Tracking donor-reactive T cells: Evidence for clonal dele patients

Science Translational Medicine 7, 272ra10 DOI: 10.1126/scitranslmed.3010760

Citation Report

#	Article	IF	CITATIONS
1	Association of CD8+ T lymphocyte repertoire spreading with the severity of DRESS syndrome. Scientific Reports, 2015, 5, 9913.	1.6	27
2	Tracking Donor-Reactive T Cells. Transplantation, 2015, 99, 2436-2437.	0.5	1
3	TCR Spectratyping in Transplantation. Transplantation, 2015, 99, 2438-2439.	0.5	1
4	Clinical applications of next-generation sequencing in histocompatibility and transplantation. Current Opinion in Organ Transplantation, 2015, 20, 461-467.	0.8	9
5	Tolerance signatures in transplant recipients. Current Opinion in Organ Transplantation, 2015, 20, 400-405.	0.8	17
6	Immune tolerance in recipients of combined haploidentical bone marrow and kidney transplantation. Bone Marrow Transplantation, 2015, 50, S82-S86.	1.3	11
7	Biomarkers for glioma immunotherapy: the next generation. Journal of Neuro-Oncology, 2015, 123, 359-372.	1.4	23
8	Comment on "Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplant patients― Science Translational Medicine, 2015, 7, 297le1.	5.8	4
9	I spy alloreactive T cells. Science Translational Medicine, 2015, 7, 272fs3.	5.8	1
10	Emerging concepts in tissue-resident T cells: lessons from humans. Trends in Immunology, 2015, 36, 428-435.	2.9	135
11	Advances and challenges in immunotherapy for solid organ and hematopoietic stem cell transplantation. Science Translational Medicine, 2015, 7, 280rv2.	5.8	88
12	Clonal deletion contributes to allograft tolerance. Nature Reviews Nephrology, 2015, 11, 196-196.	4.1	1
13	Deletional and regulatory mechanisms coalesce to drive transplantation tolerance through mixed chimerism. European Journal of Immunology, 2015, 45, 2470-2479.	1.6	9
14	Combined Bone Marrow and Kidney Transplantation for the Induction of Specific Tolerance. Advances in Hematology, 2016, 2016, 1-8.	0.6	33
15	Cross-Reactivity of TCR Repertoire: Current Concepts, Challenges, and Implication for Allotransplantation. Frontiers in Immunology, 2016, 7, 89.	2.2	25
16	IMPre: An Accurate and Efficient Software for Prediction of T- and B-Cell Receptor Germline Genes and Alleles from Rearranged Repertoire Data. Frontiers in Immunology, 2016, 7, 457.	2.2	47
17	Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell–Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing. American Journal of Transplantation, 2016, 16, 3131-3138.	2.6	39
18	A pilot study of operational tolerance with a regulatory Tâ€cellâ€based cell therapy in living donor liver transplantation. Hepatology, 2016, 64, 632-643.	3.6	333

