A circuit mechanism for differentiating positive and neg

Nature 520, 675-678 DOI: 10.1038/nature14366

Citation Report

#	Article	IF	CITATIONS
1	Avoidance learning: a review of theoretical models and recent developments. Frontiers in Behavioral Neuroscience, 2015, 9, 189.	1.0	242
2	Ensemble coding in amygdala circuits for associative learning. Current Opinion in Neurobiology, 2015, 35, 200-206.	2.0	55
3	Kaleidoscope. British Journal of Psychiatry, 2015, 207, 87-88.	1.7	0
4	Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits. Nature Communications, 2015, 6, 10088.	5.8	80
5	Manipulating neural activity in physiologically classified neurons: triumphs and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140216.	1.8	12
6	Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140210.	1.8	30
7	Increased Basolateral Amygdala Pyramidal Cell Excitability May Contribute to the Anxiogenic Phenotype Induced by Chronic Early-Life Stress. Journal of Neuroscience, 2015, 35, 9730-9740.	1.7	109
8	Anhedonia and the Brain Reward Circuitry in Depression. Current Behavioral Neuroscience Reports, 2015, 2, 146-153.	0.6	164
9	Neural Representations of Unconditioned Stimuli in Basolateral Amygdala Mediate Innate and Learned Responses. Cell, 2015, 162, 134-145.	13.5	192
10	Pain or pleasure?. Nature Reviews Neuroscience, 2015, 16, 316-316.	4.9	2
11	Opioid Inhibition of Intercalated Input to the Central Amygdala. Journal of Neuroscience, 2015, 35, 13272-13274.	1.7	1
12	Resolving the neural circuits of anxiety. Nature Neuroscience, 2015, 18, 1394-1404.	7.1	504
13	Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nature Neuroscience, 2015, 18, 1364-1375.	7.1	207
14	A tonic for anxiety. Nature Neuroscience, 2015, 18, 1434-1435.	7.1	0
15	Explaining the especially pink elephant. Nature Neuroscience, 2015, 18, 1435-1436.	7.1	1
16	The basolateral amygdala in reward learning and addiction. Neuroscience and Biobehavioral Reviews, 2015, 57, 271-283.	2.9	239
17	Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward. Neuron, 2015, 87, 1063-1077.	3.8	276
18	Neuronal correlates of depression. Cellular and Molecular Life Sciences, 2015, 72, 4825-4848.	2.4	101

#	Article	IF	CITATIONS
19	Pleasure of Food in the Brain. , 2016, , 211-234.		6
20	Single Cell Isolation and Analysis. Frontiers in Cell and Developmental Biology, 2016, 4, 116.	1.8	257
21	Synaptic Organization of Perisomatic GABAergic Inputs onto the Principal Cells of the Mouse Basolateral Amygdala. Frontiers in Neuroanatomy, 2016, 10, 20.	0.9	62
22	Serotonin, Amygdala and Fear: Assembling the Puzzle. Frontiers in Neural Circuits, 2016, 10, 24.	1.4	131
23	A System Computational Model of Implicit Emotional Learning. Frontiers in Computational Neuroscience, 2016, 10, 54.	1.2	6
24	Amygdala and Emotion: The Bright Side of It. Frontiers in Neuroscience, 2016, 10, 224.	1.4	25
25	A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System. Frontiers in Neuroscience, 2016, 10, 480.	1.4	40
26	Theoretical Approaches to Emotion and Its Measurement. , 2016, , 3-30.		35
27	Computational Psychiatry and Psychometrics Based on Non-Conscious Stimuli Input and Pupil Response Output. Frontiers in Psychiatry, 2016, 7, 190.	1.3	3
28	Epigenetic mechanisms and associated brain circuits in the regulation of positive emotions: A role for transposable elements. Journal of Comparative Neurology, 2016, 524, 2944-2954.	0.9	7
29	Adolescent Social Isolation as a Model of Heightened Vulnerability to Comorbid Alcoholism and Anxiety Disorders. Alcoholism: Clinical and Experimental Research, 2016, 40, 1202-1214.	1.4	85
30	Biologically based neural circuit modelling for the study of fear learning and extinction. Npj Science of Learning, 2016, 1, .	1.5	20
31	A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Translational Psychiatry, 2016, 6, e986-e986.	2.4	18
32	Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval. Neuron, 2016, 90, 348-361.	3.8	307
33	Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat. Experimental Brain Research, 2016, 234, 1505-1514.	0.7	20
34	Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. Cell, 2016, 165, 1776-1788.	13.5	295
35	Retrieving fear memories, as time goes by…. Molecular Psychiatry, 2016, 21, 1027-1036.	4.1	80
36	New Learning and Unlearning: Strangers or Accomplices in Threat Memory Attenuation?. Trends in Neurosciences, 2016, 39, 340-351.	4.2	65

#	Article	IF	CITATIONS
37	Parsing Reward and Aversion in the Amygdala. Neuron, 2016, 90, 209-211.	3.8	21
38	Reward and Aversion. Annual Review of Neuroscience, 2016, 39, 297-324.	5.0	174
39	Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning. Neuron, 2016, 92, 505-517.	3.8	112
40	Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala. Neuron, 2016, 91, 1154-1169.	3.8	79
41	Understanding amygdala responsiveness to fearful expressions through the lens of psychopathy and altruism. Journal of Neuroscience Research, 2016, 94, 513-525.	1.3	28
42	Bridging the Gap : Towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiology of Learning and Memory, 2016, 135, 27-39.	1.0	41
43	Plasticityâ€related genes in brain development and amygdalaâ€dependent learning. Genes, Brain and Behavior, 2016, 15, 125-143.	1.1	54
44	Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. Journal of Neuroscience Research, 2016, 94, 445-462.	1.3	59
45	Opposite monosynaptic scaling of BLP–vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory. Nature Communications, 2016, 7, 11935.	5.8	71
46	Input-specific contributions to valence processing in the amygdala. Learning and Memory, 2016, 23, 534-543.	0.5	15
47	Stress-Induced Reinstatement of Nicotine Preference Requires Dynorphin/Kappa Opioid Activity in the Basolateral Amygdala. Journal of Neuroscience, 2016, 36, 9937-9948.	1.7	49
48	Multimodal and Site-Specific Plasticity of Amygdala Parvalbumin Interneurons after Fear Learning. Neuron, 2016, 91, 629-643.	3.8	66
49	Antagonistic negative and positive neurons of the basolateral amygdala. Nature Neuroscience, 2016, 19, 1636-1646.	7.1	307
50	A GABAergic Projection from the Centromedial Nuclei of the Amygdala to Ventromedial Prefrontal Cortex Modulates Reward Behavior. Journal of Neuroscience, 2016, 36, 10831-10842.	1.7	58
51	Dopamine and Its Actions in the Basal Ganglia System. Innovations in Cognitive Neuroscience, 2016, , 87-113.	0.3	3
52	Using model systems to understand errant plasticity mechanisms in psychiatric disorders. Nature Neuroscience, 2016, 19, 1418-1425.	7.1	20
53	On being a circuit psychiatrist. Nature Neuroscience, 2016, 19, 1385-1386.	7.1	65
54	Enhancing positivity in cognitive behavioural therapy Canadian Psychology, 2016, 57, 1-7.	1.4	5

