.	6.6	96

		CITATION RE	EPORT	
#	Article		IF	Citations
165	Soft and stretchable electrochemical biosensors. Materials Today Nano, 2019, 7, 10004	ł1.	2.3	39
166	Plasmonically Engineered Textile Polymer Solar Cells for High-Performance, Wearable Pl ACS Applied Materials & Interfaces, 2019, 11, 20864-20872.	notovoltaics.	4.0	37
167	Copolymer-enabled stretchable conductive polymer fibers. Polymer, 2019, 177, 189-19	5.	1.8	18
168	Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity operating range for wearable monitoring and healthcare. Journal of Materials Chemistry 15913-15923.		5.2	184
169	Silver nanowire coated knitted wool fabrics for wearable electronic applications. Journal Engineered Fibers and Fabrics, 2019, 14, 155892501985622.	l of	0.5	21
170	Nacre-inspired highly stretchable piezoresistive Cu–Ag nanowire/graphene synergistic networks for strain sensors and beyond. Journal of Materials Chemistry C, 2019, 7, 706		2.7	24
171	A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanosca 9949-9957.	ale, 2019, 11,	2.8	150
172	Facile Preparation of Ionic Liquidâ€coated Copper Nanowireâ€modified Carbon Paste E Electrochemical Detection of Etilefrine Drug. Bulletin of the Korean Chemical Society, 2 560-565.		1.0	5
173	A Liquidâ€Metal–Elastomer Nanocomposite for Stretchable Dielectric Materials. Adva 2019, 31, e1900663.	inced Materials,	11.1	204
174	Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronic International Journal of Molecular Sciences, 2019, 20, 2124.	CS.	1.8	80
175	Bioinspired Pretextured Reduced Graphene Oxide Patterns with Multiscale Topographie High-Performance Mechanosensors. ACS Applied Materials & Interfaces, 2019, 11,		4.0	15
176	Highly Sensitive and Stretchable CNTâ€Bridged AgNP Strain Sensor Based on TPU Elect for Human Motion Detection. Advanced Electronic Materials, 2019, 5, 1900241.	rospun Membrane	2.6	96
177	The Rise of Fiber Electronics. Angewandte Chemie, 2019, 131, 13778-13788.		1.6	12
178	The Rise of Fiber Electronics. Angewandte Chemie - International Edition, 2019, 58, 136	43-13653.	7.2	86
179	1-D polymer ternary composites: Understanding materials interaction, percolation beha mechanism toward ultra-high stretchable and super-sensitive strain sensors. Science Ch 2019, 62, 995-1004.	viors and ina Materials,	3.5	22
180	Preparation and properties of flexible conductive polydimethylsiloxane composites cont fillers. Polymer Bulletin, 2019, 76, 6487-6501.	caining hybrid	1.7	13
181	Carbon-Based, Ultraelastic, Hierarchically Coated Fiber Strain Sensors with Crack-Contro Beads. ACS Applied Materials & Interfaces, 2019, 11, 15079-15087.	ollable	4.0	40
182	One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Cher 2019, 119, 8972-9073.	mical Reviews,	23.0	240

# 183	ARTICLE Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale, 2019, 11, 5884-5890.	IF 2.8	CITATIONS
184	Superior Stretchable Conductors by Electroless Plating of Copper on Knitted Fabrics. ACS Applied Electronic Materials, 2019, 1, 397-406.	2.0	37
185	Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 8567-8575.	4.0	89
186	Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for Flexible Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 10736-10744.	4.0	62
187	Highly Stretchable, Highâ€Mobility, Freeâ€Standing Allâ€Organic Transistors Modulated by Solidâ€State Elastomer Electrolytes. Advanced Functional Materials, 2019, 29, 1808909.	7.8	33
188	Effect of MWCNT content on the mechanical and strain-sensing performance of Thermoplastic Polyurethane composite fibers. Carbon, 2019, 146, 701-708.	5.4	77
189	Internally coated highly conductive and stretchable AgNW-PU hollow fibers. Polymer, 2019, 169, 46-51.	1.8	9
190	Synergistic Effect of Hybrid Long Silver Nanowires and Carbon Nanotubes on Strain Sensing Behavior of Fluoroelastomer Nanocomposites. , 2019, , .		2
191	An all-textile triboelectric sensor for wearable teleoperated human–machine interaction. Journal of Materials Chemistry A, 2019, 7, 26804-26811.	5.2	57
192	Digitally printed stretchable electronics: a review. Journal of Materials Chemistry C, 2019, 7, 14035-14068.	2.7	93
193	A Deep Learning Approach to Non-linearity in Wearable Stretch Sensors. Frontiers in Robotics and Al, 2019, 6, 27.	2.0	21
194	Controllably Enhancing Stretchability of Highly Sensitive Fiber-Based Strain Sensors for Intelligent Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 2431-2440.	4.0	47
195	Highly Conductive and Stretchable Ag Nanodendrite-Based Composites for Application in Nanoelectronics. ACS Applied Nano Materials, 2019, 2, 351-359.	2.4	7
196	Block Copolymer Elastomers for Stretchable Electronics. Accounts of Chemical Research, 2019, 52, 63-72.	7.6	85
197	Stretchable and patchable composite electrode with trimethylolpropane formal acrylate-based polymer. Composites Part B: Engineering, 2019, 163, 185-192.	5.9	28
198	Conductive Core–Shell Aramid Nanofibrils: Compromising Conductivity with Mechanical Robustness for Organic Wearable Sensing. ACS Applied Materials & Interfaces, 2019, 11, 3466-3473.	4.0	26
199	Adhesionâ€Free Thinâ€Filmâ€Like Curvature Sensors Integrated on Flexible and Wearable Electronics for Monitoring Bending of Joints and Various Body Gestures. Advanced Materials Technologies, 2019, 4, 1800327.	3.0	41
200	A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals. Sensors and Actuators B: Chemical, 2019, 285, 179-185.	4.0	42