#	Article	IF	CITATIONS
19	A New Window into the Human Alloresponse. Transplantation, 2016, 100, 1639-1649.	0.5	21
20	Long-term maintenance of human naïve T cells through in situ homeostasis in lymphoid tissue sites. Science Immunology, 2016, 1, .	5.6	127
21	An overview of the necessary thymic contributions to tolerance in transplantation. Clinical Immunology, 2016, 173, 1-9.	1.4	4
22	Eye on the B-ALL: B-cell receptor repertoires reveal persistence of numerous B-lymphoblastic leukemia subclones from diagnosis to relapse. Leukemia, 2016, 30, 2312-2321.	3.3	47
23	Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants. Blood, 2016, 127, 1539-1543.	0.6	32
24	T cell repertoire following kidney transplantation revealed by high-throughput sequencing. Transplant Immunology, 2016, 39, 34-45.	0.6	22
25	Quantitative characterization of T-cell repertoire and biomarkers in kidney transplant rejection. BMC Nephrology, 2016, 17, 181.	0.8	33
26	Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Science Immunology, 2016, 1, .	5.6	98
27	Mesenchymal stromal cells in clinical kidney transplantation. Current Opinion in Organ Transplantation, 2016, 21, 550-558.	0.8	5
28	Current status of tolerance in kidney transplantation. Current Opinion in Nephrology and Hypertension, 2016, 25, 591-601.	1.0	12
29	Bone marrow chimerism as a strategy to produce tolerance in solid organ allotransplantation. Current Opinion in Organ Transplantation, 2016, 21, 595-602.	0.8	2
30	Current status of alloimmunity. Current Opinion in Nephrology and Hypertension, 2016, 25, 556-562.	1.0	3
31	Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3529-37.	3.3	103
32	Fingerprints of transplant tolerance suggest opportunities for immunosuppression minimization. Clinical Biochemistry, 2016, 49, 404-410.	0.8	20
33	Recent advances in immunosuppression and acquired immune tolerance in renal transplants. American Journal of Physiology - Renal Physiology, 2016, 310, F446-F453.	1.3	5
34	Quantification of CD4+ T Cell Alloreactivity and Its Control by Regulatory T Cells Using Time-Lapse Microscopy and Immune Synapse Detection. American Journal of Transplantation, 2016, 16, 1394-1407.	2.6	9
35	Biomarkers and immunopathology of tolerance. Current Opinion in Organ Transplantation, 2016, 21, 81-87.	0.8	15
36	Dynamical System Modeling to Simulate Donor T Cell Response to Whole Exome Sequencing-Derived Recipient Peptides Demonstrates Different Alloreactivity Potential in HLA-Matched and -Mismatched Donor–Recipient Pairs. Biology of Blood and Marrow Transplantation, 2016, 22, 850-861.	2.0	29

#	Article	IF	CITATIONS
37	Biomarkers to assess donor-reactive T-cell responses in kidney transplant patients. Clinical Biochemistry, 2016, 49, 329-337.	0.8	16
38	Moving Biomarkers toward Clinical Implementation in Kidney Transplantation. Journal of the American Society of Nephrology: JASN, 2017, 28, 735-747.	3.0	46
39	Short-course rapamycin treatment enables engraftment of immunogenic gene-engineered bone marrow under low-dose irradiation to permit long-term immunological tolerance. Stem Cell Research and Therapy, 2017, 8, 57.	2.4	9
40	Transplant genetics and genomics. Nature Reviews Genetics, 2017, 18, 309-326.	7.7	60
41	Origin of Enriched Regulatory T Cells in Patients Receiving Combined Kidney–Bone Marrow Transplantation to Induce Transplantation Tolerance. American Journal of Transplantation, 2017, 17, 2020-2032.	2.6	43
42	Operational tolerance in kidney transplantation and associated biomarkers. Clinical and Experimental Immunology, 2017, 189, 138-157.	1.1	24
43	Evolving Approaches in the Identification of Allograft-Reactive T and B Cells in Mice and Humans. Transplantation, 2017, 101, 2671-2681.	0.5	9
44	Precision monitoring of immunotherapies in solid organ and hematopoietic stem cell transplantation. Advanced Drug Delivery Reviews, 2017, 114, 272-284.	6.6	1
45	Immune monitoring as prerequisite for transplantation tolerance trials. Clinical and Experimental Immunology, 2017, 189, 158-170.	1.1	19
46	Strategies for long-term preservation of kidney graft function. Lancet, The, 2017, 389, 2152-2162.	6.3	147
47	Immunotolerance in Liver Transplantation. Seminars in Liver Disease, 2017, 37, 095-108.	1.8	17
49	FOXP3-Positive Regulatory T Cells and Kidney AllograftÂTolerance. American Journal of Kidney Diseases, 2017, 69, 667-674.	2.1	9
50	Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms. Immunogenetics, 2017, 69, 631-641.	1.2	50
51	Measurement of T Cell Alloreactivity Using Imaging Flow Cytometry. Journal of Visualized Experiments, 2017, , .	0.2	1
52	Mechanisms of Mixed Chimerism-Based Transplant Tolerance. Trends in Immunology, 2017, 38, 829-843.	2.9	66
53	Combining Adoptive Treg Transfer with Bone Marrow Transplantation for Transplantation Tolerance. Current Transplantation Reports, 2017, 4, 253-261.	0.9	17
54	Fifty Shades of Transplantation Tolerance: Beyond a Binary Tolerant/Non-Tolerant Paradigm. Current Transplantation Reports, 2017, 4, 262-269.	0.9	5
55	Tolerance in clinical liver transplantation: The long road ahead. Hepatology, 2017, 65, 411-413.	3.6	4