#	Article	IF	CITATIONS
55	Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala. Nature Communications, 2016, 7, 13149.	5.8	39
56	Parsing reward from aversion. Science, 2016, 354, 558-558.	6.0	7
57	Basolateral amygdala nucleus responses to appetitive conditioned stimuli correlate with variations in conditioned behaviour. Nature Communications, 2016, 7, 12275.	5.8	16
58	The Mind and the Brain. The Frontiers Collection, 2016, , 291-394.	0.1	0
59	Structural and functional neural adaptations in obstructive sleep apnea: An activation likelihood estimation meta-analysis. Neuroscience and Biobehavioral Reviews, 2016, 65, 142-156.	2.9	101
60	RDoC, DSM, and the reflex physiology of fear: A biodimensional analysis of the anxiety disorders spectrum. Psychophysiology, 2016, 53, 336-347.	1.2	106
61	Rabies Virus CVS-N2c ΔG Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability. Neuron, 2016, 89, 711-724.	3.8	236
62	Neural, cognitive, and evolutionary foundations of human altruism. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 59-71.	1.4	47
63	Persistent adaptation by chronic alcohol is facilitated by neuroimmune activation linked to stress and CRF. Alcohol, 2016, 52, 9-23.	0.8	14
64	Amygdala subnuclei response and connectivity during emotional processing. NeuroImage, 2016, 133, 98-110.	2.1	73
65	Deep Brain Stimulation in Animal Models of Fear, Anxiety, and Posttraumatic Stress Disorder. Neuropsychopharmacology, 2016, 41, 2810-2817.	2.8	49
66	Communication in Neural Circuits: Tools, Opportunities, and Challenges. Cell, 2016, 164, 1136-1150.	13.5	143
67	Architectural Representation of Valence in the Limbic System. Neuropsychopharmacology, 2016, 41, 1697-1715.	2.8	110
68	Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience, 2016, 321, 197-209.	1.1	300
69	Curiosity as an approach to ethoexperimental analysis: Behavioral neuroscience as seen by students and colleagues of Bob Blanchard. Neuroscience and Biobehavioral Reviews, 2017, 76, 415-422.	2.9	5
70	Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience, 2017, 345, 193-202.	1.1	158
71	An intra-amygdala circuit specifically regulates social fear learning. Nature Neuroscience, 2017, 20, 459-469.	7.1	76
72	Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission. Journal of Neuroscience, 2017, 37, 1785-1796.	1.7	99

#	Article	IF	CITATIONS
73	Acute stress enhances the glutamatergic transmission onto basoamygdala neurons embedded in distinct microcircuits. Molecular Brain, 2017, 10, 3.	1.3	17
74	GABAergic Neurons of the Central Amygdala Promote Cataplexy. Journal of Neuroscience, 2017, 37, 3995-4006.	1.7	55
75	Paraventricular Thalamus Balances Danger and Reward. Journal of Neuroscience, 2017, 37, 3018-3029.	1.7	92
76	Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3526-E3535.	3.3	78
77	Morphological and physiological properties of CCK/CB1R-expressing interneurons in the basal amygdala. Brain Structure and Function, 2017, 222, 3543-3565.	1.2	29
78	Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nature Neuroscience, 2017, 20, 824-835.	7.1	235
79	Thalamic Regulation of Sucrose Seeking during Unexpected Reward Omission. Neuron, 2017, 94, 388-400.e4.	3.8	142
80	Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories. Neuron, 2017, 94, 731-743.	3.8	201
81	Reward loss and the basolateral amygdala: A function in reward comparisons. Behavioural Brain Research, 2017, 331, 205-213.	1.2	22
82	Optogenetics Research in Behavioral Neuroscience: Insights into the Brain Basis of Reward Learning and Goal-directed Behavior. , 0, , 276-291.		1
82 83	Optogenetics Research in Behavioral Neuroscience: Insights into the Brain Basis of Reward Learning and Goal-directed Behavior. , 0, , 276-291. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546, 611-616.	13.7	1 256
	and Goal-directed Behavior. , 0, , 276-291.	13.7	
83	and Goal-directed Behavior., 0, , 276-291. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546, 611-616. Motivational neural circuits underlying reinforcement learning. Nature Neuroscience, 2017, 20,		256
83 84	and Goal-directed Behavior., 0, , 276-291. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546, 611-616. Motivational neural circuits underlying reinforcement learning. Nature Neuroscience, 2017, 20, 505-512.	7.1	256 144
83 84 85	 and Goal-directed Behavior., 0, , 276-291. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546, 611-616. Motivational neural circuits underlying reinforcement learning. Nature Neuroscience, 2017, 20, 505-512. Neural ensemble dynamics underlying a long-term associative memory. Nature, 2017, 543, 670-675. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time 	7.1 13.7	256 144 273
83 84 85 86	 and Goal-directed Behavior., 0, , 276-291. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546, 611-616. Motivational neural circuits underlying reinforcement learning. Nature Neuroscience, 2017, 20, 505-512. Neural ensemble dynamics underlying a long-term associative memory. Nature, 2017, 543, 670-675. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making. Journal of Neuroscience, 2017, 37, 11537-11548. Differential Recruitment of Competing Valence-Related Amygdala Networks during Anxiety. Neuron, 	7.1 13.7 1.7	256 144 273 51
83 84 85 86 87	 and Goal-directed Behavior., 0, , 276-291. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature, 2017, 546, 611-616. Motivational neural circuits underlying reinforcement learning. Nature Neuroscience, 2017, 20, 505-512. Neural ensemble dynamics underlying a long-term associative memory. Nature, 2017, 543, 670-675. Optogenetic Inhibition Reveals Distinct Roles for Basolateral Amygdala Activity at Discrete Time Points during Risky Decision Making. Journal of Neuroscience, 2017, 37, 11537-11548. Differential Recruitment of Competing Valence-Related Amygdala Networks during Anxiety. Neuron, 2017, 96, 81-88.e5. 	7.1 13.7 1.7 3.8	256 144 273 51 51

