The genomes of two key bumblebee species with primit

Genome Biology 16, 76 DOI: 10.1186/s13059-015-0623-3

Citation Report

#	Article	IF	CITATIONS
1	Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system. Molecular Ecology, 2015, 24, 2916-2936.	3.9	64
2	Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens. Molecular Ecology, 2015, 24, 5596-5615.	3.9	95
3	Taskâ€related differential expression of four cytochrome P450 genes in honeybee appendages. Insect Molecular Biology, 2015, 24, 582-588.	2.0	33
4	The Effect of Oral Administration of dsRNA on Viral Replication and Mortality in Bombus terrestris. Viruses, 2015, 7, 3172-3185.	3.3	48
5	The evolutionary dynamics of major regulators for sexual development among Hymenoptera species. Frontiers in Genetics, 2015, 6, 124.	2.3	18
6	A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biology, 2015, 16, 83.	8.8	130
7	Juvenile hormone and ecdysteroids as major regulators of brain and behavior in bees. Current Opinion in Insect Science, 2015, 12, 26-37.	4.4	37
8	The Physiological and Genomic Bases of Bumble Bee Social Behaviour. Advances in Insect Physiology, 2015, 48, 37-93.	2.7	71
9	Unraveling the venom proteome of the bumblebee (Bombus terrestris) by integrating a combinatorial peptide ligand library approach with FT-ICR MS. Toxicon, 2015, 102, 81-88.	1.6	25
10	The power and promise of applying genomics to honey bee health. Current Opinion in Insect Science, 2015, 10, 124-132.	4.4	42
11	The making of eusociality: insights from two bumblebee genomes. Genome Biology, 2015, 16, 75.	8.8	6
12	Genomic signatures of evolutionary transitions from solitary to group living. Science, 2015, 348, 1139-1143.	12.6	357
13	Xenobiotic detoxification pathways in honey bees. Current Opinion in Insect Science, 2015, 10, 51-58.	4.4	284
14	The Genome and Methylome of a Beetle with Complex Social Behavior, <i>Nicrophorus vespilloides </i> (Coleoptera: Silphidae). Genome Biology and Evolution, 2015, 7, 3383-3396.	2.5	87
15	Chemoreceptor Evolution in Hymenoptera and Its Implications for the Evolution of Eusociality. Genome Biology and Evolution, 2015, 7, 2407-2416.	2.5	141
16	Transcriptome Profile of the Asian Giant Hornet (<i>Vespa mandarinia</i>) Using Illumina HiSeq 4000 Sequencing: <i>De Novo</i> Assembly, Functional Annotation, and Discovery of SSR Markers. International Journal of Genomics, 2016, 2016, 1-15.	1.6	24
17	Drosophila As a Genetically Tractable Model for Social Insect Behavior. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	11
18	Contrasting Evolutionary Rates between Social and Parasitic Bumblebees for Three Social Effect Genes. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	6

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Transitional Complexity of Social Insect Immunity. Frontiers in Ecology and Evolution, 2	.016, 4, .	2.2	10
20	Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Wor Primary Immune Response. PLoS ONE, 2016, 11, e0159635.	kers Mimics a	2.5	56
21	Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transitio Solitary to Social Life in a Bumblebee, Bombus terrestris. Frontiers in Physiology, 2016,	n from 7, 574.	2.8	45
22	The involvement of clathrinâ€mediated endocytosis and two Sidâ€lâ€like transmembr doubleâ€stranded RNA uptake in the Colorado potato beetle midgut. Insect Molecular 315-323.	ane proteins in Biology, 2016, 25,	2.0	143
23	Regulation of Isoprenoid Pheromone Biosynthesis in Bumblebee Males. ChemBioChem,	2016, 17, 260-267.	2.6	15
24	PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, <i>Apis mellifera</i> Biochemistry and Physiology, 2016, 93, 3-24.	Archives of Insect	1.5	12
25	Exploring complex pheromone biosynthetic processes in the bumblebee male labial glan sequencing. Insect Molecular Biology, 2016, 25, 295-314.	าd by RNA	2.0	12
26	Genome, transcriptome and methylome sequencing of a primitively eusocial wasp rever reduced <scp>DNA</scp> methylation system in a social insect. Molecular Ecology, 20	al a greatly 16, 25, 1769-1784.	3.9	148
27	Molecular cloning, expression and identification of the promoter regulatory region for t neuropeptide trissin in the nervous system of the silkmoth Bombyx mori. Cell and Tissu 2016, 364, 499-512.	he e Research,	2.9	25
28	Comparative genomic approaches to investigate molecular traits specific to social insec Opinion in Insect Science, 2016, 16, 87-94.	tts. Current	4.4	3
29	Gene expression differences in relation to age and social environment in queen and wo bees. Experimental Gerontology, 2016, 77, 52-61.	rker bumble	2.8	45
30	Nectar chemistry modulates the impact of an invasive plant on native pollinators. Funct 2016, 30, 885-893.	tional Ecology,	3.6	62
31	The Genome and Methylome of a Subsocial Small Carpenter Bee, <i>Ceratina calcarata< Biology and Evolution, 2016, 8, 1401-1410.</i>	:/i>. Genome	2.5	71
32	Effect of the mycotoxin deoxynivalenol on grain aphid Sitobion avenae and its parasitic ervi through food chain contamination. Arthropod-Plant Interactions, 2016, 10, 323-32	wasp Aphidius 9.	1.1	5
33	The evolution of heat shock protein sequences, cis-regulatory elements, and expressior the eusocial Hymenoptera. BMC Evolutionary Biology, 2016, 16, 15.	profiles in	3.2	51
34	Patterns of molecular evolution of RNAi genes in social and socially parasitic bumblebee Genetics and Evolution, 2016, 42, 53-59.	es. Infection,	2.3	5
35	Insect antimicrobial peptides act synergistically to inhibit a trypanosome parasite. Philo Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150302.	sophical	4.0	50
36	Hungry for quality—individual bumblebees forage flexibly to collect high-quality poller Ecology and Sociobiology, 2016, 70, 1209-1217.	1. Behavioral	1.4	63