#	Article	IF	CITATIONS
56	Changes in Reactivity In Vitro of CD4+CD25+ and CD4+CD25â^' T Cell Subsets in Transplant Tolerance. Frontiers in Immunology, 2017, 8, 994.	2.2	8
57	Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Frontiers in Immunology, 2017, 8, 1418.	2.2	102
58	Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation. Frontiers in Immunology, 2017, 8, 1762.	2.2	39
59	End-Stage Renal Disease Causes Skewing in the TCR Vβ-Repertoire Primarily within CD8+ T Cell Subsets. Frontiers in Immunology, 2017, 8, 1826.	2.2	19
60	Identification of expanded T-cell clones by spectratyping in nonfunctioning kidney transplants. Journal of Inflammation Research, 2017, Volume 10, 41-47.	1.6	2
61	Donor-specific hypo-responsiveness occurs in simultaneous liver-kidney transplant recipients after the first year. Kidney International, 2018, 93, 1465-1474.	2.6	41
62	Biomarkers of operational tolerance following kidney transplantation – The immune tolerance network studies of spontaneously tolerant kidney transplant recipients. Human Immunology, 2018, 79, 380-387.	1.2	30
63	Cellular and functional biomarkers of clinical transplant tolerance. Human Immunology, 2018, 79, 322-333.	1.2	10
64	Immune monitoring of transplant patients in transient mixed chimerism tolerance trials. Human Immunology, 2018, 79, 334-342.	1.2	13
65	What's new in transplantation tolerance?. Current Opinion in Organ Transplantation, 2018, 23, 63-65.	0.8	2
66	Early expansion of donor-specific Tregs in tolerant kidney transplant recipients. JCI Insight, 2018, 3, .	2.3	54
67	Quantifying size and diversity of the human T cell alloresponse. JCI Insight, 2018, 3, .	2.3	69
68	Transplantation tolerance through mixed chimerism: From allo to xeno. Xenotransplantation, 2018, 25, e12420.	1.6	12
69	Maintaining T cell tolerance of alloantigens: Lessons from animal studies. American Journal of Transplantation, 2018, 18, 1843-1856.	2.6	6
70	VDJServer: A Cloud-Based Analysis Portal and Data Commons for Immune Repertoire Sequences and Rearrangements. Frontiers in Immunology, 2018, 9, 976.	2.2	68
71	Immunologic benefit of maternal donors in pediatric living donor liver transplantation. Pediatric Transplantation, 2019, 23, e13560.	0.5	12
72	Transplantation tolerance in nonhuman primates and humans. Bone Marrow Transplantation, 2019, 54, 815-821.	1.3	8
73	Tâ€cell receptor and Bâ€cell receptor repertoire profiling in adaptive immunity. Transplant International, 2019, 32, 1111-1123.	0.8	45