		CITATION	Report	
# 91	ARTICLE Connectivity and Circuit Architecture Using Transsynaptic Tracing in Vertebrates. , 2017,	, 91-148.	IF	CITATIONS
92	Optogenetic activation of amygdala projections to nucleus accumbens can arrest condition unconditioned alcohol consummatory behavior. Neuroscience, 2017, 360, 106-117.	oned and	1.1	67
93	Prefrontal Cortex Drives Distinct Projection Neurons in the Basolateral Amygdala. Cell Rep 21, 1426-1433.	oorts, 2017,	2.9	103
94	Life-Long Genetic and Functional Access to Neural Circuits Using Self-Inactivating Rabies V 2017, 170, 382-392.e14.	Virus. Cell,	13.5	130
95	Metabolic activation of amygdala, lateral septum and accumbens circuits during food ant behavior. Behavioural Brain Research, 2017, 316, 261-270.	icipatory	1.2	15
96	Seeing through the smoke: Human and animal studies of cannabis use and endocannabin in corticolimbic networks. Neuroscience and Biobehavioral Reviews, 2017, 76, 380-395.	oid signalling	2.9	28
97	Emotion-augmented machine learning: Overview of an emerging domain. , 2017, , .			12
98	Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits durin Frontiers in Neural Circuits, 2017, 11, 12.	g Learning.	1.4	21
99	From Engrams to Pathologies of the Brain. Frontiers in Neural Circuits, 2017, 11, 23.		1.4	32
100	New perspectives on central amygdala function. Current Opinion in Neurobiology, 2018,	49, 141-147.	2.0	185
101	Learning rules for aversive associative memory formation. Current Opinion in Neurobiolog 148-157.	;y, 2018, 49,	2.0	16
102	Basolateral amygdala circuitry in positive and negative valence. Current Opinion in Neurol 2018, 49, 175-183.	biology,	2.0	89
103	Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projectic neurons. Nature Neuroscience, 2018, 21, 638-646.	in	7.1	171
104	Inhibition in the amygdala anxiety circuitry. Experimental and Molecular Medicine, 2018, 5	50, 1-16.	3.2	189
105	Amygdala realâ€ŧime functional magnetic resonance imaging neurofeedback for major de disorder: A review. Psychiatry and Clinical Neurosciences, 2018, 72, 466-481.	pressive	1.0	60
106	RDoC-based categorization of amygdala functions and its implications in autism. Neurosc Biobehavioral Reviews, 2018, 90, 115-129.	ience and	2.9	26
107	Anxiety Cells in a Hippocampal-Hypothalamic Circuit. Neuron, 2018, 97, 670-683.e6.		3.8	408
108	Basolateral Amygdala Inputs to the Medial Entorhinal Cortex Selectively Modulate the Col of Spatial and Contextual Learning. Journal of Neuroscience, 2018, 38, 2698-2712.	nsolidation	1.7	36

#	Article	IF	CITATIONS
109	Comparative evidence for the importance of the amygdala in regulating reward salience. Current Opinion in Behavioral Sciences, 2018, 22, 76-81.	2.0	9
110	Dissociable contributions of dorsal and ventral striatal regions on a rodent cost/benefit decision-making task requiring cognitive effort. Neuropharmacology, 2018, 137, 322-331.	2.0	10
111	Memory Allocation: Mechanisms and Function. Annual Review of Neuroscience, 2018, 41, 389-413.	5.0	130
112	Neural substrates of fear-induced hypophagia in male and female rats. Brain Structure and Function, 2018, 223, 2925-2947.	1.2	10
113	Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala. Cell Reports, 2018, 22, 905-918.	2.9	214
114	Neuronal Activation After Prolonged Immobilization: Do the Same or Different Neurons Respond to a Novel Stressor?. Cerebral Cortex, 2018, 28, 1233-1244.	1.6	3
115	Basolateral Amygdala Neurons Maintain Aversive Emotional Salience. Journal of Neuroscience, 2018, 38, 3001-3012.	1.7	56
116	Closing gaps in brain disease — from overlapping genetic architecture to common motifs of synapse dysfunction. Current Opinion in Neurobiology, 2018, 48, 45-51.	2.0	23
117	Understanding emotion with brain networks. Current Opinion in Behavioral Sciences, 2018, 19, 19-25.	2.0	86
118	Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning. Biological Psychiatry, 2018, 83, 800-809.	0.7	190
119	Social Isolation During Adolescence Induces Anxiety Behaviors and Enhances Firing Activity in BLA Pyramidal Neurons via mGluR5 Upregulation. Molecular Neurobiology, 2018, 55, 5310-5320.	1.9	25
120	Dysregulation of aversive signaling pathways: a novel circuit endophenotype for pain and anxiety disorders. Current Opinion in Neurobiology, 2018, 48, 37-44.	2.0	16
121	Use of TAI-FISH to visualize neural ensembles activated by multiple stimuli. Nature Protocols, 2018, 13, 118-133.	5.5	23
122	Adolescent conditioning affects rate of adult fear, safety and reward learning during discriminative conditioning. Scientific Reports, 2018, 8, 17315.	1.6	16
123	Effect of CS preexposure on the conditioned ejaculatory preference of the male rat: behavioral analyses and neural correlates. Learning and Memory, 2018, 25, 513-521.	0.5	10
124	Predicting treatment course and outcome using a promotion and prevention framework in a community sample of arthritis sufferers. Patient Preference and Adherence, 2018, Volume 12, 981-991.	0.8	0
125	Ventral striatum's role in learning from gains and losses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12398-E12406.	3.3	28
126	Population coding of valence in the basolateral amygdala. Nature Communications, 2018, 9, 5195.	5.8	78

#	Article	IF	CITATIONS
127	Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Communications Biology, 2018, 1, 102.	2.0	49
128	Chronic Social Stress Leads to Reduced Gustatory Reward Salience and Effort Valuation in Mice. Frontiers in Behavioral Neuroscience, 2018, 12, 134.	1.0	18
129	Neural Circuit Motifs in Valence Processing. Neuron, 2018, 100, 436-452.	3.8	168
130	The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study. Cell, 2018, 175, 723-735.e16.	13.5	116
131	Neurocognitive Development of Motivated Behavior: Dynamic Changes across Childhood and Adolescence. Journal of Neuroscience, 2018, 38, 9433-9445.	1.7	57
132	Integration of Parallel Opposing Memories Underlies Memory Extinction. Cell, 2018, 175, 709-722.e15.	13.5	176
133	Mood variations decoded from multi-site intracranial human brain activity. Nature Biotechnology, 2018, 36, 954-961.	9.4	164
134	Chronic inflammatory pain decreases the glutamate vesicles in presynaptic terminals of the nucleus accumbens. Molecular Pain, 2018, 14, 174480691878125.	1.0	13
135	The coding of valence and identity in the mammalian taste system. Nature, 2018, 558, 127-131.	13.7	158
136	Endogenous and Exogenous Opioids in Pain. Annual Review of Neuroscience, 2018, 41, 453-473.	5.0	260
137	Specificity, Versatility, and Continual Development: The Power of Optogenetics for Epilepsy Research. Frontiers in Cellular Neuroscience, 2018, 12, 151.	1.8	23
138	Evolution of vertebrate survival circuits. Current Opinion in Behavioral Sciences, 2018, 24, 113-123.	2.0	13
139	Basal Forebrain and Brainstem Cholinergic Neurons Differentially Impact Amygdala Circuits and Learning-Related Behavior. Current Biology, 2018, 28, 2557-2569.e4.	1.8	44
140	Multi-dimensional Coding by Basolateral Amygdala Neurons. Neuron, 2018, 99, 1315-1328.e5.	3.8	93
141	A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance. Journal of Neuroscience Methods, 2018, 306, 103-114.	1.3	7
143	The State of the NIH BRAIN Initiative. Journal of Neuroscience, 2018, 38, 6427-6438.	1.7	62
144	Altering gain of the infralimbic-to-accumbens shell circuit alters economically dissociable decision-making algorithms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6347-E6355.	3.3	28
145	Reward-Driven Arousal Impacts Preparation to Perform a Task via Amygdala–Caudate Mechanisms. Cerebral Cortex, 2019, 29, 3010-3022.	1.6	18