#	Article	IF	CITATIONS
201	Highly Conductive Polydimethylsiloxane/Carbon Nanofiber Composites for Flexible Sensor Applications. Advanced Materials Technologies, 2019, 4, 1800398.	3.0	72
202	Highly conductive and stretchable fiber interconnections using dry-spun carbon nanotube fibers modified with ionic liquid/poly(vinylidene fluoride) copolymer composite. Composites Science and Technology, 2019, 169, 1-6.	3.8	23
203	A Mossâ€Inspired Electroless Gold oating Strategy Toward Stretchable Fiber Conductors by Dry Spinning. Advanced Electronic Materials, 2019, 5, 1800462.	2.6	62
204	High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 2019, 48, 1566-1595.	18.7	400
205	Stretchable electronics: functional materials, fabrication strategies and applications. Science and Technology of Advanced Materials, 2019, 20, 187-224.	2.8	245
206	Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. Advanced Materials, 2020, 32, e1902532.	11.1	219
207	Overview on nanocarbon sponges in polymeric nanocomposite. Materials Research Innovations, 2020, 24, 309-320.	1.0	7
208	Materialâ€Based Approaches for the Fabrication of Stretchable Electronics. Advanced Materials, 2020, 32, e1902743.	11.1	243
209	Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Advanced Materials, 2020, 32, e1902133.	11.1	232
210	Textileâ€Based Strain Sensor for Human Motion Detection. Energy and Environmental Materials, 2020, 3, 80-100.	7.3	159
211	Performance characteristics of technical textiles: Part I: E-textiles. , 2020, , 347-364.		1
212	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices. , 2020, , 199-252.		2
213	Multiscale Soft–Hard Interface Design for Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1902278.	11.1	65
214	Ag nanoparticles-decorated porous nanoplates for enhanced photocatalytic performance and SERS activity. Chemical Physics, 2020, 529, 110556.	0.9	2
215	Breathable and Flexible Polymer Membranes with Mechanoresponsive Electric Resistance. Advanced Functional Materials, 2020, 30, 1907555.	7.8	44
216	A highly stretchable and conductive composite based on an emulsion-templated silver nanowire aerogel. Journal of Materials Chemistry A, 2020, 8, 1724-1730.	5.2	32
217	Extending the pressure sensing range of porous polypyrrole with multiscale microstructures. Nanoscale, 2020, 12, 2081-2088.	2.8	29
218	Highly Conductive PVA/Ag Coating by Aqueous in Situ Reduction and Its Stretchable Structure for Strain Sensor. ACS Applied Materials & amp; Interfaces, 2020, 12, 1427-1435.	4.0	36

#	Article	IF	CITATIONS
219	Flexible and Transparent Ferroferric Oxide-Modified Silver Nanowire Film for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 2826-2834.	4.0	62
220	Wearable Strain Sensors Using Light Transmittance Change of Carbon Nanotube-Embedded Elastomers with Microcracks. ACS Applied Materials & Interfaces, 2020, 12, 10908-10917.	4.0	64
221	Facile Fabrication of Flexible Electrodes and Immobilization of Silver Nanoparticles on Nanoscale Silicate Platelets to Form Highly Conductive Nanohybrid Films for Wearable Electronic Devices. Nanomaterials, 2020, 10, 65.	1.9	8
222	Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Progress in Materials Science, 2020, 114, 100617.	16.0	267
223	A self-healing, Na+ sensitive and neuron-compatible fiber. Chemical Engineering Journal, 2020, 386, 124018.	6.6	2
224	Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 2020, 25, 9-24.	1.0	106
225	Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn. Composites Part B: Engineering, 2020, 183, 107683.	5.9	38
226	Core–Sheath Stretchable Conductive Fibers for Safe Underwater Wearable Electronics. Advanced Materials Technologies, 2020, 5, 1900880.	3.0	46
227	Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today, 2020, 35, 168-194.	8.3	153
228	Patterned Carbon Nanotube Bundles as Stretchable Strain Sensors for Human Motion Detection. ACS Applied Nano Materials, 2020, 3, 11408-11415.	2.4	13
229	Recent Progress in Pressure Sensors for Wearable Electronics: From Design to Applications. Applied Sciences (Switzerland), 2020, 10, 6403.	1.3	18
230	Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Composites Science and Technology, 2020, 200, 108448.	3.8	85
231	Quantifying the Contributing Factors toward Signal Fatigue in Nanocomposite Strain Sensors. ACS Applied Polymer Materials, 2020, 2, 3474-3480.	2.0	17
232	Smart conductive textile. , 2020, , 141-167.		6
233	Self-healing carrageenan-driven Polyacrylamide hydrogels for strain sensing. Science China Technological Sciences, 2020, 63, 2677-2686.	2.0	19
234	Emerging flexible sensors based on nanomaterials: recent status and applications. Journal of Materials Chemistry A, 2020, 8, 25499-25527.	5.2	106
235	Wearable electronics for heating and sensing based on a multifunctional PET/silver nanowire/PDMS yarn. Nanoscale, 2020, 12, 16562-16569.	2.8	51
236	Stretchable electrothermochromic fibers based on hierarchical porous structures with electrically conductive dual-pathways. Science China Materials, 2020, 63, 2582-2589.	3.5	17