ARTICLE IF CITATIONS # Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, 37 2.7 154 Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147. Differential expression pattern of Vago in bumblebee (Bombus terrestris), induced by virulent and 3.3 avirulent virus infections. Scientific Reports, 2016, 6, 34200. Genome methylation patterns across castes and generations in a parasitoid wasp. Ecology and 39 1.9 20 Evolution, 2016, 6, 7943-7953. Identification of Complete Repertoire of <i>Apis florea </i>Odorant Receptors Reveals Complex Orthologous Relationships with <i>Apis mellifera </i>. Genome Biology and Evolution, 2016, 8, 2879-2895. Why do social insect queens live so long? Approaches to unravel the sociality-aging puzzle. Current 41 4.4 19 Opinion in Insect Science, 2016, 16, 104-107. Population genomics of divergence among extreme and intermediate color forms in a polymorphic insect. Ecology and Evolution, 2016, 6, 1075-1091. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids 43 14.5 105 Résearch, 2016, 44, D793-D800. Expression profile of the sex determination gene doublesex in a gynandromorph of bumblebee, Bombus 44 9 1.6 ignitus. Die Naturwissenschaften, 2016, 103, 17. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme 45 4.4 80 families in insect herbivores?. Current Opinion in Insect Science, 2016, 13, 70-76. InÂvivo study of Dicer-2-mediated immune response of the small interfering RNA pathway upon systemic infections of virulent and avirulent viruses in Bombus terrestris. Insect Biochemistry and Molecular Biology, 2016, 70, 127-137. Separation of different pollen types by chemotactile sensing in <i>Bombus terrestris</i>... Journal of 47 4 1.7 Experimental Biology, 2017, 220, 1435-1442. Molecular Evolution of Insect Sociality: An Eco-Evo-Devo Perspective. Annual Review of Entomology, 11.8 2017, 62, 419-442. Bumble bee ecophysiology: integrating the changing environment and the organism. Current Opinion in Insect Science, 2017, 22, 101-108. 49 4.4 49 MicroRNAs Associated with Caste Determination and Differentiation in a Primitively Eusocial Insect. 3.3 Scientific Reports, 2017, 7, 45674. Infections of virulent and avirulent viruses differentially influenced the expression of dicer-1, ago-1, 51 3.3 8 and microRNAs in Bombus terrestris. Scientific Reports, 2017, 7, 45620. Comprehensive processing of high-throughput small RNA sequencing data including quality checking, normalization, and differential expression analysis using the UEA sRNA Workbench. Rna, 2017, 23, 29 823-835. The impact of GC bias on phylogenetic accuracy using targeted enrichment phylogenomic data. 53 2.7 50 Molecular Phylogenetics and Evolution, 2017, 111, 149-157. Cuticular hydrocarbon cues of immuneâ€challenged workers elicit immune activation in honeybee 54 queens. Molecular Ecology, 2017, 26, 3062-3073.

щ	Apticus	IF	CITATIONS
#	Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease	IF	CHATIONS
55	challenges for managed and wild bees. Molecular Ecology, 2017, 26, 718-739.	3.9	39
56	The value of new genome references. Experimental Cell Research, 2017, 358, 433-438.	2.6	19
57	Direct Determination of the Mutation Rate in the Bumblebee Reveals Evidence for Weak Recombination-Associated Mutation and an Approximate Rate Constancy in Insects. Molecular Biology and Evolution, 2017, 34, 119-130.	8.9	93
58	Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 273-283.	1.9	30
59	Task allocation and site fidelity jointly influence foraging regulation in honeybee colonies. Royal Society Open Science, 2017, 4, 170344.	2.4	25
60	Structure of an Insecticide Sequestering Carboxylesterase from the Disease Vector <i>Culex quinquefasciatus:</i> What Makes an Enzyme a Good Insecticide Sponge?. Biochemistry, 2017, 56, 5512-5525.	2.5	24
61	Computational genome-wide survey of odorant receptors from two solitary bees Dufourea novaeangliae (Hymenoptera: Halictidae) and Habropoda laboriosa (Hymenoptera: Apidae). Scientific Reports, 2017, 7, 10823.	3.3	17
62	Do social insects support Haig's kin theory for the evolution of genomic imprinting?. Epigenetics, 2017, 12, 725-742.	2.7	25
63	Population genomics reveals a candidate gene involved in bumble bee pigmentation. Ecology and Evolution, 2017, 7, 3406-3413.	1.9	13
64	Methyl farnesoate epoxidase (mfe) gene expression and juvenile hormone titers in the life cycle of a highly eusocial stingless bee, Melipona scutellaris. Journal of Insect Physiology, 2017, 101, 185-194.	2.0	24
65	Retention of Core Meiotic Genes Across Diverse Hymenoptera. Journal of Heredity, 2017, 108, 791-806.	2.4	17
66	The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee <i>Euglossa dilemma</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2891-2898.	1.8	35
67	Assessment of pollen rewards by foraging bees. Functional Ecology, 2017, 31, 76-87.	3.6	93
68	Breaking RAD: an evaluation of the utility of restriction siteâ€associated DNA sequencing for genome scans of adaptation. Molecular Ecology Resources, 2017, 17, 142-152.	4.8	322
69	Bee conservation in the age of genomics. Conservation Genetics, 2017, 18, 713-729.	1.5	50
70	The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees. Genome Biology and Evolution, 2017, 9, 2023-2036.	2.5	44
71	Queens and Workers Contribute Differently to Adaptive Evolution in Bumble Bees and Honey Bees. Genome Biology and Evolution, 2017, 9, 2395-2402.	2.5	25
72	Neurogenomic Signatures of Successes and Failures in Life-History Transitions in a Key Insect Pollinator. Genome Biology and Evolution, 2017, 9, 3059-3072.	2.5	14