#	Article	IF	CITATIONS
146	Neuropeptide signalling in the central nucleus of the amygdala. Cell and Tissue Research, 2019, 375, 93-101.	1.5	25
147	Chronic Stress Remodels Synapses in an Amygdala Circuit–Specific Manner. Biological Psychiatry, 2019, 85, 189-201.	0.7	111
148	Molecular and cellular studies of PTSD: Postmortem transcriptome analysis and novel therapeutic targets. Journal of Neuroscience Research, 2019, 97, 292-299.	1.3	11
149	Neurobiological links between stress and anxiety. Neurobiology of Stress, 2019, 11, 100191.	1.9	223
150	Embracing Complexity in Defensive Networks. Neuron, 2019, 103, 189-201.	3.8	38
151	Cue-dependent safety and fear learning in a discriminative auditory fear conditioning paradigm in the mouse. Learning and Memory, 2019, 26, 284-290.	0.5	8
152	The Perception of Facial Emotion in Typical and Atypical Development. , 2019, , 105-138.		12
153	Neuropsychiatric aspects of Parkinson disease psychopharmacology: Insights from circuit dynamics. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 165, 83-121.	1.0	12
154	Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states. Nature Neuroscience, 2019, 22, 2000-2012.	7.1	45
155	NMDA receptor-dependent plasticity in the nucleus accumbens connects reward-predictive cues to approach responses. Nature Communications, 2019, 10, 4429.	5.8	18
156	A Non-Canonical Cortico-Amygdala Inhibitory Loop. Journal of Neuroscience, 2019, 39, 8424-8438.	1.7	21
157	A role for miR-132 in learned safety. Scientific Reports, 2019, 9, 528.	1.6	18
158	Affective valence in the brain: modules or modes?. Nature Reviews Neuroscience, 2019, 20, 225-234.	4.9	112
159	Striatal circuits for reward learning and decision-making. Nature Reviews Neuroscience, 2019, 20, 482-494.	4.9	337
160	Subcortical Substrates of Explore-Exploit Decisions in Primates. Neuron, 2019, 103, 533-545.e5.	3.8	87
161	Oxytocin Signaling in the Central Amygdala Modulates Emotion Discrimination in Mice. Current Biology, 2019, 29, 1938-1953.e6.	1.8	125
162	A Discrete Dorsal Raphe to Basal Amygdala 5-HT Circuit Calibrates Aversive Memory. Neuron, 2019, 103, 489-505.e7.	3.8	72
163	Reactivation of Recall-Induced Neurons in the Infralimbic Cortex and the Basolateral Amygdala After Remote Fear Memory Attenuation. Frontiers in Molecular Neuroscience, 2019, 12, 70.	1.4	14

#	Article	IF	CITATIONS
164	Synaptic functions and their disruption in schizophrenia: From clinical evidence to synaptic optogenetics in an animal model. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 179-197.	1.6	50
165	Amygdala ensembles encode behavioral states. Science, 2019, 364, .	6.0	147
166	CAV-2 Vector Development and Gene Transfer in the Central and Peripheral Nervous Systems. Frontiers in Molecular Neuroscience, 2019, 12, 71.	1.4	37
167	Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cognitive Neurodynamics, 2019, 13, 219-237.	2.3	15
168	A-Kinase Anchoring Protein 150 and Protein Kinase A Complex in the Basolateral Amygdala Contributes to Depressive-like Behaviors Induced by Chronic Restraint Stress. Biological Psychiatry, 2019, 86, 131-142.	0.7	49
169	Learning the payoffs and costs of actions. PLoS Computational Biology, 2019, 15, e1006285.	1.5	26
170	Reinforcement learning in artificial and biological systems. Nature Machine Intelligence, 2019, 1, 133-143.	8.3	157
171	Reciprocal interactions across and within multiple levels of monoamine and cortico-limbic systems in stress-induced depression: A systematic review. Neuroscience and Biobehavioral Reviews, 2019, 101, 13-31.	2.9	27
172	Restingâ€state fMRI effective connectivity between the bed nucleus of the stria terminalis and amygdala nuclei. Human Brain Mapping, 2019, 40, 2723-2735.	1.9	16
173	A note on retrograde gene transfer efficiency and inflammatory response of lentiviral vectors pseudotyped with FuG-E vs. FuG-B2 glycoproteins. Scientific Reports, 2019, 9, 3567.	1.6	12
174	NPY ₂ Receptors Reduce Tonic Action Potential-Independent GABA _B Currents in the Basolateral Amygdala. Journal of Neuroscience, 2019, 39, 4909-4930.	1.7	17
175	Distinct hippocampal engrams control extinction and relapse of fear memory. Nature Neuroscience, 2019, 22, 753-761.	7.1	196
176	Arc reactivity in accumbens nucleus, amygdala and hippocampus differentiates cue over context responses during reactivation of opiate withdrawal memory. Neurobiology of Learning and Memory, 2019, 159, 24-35.	1.0	9
177	Evaluation of medial division of the medial geniculate (MGM) and posterior intralaminar nucleus (PIN) inputs to the rat auditory cortex, amygdala, and striatum. Journal of Comparative Neurology, 2019, 527, 1478-1494.	0.9	14
178	Defining circuit-specific roles for G protein-coupled receptors in aversive learning. Current Opinion in Behavioral Sciences, 2019, 26, 146-156.	2.0	2
179	Anxiety and Brain Networks of Attentional Control. Cognitive and Behavioral Neurology, 2019, 32, 54-62.	0.5	15
180	Moderate maternal separation mitigates the altered synaptic transmission and neuronal activation in amygdala by chronic stress in adult mice. Molecular Brain, 2019, 12, 111.	1.3	25
181	Âμ-opioid receptor-mediated downregulation of midline thalamic pathways to basal and central amygdala. Scientific Reports, 2019, 9, 17837.	1.6	16