#	Article	IF	CITATIONS
237	Formation of Ag nanowires in the presence of tannic acid. Materials Today: Proceedings, 2020, 29, 240-243.	0.9	0
238	Layer-by-layer assembly for all-graphene coated conductive fibers toward superior temperature sensitivity and humidity independence. Composites Part B: Engineering, 2020, 200, 108253.	5.9	22
239	Permeable Weldable Elastic Fiber Conductors for Wearable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 36609-36619.	4.0	16
240	High-performance silver nanowire-based thermopolyurethane flexible conductive films. Journal of Materials Science: Materials in Electronics, 2020, 31, 15038-15047.	1.1	4
241	Highly sensitive strain sensor based on stretchable sandwich-type composite of carbon nanotube and poly(styrene–butadiene–styrene). Sensors and Actuators A: Physical, 2020, 315, 112357.	2.0	12
242	Semiconducting Properties of the Hybrid Film of Elastic Poly(styrene-b-butadiene-b-styrene) Block Copolymer and Semiconducting Poly(3-hexylthiophene) Nanofibers. Polymers, 2020, 12, 2118.	2.0	2
243	Significantly Enhanced Mechanical Strength by the Hollow Structure of Conductive Stretchable Silver Nanoflowerâ€Polyurethane Fibers. Advanced Engineering Materials, 2020, 22, 2000674.	1.6	4
244	Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H ₂ Sensors. ACS Applied Materials & Interfaces, 2020, 12, 45243-45253.	4.0	16
245	An Ultrahigh Sensitive Paper-Based Pressure Sensor with Intelligent Thermotherapy for Skin-Integrated Electronics. Nanomaterials, 2020, 10, 2536.	1.9	12
246	Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces. Science Robotics, 2020, 5, .	9.9	108
247	Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Research, 2020, 13, 919-926.	5.8	74
248	Tailoring sensing behavior of Cu@multi-wall carbon nanotubes/polydimethylsiloxane strain sensors through surface Cu geometrical structures. Journal of Materials Chemistry C, 2020, 8, 5202-5210.	2.7	8
249	Flexible MXene-Decorated Fabric with Interwoven Conductive Networks for Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing Performances. ACS Applied Materials & Interfaces, 2020, 12, 14459-14467.	4.0	228
250	Highly stretchable and strain sensitive fibers based on braid-like structure and sliver nanowires. Applied Materials Today, 2020, 19, 100610.	2.3	19
251	Piezoresistive Elastomer-Based Composite Strain Sensors and Their Applications. ACS Applied Electronic Materials, 2020, 2, 1826-1842.	2.0	69
252	Facile Preparation of Highly Stretchable TPU/Ag Nanowire Strain Sensor with Spring-Like Configuration. Polymers, 2020, 12, 339.	2.0	24
253	One-Step and Spontaneous in Situ Growth of Popcorn-like Nanostructures on Stretchable Double-Twisted Fiber for Ultrasensitive Textile Pressure Sensor. ACS Applied Materials & Interfaces, 2020, 12, 10689-10696.	4.0	60
254	Screenâ€Printed Flexible Strain Sensors with Ag Nanowires for Intelligent and Tamperâ€Evident Packaging Applications. Advanced Materials Technologies, 2020, 5, 1901097.	3.0	33

#	Article	IF	CITATIONS
255	Advances in Rational Design and Materials of Highâ€Performance Stretchable Electromechanical Sensors. Small, 2020, 16, e1905707.	5.2	46
256	Preparation of antibacterial conductive cotton fabrics via silane-modified polypyrrole. Journal of Industrial Textiles, 2022, 51, 7172S-7187S.	1.1	2
257	Highly Stretchable and Sensitive SBS/Graphene Composite Fiber for Strain Sensors. Macromolecular Materials and Engineering, 2020, 305, 1900736.	1.7	47
258	High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns. Biosensors, 2020, 10, 6.	2.3	29
259	Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core–Shell Segmental Configuration for Wearable Strain and Temperature Sensors. ACS Applied Materials & Interfaces, 2020, 12, 7565-7574.	4.0	114
260	Conductive and Elastic 3D Helical Fibers for Use in Washable and Wearable Electronics. Advanced Materials, 2020, 32, e1907495.	11.1	72
261	High conductive free-written thermoplastic polyurethane composite fibers utilized as weight-strain sensors. Composites Science and Technology, 2020, 189, 108011.	3.8	23
262	Highly Sensitive and Stretchable Carbon Nanotube/Fluoroelastomer Nanocomposite with a Doubleâ€Percolated Network for Wearable Electronics. Advanced Electronic Materials, 2020, 6, 1901067.	2.6	41
263	Wearable Device Oriented Flexible and Stretchable Energy Harvester Based on Embedded Liquid-Metal Electrodes and FEP Electret Film. Sensors, 2020, 20, 458.	2.1	9
264	Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate. ACS Nano, 2020, 14, 2191-2201.	7.3	25
265	Continuous Energy Harvesting and Motion Sensing from Flexible Electrochemical Nanogenerators: Toward Smart and Multifunctional Textiles. ACS Nano, 2020, 14, 2308-2315.	7.3	50
266	Mechanically and Electronically Robust Transparent Organohydrogel Fibers. Advanced Materials, 2020, 32, e1906994.	11.1	207
267	Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites. Small, 2020, 16, e1906270.	5.2	55
268	MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials, 2020, 30, 1910504.	7.8	308
269	Stretchable and Wearable Resistive Switching Randomâ€Access Memory. Advanced Intelligent Systems, 2020, 2, 2000007.	3.3	24
270	Flexible Liquidâ€Filled Fiber Adapter Enabled Wearable Optical Sensors. Advanced Materials Technologies, 2020, 5, 2000079.	3.0	18
271	Methods of modifying through-thickness electrical conductivity of CFRP for use in structural health monitoring, and its effect on mechanical properties – A review. Composites Part A: Applied Science and Manufacturing, 2020, 133, 105885.	3.8	39
272	Fiber-reinforced nanocomposites: an introduction. , 2020, , 3-6.		1