		CITATION REPORT		
#	Article		IF	CITATIONS
73	Hormonal Regulation of Behavioral and Phenotypic Plasticity inÂBumblebees. , 2017, ,	453-464.		3
74	Proteomic Characterization of the Venom of Five Bombus (Thoracobombus) Species. 1 362.	oxins, 2017, 9,	3.4	12
75	Comparative analyses of the major royal jelly protein gene cluster in three Apis species amplicon sequencing. DNA Research, 2017, 24, 279-287.	with long	3.4	18
76	Endocrine Influences on Insect Societies. , 2017, , 421-451.			14
77	Alternative splicing associated with phenotypic plasticity in the bumble bee <i>Bombu Molecular Ecology, 2018, 27, 1036-1043.</i>	s terrestris.	3.9	25
78	Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species Research, 2018, 46, D802-D808.	s. Nucleic Acids	14.5	489
79	Phylogeny and evolution of the cholesterol transporter NPC1 in insects. Journal of Inse 2018, 107, 157-166.	ct Physiology,	2.0	13
80	Genomic and transcriptomic analysis of the Asian honeybee Apis cerana provides nove honeybee biology. Scientific Reports, 2018, 8, 822.	l insights into	3.3	68
81	Large-scale transcriptome changes in the process of long-term visual memory formatic bumblebee, Bombus terrestris. Scientific Reports, 2018, 8, 534.	n in the	3.3	9
82	Identification and caste-dependent expression patterns of DNA methylation associated Bombus terrestris. Scientific Reports, 2018, 8, 2332.	l genes in	3.3	24
83	Conserved roles of Osiris genes in insect development, polymorphism and protection. Evolutionary Biology, 2018, 31, 516-529.	Journal of	1.7	43
84	Circadian clock genes are differentially modulated during the daily cycles and chronolc the social honeybee (Apis mellifera). Apidologie, 2018, 49, 71-83.	gical age in	2.0	3
86	Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticide Biology, 2018, 28, 1137-1143.e5.	es. Current	3.9	234
87	Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biologic 2018, 93, 184-200.	al Reviews,	10.4	502
88	Genomes of the Hymenoptera. Current Opinion in Insect Science, 2018, 25, 65-75.		4.4	63
89	Soldierâ€biased gene expression in a subterranean termite implies functional specializ defensive caste. Evolution & Development, 2018, 20, 3-16.	ation of the	2.0	14
90	Impact of colony size on survival and sanitary strategies in fungus-infected ant colonie Ecology and Sociobiology, 2018, 72, 1.	s. Behavioral	1.4	14
91	Molecular cloning and characterization of the SIFamide precursor and receptor in a hy insect, Bombus terrestris. General and Comparative Endocrinology, 2018, 258, 39-52.	menopteran	1.8	15

#	Article	IF	CITATIONS
92	Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees. Apidologie, 2018, 49, 13-30.	2.0	46
93	One size does not fit all: Caste and sex differences in the response of bumblebees (Bombus impatiens) to chronic oral neonicotinoid exposure. PLoS ONE, 2018, 13, e0200041.	2.5	14
94	Tandem Repeats Contribute to Coding Sequence Variation in Bumblebees (Hymenoptera: Apidae). Genome Biology and Evolution, 2018, 10, 3176-3187.	2.5	6
95	Gene Family Evolution and the Problem of a Functional Classification of Insect Carboxylesterases. , 2018, , .		3
96	Genome sequence of the wheat stem sawfly, Cephus cinctus, representing an early-branching lineage of the Hymenoptera, illuminates evolution of hymenopteran chemoreceptors. Genome Biology and Evolution, 2018, 10, 2997-3011.	2.5	24
97	Hymenoptera Genome Database: Using HymenopteraMine to Enhance Genomic Studies of Hymenopteran Insects. Methods in Molecular Biology, 2018, 1757, 513-556.	0.9	12
98	Conservation Genomics of the Declining North American Bumblebee Bombus terricola Reveals Inbreeding and Selection on Immune Genes. Frontiers in Genetics, 2018, 9, 316.	2.3	31
99	Honey Bee and Bumble Bee Antiviral Defense. Viruses, 2018, 10, 395.	3.3	63
100	Genomics, cys-loop ligand-gated ion channels and new targets for the control of insect pests and vectors. Current Opinion in Insect Science, 2018, 30, 1-7.	4.4	20
101	Accessory gland proteins of males in the maleâ€diphenic ant <i>Cardiocondyla obscurior</i> . Physiological Entomology, 2018, 43, 276-284.	1.5	4
102	Insects with similar social complexity show convergent patterns of adaptive molecular evolution. Scientific Reports, 2018, 8, 10388.	3.3	20
103	Gene editing in the context of an increasingly complex genome. BMC Genomics, 2018, 19, 595.	2.8	8
104	The genomics of selenium: Its past, present and future. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2427-2432.	2.4	14
105	Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Molecular Ecology, 2018, 27, 2926-2942.	3.9	60
106	Metabolomics-based biomarker discovery for bee health monitoring: A proof of concept study concerning nutritional stress in Bombus terrestris. Scientific Reports, 2019, 9, 11423.	3.3	15
107	Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Scientific Reports, 2019, 9, 11620.	3.3	15
108	A cytochrome P450 from the mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis. Insect Biochemistry and Molecular Biology, 2019, 113, 103212.	2.7	11
109	Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees. Genetics, 2019, 212, 1101-1119.	2.9	17