#	Article	IF	CITATIONS
182	Cortico-Limbic Interactions Mediate Adaptive and Maladaptive Responses Relevant to Psychopathology. American Journal of Psychiatry, 2019, 176, 987-999.	4.0	51
183	Affective memory rehearsal with temporal sequences in amygdala neurons. Nature Neuroscience, 2019, 22, 2050-2059.	7.1	15
184	Valence coding in amygdala circuits. Current Opinion in Behavioral Sciences, 2019, 26, 97-106.	2.0	55
185	Chronic Stress Causes Projection-Specific Adaptation of Amygdala Neurons via Small-Conductance Calcium-Activated Potassium Channel Downregulation. Biological Psychiatry, 2019, 85, 812-828.	0.7	49
186	Endocannabinoid interactions in the regulation of acquisition of contextual conditioned fear. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 90, 84-91.	2.5	11
187	The Neurobiology of Personal Control During Reward Learning and Its Relationship to Mood. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 190-199.	1.1	17
188	An amygdalar neural ensemble that encodes the unpleasantness of pain. Science, 2019, 363, 276-281.	6.0	246
189	Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Research, 2019, 1713, 16-31.	1.1	53
190	Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits. Neuroscience Bulletin, 2019, 35, 369-377.	1.5	18
191	Development of the emotional brain. Neuroscience Letters, 2019, 693, 29-34.	1.0	239
191 192	Development of the emotional brain. Neuroscience Letters, 2019, 693, 29-34. How Reward and Aversion Shape Motivation and Decision Making: A Computational Account. Neuroscientist, 2020, 26, 87-99.	1.0 2.6	239 14
	How Reward and Aversion Shape Motivation and Decision Making: A Computational Account.		
192	How Reward and Aversion Shape Motivation and Decision Making: A Computational Account. Neuroscientist, 2020, 26, 87-99. The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models.	2.6	14
192 193	 How Reward and Aversion Shape Motivation and Decision Making: A Computational Account. Neuroscientist, 2020, 26, 87-99. The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models. Biological Psychiatry, 2020, 87, 54-63. Erbin in Amygdala Parvalbumin-Positive Neurons Modulates Anxiety-like Behaviors. Biological 	2.6 0.7	14 49
192 193 194	 How Reward and Aversion Shape Motivation and Decision Making: A Computational Account. Neuroscientist, 2020, 26, 87-99. The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models. Biological Psychiatry, 2020, 87, 54-63. Erbin in Amygdala Parvalbumin-Positive Neurons Modulates Anxiety-like Behaviors. Biological Psychiatry, 2020, 87, 926-936. Learning-induced intrinsic and synaptic plasticity in the rodent medial prefrontal cortex. 	2.6 0.7 0.7	14 49 39
192 193 194 195	 How Reward and Aversion Shape Motivation and Decision Making: A Computational Account. Neuroscientist, 2020, 26, 87-99. The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models. Biological Psychiatry, 2020, 87, 54-63. Erbin in Amygdala Parvalbumin-Positive Neurons Modulates Anxiety-like Behaviors. Biological Psychiatry, 2020, 87, 926-936. Learning-induced intrinsic and synaptic plasticity in the rodent medial prefrontal cortex. Neurobiology of Learning and Memory, 2020, 169, 107117. Adeno-Associated Viral Vectors in Neuroscience Research. Molecular Therapy - Methods and Clinical 	2.6 0.7 0.7 1.0	14 49 39 15
192 193 194 195 196	 How Reward and Aversion Shape Motivation and Decision Making: A Computational Account. Neuroscientist, 2020, 26, 87-99. The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models. Biological Psychiatry, 2020, 87, 54-63. Erbin in Amygdala Parvalbumin-Positive Neurons Modulates Anxiety-like Behaviors. Biological Psychiatry, 2020, 87, 926-936. Learning-induced intrinsic and synaptic plasticity in the rodent medial prefrontal cortex. Neurobiology of Learning and Memory, 2020, 169, 107117. Adeno-Associated Viral Vectors in Neuroscience Research. Molecular Therapy - Methods and Clinical Development, 2020, 17, 69-82. Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. 	2.6 0.7 0.7 1.0 1.8	14 49 39 15 76

#	Article	IF	CITATIONS
200	An Amygdala Circuit Mediates Experience-Dependent Momentary Arrests during Exploration. Cell, 2020, 183, 605-619.e22.	13.5	34
201	Social Behavior Is Modulated by Valence-Encoding mPFC-Amygdala Sub-circuitry. Cell Reports, 2020, 32, 107899.	2.9	83
203	Dysregulation of the Synaptic Cytoskeleton in the PFC Drives Neural Circuit Pathology, Leading to Social Dysfunction. Cell Reports, 2020, 32, 107965.	2.9	25
204	Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25789-25799.	3.3	49
205	Amygdalostriatal coupling underpins positive but not negative coloring of ambiguous affect. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 949-960.	1.0	6
206	Hedonicity in functional motor disorders: a chemosensory study assessing taste. Journal of Neural Transmission, 2020, 127, 1399-1407.	1.4	1
207	Multi-Scale Understanding of NMDA Receptor Function in Schizophrenia. Biomolecules, 2020, 10, 1172.	1.8	3
208	Plastic changes in amygdala subregions by voluntary running contribute to exercise-induced hypoalgesia in neuropathic pain model mice. Molecular Pain, 2020, 16, 174480692097137.	1.0	15
209	The Trait Approach. , 2020, , 31-43.		0
210	Accuracy in Person Perception. , 2020, , 44-55.		1
211	Models of Personality Structure. , 2020, , 115-128.		0
212	The Five-Factor Model of Personality: Consensus and Controversy. , 2020, , 129-141.		2
213	Temperament and Brain Networks of Attention. , 2020, , 155-168.		2
214	Personality in Nonhuman Animals. , 2020, , 235-246.		0
215	Genetics of Personality. , 2020, , 247-258.		0
216	Approach–Avoidance Theories of Personality. , 2020, , 259-272.		1
217	Cognitive Processes and Models. , 2020, , 295-315.		0
218	Basic Needs, Goals and Motivation. , 2020, , 330-338.		1

#	Article	IF	CITATIONS
219	Personality and the Self. , 2020, , 339-351.		6
220	Social Relations and Social Support. , 2020, , 386-399.		0
221	Personality and Politics. , 2020, , 413-424.		1
222	Personality at Work. , 2020, , 427-438.		2
224	Personality in Clinical Psychology. , 2020, , 451-462.		0
226	Conceptual and Historical Perspectives. , 2020, , 13-30.		3
227	Personality and the Unconscious. , 2020, , 69-80.		0
228	Personality and Emotion. , 2020, , 81-100.		8
229	Personality Assessment Methods. , 2020, , 103-114.		0
230	Personality and Intelligence. , 2020, , 142-152.		0
231	Development of Personality across the Life Span. , 2020, , 169-182.		3
232	Personality Traits and Mental Disorders. , 2020, , 183-192.		0
233	Attachment Theory. , 2020, , 208-220.		0
234	Evolutionary Personality Psychology. , 2020, , 223-234.		4
235	Personality Neuroscience. , 2020, , 273-292.		5
236	Self-Regulation and Control in Personality Functioning. , 2020, , 316-329.		0
237	Traits and Dynamic Processes. , 2020, , 352-363.		0
238	Anxiety, Depression and Cognitive Dysfunction. , 2020, , 364-374.		0