#	Article	IF	CITATIONS
74	Next generation sequencing based assessment of the alloreactive T cell receptor repertoire in kidney transplant patients during rejection: a prospective cohort study. BMC Nephrology, 2019, 20, 346.	0.8	13
75	Immune Tolerance After Liver Transplantation. , 2019, , 625-652.		4
76	Characterizing pre-transplant and post-transplant kidney rejection risk by B cell immune repertoire sequencing. Nature Communications, 2019, 10, 1906.	5.8	38
77	BKV Clearance Time Correlates With Exhaustion State and T-Cell Receptor Repertoire Shape of BKV-Specific T-Cells in Renal Transplant Patients. Frontiers in Immunology, 2019, 10, 767.	2.2	18
78	Achievement of Tolerance Induction to Prevent Acute Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 309.	2.2	28
79	Single cell immune profiling in transplantation research. American Journal of Transplantation, 2019, 19, 1278-1287.	2.6	7
80	Mixed chimerism established by hematopoietic stem cell transplantation is maintained by host and donor T regulatory cells. Blood Advances, 2019, 3, 734-743.	2.5	20
81	Resilience of T cell-intrinsic dysfunction in transplantation tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23682-23690.	3.3	13
82	Twenty-year Follow-up of Histocompatibility Leukocyte Antigen-matched Kidney and Bone Marrow Cotransplantation for Multiple Myeloma With End-stage Renal Disease: Lessons Learned. Transplantation, 2019, 103, 2366-2372.	0.5	19
83	Mechanisms of Graft-versus-Host Disease Prevention by Post-transplantation Cyclophosphamide: An Evolving Understanding. Frontiers in Immunology, 2019, 10, 2668.	2.2	79
84	Approaches to the Induction of Tolerance. , 2019, , 333-354.		0
85	Mechanisms of Immune Tolerance in Liver Transplantation-Crosstalk Between Alloreactive T Cells and Liver Cells With Therapeutic Prospects. Frontiers in Immunology, 2019, 10, 2667.	2.2	27
86	The TreaT-Assay: A Novel Urine-Derived Donor Kidney Cell-Based Assay for Prediction of Kidney Transplantation Outcome. Scientific Reports, 2019, 9, 19037.	1.6	5
87	Long-term Kinetics of Intragraft Gene Signatures in Renal Allograft Tolerance Induced by Transient Mixed Chimerism. Transplantation, 2019, 103, e334-e344.	0.5	15
88	The Identity Card of T Cells—Clinical Utility of T-cell Receptor Repertoire Analysis in Transplantation. Transplantation, 2019, 103, 1544-1555.	0.5	12
89	Desensitization in the Era of Precision Medicine: Moving From the Bench to Bedside. Transplantation, 2019, 103, 1574-1581.	0.5	8
90	Prolongation of allograft survival by passenger donor regulatory T cells. American Journal of Transplantation, 2019, 19, 1371-1379.	2.6	19
91	Human Intestinal Allografts Contain Functional Hematopoietic Stem and Progenitor Cells that Are Maintained by a Circulating Pool Cell Stem Cell 2019, 24, 227-239 e8	5.2	43