#	Article	IF	CITATIONS
273	Multi-functional and highly conductive textiles with ultra-high durability through â€~green' fabrication process. Chemical Engineering Journal, 2021, 406, 127140.	6.6	72
274	Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human-machine interactive. Nano Energy, 2021, 80, 105446.	8.2	25
275	Additive manufacturing techniques for smart prosthetic liners. Medical Engineering and Physics, 2021, 87, 45-55.	0.8	14
276	Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1323-1346.	2.7	35
277	Core–Sheath Fiberâ€Based Wearable Strain Sensor with High Stretchability and Sensitivity for Detecting Human Motion. Advanced Electronic Materials, 2021, 7, .	2.6	37
278	Flexible, Stretchable, and Multifunctional Electrospun Polyurethane Mats with 0Dâ€1Dâ€2D Ternary Nanocompositeâ€Based Conductive Networks. Advanced Electronic Materials, 2021, 7, .	2.6	25
279	Textile Technology for Soft Robotic and Autonomous Garments. Advanced Functional Materials, 2021, 31, 2008278.	7.8	127
280	Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2001397.	3.9	39
281	Smart Composites and Their Applications. , 2021, , 380-389.		0
282	Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range. Composites Communications, 2021, 23, 100586.	3.3	27
283	Stretchable Energy Storage Devices: From Materials and Structural Design to Device Assembly. Advanced Energy Materials, 2021, 11, 2003308.	10.2	61
284	Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. Journal of Colloid and Interface Science, 2021, 585, 420-432.	5.0	81
285	Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnology Reviews, 2021, 10, 221-236.	2.6	22
286	Highly stretchable, transparent and conductive double-network ionic hydrogels for strain and pressure sensors with ultrahigh sensitivity. Journal of Materials Chemistry C, 2021, 9, 3635-3641.	2.7	59
287	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	3.9	36
288	Electrical percolation in extrinsically conducting, poly(ε-decalactone) composite neural interface materials. Scientific Reports, 2021, 11, 1295.	1.6	11
289	Fiber-Based Sensors and Energy Systems for Wearable Electronics. Applied Sciences (Switzerland), 2021, 11, 531.	1.3	21
290	A highly sensitive strain sensor based on a silica@polyaniline core–shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Soft Matter, 2021, 17, 2142-2150	1.2	32

#	Article	IF	CITATIONS
291	Highly Sensitive and Selective Two-Dimensional Resistance Strain Sensor Based on Carbonized Silk Fiber. Material Sciences, 2021, 11, 151-159.	0.0	0
292	Design and analysis of Cu circuit for stretchable electronic circuits using finite element analysis. Microelectronic Engineering, 2021, 238, 111510.	1.1	2
293	Review of machine learning methods in soft robotics. PLoS ONE, 2021, 16, e0246102.	1.1	105
294	Flexible Sensors Based on Organic–Inorganic Hybrid Materials. Advanced Materials Technologies, 2021, 6, 2000889.	3.0	43
295	Recent advances in functional fiber electronics. SusMat, 2021, 1, 105-126.	7.8	77
296	High Sensitivity Polyurethaneâ€Based Fiber Strain Sensor with Porous Structure via Incorporation of Bacterial Cellulose Nanofibers. Advanced Electronic Materials, 2021, 7, 2001235.	2.6	27
297	Bi-Phasic Ag–In–Ga-Embedded Elastomer Inks for Digitally Printed, Ultra-Stretchable, Multi-layer Electronics. ACS Applied Materials & Interfaces, 2021, 13, 14552-14561.	4.0	76
298	Printed Stretchable Multifunctional E-textile for Wearable electronics. , 2021, , .		2
299	Separation, Characterization, and Analysis of Environmental Nano- and Microparticles: State-of-the-Art Methods and Approaches. Journal of Analytical Chemistry, 2021, 76, 413-429.	0.4	8
300	Heat Scanning for the Fabrication of Conductive Fibers. Polymers, 2021, 13, 1405.	2.0	4
301	Facile and Large-scale Fabrication of Self-crimping Elastic Fibers for Large Strain Sensors. Chinese Journal of Polymer Science (English Edition), 2021, 39, 914-924.	2.0	5
302	A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 18021-18032.	4.0	17
303	Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nature Electronics, 2021, 4, 291-301.	13.1	106
304	Wearable human-machine interface based on the self-healing strain sensors array for control interface of unmanned aerial vehicle. Sensors and Actuators A: Physical, 2021, 321, 112583.	2.0	21
305	A Superstretchable and Ultrastable Liquid Metal–Elastomer Wire for Soft Electronic Devices. ACS Applied Materials & Interfaces, 2021, 13, 19254-19262.	4.0	18
306	Wide Bandgap Oxide Semiconductors: from Materials Physics to Optoelectronic Devices. Advanced Materials, 2021, 33, e2006230.	11.1	185
307	Silver nanoparticles enhanced crystallization of polyethylene terephthalate-co-polyethylene glycol (PET-PEG) thermoplastic elastomer. Polymer Bulletin, 2022, 79, 4593-4605.	1.7	3
308	Hybridâ€Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science, 2021, 1, 2000080.	5.8	80