#	ARTICLE	IF	CITATIONS
239	Personality in Cross-Cultural Perspective. , 2020, , 400-412.		1
240	Personality, Preferences and Socioeconomic Behavior. , 2020, , 477-494.		2
242	States and Situations, Traits and Environments. , 2020, , 56-68.		1
243	Narrative Identity in the Social World. , 2020, , 377-385.		0
244	Personality and Crime. , 2020, , 463-476.		0
245	Models of Physical Health and Personality. , 2020, , 193-207.		2
247	Toward Circuit Mechanisms of Pathophysiology in Depression. American Journal of Psychiatry, 2020, 177, 381-390.	4.0	77
248	Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nature Communications, 2020, 11, 2221.	5.8	175
249	Different Multidimensional Representations across the Amygdalo-Prefrontal Network during an Approach-Avoidance Task. Neuron, 2020, 107, 717-730.e5.	3.8	24
250	Reward-related dynamical coupling between basolateral amygdala and nucleus accumbens. Brain Structure and Function, 2020, 225, 1873-1888.	1.2	6
251	Canine Adenovirus 2: A Natural Choice for Brain Circuit Dissection. Frontiers in Molecular Neuroscience, 2020, 13, 9.	1.4	10
252	Encoding of contextual fear memory in hippocampal–amygdala circuit. Nature Communications, 2020, 11, 1382.	5.8	142
253	The neural and computational systems of social learning. Nature Reviews Neuroscience, 2020, 21, 197-212.	4.9	131
254	Expression of serotonin 1A and 2A receptors in molecular- and projection-defined neurons of the mouse insular cortex. Molecular Brain, 2020, 13, 99.	1.3	26
255	<p>Role of Dopaminergic Receptors Within the Ventral Tegmental Area in Antinociception Induced by Chemical Stimulation of the Lateral Hypothalamus in an Animal Model of Orofacial Pain</p> . Journal of Pain Research, 2020, Volume 13, 1449-1460.	0.8	9
256	Amygdala Reward Neurons Form and Store Fear Extinction Memory. Neuron, 2020, 105, 1077-1093.e7.	3.8	139
257	Estimation of Current and Future Physiological States in Insular Cortex. Neuron, 2020, 105, 1094-1111.e10.	3.8	142
258	Optogenetic Activation of the Basolateral Amygdala Promotes Both Appetitive Conditioning and the Instrumental Pursuit of Reward Cues. Journal of Neuroscience, 2020, 40, 1732-1743.	1.7	25

#	Article	IF	CITATIONS
259	Evidence for Persistence of Sexual Evaluative Learning Effects. Journal of Sexual Medicine, 2020, 17, 505-517.	0.3	3
260	Initial conditioning and re-conditioning recruit different populations of â€~fear neurons' in the basal amygdala of rats. Biochemical and Biophysical Research Communications, 2020, 525, 292-297.	1.0	1
261	Chronic Stress Oppositely Regulates Tonic Inhibition in Thy1-Expressing and Non-expressing Neurons in Amygdala. Frontiers in Neuroscience, 2020, 14, 299.	1.4	12
262	Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. Handbook of Behavioral Neuroscience, 2020, 26, 63-100.	0.7	34
263	Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain, Behavior, and Immunity, 2021, 91, 505-518.	2.0	122
264	Trauma Affects Prospective Relationships Between Reward-Related Ventral Striatal and Amygdala Activation and 1-Year Future Hypo/Mania Trajectories. Biological Psychiatry, 2021, 89, 868-877.	0.7	10
265	Neural substrates of the interplay between cognitive load and emotional involvement in bilingual decision making. Neuropsychologia, 2021, 151, 107721.	0.7	7
266	Basomedial amygdala activity in mice reflects specific and general aversion uncontrollability. European Journal of Neuroscience, 2022, 55, 2435-2454.	1.2	8
267	The medial entorhinal cortex mediates basolateral amygdala effects on spatial memory and downstream activity-regulated cytoskeletal-associated protein expression. Neuropsychopharmacology, 2021, 46, 1172-1182.	2.8	8
268	A specific neural substrate predicting current and future impulsivity in young adults. Molecular Psychiatry, 2021, 26, 4919-4930.	4.1	3
269	A Pilot Study of Perspective Taking and Emotional Contagion in Mental Health Professionals: Glass Brain View of Empathy. Indian Journal of Psychological Medicine, 2022, 44, 025371762097338.	0.6	1
270	Basal Forebrain Cholinergic Signaling to Projection-Defined Cells within the Basolateral Amygdala Regulates Food Intake. SSRN Electronic Journal, 0, , .	0.4	0
271	Valence processing in the PFC: Reconciling circuit-level and systems-level views. International Review of Neurobiology, 2021, 158, 171-212.	0.9	9
272	Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 419-432.	1.0	10
274	Locus Coeruleus Activation Patterns Differentially Modulate Odor Discrimination Learning and Odor Valence in Rats. Cerebral Cortex Communications, 2021, 2, tgab026.	0.7	15
275	Theoretical approaches to emotion and its measurement. , 2021, , 3-37.		9
276	Multiple facets of serotonergic modulation. Progress in Brain Research, 2021, 261, 3-39.	0.9	8
277	Activation of Basolateral Amygdala to Nucleus Accumbens Projection Neurons Attenuates Chronic Corticosterone-Induced Behavioral Deficits in Male Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 643272.	1.0	15

#	Article	IF	CITATIONS
278	Characterizing Different Strategies for Resolving Approach-Avoidance Conflict. Frontiers in Neuroscience, 2021, 15, 608922.	1.4	16
279	Neural Computations of Threat. Trends in Cognitive Sciences, 2021, 25, 151-171.	4.0	53
280	Food Entrainment, Arousal, and Motivation in the Neonatal Rabbit Pup. Frontiers in Neuroscience, 2021, 15, 636764.	1.4	6
281	Dopamine in Fear Extinction. Frontiers in Synaptic Neuroscience, 2021, 13, 635879.	1.3	25
285	Hyperexcitability and Loss of Feedforward Inhibition Contribute to Aberrant Plasticity in the <i>Fmr1</i> KO Amygdala. ENeuro, 2021, 8, ENEURO.0113-21.2021.	0.9	6
286	Single cell plasticity and population coding stability in auditory thalamus upon associative learning. Nature Communications, 2021, 12, 2438.	5.8	37
287	Brainâ€wide mapping of presynaptic inputs to basolateral amygdala neurons. Journal of Comparative Neurology, 2021, 529, 3062-3075.	0.9	9
288	Behavioral and neurobiological mechanisms of pavlovian and instrumental extinction learning. Physiological Reviews, 2021, 101, 611-681.	13.1	163
289	Neural substrates of appetitive and aversive prediction error. Neuroscience and Biobehavioral Reviews, 2021, 123, 337-351.	2.9	32
290	Distributed coding in auditory thalamus and basolateral amygdala upon associative fear learning. Current Opinion in Neurobiology, 2021, 67, 183-189.	2.0	13
291	Neuronal ensembles in memory processes. Seminars in Cell and Developmental Biology, 2022, 125, 136-143.	2.3	15
293	Projection from the basolateral amygdala to the anterior cingulate cortex facilitates the consolidation of longâ€ŧerm withdrawal memory. Addiction Biology, 2021, 26, e13048.	1.4	6
294	Specific neuronal subpopulations in the rat basolateral amygdala express high levels of nonphosphorylated neurofilaments. Journal of Comparative Neurology, 2021, 529, 3292-3312.	0.9	4
296	Calciumâ€permeable AMPA receptor activity and CluA1 trafficking in the basolateral amygdala regulate operant alcohol selfâ€administration. Addiction Biology, 2021, 26, e13049.	1.4	11
299	Interpreting the role of the striatum during multiple phases of motor learning. FEBS Journal, 2022, 289, 2263-2281.	2.2	25
301	Understanding the dynamic and destiny of memories. Neuroscience and Biobehavioral Reviews, 2021, 125, 592-607.	2.9	21
302	Significant increases of the amygdala between immediate and late postpartum: Pronounced effects within the superficial subregion. Journal of Neuroscience Research, 2021, 99, 2261-2270.	1.3	6
303	Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behavioural Brain Research, 2021, 409, 113306.	1.2	15

