Regulation of autophagy and the ubiquitin–proteason network during muscle atrophy

Nature Communications 6, 6670 DOI: 10.1038/ncomms7670

Citation Report

#	Article	IF	CITATIONS
1	Short-term, high-fat diet accelerates disuse atrophy and protein degradation in a muscle-specific manner in mice. Nutrition and Metabolism, 2015, 12, 39.	1.3	24
2	Modulation of autophagy signaling with resistance exercise and protein ingestion following short-term energy deficit. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R603-R612.	0.9	28
3	Preventing the Androgen Receptor N/C Interaction Delays Disease Onset in a Mouse Model of SBMA. Cell Reports, 2015, 13, 2312-2323.	2.9	25
4	The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomedicine and Pharmacotherapy, 2015, 74, 17-29.	2.5	17
5	BMPs and the muscle–bone connection. Bone, 2015, 80, 37-42.	1.4	34
6	Transcriptional and epigenetic regulation of autophagy in aging. Autophagy, 2015, 11, 867-880.	4.3	280
7	Muscle Wasting in Fasting Requires Activation of NF-κB and Inhibition of AKT/Mechanistic Target of Rapamycin (mTOR) by the Protein Acetylase, GCN5. Journal of Biological Chemistry, 2015, 290, 30269-30279.	1.6	43
8	Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget, 2016, 7, 43442-43460.	0.8	145
10	Cellular Mechanisms of Protein Degradation Among Tissues. , 2016, , 27-37.		1
11	Genes in Skeletal Muscle Remodeling and Impact of Feeding. , 2016, , 315-329.		0
12	Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality. PLoS ONE, 2016, 11, e0160839.	1.1	17
13	Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome. PLoS ONE, 2016, 11, e0166831.	1.1	11
14	Mitochondrial Quality Control and Muscle Mass Maintenance. Frontiers in Physiology, 2015, 6, 422.	1.3	290
15	Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy. Frontiers in Physiology, 2016, 7, 23.	1.3	25
16	Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance—A Qualitative Review. Frontiers in Physiology, 2016, 7, 361.	1.3	140
17	Autophagy and Immune Senescence. Trends in Molecular Medicine, 2016, 22, 671-686.	3.5	67
18	Innervation and neuromuscular control in ageing skeletal muscle. Journal of Physiology, 2016, 594, 1965-1978.	1.3	242
19	Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4. Journal of Biological Chemistry, 2016, 291, 17496-17509.	1.6	37

#	Article	IF	CITATIONS
20	Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skeletal Muscle, 2016, 6, 45.	1.9	87
21	Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mammalian Genome, 2016, 27, 341-357.	1.0	29
22	Astragalus polysaccharides decrease muscle wasting through Akt/mTOR, ubiquitin proteasome and autophagy signalling in 5/6 nephrectomised rats. Journal of Ethnopharmacology, 2016, 186, 125-135.	2.0	36
23	Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy. Journal of Biological Chemistry, 2016, 291, 12184-12194.	1.6	47
24	AMP-activated kinase α2 deficiency protects mice from denervation-induced skeletal muscle atrophy. Archives of Biochemistry and Biophysics, 2016, 600, 56-60.	1.4	25
25	The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. American Journal of Physiology - Cell Physiology, 2016, 311, C392-C403.	2.1	117
26	Morphological and molecular aspects of immobilization-induced muscle atrophy in rats at different stages of postnatal development: the role of autophagy. Journal of Applied Physiology, 2016, 121, 646-660.	1.2	8
27	Disrupted autophagy undermines skeletal muscle adaptation and integrity. Mammalian Genome, 2016, 27, 525-537.	1.0	29
28	Regulatory effects of the L-lysine metabolites, L-2-aminoadipic acid and L-pipecolic acid, on protein turnover in C2C12 myotubes. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2168-2175.	0.6	14
29	Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology, 2016, 157, 23-38.	1.4	70
30	Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy, 2016, 12, 1902-1916.	4.3	300
31	Leucine and Mammalian Target of Rapamycin–Dependent Activation of Muscle Protein Synthesis in Aging. Journal of Nutrition, 2016, 146, 2616S-2624S.	1.3	42
32	Effect of irradiation on Akt signaling in atrophying skeletal muscle. Journal of Applied Physiology, 2016, 121, 917-924.	1.2	6
33	Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy. Scientific Reports, 2016, 6, 28846.	1.6	24
34	Mechanoâ€signalling pathways in an experimental intensive critical illness myopathy model. Journal of Physiology, 2016, 594, 4371-4388.	1.3	36
35	Mechanisms of protein balance in skeletal muscle. Domestic Animal Endocrinology, 2016, 56, S23-S32.	0.8	34
36	Protein breakdown in cancer cachexia. Seminars in Cell and Developmental Biology, 2016, 54, 11-19.	2.3	114
37	The regulation of autophagy during exercise in skeletal muscle. Journal of Applied Physiology, 2016, 120, 664-673.	1.2	91

	Сітатіо	on Report	
#	Article	IF	CITATIONS
38	Understanding cachexia as a cancer metabolism syndrome. Oncogenesis, 2016, 5, e200-e200.	2.1	384
39	Glycolytic-to-oxidative fiber-type switch and mTOR signaling activation are early-onset features of SBMA muscle modified by high-fat diet. Acta Neuropathologica, 2016, 132, 127-144.	3.9	74
40	Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients. Human Molecular Genetics, 2017, 26, ddx019.	1.4	37
41	Forkhead box class O family member proteins: The biology and pathophysiological roles in diabetes. Journal of Diabetes Investigation, 2017, 8, 726-734.	1.1	40
42	Androgen-mediated regulation of skeletal muscle protein balance. Molecular and Cellular Endocrinology, 2017, 447, 35-44.	1.6	71
43	Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Scientific Reports, 2017, 7, 43775.	1.6	57
44	Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases. Endocrinology, 2017, 158, 664-677.	1.4	66
45	Activin A induces skeletal muscle catabolism via p38β mitogenâ€activated protein kinase. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 202-212.	2.9	62
46	FOXOs in the impaired heart: New therapeutic targets for cardiac diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 486-498.	1.8	51
47	FOXO3 promoted mitophagy via nuclear retention induced by manganese chloride in SH-SY5Y cells. Metallomics, 2017, 9, 1251-1259.	1.0	27
48	The nuclear phosphatase SCP4 regulates FoxOÂtranscription factors during muscle wastingÂin chronic kidney disease. Kidney International, 2017, 92, 336-348.	2.6	16
49	Increased Myogenic and Protein Turnover Signaling in Skeletal Muscle of Chronic Obstructive Pulmonary Disease Patients With Sarcopenia. Journal of the American Medical Directors Association, 2017, 18, 637.e1-637.e11.	1.2	36
50	MTOR controls genesis and autophagy of GABAergic interneurons during brain development. Autophagy, 2017, 13, 1348-1363.	4.3	49
51	Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metabolism, 2017, 25, 1374-1389.e6.	7.2	388
52	Peroxisome proliferator-activated receptor Î ³ agonism attenuates endotoxaemia-induced muscle protein loss and lactate accumulation in rats. Clinical Science, 2017, 131, 1437-1447.	1.8	13
53	Role of ATF4 in skeletal muscle atrophy. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 164-168.	1.3	25
54	Ursolic acid and mechanisms of actions on adipose and muscle tissue: a systematic review. Obesity Reviews, 2017, 18, 700-711.	3.1	43
55	Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle. American Journal of Physiology - Renal Physiology, 2017, 312, F1128-F1140.	1.3	64