#	Article	IF	CITATIONS
309	Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors. ACS Applied Materials & Interfaces, 2021, 13, 23905-23914.	4.0	29
310	Screen-printed conductive pattern on spandex for stretchable electronic textiles. Smart Materials and Structures, 2021, 30, 075006.	1.8	8
311	Stretchable Strain Sensor with Controllable Negative Resistance Sensitivity Coefficient Based on Patterned Carbon Nanotubes/Silicone Rubber Composites. Micromachines, 2021, 12, 716.	1.4	4
312	Electronic fibers and textiles: Recent progress and perspective. IScience, 2021, 24, 102716.	1.9	60
313	Ready-to-wear strain sensing gloves for human motion sensing. IScience, 2021, 24, 102525.	1.9	10
314	A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy, 2021, 84, 105954.	8.2	67
315	Graphene oxide incorporated waste wool/PAN hybrid fibres. Scientific Reports, 2021, 11, 12068.	1.6	17
316	The Influence of Substrate Functionalization for Enhancing the Interfacial Bonding between Graphene Oxide and Nonwoven Polyester. Fibers and Polymers, 2021, 22, 3192-3202.	1.1	17
317	Carbon Nanodots as a Potential Transport Layer for Boosting Performance of All-Inorganic Perovskite Nanocrystals-Based Photodetector. Crystals, 2021, 11, 717.	1.0	13
318	Intermolecular self-assembly of dopamine-conjugated carboxymethylcellulose and carbon nanotubes toward supertough filaments and multifunctional wearables. Chemical Engineering Journal, 2021, 416, 128981.	6.6	13
319	Holocellulose Nanofibril-Assisted Intercalation and Stabilization of Ti ₃ C ₂ T <i>_x</i> MXene Inks for Multifunctional Sensing and EMI Shielding Applications. ACS Applied Materials & Interfaces, 2021, 13, 36221-36231.	4.0	30
320	Application of textile technology in tissue engineering: A review. Acta Biomaterialia, 2021, 128, 60-76.	4.1	35
321	Nacre-Mimetic, Mechanically Flexible, and Electrically Conductive Silk Fibroin-MXene Composite Foams as Piezoresistive Pressure Sensors. ACS Applied Materials & Interfaces, 2021, 13, 34996-35007.	4.0	47
322	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.	10.2	74
323	Development and Applications of MXene-Based Functional Fibers. ACS Applied Materials & Interfaces, 2021, 13, 36655-36669.	4.0	47
324	<scp>Solutionâ€Processed</scp> Silver Nanowire as Flexible Transparent Electrodes in Organic Solar Cells. Chinese Journal of Chemistry, 2021, 39, 2315-2329.	2.6	33
325	Ag/GNS conductive laminated woven fabrics for EMI shielding applications. Materials and Manufacturing Processes, 2021, 36, 1693-1700.	2.7	4
326	Recent Advances in Flexible Organic Synaptic Transistors. Advanced Electronic Materials, 2021, 7, 2100336.	2.6	43

#	Article	IF	CITATIONS
327	Electromagnetic absorber converting radiation for multifunction. Materials Science and Engineering Reports, 2021, 145, 100627.	14.8	169
328	Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites. Micromachines, 2021, 12, 935.	1.4	8
329	Development of a Highly Flexible Composite Electrode Comprised of Ti3C2-Based MXene Nanosheets and Ag Nanoparticles. Electronic Materials Letters, 2021, 17, 513.	1.0	7
330	Polymeric textile-based electromagnetic interference shielding materials, their synthesis, mechanism and applications – A review. Journal of Industrial Textiles, 2022, 51, 7293S-7358S.	1.1	14
331	Bioinspired Multifunctional Photonicâ€Electronic Smart Skin for Ultrasensitive Health Monitoring, for Visual and Selfâ€Powered Sensing. Advanced Materials, 2021, 33, e2102332.	11.1	107
332	Gold and silver nanocomposite-based biostable and biocompatible electronic textile for wearable electromyographic biosensors. APL Materials, 2021, 9, .	2.2	14
333	Robust and flexible silver-embedded elastomeric polymer/carbon black foams with outstanding electromagnetic interference shielding performance. Composites Science and Technology, 2021, 213, 108942.	3.8	21
334	Highly stretchable and sensitive strain sensor based on liquid metal composite for wearable sign language communication device. Smart Materials and Structures, 2021, 30, 115005.	1.8	11
335	Template-Free Preparation of Metal Nanowires by Two-Phase Electrolysis Using Cells Composed of Water and Oil Phases. Journal of the Electrochemical Society, 2021, 168, 093502.	1.3	0
336	Effect of interfacial properties of filled carbon black nanoparticles on the conductivity of nanocomposite. Journal of Applied Polymer Science, 0, , 51604.	1.3	3
337	In-situ metallized carbon nanotubes/poly(styrene-butadiene-styrene) (CNTs/SBS) foam for electromagnetic interference shielding. Chemical Engineering Journal, 2021, 420, 130482.	6.6	35
338	A highly stretchable optical strain sensor monitoring dynamically large strain for deformation-controllable soft actuator. Smart Materials and Structures, 2021, 30, 105020.	1.8	8
339	Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics. Composites Part B: Engineering, 2021, 225, 109275.	5.9	27
340	Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: A review. Chemical Engineering Journal, 2021, 425, 129949.	6.6	65
341	Protocol for fabricating electroless nickel immersion gold strain sensors on nitrile butadiene rubber gloves for wearable electronics. STAR Protocols, 2021, 2, 100832.	0.5	1
342	Fabricating Microcracks in SBS-g-MAH/CB Composites to Improve Conductivity and Small Strain-Sensing Sensitivity. Journal of Electronic Materials, 2021, 50, 992-1001.	1.0	8
343	Ti ₃ C ₂ T _{<i>x</i>} MXene: from dispersions to multifunctional architectures for diverse applications. Materials Horizons, 2021, 8, 2886-2912.	6.4	41
344	Stretchable transistors and functional circuits for human-integrated electronics. Nature Electronics, 2021, 4, 17-29.	13.1	153

