Icebergs not the trigger for North Atlantic cold events

Nature 520, 333-336 DOI: 10.1038/nature14330

Citation Report

#	Article	IF	CITATIONS
1	Correcting for the influence of iceâ€rafted detritus on grain sizeâ€based paleocurrent speed estimates. Paleoceanography, 2015, 30, 1347-1357.	3.0	29
2	Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?. Scientific Reports, 2015, 5, 17442.	1.6	55
3	Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate. Quaternary Science Reviews, 2015, 123, 113-133.	1.4	122
4	Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3. Paleoceanography, 2015, 30, 1425-1436.	3.0	22
5	Millennial-scale tropical atmospheric and Atlantic Ocean circulation change from the Last Glacial Maximum and Marine Isotope Stage 3. Earth and Planetary Science Letters, 2015, 427, 47-56.	1.8	15
6	Ocean carbon cycling during the past 130†000Âyears – a pilot study on inverse palaeoclimate record modelling. Climate of the Past, 2016, 12, 1949-1978.	1.3	9
7	Transient climate simulations of the deglaciation 21–9Âthousand years before present (versionÂ1) – PMIP4 Core experiment design and boundary conditions. Geoscientific Model Development, 2016, 9, 2563-2587.	1.3	84
8	Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing. Climate of the Past, 2016, 12, 1663-1679.	1.3	48
9	Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–97†ka): insights from a Belgian speleothem. Climate of the Past, 2016, 12, 1445-1458.	1.3	27
10	Mode transitions in Northern Hemisphere glaciation: co-evolution of millennial and orbital variability in Quaternary climate. Climate of the Past, 2016, 12, 1805-1828.	1.3	76
11	High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis) Tj ETQq0 0 (OrgeBa∏ ∕Ov	erløæk 10 Tf 5
12	Interglacials of the last 800,000 years. Reviews of Geophysics, 2016, 54, 162-219.	9.0	359
13	Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3. Paleoceanography, 2016, 31, 203-217.	3.0	24
14	Blake excursion at Vulcano (Aeolian Islands, Italy): Revised K-Ar and 40 Ar/ 39 Ar ages. Quaternary Geochronology, 2016, 35, 77-87.	0.6	6
15	Geochemical response of the mid-depth Northeast Atlantic Ocean to freshwater input during Heinrich events 1 to 4. Quaternary Science Reviews, 2016, 151, 236-254.	1.4	16
16	South Atlantic intermediate water advances into the Northâ€east Atlantic with reduced Atlantic meridional overturning circulation during the last glacial period. Geochemistry, Geophysics, Geosystems, 2016, 17, 2336-2353.	1.0	21
17	Teaching accreditation exams reveal grading biases favor women in male-dominated disciplines in France. Science, 2016, 353, 474-478.	6.0	24
18	Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas. Paleoceanography, 2016, 31, 1070-1082.	3.0	22

#	Article	IF	CITATIONS
19	Persistent climatic and oceanographic oscillations in the subpolar North Atlantic during the MIS 6 glaciation and MIS 5 interglacial. Paleoceanography, 2016, 31, 758-778.	3.0	24
20	The complexity of millennial-scale variability in southwestern Europe during MIS 11. Quaternary Research, 2016, 86, 373-387.	1.0	39
21	Deglacial biogenic opal peaks revealing enhanced Southern Ocean upwelling during the last 513 ka. Quaternary International, 2016, 425, 445-452.	0.7	10
22	North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate. Scientific Reports, 2016, 6, 20535.	1.6	46
23	Evolution of the stable carbon isotope composition of atmospheric CO ₂ over the last glacial cycle. Paleoceanography, 2016, 31, 434-452.	3.0	81
24	North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science, 2016, 353, 470-474.	6.0	269
25	On the Movements of the North Atlantic Subpolar Front in the Preinstrumental Past*. Journal of Climate, 2016, 29, 1545-1571.	1.2	7
26	Southernmost evidence of large European Ice Sheet-derived freshwater discharges during the Heinrich Stadials of the Last Glacial Period (Galician Interior Basin, Northwest Iberian Continental) Tj ETQq1 1 0.7	7844348.4 rg	BT 2 Øverlock
27	Ecology of deep-sea benthic foraminifera in the North Atlantic during the last glaciation: Food or temperature control. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 472, 15-32.	1.0	18
29	State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Science Advances, 2017, 3, e1600446.	4.7	86
30	Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change. Nature Communications, 2017, 8, 14595.	5.8	57
31	Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11. Scientific Reports, 2017, 7, 46192.	1.6	15
32	Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nature Geoscience, 2017, 10, 518-523.	5.4	103
33	A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin. Quaternary Science Reviews, 2017, 172, 118-130.	1.4	61
34	Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial. Nature Communications, 2017, 8, 520.	5.8	15
35	The Role of African Dust in Atlantic Climate During Heinrich Events. Paleoceanography, 2017, 32, 1291-1308.	3.0	3
36	Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9). Climate Dynamics, 2017, 49, 3193-3208.	1.7	2
37	The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. Annual Review of Marine Science, 2017, 9, 83-104.	5.1	184