	Сітатіо	n Report	
#	Article	IF	CITATIONS
56	Mitochondria Initiate and Regulate Sarcopenia. Exercise and Sport Sciences Reviews, 2017, 45, 58-69.	1.6	89
57	Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. Journal of Applied Physiology, 2017, 122, 1336-1350.	1.2	85
58	Proteasome expression and activity in cancer and cancer stem cells. Tumor Biology, 2017, 39, 101042831769224.	0.8	58
59	Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing's syndrome. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E495-E507.	1.8	54
60	Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metabolism, 2017, 25, 182-196.	7.2	250
61	Molecular Cloning and Motif Identification of the Sheep Musclin Gene Promoter. DNA and Cell Biology, 2017, 36, 1093-1098.	0.9	3
62	Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice. Scientific Reports, 2017, 7, 10866.	1.6	20
63	Insulin Regulation of Proteostasis and Clinical Implications. Cell Metabolism, 2017, 26, 310-323.	7.2	85
64	Obestatin controls the ubiquitin–proteasome and autophagy–lysosome systems in glucocorticoidâ€induced muscle cell atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 974-990.	2.9	27
65	Redox homeostasis and ageâ€related deficits in neuromuscular integrity and function. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 881-906.	2.9	38
66	A dynamic ribosomal biogenesis response is not required for IGFâ€1–mediated hypertrophy of human primary myotubes. FASEB Journal, 2017, 31, 5196-5207.	0.2	9
67	Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nature Communications, 2017, 8, 1707.	5.8	86
68	Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases. Antioxidants and Redox Signaling, 2017, 26, 700-717.	2.5	38
69	FoxOâ€dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. Journal of Physiology, 2017, 595, 1143-1158.	1.3	75
70	Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone-Induced Muscle Atrophy In Vitro. Journal of Cellular Physiology, 2017, 232, 650-664.	2.0	22
71	Rev-erb-α regulates atrophy-related genes to control skeletal muscle mass. Scientific Reports, 2017, 7, 14383.	1.6	39
72	Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity. Oncology Reports, 2017, 37, 2543-2552.	1.2	55
73	Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE, 2017, 12, e0171268.	1.1	23

#	Article	IF	CITATIONS
74	Preventive Effects of the Dietary Intake of Medium-chain Triacylglycerols on Immobilization-induced Muscle Atrophy in Rats. Journal of Oleo Science, 2017, 66, 917-924.	0.6	12
75	FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget, 2017, 8, 10662-10674.	0.8	77
76	FOXO1 is crucial in glioblastoma cell tumorigenesis and regulates the expression of SIRT1 to suppress senescence in the brain. Molecular Medicine Reports, 2018, 17, 2535-2542.	1.1	7
77	FOXO1, a Potential Therapeutic Target, Regulates Autophagic Flux, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in Human Cholangiocarcinoma QBC939 Cells. Cellular Physiology and Biochemistry, 2018, 45, 1506-1514.	1.1	39
78	Ablation of Bax and Bak protects skeletal muscle against pressure-induced injury. Scientific Reports, 2018, 8, 3689.	1.6	8
79	Protective role of Parkin in skeletal muscle contractile and mitochondrial function. Journal of Physiology, 2018, 596, 2565-2579.	1.3	72
80	The ciliary protein RPGRIP1L governs autophagy independently of its proteasome-regulating function at the ciliary base in mouse embryonic fibroblasts. Autophagy, 2018, 14, 567-583.	4.3	46
81	Corticosteroids in Pediatric Septic Shock Are Not Helpful. Critical Care Medicine, 2018, 46, 637-639.	0.4	7
82	Cancer-associated cachexia. Nature Reviews Disease Primers, 2018, 4, 17105.	18.1	908
83	Protein translation, proteolysis and autophagy in human skeletal muscle atrophy after spinal cord injury. Acta Physiologica, 2018, 223, e13051.	1.8	14
84	Combination Treatment With Exogenous GDNF and Fetal Spinal Cord Cells Results in Better Motoneuron Survival and Functional Recovery After Avulsion Injury With Delayed Root Reimplantation. Journal of Neuropathology and Experimental Neurology, 2018, 77, 325-343.	0.9	14
85	Glucocorticoid Excess in Bone and Muscle. Clinical Reviews in Bone and Mineral Metabolism, 2018, 16, 33-47.	1.3	31
86	Forkhead box O proteins: Crucial regulators of cancer EMT. Seminars in Cancer Biology, 2018, 50, 21-31.	4.3	50
87	Suppression of Activated FOXO Transcription Factors in the Heart Prolongs Survival in a Mouse Model of Laminopathies. Circulation Research, 2018, 122, 678-692.	2.0	54
88	Dkk3 dependent transcriptional regulation controls age related skeletal muscle atrophy. Nature Communications, 2018, 9, 1752.	5.8	39
89	Exerciseâ€mediated modulation of autophagy in skeletal muscle. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 772-781.	1.3	61
90	Glucocorticoid Receptor Signaling Impairs Protein Turnover Regulation in Hypoxia-Induced Muscle Atrophy in Male Mice. Endocrinology, 2018, 159, 519-534.	1.4	18
91	In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy. Autophagy, 2018, 14, 311-335.	4.3	51

		CITATION R	EPORT	
#	Article		IF	CITATIONS
92	FOXO1/3: Potential suppressors of fibrosis. Ageing Research Reviews, 2018, 41, 42-52.		5.0	89
93	Do neurogenic and cancer-induced muscle atrophy follow common or divergent paths?. Journal of Translational Myology, 2018, 28, 7931.	European	0.8	9
94	UBE2E1 Is Preferentially Expressed in the Cytoplasm of Slow-Twitch Fibers and Protects Muscles from Exacerbated Atrophy upon Dexamethasone Treatment. Cells, 2018, 7, 214	Skeletal I.	1.8	7
95	Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Path Counteract Muscle Atrophy. Advances in Experimental Medicine and Biology, 2018, 108	ways to 8, 153-206.	0.8	27
96	Muscle Changes During Atrophy. Advances in Experimental Medicine and Biology, 2018,	1088, 73-92.	0.8	36
97	Pyropia yezoensis Protein Prevents Dexamethasone-Induced Myotube Atrophy in C2C12 Marine Drugs, 2018, 16, 497.	Myotubes.	2.2	13
98	Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle. Cell Reports, 3299-3314.e6.	2018, 25,	2.9	106
99	Insulinâ€Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. , 2018, 9, 41	.3-438.		26
100	Cellular and molecular mechanisms of sarcopenia: the S100B perspective. Journal of Cac Sarcopenia and Muscle, 2018, 9, 1255-1268.	hexia,	2.9	64
101	Protective Role of Testicular Hormone INSL3 From Atrophy and Weakness in Skeletal Mu Frontiers in Endocrinology, 2018, 9, 562.	ıscle.	1.5	19
102	Forkhead Box O (FoxO) Transcription Factors in Autophagy, Metabolic Health, and Tissu Pancreatic Islet Biology, 2018, , 47-69.	e Homeostasis.	0.1	3
103	Muscle Atrophy in Chronic Kidney Disease. Advances in Experimental Medicine and Biolo 393-412.	gy, 2018, 1088,	0.8	24
104	Increasing autophagy does not affect neurogenic muscle atrophy. European Journal of T Myology, 2018, 28, 7687.	ranslational	0.8	12
105	Resveratrol Ameliorates Mitophagy Disturbance and Improves Cardiac Pathophysiology Dystrophin-deficient mdx Mice. Scientific Reports, 2018, 8, 15555.	of	1.6	59
106	Regulation of muscle atrophy-related genes by the opposing transcriptional activities of and FOXO3. Nucleic Acids Research, 2018, 46, 10697-10708.	ZEB1/CtBP	6.5	21
107	Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring Padu Giovanni Salviati Memorial – Chapter II - Abstracts of March 15, 2018. European Journ Translational Myology, 2018, 28, 7364.	aMuscleDays: al of	0.8	5
108	RAGE in the pathophysiology of skeletal muscle. Journal of Cachexia, Sarcopenia and Mu 1213-1234.	scle, 2018, 9,	2.9	75
109	A DGKζ-FoxO-ubiquitin proteolytic axis controls fiber size during skeletal muscle remode Signaling, 2018, 11, .	eling. Science	1.6	34