#	Article	IF	CITATIONS
110	The effects of the neonicotinoid imidacloprid on gene expression and DNA methylation in the buff-tailed bumblebee <i>Bombus terrestris</i> . Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190718.	2.6	32
111	Pollinator parasites and the evolution of floral traits. Ecology and Evolution, 2019, 9, 6722-6737.	1.9	6
112	Methylation and gene expression differences between reproductive and sterile bumblebee workers. Evolution Letters, 2019, 3, 485-499.	3.3	48
113	Pollinator diseases: the Bombus–Crithidia system. , 2019, , 3-31.		11
114	Genome Assembly and Annotation of the Trichoplusia ni Tni-FNL Insect Cell Line Enabled by Long-Read Technologies. Genes, 2019, 10, 79.	2.4	16
115	Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris. Insect Biochemistry and Molecular Biology, 2019, 111, 103171.	2.7	39
116	Are honeybees suitable surrogates for use in pesticide risk assessment for nonâ€ <i>Apis</i> bees?. Pest Management Science, 2019, 75, 2549-2557.	3.4	41
117	Rate variation in the evolution of non-coding DNA associated with social evolution in bees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180247.	4.0	22
118	Diversification of Transposable Elements in Arthropods and Its Impact on Genome Evolution. Genes, 2019, 10, 338.	2.4	26
119	Exploring integument transcriptomes, cuticle ultrastructure, and cuticular hydrocarbons profiles in eusocial and solitary bee species displaying heterochronic adult cuticle maturation. PLoS ONE, 2019, 14, e0213796.	2.5	19
120	A homeotic shift late in development drives mimetic color variation in a bumble bee. Proceedings of the United States of America, 2019, 116, 11857-11865.	7.1	44
121	Comparative transcriptomics of social insect queen pheromones. Nature Communications, 2019, 10, 1593.	12.8	32
122	The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environmental Microbiology, 2019, 21, 3417-3429.	3.8	47
123	Conservation of adaptive potential and functional diversity. Conservation Genetics, 2019, 20, 1-5.	1.5	46
124	Caste―and pesticideâ€specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees. Molecular Ecology, 2019, 28, 1964-1974.	3.9	55
125	Bumblebees are able to perceive amino acids via chemotactile antennal stimulation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 321-331.	1.6	32
126	Evolutionary Rates of Bumblebee Genomes Are Faster at Lower Elevations. Molecular Biology and Evolution, 2019, 36, 1215-1219.	8.9	15
127	Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Scientific Reports, 2019, 9, 17692.	3.3	26

#	Article	IF	CITATIONS
128	Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause. BMC Genomics, 2019, 20, 959.	2.8	35
129	Mining insect genomes for functionally affiliated genes. Current Opinion in Insect Science, 2019, 31, 114-122.	4.4	4
130	The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila. Insect Biochemistry and Molecular Biology, 2019, 106, 10-18.	2.7	7
131	Draft Genome Assembly and Population Genetics of an Agricultural Pollinator, the Solitary Alkali Bee (Halictidae: <i>Nomia melanderi</i>). G3: Genes, Genomes, Genetics, 2019, 9, 625-634.	1.8	19
132	Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Molecular Phylogenetics and Evolution, 2019, 130, 121-131.	2.7	127
133	Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. Annual Review of Entomology, 2019, 64, 227-242.	11.8	156
134	Parasitoid Jewel Wasp Mounts Multipronged Neurochemical Attack to Hijack a Host Brain. Molecular and Cellular Proteomics, 2019, 18, 99-114.	3.8	27
135	Structural Insights into the Preferential Binding of PGRP-SAs from Bumblebees and Honeybees to Dap-Type Peptidoglycans Rather than Lys-Type Peptidoglycans. Journal of Immunology, 2019, 202, 249-259.	0.8	12
136	A novel insect-infecting virga/nege-like virus group and its pervasive endogenization into insect genomes. Virus Research, 2019, 262, 37-47.	2.2	49
137	Inverse dispersal patterns in a group of ant parasitoids (Hymenoptera: Eucharitidae: Oraseminae) and their ant hosts. Systematic Entomology, 2020, 45, 1-19.	3.9	14
138	Global Trends in Bumble Bee Health. Annual Review of Entomology, 2020, 65, 209-232.	11.8	189
139	Genomic and transcriptomic analyses of glutathione Sâ€ŧransferases in an endoparasitoid wasp,Pteromalus puparum. Archives of Insect Biochemistry and Physiology, 2020, 103, e21634.	1.5	3
140	Infection by the castrating parasitic nematode <i>Sphaerularia bombi</i> changes gene expression in <i>Bombus terrestris</i> bumblebee queens. Insect Molecular Biology, 2020, 29, 170-182.	2.0	32
141	Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, <i>Microplitis mediator</i> . Insect Science, 2020, 27, 998-1018.	3.0	13
142	Chromosome-level genome assembly reveals the unique genome evolution of the swimming crab (Portunus trituberculatus). GigaScience, 2020, 9, .	6.4	44
143	Pollen reinforces learning in honey bee pollen foragers but not in nectar foragers. Journal of Experimental Biology, 2020, 223, .	1.7	9
144	The role of toxic nectar secondary compounds in driving differential bumble bee preferences for milkweed flowers. Oecologia, 2020, 193, 619-630.	2.0	8
145	Model and Non-model Insects in Chronobiology. Frontiers in Behavioral Neuroscience, 2020, 14, 601676.	2.0	62