#	Article	IF	CITATIONS
38	Regional seesaw between the North Atlantic and Nordic Seas during the last glacial abrupt climate events. Climate of the Past, 2017, 13, 729-739.	1.3	10
39	North Atlantic variability and its links to European climate over the last 3000 years. Nature Communications, 2017, 8, 1726.	5.8	51
40	An improved north–south synchronization of ice core records around the 41†kyr ¹⁰ Be peak. Climate of the Past, 2017, 13, 217-229.	1.3	52
41	Ocean and atmosphere teleconnections modulate east tropical Pacific productivity at late to middle Pleistocene terminations. Earth and Planetary Science Letters, 2018, 493, 82-91.	1.8	12
42	Glacial-to-deglacial changes in North Atlantic meltwater advection and deep-water formation – Centennial-to-millennial-scale 14C records from the Azores plateau. Geochimica Et Cosmochimica Acta, 2018, 236, 399-415.	1.6	7
43	South American monsoon response to iceberg discharge in the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3788-3793.	3.3	84
44	Moving beyond the age–depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera. Climate of the Past, 2018, 14, 515-526.	1.3	30
45	A spatiotemporal reconstruction of sea-surface temperatures in the North Atlantic during Dansgaard–Oeschger events 5–8. Climate of the Past, 2018, 14, 901-922.	1.3	12
46	Western U.S. lake expansions during Heinrich stadials linked to Pacific Hadley circulation. Science Advances, 2018, 4, eaav0118.	4.7	42
47	Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly. Climate of the Past, 2018, 14, 969-990.	1.3	40
48	The cryptotephra record of the Marine Isotope Stage 12 to 10 interval (460–335 ka) at Tenaghi Philippon, Greece: Exploring chronological markers for the Middle Pleistocene of the Mediterranean region. Quaternary Science Reviews, 2018, 200, 313-333.	1.4	23
49	Last interglacial ocean changes in the Bahamas: climate teleconnections between low and high latitudes. Climate of the Past, 2018, 14, 1361-1375.	1.3	6
50	Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11005-E11014.	3.3	52
51	Highâ€Resolution Benthic Mg/Ca Temperature Record of the Intermediate Water in the Denmark Strait Across Dâ€O Stadialâ€Interstadial Cycles. Paleoceanography and Paleoclimatology, 2018, 33, 1169-1185.	1.3	10
52	Distribution and ecology of planktic foraminifera in the North Pacific: Implications for paleo-reconstructions. Quaternary Science Reviews, 2018, 191, 256-274.	1.4	18
53	Acceleration of Northern Ice Sheet Melt Induces AMOC Slowdown and Northern Cooling in Simulations of the Early Last Deglaciation. Paleoceanography and Paleoclimatology, 2018, 33, 807-824.	1.3	33
54	Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial. Nature Geoscience, 2018, 11, 627-634.	5.4	47
55	Forcing of late Pleistocene ice volume by spatially variable summer energy. Scientific Reports, 2018, 8, 11520.	1.6	1