#	Article	IF	CITATIONS
345	Machine-Washable Conductive Silk Yarns with a Composite Coating of Ag Nanowires and PEDOT:PSS. ACS Applied Materials & Interfaces, 2020, 12, 27537-27544.	4.0	81
346	An efficient flexible strain sensor based on anhydride-grafted styrene-butadiene-styrene triblock copolymer/carbon black: enhanced electrical conductivity, sensitivity and stability through solvent swelling. Smart Materials and Structures, 2020, 29, 125018.	1.8	10
347	Capturing subtle changes during plant growth using wearable mechanical sensors fabricated through liquid-phase fusion. , 2020, , .		2
348	Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Science Advances, 2020, 6, .	4.7	44
349	Hairy gold nanorods: gold nanowire growth on nanosubstrates [Invited]. Optical Materials Express, 2020, 10, 342.	1.6	5
350	Berberine/Ag nanoparticle embedded biomimetic calcium phosphate scaffolds for enhancing antibacterial function. Nanotechnology Reviews, 2020, 9, 568-579.	2.6	13
351	A multifunctional electronic suture for continuous strain monitoring and on-demand drug release. Nanoscale, 2021, 13, 18112-18124.	2.8	16
352	An unprecedented polyoxometalate-based 1D double chain compound with opposite charges enables conductivity improvement. Chemical Communications, 2021, 57, 11398-11401.	2.2	4
353	Research of a Novel Ag Temperature Sensor Based on Fabric Substrate Fabricated by Magnetron Sputtering. Materials, 2021, 14, 6014.	1.3	4
355	Advances in Implantable Optogenetic Technology for Cardiovascular Research and Medicine. Frontiers in Physiology, 2021, 12, 720190.	1.3	8
356	Ionic Conductive Organohydrogel With Ultrastretchability, Self-Healable and Freezing-Tolerant Properties for Wearable Strain Sensor. Frontiers in Chemistry, 2021, 9, 758844.	1.8	14
357	EonTex Conductive Strechtable Sensor Response on Smart Glove for Sign Language. , 0, , .		0
358	Green Synthesis of Metal Nanoparticles for Electronic Textiles. Advanced Structured Materials, 2020, , 81-97.	0.3	3
359	Electronic Textiles (E-Textiles): Fabric Sensors and Material-Integrated Wearable Intelligent Systems. , 2023, , 80-100.		2
360	Preparation and electrochromic properties of flexible transparent WO3/AgNWs decorated nanofiber composite film. Functional Composites and Structures, 0, , .	1.6	2
361	Recent Advances in Multiresponsive Flexible Sensors towards Eâ€skin: A Delicate Design for Versatile Sensing. Small, 2022, 18, e2103734.	5.2	76
362	Flexible sensors based on assembled carbon nanotubes. Aggregate, 2021, 2, e143.	5.2	18
363	Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth. ACS Applied Materials & Interfaces, 2021, 13, 55656-55665.	4.0	10

#	ARTICLE	IF	CITATIONS
364	Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. Small, 2022, 18, e2102813.	5.2	3
365	Application of AgNPs/rGO Modified Nylon Fabric in Strain Sensing. Journal of Physics: Conference Series, 2021, 2109, 012017.	0.3	0
366	Ag Nanowire-Based Stretchable Electrodes and Wearable Sensor Arrays. ACS Applied Nano Materials, 2021, 4, 12726-12736.	2.4	10
367	Strain-Durable High-Conductivity Nylon-6 Fiber with 1D Nanomaterial Lamellar Cladding for Massive Production. ACS Applied Materials & Interfaces, 2021, 13, 57759-57767.	4.0	5
368	Multifunctional Graphene Sensor Ensemble as a Smart Biomonitoring Fashion Accessory. ACS Sensors, 2021, 6, 4325-4337.	4.0	16
369	Ultrasensitive and highly stretchable fibers with dual conductive microstructural sheaths for human motion and micro vibration sensing. Nanoscale, 2022, 14, 1962-1970.	2.8	18
370	Ultrahigh sensitivity wearable sensors enabled by electrophoretic deposition of carbon nanostructured composites onto everyday fabrics. Journal of Materials Chemistry C, 2022, 10, 1617-1624.	2.7	13
371	Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review. Composite Structures, 2022, 284, 115214.	3.1	85
372	Ultrasensitive wearable sensor with novel hybrid structures of silver nanowires and carbon nanotubes in fluoroelastomer: Multi-directional sensing for human health monitoring and stretchable electronics. Applied Materials Today, 2022, 26, 101295.	2.3	22
373	Excellent reversibility of resistive nanocomposite strain sensor composed of silver nanoflowers, polyurethane, and polyester rubber band. Composites Science and Technology, 2022, 221, 109305.	3.8	9
374	Biphasic Liquid Metal Composites for Sinterâ€Free Printed Stretchable Electronics. Advanced Materials Interfaces, 2022, 9, .	1.9	34
375	CNT/Graphite/SBS Conductive Fibers for Strain Sensing in Wearable Telerehabilitation Devices. Sensors, 2022, 22, 800.	2.1	7
376	Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding. Materials and Design, 2022, 213, 110296.	3.3	17
377	Metal nanowires grown <i>in situ</i> on polymeric fibres for electronic textiles. Nanoscale Advances, 2022, 4, 1368-1374.	2.2	6
378	Development of stretchable electrodes for wearables using vacuum thermal pressure. Journal of the Textile Institute, 2022, 113, 2732-2741.	1.0	1
379	Rational structural design of vanillin based vitrimers in one-pot to facilely fabricate highly stretchable and sensitive composite strain sensor. Materials Chemistry and Physics, 2022, 279, 125730.	2.0	5
380	Review of Fiber- or Yarn-Based Wearable Resistive Strain Sensors: Structural Design, Fabrication Technologies and Applications. Textiles, 2022, 2, 81-111.	1.8	12
381	Soft stretchable conductive nanocomposites for biointegrated electronics. , 2023, , 306-321.		1