#	Article	IF	CITATIONS
146	Prevalence and Implications of Contamination in Public Genomic Resources: A Case Study of 43 Reference Arthropod Assemblies. G3: Genes, Genomes, Genetics, 2020, 10, 721-730.	1.8	25
147	Comparative transcriptome analysis reveals regulatory genes involved in cold tolerance and hypoxic adaptation of high-altitude Tibetan bumblebees. Apidologie, 2020, 51, 1166-1181.	2.0	6
148	Parent of origin gene expression in the bumblebee, <i>Bombus terrestris</i> , supports Haig's kinship theory for the evolution of genomic imprinting. Evolution Letters, 2020, 4, 479-490.	3.3	17
149	Juvenile hormone regulates brain-reproduction tradeoff in bumble bees but not in honey bees. Hormones and Behavior, 2020, 126, 104844.	2.1	18
150	Genome-wide identification of accessible chromatin regions in bumblebee by ATAC-seq. Scientific Data, 2020, 7, 367.	5.3	2
151	Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee. Scientific Reports, 2020, 10, 17063.	3.3	42
152	Brain microRNAs among social and solitary bees. Royal Society Open Science, 2020, 7, 200517.	2.4	13
153	Comparative transcriptomics indicates endogenous differences in detoxification capacity after formic acid treatment between honey bees and varroa mites. Scientific Reports, 2020, 10, 21943.	3.3	9
154	First Draft Genome Assembly of the Malaysian Stingless Bee, Heterotrigona itama (Apidae, Meliponinae). Data, 2020, 5, 112.	2.3	0
155	The nuclear and mitochondrial genomes of Frieseomelitta varia – a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics, 2020, 21, 386.	2.8	15
156	A chromosomeâ€level genome assembly of the parasitoid wasp <i>Pteromalus puparum</i> . Molecular Ecology Resources, 2020, 20, 1384-1402.	4.8	35
157	An Old Mechanism, Imitation, Geared for Socio-Material Knowing in a "Day in the Life―of First Graders. Frontiers in Psychology, 2020, 11, 177.	2.1	Ο
158	Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera). Molecular Biology and Evolution, 2020, 37, 1964-1978.	8.9	30
159	De Novo Genome Assemblies for Three North American Bumble Bee Species: Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii. G3: Genes, Genomes, Genetics, 2020, 10, 2585-2592.	1.8	18
160	Bumblebee Workers Show Differences in Allele-Specific DNA Methylation and Allele-Specific Expression. Genome Biology and Evolution, 2020, 12, 1471-1481.	2.5	15
161	High-Quality Genome Assembly of Eriocheir japonica sinensis Reveals Its Unique Genome Evolution. Frontiers in Genetics, 2019, 10, 1340.	2.3	32
162	Local adaptation across a complex bioclimatic landscape in two montane bumble bee species. Molecular Ecology, 2020, 29, 920-939.	3.9	41
163	Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	61

#	Article	IF	CITATIONS
164	Population genomic and phenotype diversity of invasive Drosophila suzukii in Hawaiâ€~i. Biological Invasions, 2020, 22, 1753-1770.	2.4	14
165	Substantial genetic divergence and lack of recent gene flow support cryptic speciation in a colour polymorphic bumble bee (<i>Bombus bifarius</i>) species complex. Systematic Entomology, 2020, 45, 635-652.	3.9	36
166	Transcriptome analysis reveals nutrition―and ageâ€related patterns of gene expression in the fat body of preâ€overwintering bumble bee queens. Molecular Ecology, 2020, 29, 720-737.	3.9	41
167	Forests do not limit bumble bee foraging movements in a montane meadow complex. Ecological Entomology, 2020, 45, 955-965.	2.2	18
168	Structural and Functional Analysis of PGRP-LC Indicates Exclusive Dap-Type PGN Binding in Bumblebees. International Journal of Molecular Sciences, 2020, 21, 2441.	4.1	6
169	Gene expression during larval caste determination and differentiation in intermediately eusocial bumblebees, and a comparative analysis with advanced eusocial honeybees. Molecular Ecology, 2021, 30, 718-735.	3.9	8
170	Impacts of Neonicotinoids on the Bumble Bees <i>Bombus terrestris</i> and <i>Bombus impatiens</i> Examined through the Lens of an Adverse Outcome Pathway Framework. Environmental Toxicology and Chemistry, 2021, 40, 309-322.	4.3	17
171	A sequence complementarity-based approach for evaluating off-target transcript knockdown in Bombus terrestris, following ingestion of pest-specific dsRNA. Journal of Pest Science, 2021, 94, 487-503.	3.7	16
172	Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits. Molecular Biology and Evolution, 2021, 38, 486-501.	8.9	58
173	Transposable Elements and the Evolution of Insects. Annual Review of Entomology, 2021, 66, 355-372.	11.8	64
174	The effect of DNA methylation on bumblebee colony development. BMC Genomics, 2021, 22, 73.	2.8	8
175	Pheromone communication in honey bees (Apis mellifera). , 2021, , 183-204.		4
177	Chemoreceptor Diversity in Apoid Wasps and Its Reduction during the Evolution of the Pollen-Collecting Lifestyle of Bees (Hymenoptera: Apoidea). Genome Biology and Evolution, 2021, 13, .	2.5	11
178	Characterization and Developmental Expression Patterns of Four Hexamerin Genes in the Bumble Bee, <i>Bombus terrestris</i> (Hymenoptera: Apidae). Journal of Insect Science, 2021, 21, .	1.5	2
179	Venomics Study of Protobothrops flavoviridis Snake: How Venom Proteins Have Evolved and Diversified?. , 0, , .		0
180	Biosafety of bee pollinators in genetically modified agroâ€ecosystems: Current approach and further development in the <scp>EU</scp> . Pest Management Science, 2021, 77, 2659-2666.	3.4	13
181	Expansion and Accelerated Evolution of 9-Exon Odorant Receptors in <i>Polistes</i> Paper Wasps. Molecular Biology and Evolution, 2021, 38, 3832-3846.	8.9	22
182	Gene expression and epigenetics reveal species-specific mechanisms acting upon common molecular pathways in the evolution of task division in bees. Scientific Reports, 2021, 11, 3654.	3.3	12