#	Article	IF	CITATIONS
110	The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. Journal of Biological Chemistry, 2018, 293, 10322-10332.	1.6	56
111	Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. Journal of Biological Chemistry, 2018, 293, 13073-13089.	1.6	25
112	Knockout of USP19 Deubiquitinating Enzyme Prevents Muscle Wasting by Modulating Insulin and Glucocorticoid Signaling. Endocrinology, 2018, 159, 2966-2977.	1.4	11
113	Mediators and Patterns of Muscle Loss in Chronic Systemic Inflammation. Frontiers in Physiology, 2018, 9, 409.	1.3	50
114	Moderate Exercise Suppresses NF-κB Signaling and Activates the SIRT1-AMPK-PGC1α Axis to Attenuate Muscle Loss in Diabetic db/db Mice. Frontiers in Physiology, 2018, 9, 636.	1.3	64
115	Transcriptome response of human skeletal muscle to divergent exercise stimuli. Journal of Applied Physiology, 2018, 124, 1529-1540.	1.2	61
116	Growth of ovarian cancer xenografts causes loss of muscle and bone mass: a new model for the study of cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 685-700.	2.9	74
117	Increased Serpina3n release into circulation during glucocorticoidâ€mediated muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 929-946.	2.9	53
118	Pulmonary inflammation-induced loss and subsequent recovery of skeletal muscle mass require functional poly-ubiquitin conjugation. Respiratory Research, 2018, 19, 80.	1.4	9
119	Aberrant Protein Turn-Over Associated With Myofibrillar Disorganization in FHL1 Knockout Mice. Frontiers in Genetics, 2018, 9, 273.	1.1	16
120	Exercise prevents impaired autophagy and proteostasis in a model of neurogenic myopathy. Scientific Reports, 2018, 8, 11818.	1.6	22
121	Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord-injured individuals. Physiological Reports, 2018, 6, e13739.	0.7	5
122	Vamorolone treatment improves skeletal muscle outcome in a critical illness myopathy rat model. Acta Physiologica, 2019, 225, e13172.	1.8	18
123	Understanding the perspectives of forkhead transcription factors in delayed wound healing. Journal of Cell Communication and Signaling, 2019, 13, 151-162.	1.8	16
124	The Natural Compound Neobractatin Induces Cell Cycle Arrest by Regulating E2F1 and Gadd45α. Frontiers in Oncology, 2019, 9, 654.	1.3	9
125	A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice. Cell Reports, 2019, 28, 1268-1281.e6.	2.9	56
126	ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle. FASEB Journal, 2019, 33, 11735-12745.	0.2	28
127	Skeletal muscle atrogenes: From rodent models to human pathologies. Biochimie, 2019, 166, 251-269.	1.3	43

#	Article	IF	Citations
128	Vitamin D Deficiency Is Associated with Muscle Atrophy and Reduced Mitochondrial Function in Patients with Chronic Low Back Pain. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	34
129	Partial Inhibition of mTORC1 in Aged Rats Counteracts the Decline in Muscle Mass and Reverses Molecular Signaling Associated with Sarcopenia. Molecular and Cellular Biology, 2019, 39, .	1.1	88
130	mTOR hyperactivation in Down Syndrome underlies deficits in autophagy induction, autophagosome formation, and mitophagy. Cell Death and Disease, 2019, 10, 563.	2.7	72
131	Role of p110a subunit of PI3-kinase in skeletal muscle mitochondrial homeostasis and metabolism. Nature Communications, 2019, 10, 3412.	5.8	19
132	The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxidants and Redox Signaling, 2019, 31, 1371-1410.	2.5	40
133	Skeletal Muscle Atrophy Was Alleviated by Salidroside Through Suppressing Oxidative Stress and Inflammation During Denervation. Frontiers in Pharmacology, 2019, 10, 997.	1.6	40
134	Loss of FoxOs in muscle reveals sex-based differences in insulin sensitivity but mitigates diet-induced obesity. Molecular Metabolism, 2019, 30, 203-220.	3.0	17
135	Exogenous miRâ€26a suppresses muscle wasting and renal fibrosis in obstructive kidney disease. FASEB Journal, 2019, 33, 13590-13601.	0.2	48
136	Interactions of the super complexes: When mTORC1 meets the proteasome. International Journal of Biochemistry and Cell Biology, 2019, 117, 105638.	1.2	14
137	Food deprivation during active phase induces skeletal muscle atrophy via IGF-1 reduction in mice. Archives of Biochemistry and Biophysics, 2019, 677, 108160.	1.4	18
138	Microgravity inhibits decidualization via decreasing Akt activity and FOXO3a expression in human endometrial stromal cells. Scientific Reports, 2019, 9, 12094.	1.6	16
139	The FoxO–Autophagy Axis in Health and Disease. Trends in Endocrinology and Metabolism, 2019, 30, 658-671.	3.1	144
140	Cancer Takes a Toll on Skeletal Muscle by Releasing Heat Shock Proteins—An Emerging Mechanism of Cancer-Induced Cachexia. Cancers, 2019, 11, 1272.	1.7	16
141	Immunohistochemical phenotyping of T cells, granulocytes, and phagocytes in the muscle of cancer patients: association with radiologically defined muscle mass and gene expression. Skeletal Muscle, 2019, 9, 24.	1.9	15
142	Muscle wasting in patients with endâ€stage renal disease or earlyâ€stage lung cancer: common mechanisms at work. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 323-337.	2.9	30
143	The Skeletal Muscle as an Active Player Against Cancer Cachexia. Frontiers in Physiology, 2019, 10, 41.	1.3	48
144	TRB3 regulates skeletal muscle mass in food deprivation–induced atrophy. FASEB Journal, 2019, 33, 5654-5666.	0.2	11
145	p300 Mediates Muscle Wasting in Lewis Lung Carcinoma. Cancer Research, 2019, 79, 1331-1342.	0.4	11

#	Article	IF	CITATIONS
146	FOXK transcription factors: Regulation and critical role in cancer. Cancer Letters, 2019, 458, 1-12.	3.2	41
147	Inhibition of the Fission Machinery Mitigates OPA1 Impairment in Adult Skeletal Muscles. Cells, 2019, 8, 597.	1.8	65
148	Immobilization Decreases FOXO3a Phosphorylation and Increases Autophagy-Related Gene and Protein Expression in Human Skeletal Muscle. Frontiers in Physiology, 2019, 10, 736.	1.3	14
149	Urotensin II Induces Mice Skeletal Muscle Atrophy Associated with Enhanced Autophagy and Inhibited Irisin Precursor (Fibronectin Type III Domain Containing 5) Expression in Chronic Renal Failure. Kidney and Blood Pressure Research, 2019, 44, 479-495.	0.9	16
150	Skeletal Muscle Atrophy: Discovery of Mechanisms and Potential Therapies. Physiology, 2019, 34, 232-239.	1.6	57
151	Polycystin-2 Is Required for Starvation- and Rapamycin-Induced Atrophy in Myotubes. Frontiers in Endocrinology, 2019, 10, 280.	1.5	4
152	DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature Communications, 2019, 10, 2576.	5.8	274
153	Muscle atrophy and regeneration associated with behavioural loss and recovery of function after sciatic nerve crush. Acta Physiologica, 2019, 227, e13335.	1.8	9
154	The clinical impact and biological mechanisms of skeletal muscle aging. Bone, 2019, 127, 26-36.	1.4	46
155	Six Weeks of Low-Load Blood Flow Restricted and High-Load Resistance Exercise Training Produce Similar Increases in Cumulative Myofibrillar Protein Synthesis and Ribosomal Biogenesis in Healthy Males. Frontiers in Physiology, 2019, 10, 649.	1.3	34
156	4â€Aminopyridine attenuates muscle atrophy after sciatic nerve crush injury in mice. Muscle and Nerve, 2019, 60, 192-201.	1.0	30
157	Sarcopenia targeting with autophagy mechanism by exercise. BMB Reports, 2019, 52, 64-69.	1.1	40
158	Role of Transcription Factors FoxO3 and Myogenin in Regulation of E3 Ligases MuRF-1 and MAFbx Expression in Rat Soleus at an Early Stage of Disuse Atrophy. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2019, 13, 36-39.	0.3	1
159	Fibroblast growth factor 21 controls mitophagy and muscle mass. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 630-642.	2.9	143
160	Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1449-1460.	1.2	28
161	AMPK/FOXO1 signaling pathway is indispensable in visfatin-regulated myosin heavy chain expression in C2C12 myotubes. Life Sciences, 2019, 224, 197-203.	2.0	3
162	Insulin/IGF1 signalling mediates the effects of β ₂ â€adrenergic agonist on muscle proteostasis and growth. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 455-475.	2.9	33
163	The secret messages between mitochondria and nucleus in muscle cell biology. Archives of Biochemistry and Biophysics, 2019, 666, 52-62.	1.4	33