#	Article	IF	CITATIONS
56	Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages. Frontiers in Plant Science, 2018, 9, 38.	1.7	35
57	Coherent deglacial changes in western Atlantic Ocean circulation. Nature Communications, 2018, 9, 2947.	5.8	98
58	Centennial-scale vegetation dynamics and climate variability in SE Europe during Marine Isotope Stage 11 based on a pollen record from Lake Ohrid. Quaternary Science Reviews, 2018, 190, 20-38.	1.4	25
59	Climate ultrastructure and aquatic community response to Heinrich Stadials (HS5a-HS1) in the continental northern Neotropics. Quaternary Science Reviews, 2018, 197, 75-91.	1.4	15
60	Subtropical hydroclimate during Termination V (â^¼430-422 ka): Annual records of extreme precipitation, drought, and interannual variability from Santa Barbara Basin. Quaternary Science Reviews, 2018, 191, 73-88.	1.4	2
61	Past Carbonate Preservation Events in the Deep Southeast Atlantic Ocean (Cape Basin) and Their Implications for Atlantic Overturning Dynamics and Marine Carbon Cycling. Paleoceanography and Paleoclimatology, 2018, 33, 643-663.	1.3	11
62	Early Interglacial Legacy of Deglacial Climate Instability. Paleoceanography and Paleoclimatology, 2019, 34, 1455-1475.	1.3	41
63	The Stability of the AMOC During Heinrich Events Is Not Dependent on the AMOC Strength in an Intermediate Complexity Earth System Model Ensemble. Paleoceanography and Paleoclimatology, 2019, 34, 1359-1374.	1.3	4
64	Synchronous Changes in Sediment Transport and Provenance at the Icelandâ€Faroe Ridge Linked to Millennial Climate Variability From 55 to 6 ka BP. Geochemistry, Geophysics, Geosystems, 2019, 20, 4184-4201.	1.0	3
65	Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis. Journal of Geophysical Research: Oceans, 2019, 124, 5336-5375.	1.0	109
66	Enhanced surface melting of the Fennoscandian Ice Sheet during periods of North Atlantic cooling. Geology, 2019, 47, 664-668.	2.0	27
67	Temperature and moisture variability in the eastern Mediterranean region during Marine Isotope Stages 11–10 based on biomarker analysis of the Tenaghi Philippon peat deposit. Quaternary Science Reviews, 2019, 225, 105977.	1.4	8
68	The Marine Isotope Stage 12 pollen record from Lake Ohrid (SE Europe): Investigating short-term climate change under extreme glacial conditions. Quaternary Science Reviews, 2019, 221, 105873.	1.4	16
69	Consistent fluctuations in intermediate water temperature off the coast of Greenland and Norway during Dansgaard-Oeschger events. Quaternary Science Reviews, 2019, 223, 105887.	1.4	11
70	Insolation and Glacial Meltwater Influence on Seaâ€lce and Circulation Variability in the Northeastern Labrador Sea During the Last Glacial Period. Paleoceanography and Paleoclimatology, 2019, 34, 1689-1709.	1.3	8
71	Constraining past environmental changes of coldâ€water coral mounds with geochemical proxies in corals and foraminifera. Depositional Record, 2019, 7, 200.	0.8	9
72	Consistently dated Atlantic sediment cores over the last 40 thousand years. Scientific Data, 2019, 6, 165.	2.4	63
73	The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0. Geoscientific Model Development, 2019, 12, 3649-3685.	1.3	26