#	Article	IF	CITATIONS
382	High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure. Frontiers of Materials Science, 2022, 16, 1.	1.1	18
383	Highly Conductive Networks of Silver Nanosheets. Small, 2022, 18, e2105996.	5.2	16
384	A Mini-Review on Preparation of Functional Composite Fibers and Their Based Devices. Coatings, 2022, 12, 473.	1.2	5
385	Dewetting-driven self-assembly of web-like silver nanowire networked film for highly transparent conductors. Journal of Industrial and Engineering Chemistry, 2022, 107, 410-417.	2.9	2
386	Electronic textiles for energy, sensing, and communication. IScience, 2022, 25, 104174.	1.9	30
387	3D Printed Flexible Microscaled Porous Conductive Polymer Nanocomposites for Piezoresistive Sensing Applications. Advanced Materials Technologies, 2022, 7, .	3.0	12
388	Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus. Chemical Engineering Journal, 2022, 441, 136046.	6.6	13
389	Soft Bioelectronics Based on Nanomaterials. Chemical Reviews, 2022, 122, 5068-5143.	23.0	72
390	Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers, 2021, 13, 4281.	2.0	44
391	Magnetic Manipulation of Nanowires for Engineered Stretchable Electronics. ACS Nano, 2022, 16, 837-846.	7.3	8
392	Development of multi-angle fiber array for accurate measurement of flexion and rotation in human joints. Npj Flexible Electronics, 2021, 5, .	5.1	9
393	A Stretchable Strain Sensor Based on CNTs/GR for Human Motion Monitoring. Nano, 2021, 16, .	0.5	1
394	Wet-Spun Side-by-Side Electrically Conductive Composite Fibers. ACS Applied Electronic Materials, 2022, 4, 1979-1988.	2.0	11
395	Tailoring auxetic mechanical metamaterials to achieve patterned wire strain sensors with controllable high sensitivity. Chemical Engineering Journal, 2022, 442, 136317.	6.6	13
396	Self-Stretchable Fiber Liquid Sensors Made with Bacterial Cellulose/Carbon Nanotubes for Smart Diapers. ACS Applied Materials & Interfaces, 2022, 14, 21319-21329.	4.0	12
397	Chitosan fabrics with synergy of silver nanoparticles and silver nanowires for enhanced conductivity and antibacterial activity. Journal of Industrial Textiles, 2022, 51, 1279S-1295S.	1.1	4
398	Breathable and Wearable Strain Sensors Based on Synergistic Conductive Carbon Nanotubes/Cotton Fabrics for Multi-directional Motion Detection. ACS Applied Materials & Interfaces, 2022, 14, 25753-25762.	4.0	44
399	Performance evaluation of polyaniline modified phosphorylated cotton as promising adsorbent for Pb (<scp>II</scp>) ions removal. Journal of Vinyl and Additive Technology, 0, , .	1.8	0

#	Article	IF	CITATIONS
400	Rational design of electrically conductive biomaterials toward excitable tissues regeneration. Progress in Polymer Science, 2022, 131, 101573.	11.8	21
401	Stretchable conductive nanocomposites and their applications in wearable devices. Applied Physics Reviews, 2022, 9, .	5.5	27
402	1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance. Nano Research, 2022, 15, 8398-8409.	5.8	18
403	MXene/Silver Nanowire-Based Spring Frameworks for Highly Flexible Waterproof Supercapacitors and Piezoelectrochemical-Type Pressure-Sensitive Sensor Devices. Langmuir, 2022, 38, 7312-7321.	1.6	9
404	Silver Nanowires in Stretchable Resistive Strain Sensors. Nanomaterials, 2022, 12, 1932.	1.9	9
405	Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel. Npj Flexible Electronics, 2022, 6, .	5.1	20
406	Design of a Smart Conducting Nanocomposite with an Extended Strain Sensing Range by Conjugating Hybrid Structures. Polymers, 2022, 14, 2551.	2.0	2
407	Wearable Electrochemical Sensors Based on Nanomaterials for Healthcare Applications. Electroanalysis, 2023, 35, .	1.5	4
408	Highly Compressible Elastic Aerogel Spring-Based Piezoionic Self-Powering Pressure Sensor for Multifunctional Wearable Electronics. Nanomaterials, 2022, 12, 2574.	1.9	2
409	Effects of Ligands on Synthesis and Surfaceâ€Engineering of Noble Metal Nanocrystals for Electrocatalysis. ChemElectroChem, 2022, 9, .	1.7	2
410	Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide Working Range. ACS Applied Materials & Interfaces, 2022, 14, 36611-36621.	4.0	26
411	Silver-Hydrogel/PDMS film with high mechanical strength for anti-interference strain sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130071.	2.3	9
412	Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. Nanoscale, 2022, 14, 11484-11511.	2.8	26
413	Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electronic Advances, 2022, 5, 210131-210131.	6.4	14
414	Weaving a magnificent world: 1D fibrous electrodes and devices for stretchable and wearable electronics. Journal of Materials Chemistry C, 2022, 10, 14027-14052.	2.7	16
415	Crack engineering boosts the performance of flexible sensors. View, 2022, 3, .	2.7	10
416	Electromechanical Performance of Strain Sensors Based on Viscoelastic Conductive Composite Polymer Fibers. ACS Applied Materials & Interfaces, 2022, 14, 44832-44840.	4.0	23
417	MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for Wearable Multifunctional Textiles. ACS Nano, 2022, 16, 14490-14502.	7.3	66

