Protective effect of spermidine on salt stress induced of bluegrass (Poa pratensis L.) cultivars

Ecotoxicology and Environmental Safety 117, 96-106 DOI: 10.1016/j.ecoenv.2015.03.023

Citation Report

#	Article	IF	CITATIONS
1	Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	32
2	De novo Transcriptome Sequencing of Cold-treated Kentucky Bluegrass (Poa pratensis) and Analysis of the Genes Involved in Cold Tolerance. Journal of Horticulture, 2016, 3, .	0.3	3
3	The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress. Frontiers in Plant Science, 2016, 7, 1221.	3.6	55
4	Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling. Journal of Zhejiang University: Science B, 2016, 17, 916-930.	2.8	31
5	Ameliorative effects of spermine application on physiological performance and salinity tolerance induction of susceptible and tolerant cultivars of wheat (<i>Triticum aestivum</i>). Archives of Agronomy and Soil Science, 2016, 62, 1337-1346.	2.6	2
6	Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. Journal of Proteomics, 2016, 143, 286-297.	2.4	37
7	Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochemistry (Moscow), 2016, 81, 465-480.	1.5	70
8	Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage. Plant Physiology and Biochemistry, 2016, 105, 260-270.	5.8	15
9	Nitrogen deprivation induces cross-tolerance of Poa annua callus to salt stress. Biologia Plantarum, 2016, 60, 543-554.	1.9	4
10	A combination of He-Ne laser irradiation and exogenous NO application efficiently protect wheat seedling from oxidative stress caused by elevated UV-B stress. Environmental Science and Pollution Research, 2016, 23, 23675-23682.	5.3	12
11	Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress. Russian Journal of Plant Physiology, 2016, 63, 645-655.	1.1	37
12	Nitrogenous compounds enhance the growth of petunia and reprogram biochemical changes against the adverse effect of salinity. Journal of Horticultural Science and Biotechnology, 2016, 91, 562-572.	1.9	21
13	Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree. AoB PLANTS, 2016, 8, .	2.3	8
14	Endogenous nitric oxide mediates He-Ne laser-induced adaptive responses in salt stressed-tall fescue leaves. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1887-1897.	1.3	6
15	Salt-induced difference between Glycine cyrtoloba and G. max in anti-oxidative ability and K+ vs. Na+ selective accumulation. Crop Journal, 2016, 4, 129-138.	5.2	11
16	Physiological responses of three soybean species (Glycine soja, G. gracilis, and G. max cv. Melrose) to salinity stress. Journal of Plant Research, 2017, 130, 723-733.	2.4	21
17	Seed pre-treatment with spermidine alleviates oxidative damages to different extent in the salt (NaCl)-stressed seedlings of three indica rice cultivars with contrasting level of salt tolerance. Plant Gene, 2017, 11, 112-123.	2.3	53
18	Seed priming with spermine and spermidine regulates the expression of diverse groups of abiotic stress-responsive genes during salinity stress in the seedlings of indica rice varieties. Plant Gene, 2017, 11, 124-132.	2.3	48