	C	CITATION REPORT	
#	Article	IF	Citations
304	Delays to reward delivery enhance the preference for an initially less desirable option: role for the basolateral amygdala and retrosplenial cortex. Journal of Neuroscience, 2021, 41, JN-RM-0438-21.	1.7	1
305	Retrograde Transgene Expression via Neuron-Specific Lentiviral Vector Depends on Both Species and Input Projections. Viruses, 2021, 13, 1387.	1.5	2
306	Valence encoding in the amygdala influences motivated behavior. Behavioural Brain Research, 2021, 411, 113370.	1.2	18
307	Mapping functional gradients of the striatal circuit using simultaneous microelectric stimulation and ultrahigh-field fMRI in non-human primates. NeuroImage, 2021, 236, 118077.	2.1	7
308	Incentive motivation: â€~wanting' roles of central amygdala circuitry. Behavioural Brain Research 411, 113376.	, 2021, 1.2	36
309	PEN Receptor GPR83 in Anxiety-Like Behaviors: Differential Regulation in Global vs Amygdalar Knockdown. Frontiers in Neuroscience, 2021, 15, 675769.	1.4	9
310	Divergent projections of the paraventricular nucleus of the thalamus mediate the selection of passive and active defensive behaviors. Nature Neuroscience, 2021, 24, 1429-1440.	e 7.1	30
311	Structural, functional, and behavioral significance of sex and gonadal hormones in the basolateral amygdala: A review of preclinical literature. Alcohol, 2022, 98, 25-41.	0.8	17
312	Olfactory learning and memory in the greater short-nosed fruit bat Cynopterus sphinx: the influence of conspecifics distress calls. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 667-679.	0.7	1
313	The Roles of Basolateral Amygdala Parvalbumin Neurons in Fear Learning. Journal of Neuroscience, 2021, 41, 9223-9234.	1.7	8
314	Alcohol consumption preferentially activates a subset of pro-opiomelanocortin (POMC) producing neurons targeting the amygdala. Neuropharmacology, 2021, 195, 108674.	2.0	5
315	Learning at Variable Attentional Load Requires Cooperation of Working Memory, Meta-learning, and Attention-augmented Reinforcement Learning. Journal of Cognitive Neuroscience, 2021, 34, 1-29.	1.1	8
317	Patterns of Infant Amygdala Connectivity Mediate the Impact of High Caregiver Affect on Reducing Infant Smiling: Discovery and Replication. Biological Psychiatry, 2021, 90, 342-352.	0.7	13
318	Ethanol modulation of cortico-basolateral amygdala circuits: Neurophysiology and behavior. Neuropharmacology, 2021, 197, 108750.	2.0	8
319	GABAergic microcircuitry of fear memory encoding. Neurobiology of Learning and Memory, 2021, 18 107504.	34, 1.0	7
320	Cannabidiol and the corticoraphe circuit in post-traumatic stress disorder. IBRO Neuroscience Reports, 2021, 11, 88-102.	0.7	1
321	Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addictior International Review of Neurobiology, 2021, 157, 31-68.	n. 0.9	2
322	Sleep and Appetitive Conditioned Memory. , 2019, , 227-254.		5

#	Article	IF	CITATIONS
323	The Amygdala – A Hub of the Social Auditory Brain. , 2020, , 812-837.		6
324	Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. Handbook of Behavioral Neuroscience, 2020, 26, 1-38.	0.7	28
326	Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala Behavioral Neuroscience, 2017, 131, 155-167.	0.6	19
327	Blockade of glutamatergic transmission in the primate basolateral amygdala suppresses active behavior without altering social interaction Behavioral Neuroscience, 2017, 131, 192-200.	0.6	12
328	Stress induces insertion of calcium-permeable AMPA receptors in the OFC–BLA synapse and modulates emotional behaviours in mice. Translational Psychiatry, 2020, 10, 154.	2.4	31
336	An endocannabinoid-regulated basolateral amygdala–nucleus accumbens circuit modulates sociability. Journal of Clinical Investigation, 2020, 130, 1728-1742.	3.9	72
337	Bidirectional Control of Risk-Seeking Behavior by the Basolateral Amygdala. ENeuro, 2018, 5, ENEURO.0168-18.2018.	0.9	4
338	Inhibition of Pyramidal Neurons in the Basal Amygdala Promotes Fear Learning. ENeuro, 2018, 5, ENEURO.0272-18.2018.	0.9	18
339	Nucleus Accumbens and Its Role in Reward and Emotional Circuitry: A Potential Hot Mess in Substance Use and Emotional Disorders. AIMS Neuroscience, 2017, 4, 52-70.	1.0	11
340	Amygdala-ventral striatum circuit activation decreases long-term fear. ELife, 2016, 5, .	2.8	59
341	Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. ELife, 2017, 6, .	2.8	209
342	Hunger neurons drive feeding through a sustained, positive reinforcement signal. ELife, 2016, 5, .	2.8	142
343	Primate amygdala neurons evaluate the progress of self-defined economic choice sequences. ELife, 2016, 5, .	2.8	17
344	Perisomatic GABAergic synapses of basket cells effectively control principal neuron activity in amygdala networks. ELife, 2017, 6, .	2.8	63
345	Active information maintenance in working memory by a sensory cortex. ELife, 2019, 8, .	2.8	41
346	Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala. ELife, 2020, 9, .	2.8	50
347	fMRI neurofeedback for disorders of emotion regulation. , 2021, , 187-205.		2
348	Genetically identified amygdala–striatal circuits for valence-specific behaviors. Nature Neuroscience, 2021, 24, 1586-1600.	7.1	56