	CIT	ATION REPORT	
#	Article	IF	Citations
164	Angiotensin II suppresses autophagy and disrupts ultrastructural morphology and function of mitochondria in mouse skeletal muscle. Journal of Applied Physiology, 2019, 126, 1550-1562.	1.2	16
165	Protein recycling and limb muscle recovery after critical illness in slow- and fast-twitch limb muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R584-R593.	0.9	14
166	Myricanol rescues dexamethasoneâ€induced muscle dysfunction via a sirtuin 1â€dependent mechanis Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 429-444.	m. 2.9	73
167	Changes in Redox Signaling in the Skeletal Muscle with Aging. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	1.9	47
168	Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients, 2019, 11, 2824.	1.7	18
169	Thyroid Hormone Protects from Fasting-Induced Skeletal Muscle Atrophy by Promoting Metabolic Adaptation. International Journal of Molecular Sciences, 2019, 20, 5754.	1.8	10
170	Neuromuscular Electrical Stimulation Induces Skeletal Muscle Fiber Remodeling and Specific Gene Expression Profile in Healthy Elderly. Frontiers in Physiology, 2019, 10, 1459.	1.3	23
171	Requirement of Pitx2 for skeletal muscle homeostasis. Developmental Biology, 2019, 445, 90-102.	0.9	6
172	Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiological Reviews, 2019, 99, 427-51	1. 13.1	767
173	Diets contaminated with Bisphenol A and Di-isononyl phtalate modify skeletal muscle composition: A new target for environmental pollutant action. Science of the Total Environment, 2019, 658, 250-259.	3.9	14
174	Skeletal muscle-specific <i>Prmt1</i> deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy, 2019, 15, 1069-1081.	4.3	79
175	Proteasome biology and therapeutics in cardiac diseases. Translational Research, 2019, 205, 64-76.	2.2	24
176	Regulation of glucose uptake and inflammation markers by FOXO1 and FOXO3 in skeletal muscle. Molecular Metabolism, 2019, 20, 79-88.	3.0	37
177	FoxO Transcription Factors Are Critical Regulators of Diabetes-Related Muscle Atrophy. Diabetes, 2019, 68, 556-570.	0.3	105
178	Muscleâ€specific Perilipin2 downâ€regulation affects lipid metabolism and induces myofiber hypertrop Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 95-110.	ohy. 2.9	20
179	Effect of flaxseed oil on muscle protein loss and carbohydrate oxidation impairment in a pig model after lipopolysaccharide challenge. British Journal of Nutrition, 2020, 123, 859-869.	1.2	11
180	Skeletal muscle mTORC1 regulates neuromuscular junction stability. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 208-225.	2.9	43
181	Sarcopenia: Tilting the Balance of Protein Homeostasis. Proteomics, 2020, 20, e1800411.	1.3	25

#	Article	IF	CITATIONS
182	The Etiology and Impact of Muscle Wasting in Metastatic Cancer. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037416.	2.9	8
183	Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells, 2020, 9, 82.	1.8	62
184	Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals. Nature Communications, 2020, 11, 189.	5.8	87
185	Effects of nicotinamide and sodium butyrate on meat quality and muscle ubiquitination degradation genes in broilers reared at a high stocking density. Poultry Science, 2020, 99, 1462-1470.	1.5	22
186	Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression. Annual Review of Cancer Biology, 2020, 4, 391-411.	2.3	25
187	Regulatory role of exercise-induced autophagy for sarcopenia. Experimental Gerontology, 2020, 130, 110789.	1.2	22
188	Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy. International Journal of Molecular Sciences, 2020, 21, 88.	1.8	44
189	Prognostic Value of the FOXK Family Expression in Patients with Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy. OncoTargets and Therapy, 2020, Volume 13, 9185-9201.	1.0	6
190	Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods, 2020, 9, 1362.	1.9	61
191	Self-Eating for Muscle Fitness: Autophagy in the Control of Energy Metabolism. Developmental Cell, 2020, 54, 268-281.	3.1	22
192	Redox-mediated regulation of aging and healthspan by an evolutionarily conserved transcription factor HLH-2/Tcf3/E2A. Redox Biology, 2020, 32, 101448.	3.9	10
193	ACVR2B antagonism as a countermeasure to multiâ€organ perturbations in metastatic colorectal cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1779-1798.	2.9	26
194	CARM1 Regulates AMPK Signaling in Skeletal Muscle. IScience, 2020, 23, 101755.	1.9	20
195	Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells, 2020, 9, 2536.	1.8	23
196	Perlecan Facilitates Neuronal Nitric Oxide Synthase Delocalization in Denervation-Induced Muscle Atrophy. Cells, 2020, 9, 2524.	1.8	4
197	Current Studies and Future Directions of Exercise Therapy for Muscle Atrophy Induced by Heart Failure. Frontiers in Cardiovascular Medicine, 2020, 7, 593429.	1.1	4
198	cAMPâ€dependent protein kinase inhibits FoxO activity and regulates skeletal muscle plasticity in mice. FASEB Journal, 2020, 34, 12946-12962.	0.2	27
199	ISLR regulates skeletal muscle atrophy via IGF1-PI3K/Akt-Foxo signaling pathway. Cell and Tissue Research, 2020, 381, 479-492.	1.5	19

#	Article	IF	CITATIONS
200	Liver Cirrhosis and Sarcopenia from the Viewpoint of Dysbiosis. International Journal of Molecular Sciences, 2020, 21, 5254.	1.8	28
201	Identification and characterization of Fbxl22, a novel skeletal muscle atrophy-promoting E3 ubiquitin ligase. American Journal of Physiology - Cell Physiology, 2020, 319, C700-C719.	2.1	19
202	The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Research Reviews, 2020, 64, 101203.	5.0	47
203	The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. International Journal of Molecular Sciences, 2020, 21, 7936.	1.8	9
204	Net protein balance correlates with expression of autophagy, mitochondrial biogenesis, and fat metabolismâ€related genes in skeletal muscle from older adults. Physiological Reports, 2020, 8, e14575.	0.7	6
205	Is REDD1 a metabolic double agent? Lessons from physiology and pathology. American Journal of Physiology - Cell Physiology, 2020, 319, C807-C824.	2.1	39
206	Diagnostic challenges in metabolic myopathies. Expert Review of Neurotherapeutics, 2020, 20, 1287-1298.	1.4	7
207	Transcriptional Changes Involved in Atrophying Muscles during Prolonged Fasting in Rats. International Journal of Molecular Sciences, 2020, 21, 5984.	1.8	6
208	Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells, 2020, 9, 1970.	1.8	237
209	High-resolution analysis of differential gene expression during skeletal muscle atrophy and programmed cell death. Physiological Genomics, 2020, 52, 492-511.	1.0	8
210	The ubiquitin–proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. Journal of Physiological Sciences, 2020, 70, 40.	0.9	70
211	MuRF1/TRIM63, Master Regulator of Muscle Mass. International Journal of Molecular Sciences, 2020, 21, 6663.	1.8	65
212	Leucine and Its Importance for Cell Signalling Pathways in Cancer Cachexia-Induced Muscle Wasting. , 0, , .		2
213	Isoquercitrin Delays Denervated Soleus Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation. Frontiers in Physiology, 2020, 11, 988.	1.3	42
214	Implications of Altered Endosome and Lysosome Biology in Space Environments. International Journal of Molecular Sciences, 2020, 21, 8205.	1.8	4
215	(â^')-Epicatechin reduces muscle waste after complete spinal cord transection in a murine model: role of ubiquitin–proteasome system. Molecular Biology Reports, 2020, 47, 8975-8985.	1.0	6
216	Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29691-29701.	3.3	90
217	In Vitro, In Vivo, and In Silico Methods for Assessment of Muscle Size and Muscle Growth Regulation. Shock, 2020, 53, 605-615.	1.0	8