	CITATION	CITATION REPORT	
#	Article	IF	Citations
19	5-Aminolevulinic acid modulates antioxidant defense systems and mitigates drought-induced damage in Kentucky bluegrass seedlings. Protoplasma, 2017, 254, 2083-2094.	2.1	32
20	Evaluating the effect of zinc oxide nanoparticles on the physiological responses of nine non-photoperiod sensitive rice cultivars. Materials Today: Proceedings, 2017, 4, 6430-6435.	1.8	7
21	Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis. Plant Cell Reports, 2017, 36, 179-191.	5.6	27
22	Selection of Candidate Reference Genes for Gene Expression Analysis in Kentucky Bluegrass (Poa) Tj ETQq1 1 G).784314 rg 3.6	gBT/Overlock
23	VaERD15, a Transcription Factor Gene Associated with Cold-Tolerance in Chinese Wild Vitis amurensis. Frontiers in Plant Science, 2017, 8, 297.	3.6	32
24	Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Scientia Horticulturae, 2018, 234, 312-317.	3.6	72
25	Strategies to Mitigate the Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants. , 2018, , 85-136.		52
26	Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora. Ecotoxicology and Environmental Safety, 2018, 157, 395-402.	6.0	11
27	Heterologous expression of a novel Poa pratensis gibberellin 2-oxidase gene, PpGA2ox, caused dwarfism, late flowering, and increased chlorophyll accumulation in Arabidopsis. Biologia Plantarum, 2018, 62, 462-470.	1.9	10
28	Spermidine in health and disease. Science, 2018, 359, .	12.6	616
29	How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants?. Ecotoxicology and Environmental Safety, 2018, 147, 1010-1016.	6.0	158
30	Regulation on Antioxidant Defense System in Rice Seedlings (Oryza sativa L. ssp. indica cv. â€~Pathumthani) Tj Cluj-Napoca, 2018, 47, 368-377.	ETQq1 1 0. 1.1	784314 rg& 7
31	Transcriptome Sequencing of Two Kentucky Bluegrass (Poa pratensis L.) Genotypes in Response to Heat Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 47, 328-338.	1.1	5
32	Synthesis and Characterization of a Molecularly Imprinted Polymer of Spermidine and the Exploration of Its Molecular Recognition Properties. Polymers, 2018, 10, 1389.	4.5	17
33	Spermidine application alleviates salinity damage to antioxidant enzyme activity and gene expression in alfalfa. Ecotoxicology, 2018, 27, 1323-1330.	2.4	39
34	Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and Environmental Safety, 2018, 166, 18-25.	6.0	79
35	The positive effects of exogenous 5-aminolevulinic acid on the chlorophyll biosynthesis, photosystem and calvin cycle of Kentucky bluegrass seedlings in response to osmotic stress. Environmental and Experimental Botany, 2018, 155, 260-271.	4.2	38
36	Metabolic adjustment and gene expression for root sodium transport and calcium signaling contribute to salt tolerance in Agrostis grass species. Plant and Soil, 2019, 443, 219-232.	3.7	17

#	Article	IF	CITATIONS
37	Effects of spermidine and salinity stress on growth and biochemical response of paraquatâ€susceptibe and â€resistant goosegrass (Eleusine indica L.). Weed Biology and Management, 2019, 19, 75-84.	1.4	6
38	Î ³ -Aminobutyric Acid Promotes Chloroplast Ultrastructure, Antioxidant Capacity, and Growth of Waterlogged Maize Seedlings. Scientific Reports, 2019, 9, 484.	3.3	59
39	Effects of exogenous spermidine and spermine on antioxidant metabolism associated with cold-induced leaf senescence in Zoysiagrass (Zoysia japonica Steud.). Horticulture Environment and Biotechnology, 2019, 60, 295-302.	2.1	13
40	Canavanine-Induced Decrease in Nitric Oxide Synthesis Alters Activity of Antioxidant System but Does Not Impact S-Nitrosoglutathione Catabolism in Tomato Roots. Frontiers in Plant Science, 2019, 10, 1077.	3.6	9
41	Melatonin Positively Influences the Photosynthetic Machinery and Antioxidant System of Avena sativa during Salinity Stress. Plants, 2019, 8, 610.	3.5	44
42	Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany, 2019, 161, 4-25.	4.2	277
43	Effect of green garlic/cucumber crop rotation for 3 years on the dynamics of soil properties and cucumber yield in Chinese anthrosol. Journal of the Science of Food and Agriculture, 2020, 100, 362-370.	3.5	11
44	Identification and Characterization of NADH Kinase-3 from a Stress-Tolerant Wild Mung Bean Species (Vigna luteola (Jacq.) Benth.) with a Possible Role in Waterlogging Tolerance. Plant Molecular Biology Reporter, 2020, 38, 137-150.	1.8	3
45	Polyamines and ethylene metabolism during cold acclimation in zoysiagrass (Zoysia Japonica Steud.). Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	10
46	Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity. Scientia Horticulturae, 2020, 274, 109676.	3.6	34
47	Chlorophyll-a Fluorescence Analysis Reveals Differential Response of Photosynthetic Machinery in Melatonin-Treated Oat Plants Exposed to Osmotic Stress. Agronomy, 2020, 10, 1520.	3.0	20
48	Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells, 2020, 9, 2373.	4.1	126
49	Response to salt stress imposed on cultivars of three turfgrass species: <i>Poa pratensis</i> , <i>Lolium perenne</i> , and <i>Puccinellia distans</i> . Crop Science, 2020, 60, 1648-1659.	1.8	5
50	Interaction between TaNOX7 and TaCDPK13 Contributes to Plant Fertility and Drought Tolerance by Regulating ROS Production. Journal of Agricultural and Food Chemistry, 2020, 68, 7333-7347.	5.2	24
51	Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.)) Tj ETQq0 0	0 ựợðt /O	verlock 10 Tf 122
52	Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environmental Science and Pollution Research, 2020, 27, 36939-36953.	5.3	75
53	Fractal and Topological Analyses and Antioxidant Defense Systems of Alfalfa (Medicago sativa L.) Root System under Drought and Rehydration Regimes. Agronomy, 2020, 10, 805.	3.0	19
54	Effects of different size fractions of municipal solid waste compost on growth of Lolium perenne L International Journal of Environmental Science and Technology, 2020, 17, 3705-3714.	3.5	5