#	ARTICLE	IF	CITATIONS
183	Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Communications Biology, 2021, 4, 253.	4.4	20
184	Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Molecular Phylogenetics and Evolution, 2021, 156, 107023.	2.7	30
186	Hormonal Regulation of Reproductive Diapause That Occurs in the Year-Round Mass Rearing of <i>Bombus terrestris</i> Queens. Journal of Proteome Research, 2021, 20, 2240-2250.	3.7	12
187	Bucking the trend of pollinator decline: the population genetics of a range expanding bumblebee. Evolutionary Ecology, 2021, 35, 413-442.	1.2	5
188	Developmental Transcriptomics Reveals a Gene Network Driving Mimetic Color Variation in a Bumble Bee. Genome Biology and Evolution, 2021, 13, .	2.5	7
189	A combined RAD-Seq and WGS approach reveals the genomic basis of yellow color variation in bumble bee Bombus terrestris. Scientific Reports, 2021, 11, 7996.	3.3	7
190	The Power of Drosophila melanogaster for Modeling Neonicotinoid Effects on Pollinators and Identifying Novel Mechanisms. Frontiers in Physiology, 2021, 12, 659440.	2.8	15
191	The genomic basis of evolutionary differentiation among honey bees. Genome Research, 2021, 31, 1203-1215.	5.5	17
192	Identification of reference genes for gene expression analysis at different developmental stages of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie, 2021, 52, 825-836.	2.0	1
194	Peripheral taste detection in honey bees: What do taste receptors respond to?. European Journal of Neuroscience, 2021, 54, 4417-4444.	2.6	22
195	Olfactory coding in the antennal lobe of the bumble bee Bombus terrestris. Scientific Reports, 2021, 11, 10947.	3.3	4
196	The <i>foraging</i> gene as a modulator of division of labour in social insects. Journal of Neurogenetics, 2021, 35, 168-178.	1.4	15
197	Molecular evolution of bumble bee vitellogenin and vitellogeninâ€like genes. Ecology and Evolution, 2021, 11, 8983-8992.	1.9	8
198	Active genic machinery for epigenetic <scp>RNA</scp> modifications in bees. Insect Molecular Biology, 2021, 30, 566-579.	2.0	14
199	Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee <i>Bombus terricola</i> . Molecular Ecology, 2021, 30, 4220-4230.	3.9	20
201	Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review. Frontiers in Endocrinology, 2021, 12, 731966.	3.5	11
202	Diversity and Evolution of pogo and Tc1/mariner Transposons in the Apoidea Genomes. Biology, 2021, 10, 940.	2.8	6
204	Maine's Bumble Bees (Hymenoptera: Apidae)—Part 2: Comparisons of a Common (Bombus ternarius) and a Rare (Bombus terricola) Species. Environmental Entomology, 2021, ,	1.4	2

#	Article	IF	CITATIONS
205	De Novo Genome Assembly of Chinese Plateau Honeybee Unravels Intraspecies Genetic Diversity in the Eastern Honeybee, Apis cerana. Insects, 2021, 12, 891.	2.2	5
206	An analysis of variability in genome organisation of intracellular calcium release channels across insect orders. Gene, 2018, 670, 70-86.	2.2	10
207	Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biology and Evolution, 2020, 12, 1099-1188.	2.5	17
214	Preliminary analysis of PGRP-LC gene and structure characteristics in bumblebees. Sociobiology, 2019, 66, 348.	0.5	1
215	Computational identification of the selenocysteine tRNA (tRNASec) in genomes. PLoS Computational Biology, 2017, 13, e1005383.	3.2	44
216	RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera. PLoS ONE, 2016, 11, e0167421.	2.5	20
217	Effects of age and nutritional state on the expression of gustatory receptors in the honeybee (Apis) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
218	Insights into the biochemical defence and methylation of the solitary bee Osmia rufa L: A foundation for examining eusociality development. PLoS ONE, 2017, 12, e0176539.	2.5	24
219	The evolution of non-reproductive workers in insect colonies with haplodiploid genetics. ELife, 2015, 4, e08918.	6.0	21
220	Expansion of the fatty acyl reductase gene family shaped pheromone communication in Hymenoptera. ELife, 2019, 8, .	6.0	26
221	Allele specific expression in worker reproduction genes in the bumblebee <i>Bombus terrestris</i> . PeerJ, 2015, 3, e1079.	2.0	13
222	Eumelanin and pheomelanin are predominant pigments in bumblebee (Apidae: <i>Bombus</i>) pubescence. PeerJ, 2017, 5, e3300.	2.0	21
223	Allele specific expression and methylation in the bumblebee, <i>Bombus terrestris</i> . PeerJ, 2017, 5, e3798.	2.0	17
224	Transcriptome sequencing reveals high isoform diversity in the ant <i>Formica exsecta</i> . PeerJ, 2017, 5, e3998.	2.0	7
225	Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices and experimental design for genomic studies. PeerJ, 2019, 7, e6727.	2.0	20
226	Hymenoptera Genome Database: new genomes and annotation datasets for improved go enrichment and orthologue analyses. Nucleic Acids Research, 2022, 50, D1032-D1039.	14.5	19
228	Genus-Wide Characterization of Nuclear Mitochondrial DNAs in Bumblebee (Hymenoptera: Apidae) Genomes. Insects, 2021, 12, 963.	2.2	2
241	Cutting-Edge of Venomics Study: How Venom Proteins Have Evolved ?. Kagaku To Seibutsu, 2019, 57, 289-295.	0.0	0