#	Article	IF	CITATIONS
74	Three-phased Heinrich Stadial 4 recorded in NE Brazil stalagmites. Earth and Planetary Science Letters, 2019, 510, 94-102.	1.8	19
75	Impact of millennial-scale oceanic variability on the Greenland ice-sheet evolution throughout the last glacial period. Climate of the Past, 2019, 15, 593-609.	1.3	3
76	Ocean-driven millennial-scale variability of the Eurasian ice sheet during the last glacial period simulated with a hybrid ice-sheet–shelf model. Climate of the Past, 2019, 15, 957-979.	1.3	13
77	Deep-water circulation changes lead North Atlantic climate during deglaciation. Nature Communications, 2019, 10, 1272.	5.8	47
78	Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation. Nature Geoscience, 2019, 12, 290-295.	5.4	26
80	Sea ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Science Advances, 2019, 5, eaau6174.	4.7	49
81	Distinguishing current effects in sediments delivered to the ocean by ice. I. Principles, methods and examples. Quaternary Science Reviews, 2019, 212, 92-107.	1.4	56
82	The Antarctic Ice Sheet response to glacial millennial-scale variability. Climate of the Past, 2019, 15, 121-133.	1.3	9
83	Characterizing the Eemian-Weichselian transition in northwestern Europe with three multiproxy speleothem archives from the Belgian Han-sur-Lesse and Remouchamps cave systems. Quaternary Science Reviews, 2019, 208, 21-37.	1.4	9
84	Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events. Quaternary Science Reviews, 2019, 203, 1-20.	1.4	74
85	An overview of Alpine and Mediterranean palaeogeography, terrestrial ecosystems and climate history during MIS 3 with focus on the Middle to Upper Palaeolithic transition. Quaternary International, 2020, 551, 7-28.	0.7	33
86	Glacial–Interglacial Precipitation Changes. Annual Review of Marine Science, 2020, 12, 525-557.	5.1	23
87	Stratigraphic correlation and splice generation for sediments recovered from a large-lake drilling project: an example from Lake JunÃn, Peru. Journal of Paleolimnology, 2020, 63, 83-100.	0.8	13
88	A new perspective of the Alboran Upwelling System reconstruction during the Marine Isotope Stage 11: A high-resolution coccolithophore record. Quaternary Science Reviews, 2020, 245, 106520.	1.4	13
89	Impact of Eurasian Ice Sheet and North Atlantic Climate Dynamics on Black Sea Temperature Variability During the Penultimate Glacial (MIS 6, 130–184 ka BP). Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003882.	1.3	5
90	Dynamics of Spontaneous (Multi) Centennialâ€Scale Variations of the Atlantic Meridional Overturning Circulation Strength During the Last Interglacial. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003913.	1.3	4
91	The fast-acting "pulse―of Heinrich Stadial 3 in a mid-latitude boreal ecosystem. Scientific Reports, 2020, 10, 18031.	1.6	7
92	Southern Ocean convection amplified past Antarctic warming and atmospheric CO2 rise during Heinrich Stadial 4. Communications Earth & Environment, 2020, 1, .	2.6	13

#	Article	IF	CITATIONS
93	Millennial climate oscillations controlled the structure and evolution of Termination II. Scientific Reports, 2020, 10, 14912.	1.6	3
94	Mediterranean Overflow Over the Last 250Âkyr: Freshwater Forcing From the Tropics to the Ice Sheets. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003931.	1.3	42
95	Synchronous timing of abrupt climate changes during the last glacial period. Science, 2020, 369, 963-969.	6.0	62
96	Abrupt CO ₂ release to the atmosphere under glacial and early interglacial climate conditions. Science, 2020, 369, 1000-1005.	6.0	35
97	Regional impacts of climate change and its relevance to human evolution. Evolutionary Human Sciences, 2020, 2, .	0.9	14
98	Arctic sea ice export as a driver of deglacial climate. Geology, 2020, 48, 395-399.	2.0	9
99	Impact of climatic extremes on Alpine ecosystems during MIS 3. Quaternary Science Reviews, 2020, 239, 106333.	1.4	9
100	Controls on Primary Productivity in the Eastern Equatorial Pacific, East of the Galapagos Islands, During the Penultimate Deglaciation. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003777.	1.3	3
101	Carbon isotopes and Paâ^•Th response to forced circulation changes: a model perspective. Climate of the Past, 2020, 16, 867-883.	1.3	5
102	Dansgaard–Oeschger-like events of the penultimate climate cycle: the loess point of view. Climate of the Past, 2020, 16, 713-727.	1.3	19
103	Interglacial instability of North Atlantic Deep Water ventilation. Science, 2020, 367, 1485-1489.	6.0	36
104	The deglaciation of the Americas during the Last Glacial Termination. Earth-Science Reviews, 2020, 203, 103113.	4.0	60
105	The role of Northeast Pacific meltwater events in deglacial climate change. Science Advances, 2020, 6, eaay2915.	4.7	48
106	Biomarker Fingerprint of Debris Flow Deposits as a Paleoproxy for IRD Sources in the Last Glacial North Atlantic. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003850.	1.3	1
107	North Atlantic subsurface temperature response controlled by effective freshwater input in "Heinrich―events. Earth and Planetary Science Letters, 2020, 539, 116247.	1.8	20
108	Persistent millennial-scale climate variability in Southern Europe during Marine Isotope Stage 6. Quaternary Science Advances, 2021, 3, 100016.	1.1	7
109	Antarctic icebergs reorganize ocean circulation during Pleistocene glacials. Nature, 2021, 589, 236-241.	13.7	28
110	Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum. Climate of the Past, 2021, 17, 615-632.	1.3	8