#	Article	IF	CITATIONS
56	SIHY5 is a necessary regulator of the cold acclimation response in tomato. Plant Growth Regulation, 2020, 91, 1-12.	3.4	31
57	Mechanisms of Environmental Stress Tolerance in Turfgrass. Agronomy, 2020, 10, 522.	3.0	29
58	Spermidine priming promotes germination of deteriorated seeds and reduced salt stressed damage in rice seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12130.	1.1	2
59	Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. Physiologia Plantarum, 2021, 171, 896-908.	5.2	48
60	Comparison of antioxidant enzyme activity and gene expression in two new spring wheat cultivars treated with salinity. Biologia Plantarum, 0, 65, 131-144.	1.9	3
61	Overexpression of Cerasus humilis ChAOX2 improves the tolerance of Arabidopsis to salt stress. 3 Biotech, 2021, 11, 316.	2.2	5
62	Effects of tea polyphenols on the activities of antioxidant enzymes and the expression of related gene in the leaves of wheat seedlings under salt stress. Environmental Science and Pollution Research, 2021, 28, 65447-65461.	5.3	7
63	<i>Klebsiella variicola</i> improves the antioxidant ability of maize seedlings under saline-alkali stress. PeerJ, 2021, 9, e11963.	2.0	5
64	Overexpression of cytoplasmic <i>Solanum tuberosum</i> Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene improves PSII efficiency and alleviates salinity stress in <i>Arabidopsis</i> Journal of Plant Interactions, 2021, 16, 398-410.	2.1	10
65	The versatile GABA in plants. Plant Signaling and Behavior, 2021, 16, 1862565.	2.4	132
66	Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea) Tj ETQq0 0 0 rg	BT /Qverlo 2.5	ck 10 Tf 50 3 49
67	Effects of spermine and putrescine polyamines on capsaicin accumulation in Capsicum annuum L. cell suspension cultures. Acta Agriculturae Slovenica, 2020, 115, 369.	0.3	5
68	Seed priming with spermine ameliorates salinity stress in the germinated seedlings of two rice cultivars differing in their level of salt tolerance. Tropical Plant Research, 2016, 3, 616-633.	0.4	27
69	Foliar applications of spermidine improve foxtail millet seedling characteristics under salt stress. Biologia Plantarum, 0, 64, 353-362.	1.9	5
70	Exogenous Spermidine Priming Mitigates the Osmotic Damage in Germinating Seeds of Leymus chinensis Under Salt-Alkali Stress. Frontiers in Plant Science, 2021, 12, 701538.	3.6	6
71	The Efficiency of Different Priming Agents for Improving Germination and Early Seedling Growth of Local Tunisian Barley under Salinity Stress. Plants, 2021, 10, 2264.	3.5	13
72	The Effect of Sodium Silicate and Methyl Jasmonate on Pigments and Antioxidant Activity of Tomato (Solanum lycopersicum L.) Under Salinity Stress. Tarim Bilimleri Dergisi, 0, , 479-487.	0.4	1
73	The Complete Chloroplast Genome of <i>Poa pratensis</i> (Poaceae), a High-Quality Forage. American Journal of Plant Sciences, 2021, 12, 1755-1760.	0.8	1