#	Article	IF	CITATIONS
243	Characterization of Exon and Intron of Defensin 1 Gene in Apis cerana and Apis dorsata. Makara Journal of Science, 2019, 23, .	0.3	1
250	Cuticle melanization and the expression of immune-related genes in the honeybee Apis mellifera (Hymenoptera: Apidae) adult workers. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2022, 257, 110679.	1.6	3
253	A genomic and morphometric analysis of alpineÂbumblebees: Ongoing reductions in tongue length but no clearÂgenetic component. Molecular Ecology, 2022, 31, 1111-1127.	3.9	8
254	Krüppel-homologue 1 Mediates Hormonally Regulated Dominance Rank in a Social Bee. Biology, 2021, 10, 1188.	2.8	3
255	Genomic Signatures of Recent Adaptation in a Wild Bumblebee. Molecular Biology and Evolution, 2022, 39, .	8.9	9
256	Worker task organization in incipient bumble bee nests. Animal Behaviour, 2022, , .	1.9	3
257	Genomic divergence and a lack of recent introgression between commercial and wild bumblebees (<i>Bombus terrestris</i>). Evolutionary Applications, 2022, 15, 365-382.	3.1	6
258	Endogenous Honeybee Gut Microbiota Metabolize the Pesticide Clothianidin. Microorganisms, 2022, 10, 493.	3.6	12
259	The effect of the brood and the queen on early gene expression in bumble bee workers' brains. Scientific Reports, 2022, 12, 3018.	3.3	4
261	Honey proteome of the bumblebee Bombus terrestris: similarities, differences, and exceptionality compared to honey bee honey as signatures of eusociality evolution. Apidologie, 2022, 53, 1.	2.0	2
262	Changes in gene body methylation do not correlate with changes in gene expression in Anthozoa or Hexapoda. BMC Genomics, 2022, 23, 234.	2.8	19
263	The Apis mellifera alpha 5 nicotinic acetylcholine receptor subunit expresses as a homomeric receptor that is sensitive to serotonin. Pesticide Biochemistry and Physiology, 2022, 182, 105055.	3.6	0
264	Parasite resistance and immunity across female castes in a social insect. Behavioral Ecology and Sociobiology, 2022, 76, 1.	1.4	2
265	Molecular (co)evolution of hymenopteran social parasites and their hosts. Current Opinion in Insect Science, 2022, 50, 100889.	4.4	1
266	Honey bees cannot sense harmful concentrations of metal pollutants in food. Chemosphere, 2022, 297, 134089.	8.2	9
270	The Bombus-terrestris bee optimization algorithm for feature selection. Applied Intelligence, 2023, 53, 470-490.	5.3	2
271	Pollen diet mediates how pesticide exposure impacts brain gene expression in nest-founding bumble bee queens. Science of the Total Environment, 2022, 833, 155216.	8.0	6
278	Social insect colony size is correlated with rates of molecular evolution. Insectes Sociaux, 2022, 69, 147-157.	1.2	4