#	Article	IF	CITATIONS
218	ls inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Experimental Gerontology, 2020, 137, 110964.	1.2	33
219	Molecular and Cellular Aspects of Sarcopenia, Muscle Healthy Aging and Physical Conditioning in the Elderly. Journal of Science in Sport and Exercise, 2020, 2, 246-257.	0.4	5
220	Cellular and molecular features of neurogenic skeletal muscle atrophy. Experimental Neurology, 2020, 331, 113379.	2.0	24
221	HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	24
222	A signaling hub of insulin receptor, dystrophin glycoprotein complex and plakoglobin regulates muscle size. Nature Communications, 2020, 11, 1381.	5.8	33
223	Management of Cancer Cachexia: Attempting to Develop New Pharmacological Agents for New Effective Therapeutic Options. Frontiers in Oncology, 2020, 10, 298.	1.3	63
224	Protein Nutritional Support: The Classical and Potential New Mechanisms in the Prevention and Therapy of Sarcopenia. Journal of Agricultural and Food Chemistry, 2020, 68, 4098-4108.	2.4	23
225	Chlorzoxazone, a small molecule drug, augments immunosuppressive capacity of mesenchymal stem cells via modulation of FOXO3 phosphorylation. Cell Death and Disease, 2020, 11, 158.	2.7	18
226	Magnolol inhibits myotube atrophy induced by cancer cachexia through myostatin signaling pathway in vitro. Journal of Natural Medicines, 2020, 74, 741-749.	1.1	6
227	Regulatory Role of the Transcription Factor Twist1 in Cancer-Associated Muscle Cachexia. Frontiers in Physiology, 2020, 11, 662.	1.3	4
228	Emerging Strategies Targeting Catabolic Muscle Stress Relief. International Journal of Molecular Sciences, 2020, 21, 4681.	1.8	9
229	Edward F. Adolph Distinguished Lecture. Skeletal muscle atrophy: Multiple pathways leading to a common outcome. Journal of Applied Physiology, 2020, 129, 272-282.	1.2	28
230	Signaling Pathways That Control Muscle Mass. International Journal of Molecular Sciences, 2020, 21, 4759.	1.8	104
231	Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatric Critical Care Medicine, 2020, 21, e52-e106.	0.2	567
232	Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Medicine, 2020, 46, 10-67.	3.9	331
233	Effects of high intensity interval training (up & downward running) with BCAA/nano chitosan on Foxo3 and SMAD soleus muscles of aging rat. Life Sciences, 2020, 252, 117641.	2.0	3
234	Characterization of a novel compound that promotes myogenesis viaÂAkt and transcriptional co-activator with PDZ-binding motif (TAZ) in mouse C2C12 cells. PLoS ONE, 2020, 15, e0231265.	1.1	1
235	The clinical relevance and mechanism of skeletal muscle wasting. Clinical Nutrition, 2021, 40, 27-37.	2.3	24

#	Article	IF	CITATIONS
236	Statins induce skeletal muscle atrophy via GGPP depletion-dependent myostatin overexpression in skeletal muscle and brown adipose tissue. Cell Biology and Toxicology, 2021, 37, 441-460.	2.4	8
237	The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cellular and Molecular Life Sciences, 2021, 78, 1305-1328.	2.4	105
238	Dojuksan ameliorates tubulointerstitial fibrosis through irisin-mediated muscle-kidney crosstalk. Phytomedicine, 2021, 80, 153393.	2.3	11
239	Puerarin ameliorates skeletal muscle wasting and fiber type transformation in STZ-induced type 1 diabetic rats. Biomedicine and Pharmacotherapy, 2021, 133, 110977.	2.5	27
240	Simvastatin Enhances Muscle Regeneration Through Autophagic Defect-Mediated Inflammation and mTOR Activation in G93ASOD1 Mice. Molecular Neurobiology, 2021, 58, 1593-1606.	1.9	6
241	Therapeutic strategies targeting FOXO transcription factors. Nature Reviews Drug Discovery, 2021, 20, 21-38.	21.5	164
242	Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Science, 2021, 371, .	6.0	107
243	Magnoflorine prevent the skeletal muscle atrophy via Akt/mTOR/FoxO signal pathway and increase slow-MyHC production in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 2021, 267, 113510.	2.0	23
244	Molecular mechanisms of exercise providing therapeutic rationale to counter sarcopenia. , 2021, , 159-169.		1
245	Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis, 2021, 10, 1.	2.1	75
246	Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules, 2021, 26, 407.	1.7	31
247	1α,25-Dihydroxyvitamin D3 ameliorates diabetes-induced bone loss by attenuating FoxO1-mediated autophagy. Journal of Biological Chemistry, 2021, 296, 100287.	1.6	24
248	Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nature Communications, 2021, 12, 330.	5.8	355
250	Muscle Wasting in Space and Countermeasures. , 2021, , 181-196.		0
251	A proteomic view on lysosomes. Molecular Omics, 2021, 17, 842-859.	1.4	10
252	Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells, 2021, 10, 61.	1.8	17
253	FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 421-442.	2.9	19
254	FGF19 protects skeletal muscle against obesityâ€induced muscle atrophy, metabolic derangement and abnormal irisin levels via the AMPK/SIRTâ€1/PGCâ€Î± pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 3585-3600.	1.6	47

#	Article	IF	CITATIONS
255	PKA compartmentalization links cAMP signaling and autophagy. Cell Death and Differentiation, 2021, 28, 2436-2449.	5.0	24
256	Obestatin signalling counteracts glucocorticoidâ€induced skeletal muscle atrophy via NEDD4/KLF15 axis. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 493-505.	2.9	12
257	PHD3 mediates denervation skeletal muscle atrophy through Nfâ€₽̂B signal pathway. FASEB Journal, 2021, 35, e21444.	0.2	8
258	The dependency of autophagy and ubiquitin proteasome system during skeletal muscle atrophy. Biophysical Reviews, 2021, 13, 203-219.	1.5	17
259	The Role of Autophagy in Skeletal Muscle Diseases. Frontiers in Physiology, 2021, 12, 638983.	1.3	52
260	Antagonistic control of myofiber size and muscle protein quality control by the ubiquitin ligase UBR4 during aging. Nature Communications, 2021, 12, 1418.	5.8	30
261	Transcriptome sequencing and analysis reveals the molecular mechanism of skeletal muscle atrophy induced by denervation. Annals of Translational Medicine, 2021, 9, 697-697.	0.7	2
262	Transcriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environment. Scientific Reports, 2021, 11, 9168.	1.6	26
263	Post-exercise Cold Water Immersion Effects on Physiological Adaptations to Resistance Training and the Underlying Mechanisms in Skeletal Muscle: A Narrative Review. Frontiers in Sports and Active Living, 2021, 3, 660291.	0.9	13
264	Lipocalin 2 mediates appetite suppression during pancreatic cancer cachexia. Nature Communications, 2021, 12, 2057.	5.8	48
265	Plectin regulates Wnt signaling mediated-skeletal muscle development by interacting with Dishevelled-2 and antagonizing autophagy. Gene, 2021, 783, 145562.	1.0	11
266	Dynamic transcriptome and histomorphology analysis of developmental traits of hindlimb thigh muscle from Odorrana tormota and its adaptability to different life history stages. BMC Genomics, 2021, 22, 369.	1.2	1
267	Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases. Journal of Agricultural and Food Chemistry, 2021, 69, 6119-6144.	2.4	16
268	Influence of Age on Skeletal Muscle Hypertrophy and Atrophy Signaling: Established Paradigms and Unexpected Links. Genes, 2021, 12, 688.	1.0	6
269	Understanding the role of smoking and chronic excess alcohol consumption on reduced caloric intake and the development of sarcopenia. Nutrition Research Reviews, 2022, 35, 197-206.	2.1	20
270	2-D08 treatment regulates C2C12 myoblast proliferation and differentiation via the Erk1/2 and proteasome signaling pathways. Journal of Muscle Research and Cell Motility, 2021, 42, 193-202.	0.9	3
271	Control of Skeletal Muscle Atrophy Associated to Cancer or Corticosteroids by Ceramide Kinase. Cancers, 2021, 13, 3285.	1.7	11
272	Magnesium Deficiency Alters Expression of Genes Critical for Muscle Magnesium Homeostasis and Physiology in Mice. Nutrients, 2021, 13, 2169.	1.7	6