#	Article	IF	CITATIONS
92	Siplizumab selectively depletes effector memory T cells and promotes a relative expansion of alloreactive regulatory T cells in vitro. American Journal of Transplantation, 2020, 20, 88-100.	2.6	26
93	Deletion of donor-reactive T cell clones after human liver transplant. American Journal of Transplantation, 2020, 20, 538-545.	2.6	31
94	Delayed Implantation of Pumped Kidneys Decreases Renal Allograft Futility in Combined Liver–Kidney Transplantation. Transplantation, 2020, 104, 1591-1603.	0.5	20
95	Predicting the early risk of ophthalmopathy in Graves' disease patients using TCR repertoire. Clinical and Translational Medicine, 2020, 10, e218.	1.7	2
96	Pre-existing Alloreactive T and B Cells and Their Possible Relevance for Pre-transplant Risk Estimation in Kidney Transplant Recipients. Frontiers in Medicine, 2020, 7, 340.	1.2	11
97	Strategies for Deliberate Induction of Immune Tolerance in Liver Transplantation: From Preclinical Models to Clinical Application. Frontiers in Immunology, 2020, 11, 1615.	2.2	12
98	Ultra-efficient sequencing of T Cell receptor repertoires reveals shared responses in muscle from patients with Myositis. EBioMedicine, 2020, 59, 102972.	2.7	11
99	Combined TCR Repertoire Profiles and Blood Cell Phenotypes Predict Melanoma Patient Response to Personalized Neoantigen Therapy plus Anti-PD-1. Cell Reports Medicine, 2020, 1, 100141.	3.3	25
100	Kidney transplantation: a safe step forward for regulatory immune cell therapy. Lancet, The, 2020, 395, 1589-1591.	6.3	3
101	Transplant Tolerance Induction: Insights From the Liver. Frontiers in Immunology, 2020, 11, 1044.	2.2	23
102	Autoimmunity in Acute Myocarditis: How Immunopathogenesis Steers New Directions for Diagnosis and Treatment. Current Cardiology Reports, 2020, 22, 28.	1.3	18
103	Humanized Mouse Models for Evaluation of PSC Immunogenicity. Current Protocols in Stem Cell Biology, 2020, 54, e113.	3.0	6
104	Analysis of the Whole CDR3 T Cell Receptor Repertoire after Hematopoietic Stem Cell Transplantation in 2 Clinical Cohorts. Biology of Blood and Marrow Transplantation, 2020, 26, 1050-1070.	2.0	5
105	Efficient generation of thymic epithelium from induced pluripotent stem cells that prolongs allograft survival. Scientific Reports, 2020, 10, 224.	1.6	24
106	Recent Progress in Treg Biology and Transplant Therapeutics. Current Transplantation Reports, 2020, 7, 131-139.	0.9	2
107	Permissive HLA-DPB1 mismatches in HCT depend on immunopeptidome divergence and editing by HLA-DM. Blood, 2021, 137, 923-928.	0.6	28
108	A Prospective Controlled Trial to Evaluate Safety and Efficacy of in vitro Expanded Recipient Regulatory T Cell Therapy and Tocilizumab Together With Donor Bone Marrow Infusion in HLA-Mismatched Living Donor Kidney Transplant Recipients (Trex001). Frontiers in Medicine, 2020, 7, 634260.	1.2	10
109	Expansion of CD45RA ^{â^'} FOXP3 ⁺⁺ regulatory T cells is associated with immune tolerance in patients with combined kidney and bone marrow transplantation. Clinical and Translational Immunology, 2021, 10, e1325.	1.7	2

#	Article	IF	CITATIONS
110	CD8+ T-Cell Repertoire in Human Leukocyte Antigen Class I-Mismatched Alloreactive Immune Response. Frontiers in Immunology, 2020, 11, 588741.	2.2	5
111	Strategies for Liver Transplantation Tolerance. International Journal of Molecular Sciences, 2021, 22, 2253.	1.8	17
112	Detection of alloreactive T cells from cryopreserved human peripheral blood mononuclear cells. Journal of Immunological Methods, 2021, 491, 112987.	0.6	1
113	Lymphohematopoietic graft-versus-host responses promote mixed chimerism in patients receiving intestinal transplantation. Journal of Clinical Investigation, 2021, 131, .	3.9	31
114	Challenges in the application of NGS in the clinical laboratory. Human Immunology, 2021, 82, 812-819.	1.2	16
115	Engineering Strategies for Allogeneic Solid Tissue Acceptance. Trends in Molecular Medicine, 2021, 27, 572-587.	3.5	2
116	Vitamin D3 combined with antibody agents suppresses alloreactive memory T-cell responses to induce heart allograft long-term survival. Transplant Immunology, 2021, 66, 101374.	0.6	1
117	Insights from integrating clinical and preclinical studies advance understanding of graft-versus-host disease. Journal of Clinical Investigation, 2021, 131, .	3.9	16
118	Maintenance of the human memory T cell repertoire by subset and tissue site. Genome Medicine, 2021, 13, 100.	3.6	35
119	Longitudinal Analysis of the T-cell Receptor Repertoire in Graft-infiltrating Lymphocytes Following Hand Transplantation. Transplantation, 2021, 105, 1502-1509.	0.5	5
120	Regulation of Alloantibody Responses. Frontiers in Cell and Developmental Biology, 2021, 9, 706171.	1.8	5
121	Advances in single-cell sequencing: insights from organ transplantation. Military Medical Research, 2021, 8, 45.	1.9	6
122	Current Desensitization Strategies in Heart Transplantation. Frontiers in Immunology, 2021, 12, 702186.	2.2	8
123	Clonal expansion of CD8+ T cells reflects graft-versus-leukemia activity and precedes durable remission following DLI. Blood Advances, 2021, 5, 4485-4499.	2.5	10
124	Integrated analysis toolset for defining and tracking alloreactive T-cell clones after human solid organ and hematopoietic stem cell transplantation. Software Impacts, 2021, 10, 100142.	0.8	11
125	Myeloid-derived suppressor cell (MDSC) key genes analysis in rat anti-CD28-induced immune tolerance kidney transplantation. Translational Andrology and Urology, 2021, 10, 204-214.	0.6	2
126	Transient-mixed Chimerism With Nonmyeloablative Conditioning Does Not Induce Liver Allograft Tolerance in Nonhuman Primates. Transplantation, 2020, 104, 1580-1590.	0.5	13
127	Immune Checkpoint Inhibitors in Transplantation—A Case Series and Comprehensive Review of Current Knowledge. Transplantation, 2021, 105, 67-78.	0.5	21