#	Article	IF	CITATIONS
350	A new player in neural circuits of emotions. Nature Neuroscience, 2021, 24, 1506-1507.	7.1	1
351	Seeing Better? On Ethical Values and Emotions. Aither, 2016, 8, 4-31.	0.1	0
361	Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans. ENeuro, 2020, 7, ENEURO.0414-19.2020.	0.9	12
363	Endocannabinoid Markers in Autism Spectrum Disorder: a Scoping Review of Human Studies. Psychiatry Research, 2021, 306, 114256.	1.7	3
365	Amygdalar κ-opioid receptor-dependent upregulating glutamate transporter 1 mediates depressive-like behaviors of opioid abstinence. Cell Reports, 2021, 37, 109913.	2.9	16
367	Nightmares and the Cannabinoids. Current Neuropharmacology, 2020, 18, 754-768.	1.4	1
368	Basolateral and central amygdala orchestrate how we learn whom to trust. Communications Biology, 2021, 4, 1329.	2.0	5
369	Control of parallel hippocampal output pathways by amygdalar long-range inhibition. ELife, 2021, 10, .	2.8	8
370	The Neuroscience of Affective Dynamics. , 2021, , 33-60.		3
371	A neuronal mechanism for motivational control of behavior. Science, 2022, 375, eabg7277.	6.0	16
372	Temporal dynamics of affect in the brain: Evidence from human imaging and animal models. Neuroscience and Biobehavioral Reviews, 2022, 133, 104491.	2.9	3
373	Individual differences in temperament and the efficiency of brain networks. Current Opinion in Behavioral Sciences, 2022, 43, 242-248.	2.0	6
375	Neuronal Circuits Associated with Fear Memory: Potential Therapeutic Targets for Posttraumatic Stress Disorder. Neuroscientist, 2022, , 107385842110699.	2.6	1
376	History-dependent dopamine release increases cAMP levels in most basal amygdala glutamatergic neurons to control learning. Cell Reports, 2022, 38, 110297.	2.9	18
377	Regional synapse gain and loss accompany memory formation in larval zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
380	FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit. Cell Metabolism, 2022, 34, 317-328.e6.	7.2	30
381	Dialectical Thinking Is Linked With Smaller Left Nucleus Accumbens and Right Amygdala. Frontiers in Psychology, 2022, 13, 760489.	1.1	0
382	Dissociation of basolateral and central amygdala effective connectivity predicts the stability of emotion-related impulsivity in adolescents and emerging adults with borderline personality symptoms: a resting-state fMRI study. Psychological Medicine, 2023, 53, 3533-3547.	2.7	5

#	Article	IF	CITATIONS
385	Effects of sleep on positive, negative and neutral valenced story and image memory. British Journal of Psychology, 2022, , .	1.2	2
386	Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression. PLoS ONE, 2021, 16, e0260577.	1.1	5
388	Neural correlates and determinants of approach–avoidance conflict in the prelimbic prefrontal cortex. ELife, 2021, 10, .	2.8	15
389	Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron, 2022, 110, 1754-1776.	3.8	33
390	Compartmentalized dendritic plasticity during associative learning. Science, 2022, 376, eabf7052.	6.0	20
391	Chronic Alcohol Dysregulates Glutamatergic Function in the Basolateral Amygdala in a Projection-and Sex-Specific Manner. Frontiers in Cellular Neuroscience, 2022, 16, 857550.	1.8	9
398	Phasic and Tonic Locus Coeruleus Stimulation Associated Valence Learning Engages Distinct Adrenoceptors in the Rat Basolateral Amygdala. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	3
399	Neuropathic Pain Following Spinal Cord Injury―Evaluation, Diagnosis, Treatment―. Spinal Surgery, 2022, 36, 12-17.	0.0	0
400	The Basolateral Amygdala to Ventral Hippocampus Circuit Controls Anxiety-Like Behaviors Induced by Morphine Withdrawal. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	10
403	Adolescent social isolation induces distinct changes in the medial and lateral OFC-BLA synapse and social and emotional alterations in adult mice. Neuropsychopharmacology, 2022, 47, 1597-1607.	2.8	10
404	Fear Learning: An Evolving Picture for Plasticity at Synaptic Afferents to the Amygdala. Neuroscientist, 2024, 30, 87-104.	2.6	3
406	Neural Oscillations in Aversively Motivated Behavior. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	12
407	Dynamic influences on the neural encoding of social valence. Nature Reviews Neuroscience, 2022, 23, 535-550.	4.9	15
408	Decoding defensive systems. Current Opinion in Neurobiology, 2022, 76, 102600.	2.0	2
409	Neurotensin orchestrates valence assignment in the amygdala. Nature, 2022, 608, 586-592.	13.7	36
411	Differential effects of acute eustress and distress on gene regulation patterns in the carp () Tj ETQq1 1 0.784314	rgBT /Ove	erlgck 10 T
412	The ethanol inhibition of basolateral amygdala neuron spiking is mediated by a gγâ€aminobutyric acid type Aâ€mediated tonic current. Alcoholism: Clinical and Experimental Research, 0, , .	1.4	1
413	Serotonin modulates an inhibitory input to the central amygdala from the ventral periaqueductal gray. Neuropsychopharmacology, 2022, 47, 2194-2204.	2.8	8

#	Article	IF	CITATIONS
415	Melanin-concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala in mice. Frontiers in Pharmacology, 0, 13, .	1.6	5
416	The basolateral amygdala to posterior insular cortex tract is necessary for social interaction with stressed juvenile rats. Behavioural Brain Research, 2022, 435, 114050.	1.2	8
417	Nociceptive sensitivity under stress influence. Russian Journal of Pain, 2022, 20, 42.	0.2	1
418	Amygdala neural ensemble mediates mouse social investigation behaviors. National Science Review, 2023, 10, .	4.6	6
419	Modulation of methamphetamine memory reconsolidation by neural projection from basolateral amygdala to nucleus accumbens. Neuropsychopharmacology, 2023, 48, 478-488.	2.8	2
420	Hippocampal cells segregate positive and negative engrams. Communications Biology, 2022, 5, .	2.0	19
421	Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours. Nature Communications, 2022, 13, .	5.8	11
422	Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Frontiers in Systems Neuroscience, 0, 16, .	1.2	4
423	Neural circuits provide insights into reward and aversion. Frontiers in Neural Circuits, 0, 16, .	1.4	3
424	Alterations of Limbic Structure Volumes in Patients with Obstructive Sleep Apnea. Canadian Journal of Neurological Sciences, 2023, 50, 730-737.	0.3	1
426	Introduction to special issue on amygdala and value-based decision making. Behavioural Brain Research, 2023, 437, 114147.	1.2	0
427	Dopaminergic circuits underlying associative aversive learning. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	7
428	Optogenetic activation of basolateral amygdala-to-nucleus accumbens core neurons promotes Pavlovian approach responses but not instrumental pursuit of reward cues. Behavioural Brain Research, 2023, 440, 114254.	1.2	0
429	Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety. Nature Neuroscience, 2022, 25, 1651-1663.	7.1	21
432	Thalamus sends information about arousal but not valence to the amygdala. Psychopharmacology, 2023, 240, 477-499.	1.5	4
435	Amygdala circuits. , 2023, , 289-320.		0
436	Disynaptic specificity of serial information flow for conditioned fear. Science Advances, 2023, 9, .	4.7	8
438	Altered neurotransmission in stress-induced depressive disorders: The underlying role of the amygdala in depression. Neuropeptides, 2023, 98, 102322.	0.9	6

#	Article	IF	CITATIONS
439	Activation of the rostral nucleus accumbens shell by optogenetics induces cataplexy-like behavior in orexin neuron-ablated mice. Scientific Reports, 2023, 13, .	1.6	4
440	Opioid Withdrawal Abruptly Disrupts Amygdala Circuit Function by Reducing Peptide Actions. Journal of Neuroscience, 2023, 43, 1668-1681.	1.7	1
442	A novel small molecule, AS1, reverses the negative hedonic valence of noxious stimuli. BMC Biology, 2023, 21, .	1.7	1
443	The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice. Nature Communications, 2023, 14, .	5.8	7