#	Article	IF	CITATIONS
111	Heinrich Stadial aridity forced Mediterranean-wide glacier retreat in the last cold stage. Nature Geoscience, 2021, 14, 197-205.	5.4	37
112	The North Atlantic Glacial Eastern Boundary Current as a Key Driver for Iceâ€Sheet—AMOC Interactions and Climate Instability. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004068.	1.3	25
113	Strengthening Atlantic Inflow Across the Midâ€Pleistocene Transition. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004200.	1.3	16
114	The Zealandia Switch: Ice age climate shifts viewed from Southern Hemisphere moraines. Quaternary Science Reviews, 2021, 257, 106771.	1.4	59
115	Millennial scale feedbacks determine the shape and rapidity of glacial termination. Nature Communications, 2021, 12, 2273.	5.8	22
116	Sea-Surface Characteristics of the Newfoundland Basin of the Northwest Atlantic Ocean during the Last 145,000 Years: A Study Based on the Sedimentological and Paleontological Proxies. Applied Sciences (Switzerland), 2021, 11, 3343.	1.3	4
117	Testing the Tropical Trigger Hypothesis of Abrupt Climate Variability. Frontiers in Earth Science, 2021, 9, .	0.8	2
118	Enhanced iceberg discharge in the western North Atlantic during all Heinrich events of the last glaciation. Earth and Planetary Science Letters, 2021, 564, 116910.	1.8	11
119	Different Trends in Antarctic Temperature and Atmospheric CO ₂ During the Last Glacial. Geophysical Research Letters, 2021, 48, e2021GL093868.	1.5	5
121	High-sedimentation-rate loess records: A new window into understanding orbital- and millennial-scale monsoon variability. Earth-Science Reviews, 2021, 220, 103731.	4.0	24
122	Meltwater flux from northern ice-sheets to the mediterranean during MIS 12. Quaternary Science Reviews, 2021, 268, 107108.	1.4	7
123	Does a difference in ice sheets between Marine Isotope Stages 3 and 5a affect the duration of stadials? Implications from hosing experiments. Climate of the Past, 2021, 17, 1919-1936.	1.3	1
124	Earth Ice Age Dynamics: A Bimodal Forcing Hypothesis. Frontiers in Earth Science, 2021, 9, .	0.8	3
125	A tephraâ€based correlation of marine and terrestrial records of MIS 11c from Britain and the North Atlantic. Journal of Quaternary Science, 2021, 36, 1149-1161.	1.1	4
126	Pulsebeat of early Holocene glaciation in Baffin Bay from high-resolution beryllium-10 moraine chronologies. Quaternary Science Reviews, 2021, 270, 107179.	1.4	6
127	Oldest Dryas hydroclimate reorganization in the eastern Iberian Peninsula after the iceberg discharges of Heinrich Event 1. Quaternary Research, 2021, 101, 67-83.	1.0	8
128	Thermal impact of Heinrich stadials in cave temperature and speleothem oxygen isotope records. Quaternary Research, 0, , 1-14.	1.0	6
129	An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nature Reviews Earth & Environment, 2020, 1, 677-693.	12.2	38