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
128	Induced regulatory T cells in allograft tolerance via transient mixed chimerism. JCI Insight,	2016, 1, .	2.3	40
129	Cross-reactive public TCR sequences undergo positive selection in the human thymic repe Journal of Clinical Investigation, 2019, 129, 2446-2462.	rtoire.	3.9	55
130	Alloimmune T cells in transplantation. Journal of Clinical Investigation, 2017, 127, 2473-24	481.	3.9	83
131	Immune Repertoire Profiling Reveals that Clonally Expanded B and T Cells Infiltrating Disea Kidneys Can Also Be Tracked in Blood. PLoS ONE, 2015, 10, e0143125.	ised Human	1.1	12
132	A Public Database of Memory and Naive B-Cell Receptor Sequences. PLoS ONE, 2016, 11,	e0160853.	1.1	142
133	Prospective Tracking of Donor-Reactive T-Cell Clones in the Circulation and Rejecting Hum Allografts. Frontiers in Immunology, 2021, 12, 750005.	an Kidney	2.2	20
134	Advanced Genomics-Based Approaches for Defining Allograft Rejection With Single Cell R Frontiers in Immunology, 2021, 12, 750754.	esolution.	2.2	5
135	Better Understanding of Rejection After Organ Transplantation. , 2015, , 103-113.			0
136	Regulatory T Cell Therapy in Transplantation. , 2017, , 303-318.			0
137	å†çš®ç°èfžHLA-class II DRãëã,¢ãf応ç≟ã™ã,‹CD4 Tç°èfžãë,anti-A/B抗体接	ç€ã«ã,^ã,пБå^¶ã•ã,Œâ	ã, ∢.0∕⁄⊉ jor ŀ	lis t ocompat
139	Recent advances in high-throughput immunosequencing and its clinical applications. The the Japanese Society of Internal Medicine, 2019, 108, 2347-2355.	ournal of	0.0	0
141	High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Esta and Alloreactivity. Frontiers in Immunology, 2021, 12, 777756.	blishment	2.2	7
142	Heterologous Immunity of Virus-Specific T Cells Leading to Alloreactivity: Possible Implicat Solid Organ Transplantation. Viruses, 2021, 13, 2359.	ions for	1.5	6
143	Chimerism-Based Tolerance to Kidney Allografts in Humans: Novel Insights and Future Per Frontiers in Immunology, 2021, 12, 791725.	spectives.	2.2	9
144	Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Al Frontiers in Immunology, 2021, 12, 778559.	oresponse.	2.2	8
145	Identification and Tracking of Alloreactive T Cell Clones in Rhesus Macaques Through the RM-scTCR-Seq Platform. Frontiers in Immunology, 2021, 12, 804932.		2.2	7
146	Establishment of Chimerism and Organ Transplant Tolerance in Laboratory Animals: Safet Efficacy of Adaptation to Humans. Frontiers in Immunology, 2022, 13, 805177.	/ and	2.2	6
147	Effects of Reduced-Dose Anti-Human T-Lymphocyte Globulin on Overall and Donor-Specifi Repertoire Reconstitution in Sensitized Kidney Transplant Recipients. Frontiers in Immuno 13, 843452.	c T-Cell logy, 2022,	2.2	3