#	Article	IF	CITATIONS
273	Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. Journal of Clinical Investigation, 2021, 131, .	3.9	34
274	Eriocitrin Contained in Lemon Peel Ameliorates Disuse Muscle Atrophy by Suppressing the Expression of Atrogin-1 and MuRF-1 in Denervated Mice. Journal of Natural Products, 2021, 84, 2048-2052.	1.5	6
275	Friend or Foe: Paradoxical Roles of Autophagy in Gliomagenesis. Cells, 2021, 10, 1411.	1.8	14
276	Understanding the biology of volumetric muscle loss for an individualized exercise rehabilitation approach in breast cancer patients. Current Opinion in Pharmacology, 2021, 58, 27-34.	1.7	8
277	Random errors in protein synthesis activate an age-dependent program of muscle atrophy in mice. Communications Biology, 2021, 4, 703.	2.0	8
278	Exogenous insulinâ€like growth factor 1 attenuates cisplatinâ€induced muscle atrophy in mice. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1570-1581.	2.9	22
279	Reactive Oxygen Species as a Link between Antioxidant Pathways and Autophagy. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-11.	1.9	31
280	Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. International Journal of Molecular Sciences, 2021, 22, 8179.	1.8	93
281	Phosphodiesterase 4 inhibition restrains muscle proteolysis in diabetic rats by activating PKA and EPAC/Akt effectors and inhibiting FoxO factors. Life Sciences, 2021, 278, 119563.	2.0	7
282	The ubiquitin-proteasome system and autophagy: self-digestion for metabolic health. Trends in Endocrinology and Metabolism, 2021, 32, 594-608.	3.1	11
284	Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Science Translational Medicine, 2021, 13, .	5.8	58
285	Influencing Factors and Molecular Pathogenesis of Sarcopenia and Osteosarcopenia in Chronic Liver Disease. Life, 2021, 11, 899.	1.1	15
286	Inhibition of heat shock protein (HSP) 90 reverses signal transducer and activator of transcription (STAT) 3â€mediated muscle wasting in cancer cachexia mice. British Journal of Pharmacology, 2021, 178, 4485-4500.	2.7	15
288	Identification of Potentially Related Genes and Mechanisms Involved in Skeletal Muscle Atrophy Induced by Excessive Exercise in Zebrafish. Biology, 2021, 10, 761.	1.3	7
289	Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules, 2021, 26, 4887.	1.7	44
290	Mitochondrial Permeability Transition Causes Mitochondrial Reactive Oxygen Species- and Caspase 3-Dependent Atrophy of Single Adult Mouse Skeletal Muscle Fibers. Cells, 2021, 10, 2586.	1.8	9
291	An Injectable, biodegradable magnetic hydrogel system for exogenous promotion of muscle mass and regeneration. Chemical Engineering Journal, 2021, 420, 130398.	6.6	7
292	Sepsis induces muscle atrophy by inhibiting proliferation and promoting apoptosis via PLK1â€AKT signalling. Journal of Cellular and Molecular Medicine, 2021, 25, 9724-9739.	1.6	18

#	Article	IF	CITATIONS
293	Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules, 2021, 11, 1327.	1.8	37
294	Insulin and IGF-1 receptors regulate complex l–dependent mitochondrial bioenergetics and supercomplexes via FoxOs in muscle. Journal of Clinical Investigation, 2021, 131, .	3.9	28
295	MiR-29ab1 Cluster Resists Muscle Atrophy Through Inhibiting MuRF1. DNA and Cell Biology, 2021, 40, 1167-1176.	0.9	1
296	Effects of Geniposide and Geniposidic Acid on Fluoxetine-Induced Muscle Atrophy in C2C12 Cells. Processes, 2021, 9, 1649.	1.3	1
297	Skeletal muscle–targeted delivery of Fgf6 protects mice from diet-induced obesity and insulin resistance. JCl Insight, 2021, 6, .	2.3	8
298	AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle. Metabolism: Clinical and Experimental, 2021, 123, 154864.	1.5	16
299	Skeletal muscle. , 2022, , 213-225.		0
300	Regulation of autophagy—transcriptional, posttranscriptional, translational, and posttranslational mechanisms. , 2022, , 21-38.		1
301	Molecular Mechanisms and Treatment of Sarcopenia in Liver Disease: A Review of Current Knowledge. International Journal of Molecular Sciences, 2021, 22, 1425.	1.8	10
302	Role of SIRT2 in regulating the dexamethasone-activated autophagy pathway in skeletal muscle atrophy. Biochemistry and Cell Biology, 2021, 99, 562-569.	0.9	14
303	Prospective Advances in Exercise-Induced Autophagy on Health. , 2021, , 223-245.		0
304	Drosophila as a Model for Tumor-Induced Organ Wasting. Advances in Experimental Medicine and Biology, 2019, 1167, 191-205.	0.8	13
305	ROS and nNOS in the Regulation of Disuse-Induced Skeletal Muscle Atrophy. , 2017, , 231-250.		1
307	Mitochondrial function in skeletal myofibers is controlled by a TRF2â€SIRT3 axis over lifetime. Aging Cell, 2020, 19, e13097.	3.0	31
308	Multimodal label-free ex vivo imaging using a dual-wavelength microscope with axial chromatic aberration compensation. Journal of Biomedical Optics, 2018, 23, 1.	1.4	27
309	Formation of colorectal liver metastases induces musculoskeletal and metabolic abnormalities consistent with exacerbated cachexia. JCI Insight, 2020, 5, .	2.3	20
310	Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. Journal of Clinical Investigation, 2016, 126, 3433-3446.	3.9	132
311	Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy. Journal of Clinical Investigation, 2017, 127, 2418-2432.	3.9	96

#	Article	IF	CITATIONS
312	Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. Journal of Clinical Investigation, 2017, 127, 3954-3969.	3.9	49
313	p38β MAPK mediates ULK1-dependent induction of autophagy in skeletal muscle of tumor-bearing mice. Cell Stress, 2018, 2, 311-324.	1.4	30
314	The Role of Systemic Inflammation in Cancerâ€Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM Clinical Reports, 2018, 3, 1-19.	0.5	35
315	αMSH inhibits adipose inflammation via reducing FoxOs transcription and blocking Akt/JNK pathway in mice. Oncotarget, 2017, 8, 47642-47654.	0.8	20
316	Role of FOXO1 in aldosterone-induced autophagy: A compensatory protective mechanism related to podocyte injury. Oncotarget, 2016, 7, 45331-45351.	0.8	23
317	lsoquercitrin promotes peripheral nerve regeneration through inhibiting oxidative stress following sciatic crush injury in mice. Annals of Translational Medicine, 2019, 7, 680-680.	0.7	37
318	Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Current Genomics, 2018, 19, 356-369.	0.7	39
319	Expression patterns of regulatory IncRNAs and miRNAs in muscular atrophy models induced by starvation in vitro and in vivo. Molecular Medicine Reports, 2019, 20, 4175-4185.	1.1	8
320	IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling. ELife, 2018, 7,	2.8	43
321	Role of autophagy in muscle disease. Molecular Aspects of Medicine, 2021, 82, 101041.	2.7	26
322	The Autophagy, Inflammation and Metabolism Center international eSymposium – an early-career investigators' seminar series during the COVID-19 pandemic. Journal of Cell Science, 2021, 134, .	1.2	1
324	Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle. Korean Journal of Physiology and Pharmacology, 2021, 25, 585-592.	0.6	8
325	FoxO1., 2016,, 1-11.		0
326	A Novel DGKK-FoxO-Ubiquitin Proteolytic Axis Controls Fiber Size During Skeletal Muscle Remodeling. SSRN Electronic Journal, 0, , .	0.4	0
327	FoxO Transcription Factors Are Critical Regulators of Diabetes-Related Muscle Atrophy. SSRN Electronic Journal, 0, , .	0.4	0
328	FoxO1. , 2018, , 1843-1854.		1
329	Muscle Wasting in Space and Countermeasures. , 2019, , 1-14.		0
334	miR-19b-3p is associated with a diametric response to resistance exercise in older adults and regulates skeletal muscle anabolism via PTEN inhibition. American Journal of Physiology - Cell Physiology, 2021, 321, C977-C991.	2.1	13

ARTICLE IF CITATIONS # Perturbation of PI3K/Akt signaling affected autophagy modulation in dystrophin-deficient myoblasts. 335 2.7 10 Cell Communication and Signaling, 2021, 19, 105. Mitochondrial NDUFA4L2 is a novel regulator of skeletal muscle mass and force. FASEB Journal, 2021, 0.2 35, e22010. Cooperative antivirus activities of two duplicated viperin homeologs confirmed by CRISPR/Cas9 337 1.7 5 editing in hexaploid gibel carp. Aquaculture, 2022, 548, 737609. Muscle Wasting in Space and Countermeasures., 2020, , 1-13. 338 Angiotensin 1–7 prevents the excessive force loss resulting from 14- and 28-day denervation in mouse 339 0.9 1 EDL and soleus muscle. Journal of General Physiology, 2021, 153, . Activation of Akt–mTORC1 signalling reverts cancerâ€dependent muscle wasting. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 648-661. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative 341 2.1 44 diseases. Cell and Bioscience, 2021, 11, 188. Role of autophagy in chronic kidney diseases. International Journal of Clinical and Experimental Medicine, 2015, 8, 22022-9. 1.3 The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as 343 0.5 23 a Therapeutic Intervention. JCSM Clinical Reports, 2018, 3, . Revisiting Cancer Cachexia: Pathogenesis, Diagnosis, and Current Treatment Approaches. Asia-Pacific 344 Journal of Oncology Nursing, 2021, 8, 508-518. A large-scale transgenic RNAi screen identifies transcription factors that modulate myofiber size in 345 1.5 11 Drosophila. PLoS Genetics, 2021, 17, e1009926. Temporal disruption of neuromuscular communication and muscle atrophy following noninvasive 1.2 ACL injury in rats. Journal of Applied Physiology, 2022, 132, 46-57. Myostatin gene inactivation increases post-mortem calpain-dependent muscle proteolysis in mice. Meat 348 2.7 3 Science, 2022, 185, 108726. Endurance exercise training under normal diet conditions activates skeletal muscle protein synthesis 349 0.4 and inhibits protein degradation signaling except MuRF1. Sport Sciences for Health, 2022, 18, 1033-1041. Transcriptional and Post-Transcriptional Regulation of Autophagy. Cells, 2022, 11, 441. 350 1.8 14 The role and therapeutic potential of stem cells in skeletal muscle in sarcopenia. Stem Cell Research 2.4 and Therapy, 2022, 13, 28. FOXO1 cooperates with C/EBPÎ' and ATF4 to regulate skeletal muscle atrophy transcriptional program 352 0.2 22 during fasting. FASEB Journal, 2022, 36, e22152. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. Journal of 144 Cachexia, Sarcopenia and Muscle, 2022, 13, 781-794.