	Сітатіс	CITATION REPORT		
# 130	ARTICLE Parallelisms between sea surface temperature changes in the western tropical Atlantic (Guiana Basin)	IF 1.3	CITATIONS	
130	and high latitude climate signals over the last 140 000 years. Climate of the Past, 2015, 11, 1297-1311.	1.5	10	
134	Two-Tiered Transition of the North Atlantic Surface Hydrology during the Past 1.6 Ma: Multiproxy Evidence from Planktic Foraminifera. Paleontological Research, 2021, 25, .	0.5	0	
138	Persistent orbital influence on millennial climate variability through the Pleistocene. Nature Geoscience, 2021, 14, 812-818.	5.4	41	
139	Direct astronomical influence on abrupt climate variability. Nature Geoscience, 2021, 14, 819-826.	5.4	27	
140	Pleistocene Antarctic climate variability: ice sheet, ocean and climate interactions. , 2022, , 523-621.		5	
141	Three-phase structure of the East Asia summer monsoon during Heinrich Stadial 4 recorded in Xianyun Cave, southeastern China. Quaternary Science Reviews, 2021, 274, 107267.	1.4	8	
142	The Atlantic Meridional Overturning Circulation and the Cabbeling Effect. Journal of Physical Oceanography, 2020, 50, 2561-2572.	0.7	1	
143	Rapid Climate Variability: Description and Mechanisms. Frontiers in Earth Sciences, 2021, , 405-421.	0.1	1	
144	Abrupt (or millennial or suborbital) climatic variability: Heinrich events/stadials. , 2022, , 181-187.		2	
145	An overview of the Last Glacial Cycle. , 2022, , 165-169.		1	
146	Automatic detection of abrupt transitions in paleoclimate records. Chaos, 2021, 31, 113129.	1.0	12	
147	Indian Summer Monsoon variability 140–70 thousand years ago based on multi-proxy records from the Bay of Bengal. Quaternary Science Reviews, 2022, 279, 107403.	1.4	10	
149	Ocean sensitivity to freshwater. Nature Climate Change, 0, , .	8.1	1	
150	Marine Isotope Stage 11c: An unusual interglacial. Quaternary Science Reviews, 2022, 284, 107493.	1.4	9	
151	A ¹⁰ Be Moraine Chronology of the Last Glaciation and Termination at 49°N in the Mongolian Altai of Central Asia. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	7	
154	Reorganization of Atlantic Waters at sub-polar latitudes linked to deep-water overflow in both glacial and interglacial climate states. Climate of the Past, 2022, 18, 989-1009.	1.3	0	
155	An exceptional record of millennial-scale climate variability in the southern Iberian Margin during MIS 6: Impact on the formation of sapropel S6. Quaternary Science Reviews, 2022, 286, 107527.	1.4	2	
156	Persistent influence of precession on northern ice sheet variability since the early Pleistocene. Science, 2022, 376, 961-967.	6.0	16	

#	Article	IF	CITATIONS
157	The role of ocean and atmospheric dynamics in the marine-based collapse of the last Eurasian Ice Sheet. Communications Earth & Environment, 2022, 3, .	2.6	9
158	Coccolithophore response to changes in surface water conditions south of Iceland (ODP Site 984) between 130 and 56Âka. Marine Micropaleontology, 2022, 175, 102149.	0.5	2
159	Dansgaard-Oeschger and Heinrich event temperature anomalies in the North Atlantic set by sea ice, frontal position and thermocline structure. Quaternary Science Reviews, 2022, 289, 107599.	1.4	12
160	The climatic and environmental context of the Late Pleistocene. , 2022, , 17-38.		1
161	Rapid northern hemisphere ice sheet melting during the penultimate deglaciation. Nature Communications, 2022, 13, .	5.8	13
162	Subsurface ocean warming preceded Heinrich Events. Nature Communications, 2022, 13, .	5.8	20
163	Evidence for massive methane hydrate destabilization during the penultimate interglacial warming. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
164	Changes in North Atlantic deep-water oxygenation across the Middle Pleistocene Transition. Science, 2022, 377, 654-659.	6.0	8
165	Heinrich summers. Quaternary Science Reviews, 2022, 295, 107750.	1.4	10
166	Concept and global context of the glacial landforms from deglaciation. , 2023, , 61-67.		0
167	Millennial‣cale Climate Oscillations Triggered by Deglacial Meltwater Discharge in Last Glacial Maximum Simulations. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	4
168	Sea ice fluctuations in the Baffin Bay and the Labrador Sea during glacial abrupt climate changes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
169	A Theory of Abrupt Climate Changes: Their Genesis and Anatomy. Geosciences (Switzerland), 2022, 12, 391.	1.0	0
170	Spatial differences in East Asian climate transition at â^¼260 ka and their links to ENSO. Quaternary Science Reviews, 2022, 296, 107805.	1.4	6
171	Quaternary Climate Variability and Periglacial Dynamics. , 2022, , 7-35.		1
173	Correction of the IRD Influence for Paleoâ€Current Flow Speed Reconstructions in Hemipelagic Sediments. Paleoceanography and Paleoclimatology, 2023, 38, .	1.3	3
174	A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic. Climate of the Past, 2023, 19, 607-636.	1.3	9