#	Article	IF	CITATIONS
418	High-throughput data mined prediction of design and preparation of flexible carbon-based conductive materials in energy storage. Ceramics International, 2023, 49, 736-744.	2.3	3
419	Stretchable graphene conductor based on fluid dynamics and its application to flexible conductometric sensor. Carbon Letters, 2022, 32, 1791-1798.	3.3	4
420	Ply-hierarchical coiled yarns for two extreme applications: Strain sensors and elastic supercapacitor electrodes. Sensors and Actuators B: Chemical, 2022, 373, 132775.	4.0	4
421	Development of a TPU/CNT/Cu Composite Conductive Filament with a High CNT Concentration. International Journal of Precision Engineering and Manufacturing, 2023, 24, 265-271.	1.1	5
422	Maple Leaf Inspired Conductive Fiber with Hierarchical Wrinkles for Highly Stretchable and Integratable Electronics. ACS Applied Materials & amp; Interfaces, 2022, 14, 49059-49071.	4.0	12
423	Advances in electrospun nanofibers for triboelectric nanogenerators. Nano Energy, 2022, 104, 107884.	8.2	38
424	Silver Nanoflakes-Enhanced Anisotropic Hybrid Composites for Integratable Pressure Sensors. Nanomaterials, 2022, 12, 4018.	1.9	1
425	Bioinspired ultra-stretchable dual-carbon conductive functional polymer fiber materials for health monitoring, energy harvesting and self-powered sensing. Chemical Engineering Journal, 2023, 454, 140384.	6.6	11
426	Stretchable Composite Conductive Fibers for Wearables. Advanced Materials Technologies, 2023, 8, .	3.0	6
427	Imperceptible, designable, and scalable braided electronic cord. Nature Communications, 2022, 13, .	5.8	34
428	Stretchable and soft electroadhesion and capacitive sensors enabled by spider web-inspired interdigitated liquid metal subsurface microwires. Chemical Engineering Journal, 2023, 456, 141018.	6.6	3
429	Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 2023, 52, 795-835.	18.7	18
430	Research Trends on Silk-Based Conductive Fibers with the Enhanced Machine Washability by Adopting PEDOT:PSS. Journal of Natural Fibers, 2023, 20, .	1.7	2
431	Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Science Advances, 2022, 8, .	4.7	11
432	A Stretchable Conductor Based on Spray-Coated Micro/Nano Scale Ag Flakes with Ultralow Resistance for Wearable Antennas. Nano, 2023, 18, .	0.5	3
433	Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano, 2022, 16, 19810-19839.	7.3	21
434	Humanoid Ionotronic Skin for Smart Object Recognition and Sorting. , 2023, 5, 189-201.		13
435	A fibrous flexible strain sensor with Ag nanoparticles and carbon nanotubes for synergetic high sensitivity and large response range. Composites Part A: Applied Science and Manufacturing, 2023, 167,	3.8	16

#	Article	IF	CITATIONS
436	Reconfigurable Electrical Networks within a Conductive Hydrogel Composite. Advanced Materials, 2023, 35, .	11.1	8
437	Polymer composites for strain sensors. , 2023, , 381-404.		0
438	Highly Elastically Deformable Coiled CNT/Polymer Fibers for Wearable Strain Sensors and Stretchable Supercapacitors. Sensors, 2023, 23, 2359.	2.1	6
439	Wireless smart gloves with ultra-stable and all-recyclable liquid metal-based sensing fibers for hand gesture recognition. Chemical Engineering Journal, 2023, 460, 141777.	6.6	2
440	Intrinsically Nonswellable Multifunctional Hydrogel with Dynamic Nanoconfinement Networks for Robust Tissueâ€Adaptable Bioelectronics. Advanced Science, 2023, 10, .	5.6	12
441	Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics. Gels, 2023, 9, 167.	2.1	6
442	Stretchable and conductive fibers fabricated by a continuous method for wearable devices. Cell Reports Physical Science, 2023, 4, 101300.	2.8	8
443	FUNCTIONAL FILLERS – STRUCTURE. , 2023, , 147-222.		0
444	Piezoresistive Freeâ€standing Microfiber Strain Sensor for Highâ€resolution Battery Thickness Monitoring. Advanced Materials, 2023, 35, .	11.1	2
445	Bioinspired anti-freezing 3D-printable conductive hydrogel microfibers for highly-sensitive and wide-range detection of ultralow and high strains. Green Chemical Engineering, 2024, 5, 132-143.	3.3	2
446	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
447	Novel Sulfurâ€Containing Carbon Nanotubes with Graphene Nanoflaps for Stretchable Sensing, Joule Heating, and Electroâ€Thermal Actuating. Advanced Functional Materials, 2023, 33, .	7.8	11
448	Three-Dimensional Printed Highly Porous and Flexible Conductive Polymer Nanocomposites with Dual-Scale Porosity and Piezoresistive Sensing Functions. ACS Applied Materials & Interfaces, 0, , .	4.0	1
449	Superelastic Conductive Fibers with Fractal Helices for Flexible Electronic Applications. Advanced Materials Technologies, 2023, 8, .	3.0	8
450	Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Letters, 2023, 15, .	14.4	23
451	Silver-Nanowire-Based Elastic Conductors: Preparation Processes and Substrate Adhesion. Polymers, 2023, 15, 1545.	2.0	2
452	An electrically stable and mechanically robust stretchable fiber conductor prepared by dip-coating silver nanowires on porous elastomer yarn. Materials Advances, 2023, 4, 1978-1988.	2.6	2
453	Strain-Insensitive Stretchable Fiber Conductors Based on Highly Conductive Buckled Shells for Wearable Electronics. ACS Applied Materials & Interfaces, 2023, 15, 18281-18289.	4.0	5

#	Article	IF	CITATIONS
454	Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose. NPG Asia Materials, 2023, 15, .	3.8	1
455	Recent Advances of Capacitive Sensors: Materials, Microstructure Designs, Applications, and Opportunities. Advanced Materials Technologies, 2023, 8, .	3.0	20
456	Design and 3D Printing of Stretchable Conductor with High Dynamic Stability. Materials, 2023, 16, 3098.	1.3	1
457	Wearable Cellulosic Textile Electrodes with High Washability Based on Silver Nanowires to Capture Electrocardiogram. Fibers and Polymers, 2023, 24, 1963-1973.	1.1	2
459	A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. Nanoscale, 2023, 15, 8110-8133.	2.8	2
461	Soft Conductive Interfacing for Bioelectrical Uses: Adhesion Mechanisms and Structural Approaches. Macromolecules, 2023, 56, 4431-4446.	2.2	3
474	Fabrication Techniques and Sensing Mechanisms of Textile-Based Strain Sensors: From Spatial 1D and 2D Perspectives. Advanced Fiber Materials, 0, , .	7.9	0
486	Scalable Fabrication of Nano-yarn-based Strain Sensor for Motion Sensing. , 2023, , .		0
488	Nanomaterials in environmental sensors. , 2024, , 607-634.		0

Nanomaterials in environmental sensors. , 2024, , 607-634. 488