# 354	ARTICLE Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics, 2022, 23, 93.	IF 1.2	CITATIONS
355	m ⁶ A demethylase ALKBH5 drives denervationâ€induced muscle atrophy by targeting HDAC4 to activate FoxO3 signalling. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1210-1223.	2.9	12
356	Implications of mitochondrial fusion and fission in skeletal muscle mass and health. Seminars in Cell and Developmental Biology, 2023, 143, 46-53.	2.3	12
357	SKP-SC-EVs Mitigate Denervated Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation and Improving Microcirculation. Antioxidants, 2022, 11, 66.	2.2	18
358	Fish Protein Promotes Skeletal Muscle Hypertrophy via the Akt/mTOR Signaling Pathways. Journal of Nutritional Science and Vitaminology, 2022, 68, 23-31.	0.2	5
359	Cardiomyocyte Atrophy, an Underestimated Contributor in Doxorubicin-Induced Cardiotoxicity. Frontiers in Cardiovascular Medicine, 2022, 9, 812578.	1.1	5
360	The endothelial Dll4–muscular Notch2 axis regulates skeletal muscle mass. Nature Metabolism, 2022, 4, 180-189.	5.1	15
361	Novel roles of phentolamine in protecting axon myelination, muscle atrophy, and functional recovery following nerve injury. Scientific Reports, 2022, 12, 3344.	1.6	1
362	<i>Pectoralis major</i> muscle atrophy is associated with mitochondrial energy wasting in cachectic patients with gastrointestinal cancer. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1837-1849.	2.9	4
363	The effect of nutrient deprivation on proteasome activity in 4-week-old mice and 24-week-old mice. Journal of Nutritional Biochemistry, 2022, , 108993.	1.9	0
364	Waterâ€soluble dietary fiber alleviates cancerâ€induced muscle wasting through changes in gut microenvironment in mice. Cancer Science, 2022, 113, 1789-1800.	1.7	18
365	Urocortin 2 promotes hypertrophy and enhances skeletal muscle function through cAMP and insulin/IGF-1 signaling pathways. Molecular Metabolism, 2022, 60, 101492.	3.0	8
366	Elabela ameliorates doxorubicin-induced cardiotoxicity by promoting autophagic flux through TFEB pathway. Pharmacological Research, 2022, 178, 106186.	3.1	24
368	Effect of Exercise and Kelussia Odaratissma Mozaff on the Expression of Atrogin-1 Gene in Cardiac Tissue of Obese Rats. Majallah-i DÄnishgÄh-i 'UlÅ«m-i PizishkÄ«-i ĪlÄm, 2021, 29, 83-92.	0.1	0
369	Transcriptional regulatory networks of the proteasome in mammalian systems. IUBMB Life, 2022, 74, 41-52.	1.5	5
370	Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. International Journal of Molecular Sciences, 2022, 23, 468.	1.8	12
371	Phytochemical‑rich herbal formula ATG‑125 protects against sucrose‑induced gastrocnemius muscle atrophy by rescuing Akt signaling and improving mitochondrial dysfunction in young adult mice. Molecular Medicine Reports, 2021, 25, .	1.1	4
372	Biology of Activating Transcription Factor 4 (ATF4) and Its Role in Skeletal Muscle Atrophy. Journal of Nutrition, 2022, 152, 926-938.	1.3	20

#	Article	IF	CITATIONS
373	Activating the Protein Synthesis Signaling by HIIT Concomitant with the Suppression of Protein Degradation in Wistar Rats' Skeletal Muscle. Gene, Cell and Tissue, 2021, In Press, .	0.2	0
374	Simultaneous loss of TSC1 and DEPDC5 in skeletal and cardiac muscles produces early-onset myopathy and cardiac dysfunction associated with oxidative damage and SQSTM1/p62 accumulation. Autophagy, 2022, 18, 2303-2322.	4.3	5
375	Exercise Preconditioning Blunts Early Atrogenes Expression and Atrophy in Gastrocnemius Muscle of Hindlimb Unloaded Mice. International Journal of Molecular Sciences, 2022, 23, 148.	1.8	4
376	Revisiting Cancer Cachexia: Pathogenesis, Diagnosis, and Current Treatment Approaches. Asia-Pacific Journal of Oncology Nursing, 2021, 8, 508-518.	0.7	18
377	Genetic basis of cardiovascular aging is at the core of human longevity. , 2022, 2, 25.		0
389	Supraphysiological activation of TAK1 promotes skeletal muscle growth and mitigates neurogenic atrophy. Nature Communications, 2022, 13, 2201.	5.8	10
390	Tumor cell anabolism and host tissue catabolism-energetic inefficiency during cancer cachexia. Experimental Biology and Medicine, 2022, 247, 713-733.	1.1	5
391	Laurel Attenuates Dexamethasone-Induced Skeletal Muscle Atrophy In Vitro and in a Rat Model. Nutrients, 2022, 14, 2029.	1.7	4
392	Hidden Agenda - The Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response in Inflammation-Induced Muscle Wasting. Frontiers in Immunology, 2022, 13, .	2.2	5
393	AR cooperates with SMAD4 to maintain skeletal muscle homeostasis. Acta Neuropathologica, 2022, 143, 713-731.	3.9	6
394	Conservative analysis of <i>Synaptopodinâ€2</i> intron senseâ€overlapping lncRNA reveals its novel function in promoting muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2017-2030.	2.9	14
395	High Intensity Interval Training: A Potential Method for Treating Sarcopenia. Clinical Interventions in Aging, 0, Volume 17, 857-872.	1.3	10
396	Fruit of Schisandra chinensis and its bioactive component schizandrin B ameliorate obesity-induced skeletal muscle atrophy. Food Research International, 2022, 157, 111439.	2.9	5
397	Celecoxib Alleviates Denervation-Induced Muscle Atrophy by Suppressing Inflammation and Oxidative Stress and Improving Microcirculation. SSRN Electronic Journal, 0, , .	0.4	0
398	Proteasomal inhibition preferentially stimulates lysosome activity relative to autophagic flux in primary astrocytes. Autophagy, 2023, 19, 570-596.	4.3	6
399	Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells, 2022, 11, 1931.	1.8	5
400	Decoding the transcriptome of denervated muscle at singleâ€nucleus resolution. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 2102-2117.	2.9	25
401	The Potential Role of Myokines/Hepatokines in the Progression of Neuronal Damage in Streptozotocin and High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice. Biomedicines, 2022, 10, 1521.	1.4	5