#	Article	IF	CITATIONS
148	Editorial: Immunogenomics of Solid Organ and Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2022, 13, 878314.	2.2	0
149	Emerging Concepts of Tissue-resident Memory T Cells in Transplantation. Transplantation, 2022, 106, 1132-1142.	0.5	15
150	Donor T-Cell Repertoire Profiling in Recipient Lymphoid and Parenchyma Organs Reveals GVHD Pathogenesis at Clonal Levels After Bone Marrow Transplantation in Mice. Frontiers in Immunology, 2021, 12, 778996.	2.2	3
153	Novel Biomarkers in Kidney Transplantation. Seminars in Nephrology, 2022, 42, 2-13.	0.6	4
154	Expansion kinetics of graft-versus-host T cell clones in patients with post-liver transplant graft-versus-host disease. American Journal of Transplantation, 2022, 22, 2689-2693.	2.6	2
155	The trend for transplant medicine development: induction of immune tolerance or regulation of immune response?. Transplantologiâ, 2022, 14, 195-209.	0.1	0
156	The Value of Single-cell Technologies in Solid Organ Transplantation Studies. Transplantation, 2022, 106, 2325-2337.	0.5	6
158	Progressive Loss of Donor-Reactive CD4+ Effector Memory T Cells due to Apoptosis Underlies Donor-Specific Hyporesponsiveness in Stable Renal Transplant Recipients. Journal of Immunology, 2022, 209, 1389-1400.	0.4	5
159	Selective decrease of donor-reactive T _{regs} after liver transplantation limits T _{reg} therapy for promoting allograft tolerance in humans. Science Translational Medicine, 2022, 14, .	5.8	23
160	Perturbations of the T-cell immune repertoire in kidney transplant rejection. Frontiers in Immunology, 0, 13, .	2.2	2
161	Into the multi-omics era: Progress of T cells profiling in the context of solid organ transplantation. Frontiers in Immunology, 0, 14, .	2.2	2
162	Chimerism-based Tolerance Induction in Clinical Transplantation: Its Foundations and Mechanisms. Transplantation, 0, Publish Ahead of Print, .	0.5	2
164	Clinical application of immune repertoire sequencing in solid organ transplant. Frontiers in Immunology, 0, 14, .	2.2	1
165	Meeting Report: The Fifth International Samuel Strober Workshop on Clinical Immune Tolerance. Transplantation, 2023, 107, 564-569.	0.5	2
166	Clonal dynamics of alloreactive T cells in kidney allograft rejection after anti-PD-1 therapy. Nature Communications, 2023, 14, .	5.8	8
167	Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clinical and Experimental Immunology, 0, , .	1.1	0
168	Induction of allograft tolerance by adoptive transfer of donor B cells: an immune regulatory strategy for transplantation using MHC-matched iPS cells. International Immunology, 0, , .	1.8	0
174	Regulatory T cells in autoimmune kidney diseases and transplantation. Nature Reviews Nephrology, 2023, 19, 544-557.	4.1	6

#ARTICLEIFCITATIONS185Kidney transplantation: the recipient. , 2024, , 411-691.o

188 Strategies to induce tolerance. , 2024, , 1449-1465.