#	Article	IF	CITATIONS
279	Host and gut microbiome modulate the antiparasitic activity of nectar metabolites in a bumblebee pollinator. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210162.	4.0	13
280	Isolation disrupts social interactions and destabilizes brain development in bumblebees. Current Biology, 2022, 32, 2754-2764.e5.	3.9	14
281	Annotation and Analysis of 3902 Odorant Receptor Protein Sequences from 21 Insect Species Provide Insights into the Evolution of Odorant Receptor Gene Families in Solitary and Social Insects. Genes, 2022, 13, 919.	2.4	2
282	Temporal responses of bumblebee gustatory neurons to sugars. IScience, 2022, 25, 104499.	4.1	3
284	Genomic architecture and sexually dimorphic expression underlying immunity in the red mason bee, <i>Osmia bicornis</i> . Insect Molecular Biology, 2022, 31, 686-700.	2.0	4
285	Genome of the bee <i>Holcopasites calliopsidis—</i> a species showing the common apid trait of brood parasitism. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	2
286	Phylogenomic Interrogation Revives an Overlooked Hypothesis for the Early Evolution of the Bee Family Apidae (Hymenoptera: Apoidea), With a Focus on the Subfamily Anthophorinae. Insect Systematics and Diversity, 2022, 6, .	1.7	1
288	Whole Genome Sequencing Reveals the Structure of Environment-Associated Divergence in a Broadly Distributed Montane Bumble Bee, <i>Bombus vancouverensis</i> . Insect Systematics and Diversity, 2022, 6, .	1.7	6
289	Signals of adaptation to agricultural stress in the genomes of two European bumblebees. Frontiers in Genetics, 0, 13, .	2.3	2
290	Antimicrobial Activity of Apidermin 2 from the Honeybee Apis mellifera. Insects, 2022, 13, 958.	2.2	3
291	Revisiting the hymenopteran diploid male vortex: a review of avoidance mechanisms and incidence. Entomologia Experimentalis Et Applicata, 2022, 170, 1010-1031.	1.4	2
292	Current Knowledge on Bee Innate Immunity Based on Genomics and Transcriptomics. International Journal of Molecular Sciences, 2022, 23, 14278.	4.1	2
294	Investigating the effects of glyphosate on the bumblebee proteome and microbiota. Science of the Total Environment, 2023, 864, 161074.	8.0	15
295	Host-microbiome metabolism of a plant toxin in bees. ELife, 0, 11, .	6.0	15
296	Chapter 4: Chemosensory system of tsetse flies (Diptera: Glossinidae). , 2022, , 117-138.		0
297	Signatures of Adaptation, Constraints, and Potential Redundancy in the Canonical Immune Genes of a Key Pollinator. Genome Biology and Evolution, 2023, 15, .	2.5	1
298	DNA methylation is associated with codon degeneracy in a species of bumblebee. Heredity, 2023, 130, 188-195.	2.6	9
299	Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules, 2023, 13, 322.	4.0	5

ARTICLE IF CITATIONS # Minus-C subfamily has diverged from Classic odorant-binding proteins in honeybees. Apidologie, 2023, 300 2.0 2 54, The neuroecology of olfaction in bees. Current Opinion in Insect Science, 2023, 56, 101018. 4.4 Differential bumble bee gene expression associated with pathogen infection and pollen diet. BMC 304 2.8 4 Genomics, 2023, 24, . Differential gene expression underlying the biosynthesis of Dufour's gland signals in Bombus impatiens. Current Research in Insect Science, 2023, 3, 100056. Positive selection in cytochrome P450 genes is associated with gonad phenotype and mating strategy 306 3.3 1 in social bees. Scientific Reports, 2023, 13, . The genome sequence of the Buff-tailed Bumblebee, Bombus terrestris (Linnaeus, 1758). Wellcome Open 1.8 Research, 0, 8, 161. 308 Basic Structures of Gut Bacterial Communities in Eusocial Insects. Insects, 2023, 14, 444. 2.2 6 Epigenetic regulation and division of labor in social insects. Current Opinion in Insect Science, 2023, 309 4.4 58, 101051. Gene expression in bumble bee larvae differs qualitatively between high and low concentration 310 3.3 2 imidacloprid exposure levels. Scientific Reports, 2023, 13, . Sulfoxaflor influences the biochemical and histological changes on honeybees (Apis mellifera L.). 311 2.4 Ecotoxicology, 2023, 32, 674-681. Costs of reproduction are present but latent in eusocial bumblebee queens. BMC Biology, 2023, 21, . 314 1 3.8 The evolutionary history of bees in time and space. Current Biology, 2023, 33, 3409-3422.e6. 3.9 "Junk" that matters: the role of transposable elements in bumblebee genome evolution. Current 316 4.4 1 Opinion in Insect Science, 2023, , 101103. Genome-wide DNA methylation patterns in bumble bee (Bombus vosnesenskii) populations from 3.3 spatial-environmental range extremes. Scientific Reports, 2023, 13, . Evolution of the neuronal substrate for kin recognition in social Hymenoptera. Biological Reviews, 0, 319 10.4 0 ,. Unexpected worker mating and colony-founding in a superorganism. Nature Communications, 2023, 14, Evolution of five environmentally responsive gene families in a pineâ€feeding sawfly, <i>Neodiprion 321 1.9 0 lecontei</i> (Hymenoptera: Diprionidae). Ecology and Evolution, 2023, 13, . Prevalent bee venom genes evolved before the aculeate stinger and eusociality. BMC Biology, 2023, 21, . 3.8

#	Article	IF	CITATIONS
323	Substances in the mandibular glands mediate queen effects on larval development and colony organization in an annual bumble bee. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
324	Proteomic differences in seminal fluid of social insects whose sperm differ in heat tolerance. Royal Society Open Science, 2023, 10, .	2.4	1
325	DNA methylation extends lifespan in the bumblebee <i>Bombus terrestris</i> . Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	3
326	Cryptic genotypic and phenotypic diversity in parapatric bumble bee populations associated with minimum cold temperatures. Biodiversity and Conservation, 2024, 33, 485-507.	2.6	0
327	ContScout: sensitive detection and removal of contamination from annotated genomes. Nature Communications, 2024, 15, .	12.8	0
328	The genome of the blind bee louse fly reveals deep convergences with its social host and illuminates Drosophila origins. Current Biology, 2024, 34, 1122-1132.e5.	3.9	1
329	A role for <scp>DNA</scp> methylation in bumblebee morphogenesis hints at femaleâ€specific developmental erasure. Insect Molecular Biology, 0, , .	2.0	0
330	Helenus and Ajax, Two Groups of Non-Autonomous LTR Retrotransposons, Represent a New Type of Small RNA Gene-Derived Mobile Elements. Biology, 2024, 13, 119.	2.8	1