#	Article	IF	CITATIONS
403	Diabetic Muscular Atrophy: Molecular Mechanisms and Promising Therapies. Frontiers in Endocrinology, 0, 13, .	1.5	26
404	Ubiquitin Ligases in Longevity and Aging Skeletal Muscle. International Journal of Molecular Sciences, 2022, 23, 7602.	1.8	7
405	Muscle fiber type-specific autophagy responses following an overnight fast and mixed meal ingestion in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E242-E253.	1.8	5
407	Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Frontiers in Physiology, 0, 13, .	1.3	15
408	Combination therapy with anamorelin and a myostatin inhibitor is advantageous for cancer cachexia in a mouse model. Cancer Science, 2022, 113, 3547-3557.	1.7	5
409	Celecoxib alleviates denervation-induced muscle atrophy by suppressing inflammation and oxidative stress and improving microcirculation. Biochemical Pharmacology, 2022, 203, 115186.	2.0	12
410	Exploring the Muscle Metabolomics in the Mouse Model of Sepsis-Induced Acquired Weakness. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-16.	0.5	2
411	A Phytomolecule Icariin Protects from Sarcopenia Partially by Suppressing Myosin Heavy Chain Degradation in Orchiectomized Rats. Advanced Biology, 0, , 2200162.	1.4	1
412	The importance of biological sex in cardiac cachexia. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H609-H627.	1.5	2
413	Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutrition and Diabetes, 2022, 12, .	1.5	61
414	Carbohydrate intake in recovery from aerobic exercise differentiates skeletal muscle microRNA expression. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E435-E447.	1.8	2
415	Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients, 2022, 14, 3567.	1.7	14
416	Forkhead Box O Signaling Pathway in Skeletal Muscle Atrophy. American Journal of Pathology, 2022, 192, 1648-1657.	1.9	25
417	Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model. Journal of Bone and Mineral Metabolism, 2022, 40, 927-939.	1.3	8
420	Lysosomes and Their Role in Regulating the Metabolism of Hematopoietic Stem Cells. Biology, 2022, 11, 1410.	1.3	3
421	Clinical and biochemical footprints of inherited metabolic disorders: X. Metabolic myopathies. Molecular Genetics and Metabolism, 2022, 137, 213-222.	0.5	9
422	The role of ubiquitination in spinal and bulbar muscular atrophy. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	7
423	Deletion of skeletal muscle Akt1/2 causes osteosarcopenia and reduces lifespan in mice. Nature Communications, 2022, 13, .	5.8	19

#	Article	IF	CITATIONS
424	Protective effects of saffron extract and resistance training against atrophic markers: a study on rats with dexamethasone-induced muscle atrophy. Sport Sciences for Health, 0, , .	0.4	0
425	Urotensin receptor acts as a novel target for ameliorating fasting-induced skeletal muscle atrophy. Pharmacological Research, 2022, 185, 106468.	3.1	1
426	The Role of Mitochondrial and Redox Alterations in the Skeletal Myopathy Associated with Chronic Kidney Disease. Antioxidants and Redox Signaling, 0, , .	2.5	3
427	Autophagy in nonâ€immune mediated rhabdomyolysis: assessment of p62 immunohistochemistry. Muscle and Nerve, 0, , .	1.0	1
428	Autophagy in striated muscle diseases. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
429	Protective Effects of the Chalcone-Based Derivative ANO7 on Inflammation-Associated Myotube Atrophy Induced by Lipopolysaccharide. International Journal of Molecular Sciences, 2022, 23, 12929.	1.8	1
430	Angiotensin 1-7 increases fiber cross sectional area and force in juvenile mouse skeletal muscle. American Journal of Physiology - Cell Physiology, 0, , .	2.1	0
431	Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis. Communications Biology, 2022, 5, .	2.0	10
432	Grape Polyphenols in the Treatment of Human Skeletal Muscle Damage Due to Inflammation and Oxidative Stress during Obesity and Aging: Early Outcomes and Promises. Molecules, 2022, 27, 6594.	1.7	5
433	Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomedicine and Pharmacotherapy, 2022, 156, 113876.	2.5	9
434	Parkin deficiency exacerbates fasting-induced skeletal muscle wasting in mice. Npj Parkinson's Disease, 2022, 8, .	2.5	2
435	The role of mTORC1 in the regulation of skeletal muscle mass. Faculty Reviews, 0, 11, .	1.7	6
436	RNA-Sequencing Reveals Upregulation and a Beneficial Role of Autophagy in Myoblast Differentiation and Fusion. Cells, 2022, 11, 3549.	1.8	2
437	The effect of metformin on autophagy by LC3 expression in Type 2 Diabetes Mellitus (T2DM) human skeletal muscle cell culture. Bali Medical Journal, 2022, 11, 349-355.	0.1	0
438	Loss of FoxOs in muscle increases strength and mitochondrial function during aging. Journal of Cachexia, Sarcopenia and Muscle, 2023, 14, 243-259.	2.9	7
439	Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites, 2022, 12, 1149.	1.3	3
440	The inflammatory response, a mixed blessing for muscle homeostasis and plasticity. Frontiers in Physiology, 0, 13, .	1.3	1
441	Spatially resolved transcriptomics reveals innervation-responsive functional clusters in skeletal muscle. Cell Reports, 2022, 41, 111861.	2.9	14

#	Article	IF	CITATIONS
442	Genome Editing to Abrogate Muscle Atrophy. Advances in Experimental Medicine and Biology, 2023, , 157-176.	0.8	0
443	Myokine, a key cytokine for physical exercise to alleviate sarcopenic obesity. Molecular Biology Reports, 2023, 50, 2723-2734.	1.0	7
444	Lithocholic acid promotes skeletal muscle regeneration through the TGR5 receptor. Acta Biochimica Et Biophysica Sinica, 2023, , .	0.9	0
445	Angiotensin II type 1a receptor deficiency alleviates muscle atrophy after denervation. Scientific Reports, 2023, 13, .	1.6	2
446	Inhibiting myostatin signaling partially mitigates structural and functional adaptations to hindlimb suspension in mice. Npj Microgravity, 2023, 9, .	1.9	3
447	Chronic kidney disease-induced muscle atrophy: Molecular mechanisms and promising therapies. Biochemical Pharmacology, 2023, 208, 115407.	2.0	12
448	The Importance of mTORC1-Autophagy Axis for Skeletal Muscle Diseases. International Journal of Molecular Sciences, 2023, 24, 297.	1.8	10
449	Protein Turnover in Skeletal Muscle: Looking at Molecular Regulation towards an Active Lifestyle. International Journal of Sports Medicine, 2023, 44, 763-777.	0.8	1
450	Multi–Cell Line Analysis of Lysosomal Proteomes Reveals Unique Features and Novel Lysosomal Proteins. Molecular and Cellular Proteomics, 2023, 22, 100509.	2.5	8
451	Emerging role of TAK1 in the regulation of skeletal muscle mass. BioEssays, 2023, 45, .	1.2	0
452	Downregulation of extramitochondrial <scp>BCKDH</scp> and its uncoupling from <scp>AMP</scp> deaminase in type 2 diabetic <scp>OLETF</scp> rat hearts. Physiological Reports, 2023, 11, .	0.7	3
453	Inhibition of DDX3X alleviates persistent inflammation, immune suppression and catabolism syndrome in a septic mice model. International Immunopharmacology, 2023, 117, 109779.	1.7	1
454	The Role of Mitophagy in Skeletal Muscle Damage and Regeneration. Cells, 2023, 12, 716.	1.8	6
455	MYTHO is a novel regulator of skeletal muscle autophagy and integrity. Nature Communications, 2023, 14, .	5.8	5
456	Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. GeroScience, 2023, 45, 2303-2324.	2.1	1
457	Activation of \hat{l}^2 -catenin in mesenchymal progenitors leads to muscle mass loss. Developmental Cell, 2023, 58, 489-505.e7.	3.1	3
458	Causal relationship between insulin resistance and sarcopenia. Diabetology and Metabolic Syndrome, 2023, 15, .	1.2	14
460	Hormonal regulation of metabolism—recent lessons learned from insulin and estrogen. Clinical Science, 2023, 137, 415-434.	1.8	2

IF ARTICLE CITATIONS # The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney 461 1.8 3 Disease. International Journal of Molecular Sciences, 2023, 24, 6017. Defective BVES-mediated feedback control of cAMP in muscular dystrophy. Nature Communications, 5.8 2023, 14, . Regulation of autophagy by circular <scp>RNAs</scp> in rheumatoid arthritis: Potential targets of 463 0.9 1 action. International Journal of Rheumatic Diseases, 0, , . Effects of Turmeric Extract on Age-Related Skeletal Muscle Atrophy in Senescence-Accelerated Mice. 464 Life, 2023, 13, 941. An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients, 2023, 15, 1802. 465 1.7 11 Skeletal muscle atrophy, regeneration, and dysfunction in heart failure: Impact of exercise training. Journal of Sport and Health Science, 2023, 12, 557-567. 3.3 Ursolic Acid Alleviates Cancer Cachexia and Prevents Muscle Wasting via Activating SIRT1. Cancers, 468 1.7 4 2023, 15, 2378.

CITATION REPORT