#	Article	IF	CITATIONS
74	Plasma membrane intrinsic protein SlPIP1;7 promotes root growth and enhances drought stress tolerance in transgenic tomato (<scp><i>Solanum lycopersicum</i></scp>) plants. Plant Breeding, 2021, 140, 1102-1114.	1.9	8
75	Butanediol induces brown blotch (Rhizoctonia solani) resistance in creeping bentgrass by enhancing the anti-oxidation of reactive oxygen species and sucrose metabolism. Australasian Plant Pathology, 2022, 51, 281-294.	1.0	2
76	Exogenous Melatonin Alleviates Alkaline Stress by Removing Reactive Oxygen Species and Promoting Antioxidant Defence in Rice Seedlings. Frontiers in Plant Science, 2022, 13, 849553.	3.6	15
78	Effects of Biostimulants in Horticulture, with Emphasis on Ornamental Plant Production. Agronomy, 2022, 12, 1043.	3.0	17
79	Genetic Diversity Assessment of Iranian Kentucky Bluegrass Accessions: I. ISSR Markers and Their Association with Habitat Suitability Within and Between Different Ecoregions. Molecular Biotechnology, 2022, 64, 1244-1258.	2.4	6
80	Exogenous Applications of Spermidine Improve Drought Tolerance in Seedlings of the Ornamental Grass Hordeum jubatum in Northeast China. Agronomy, 2022, 12, 1180.	3.0	4
81	Changes in Germination, Antioxidant Enzyme Activities and Biochemical Contents of Safflower (Carthamus tinctorius L.) Under Different Salinity Levels. SDU Journal of Science, 2022, 17, 186-196.	0.3	1
82	Spermidine Modify Antioxidant Activity in Cucumber Exposed to Salinity Stress. Agronomy, 2022, 12, 1554.	3.0	2
83	Genetic Diversity Assessment of Iranian Kentucky Bluegrass Accessions: II. Nuclear DNA Content and Its Association with Morphological and Geographical Features. Molecular Biotechnology, 0, , .	2.4	4
84	Exogenous silicon enhances resistance to 1,2,4-trichlorobenzene in rice. Science of the Total Environment, 2022, 845, 157248.	8.0	9
85	Chemical priming enhances plant tolerance to salt stress. Frontiers in Plant Science, 0, 13, .	3.6	24
86	Drip Irrigation Depth Alters Root Morphology and Architecture and Cold Resistance of Alfalfa. Agronomy, 2022, 12, 2192.	3.0	1
87	Versatile roles of polyamines in improving abiotic stress tolerance of plants. Frontiers in Plant Science, 0, 13, .	3.6	12
88	Transcriptome and functional analyses reveal ERF053 from Medicago falcata as key regulator in drought resistances. Frontiers in Plant Science, 0, 13, .	3.6	2
89	Polyamines: The Gleam of Next-Generation Plant Growth Regulators for Growth, Development, Stress Mitigation, and Hormonal Crosstalk in Plants—A Systematic Review. Journal of Plant Growth Regulation, 2023, 42, 5167-5191.	5.1	13
90	Iron supply confers tolerance in rice (Oryza sativa L.) to NaCl stress due to up-regulation of antioxidative enzymatic activity. South African Journal of Botany, 2022, 151, 315-324.	2.5	0
91	Comparative physiological and transcriptomics analysis revealed crucial mechanisms of silicon-mediated tolerance to iron deficiency in tomato. Frontiers in Plant Science, 0, 13, .	3.6	6
92	Mycorrhizal symbiosis alleviate salinity stress in pistachio plants by altering gene expression and antioxidant pathways. Physiology and Molecular Biology of Plants, 2023, 29, 263-276.	3.1	4

#	Article	IF	CITATIONS
93	Effect of salinity on biochemical components of the egg plant (Solanum melongena). , 2022, 91, .		0
94	New plant resistance inducers based on polyamines. Open Chemistry, 2022, 20, 1591-1600.	1.9	0
95	Polyamine, 1,3-diaminopropane, regulates defence responses on growth, gas exchange, PSII photochemistry and antioxidant system in wheat under arsenic toxicity. Plant Physiology and Biochemistry, 2023, 201, 107886.	5.8	0
96	The Role of SIPIP1;7 in Improving Photosynthetic Efficiency, Root Water Uptake, and Salt Stress Tolerance of Tomato. Horticultural Science and Technology, 2021, 39, 795-806.	0.6	0
97	Alteration in the expression of tomato sucrose transporter gene SISUT4 modulates sucrose subcellular compartmentation and affects responses of plants to drought stress. Environmental and Experimental Botany, 2023, 215, 105506.	4.2	0
98	Influence of environmental factors on seed germination and seedling emergence of <scp><i>Amaranthus blitoides</i></scp> S. Watson and <scp><i>A</i>. <i>hybridus</i></scp> L. Weed Research, 2024, 64, 31-41.	1.7	0
99	Stomatal density suppressor PagSDD1 is a "generalist―gene that promotes plant growth and improves water use efficiency. International Journal of Biological Macromolecules, 2024, 262, 129721.	7.5	0
100	Exogenous glutathione protected wheat seedling from high temperature and water deficit damages. Scientific Reports, 2024, 14, .	3.3	0