Smartphone applications in burns

Burns 41, 977-989 DOI: 10.1016/j.burns.2014.11.010

Citation Report

#	Article	IF	CITATIONS
1	Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A. Sensors and Actuators B: Chemical, 2016, 232, 462-468.	4.0	76
2	Simulation training in burns. Burns, 2016, 42, 1878-1879.	1.1	2
3	A Mobile Application for Wound Assessment and Treatment. International Journal of Lower Extremity Wounds, 2016, 15, 344-353.	0.6	10
4	Challenges in Assessing Mobile Health App Quality. American Journal of Preventive Medicine, 2016, 51, 1051-1059.	1.6	141
5	Using a 3D tool to document and determine graft loss: A mini-review and case report. Burns, 2016, 42, e65-e69.	1.1	4
6	Apps and intensive care medicine. Medicina Intensiva (English Edition), 2017, 41, 227-236.	0.1	1
7	Does Overestimation of Burn Size in Children Requiring Fluid Resuscitation Cause Any Harm?. Journal of Burn Care and Research, 2017, 38, e546-e551.	0.2	14
8	Apps y Medicina Intensiva. Medicina Intensiva, 2017, 41, 227-236.	0.4	8
9	Want Correct Percentage of TBSA Burned? Let a Layman Do the Assessment. Journal of Burn Care and Research, 2017, 39, 1.	0.2	15
10	Burns education: The emerging role of simulation for training healthcare professionals. Burns, 2017, 43, 34-40.	1.1	12
11	Utilisation des applications mobiles par les internes du Centre hospitalier universitaire Ibn-Rochd Casablanca, Maroc. Sante Publique, 2017, Vol. 29, 201-207.	0.0	0
12	Emergency Care of Pediatric Burns. Emergency Medicine Clinics of North America, 2018, 36, 441-458.	0.5	30
13	A Review and Assessment Framework for Mobile-Based Emergency Intervention Apps. ACM Computing Surveys, 2019, 51, 1-32.	16.1	17
14	Expert Outpatient Burn Care in the Home Through Mobile Health Technology. Journal of Burn Care and Research, 2018, 39, 680-684.	0.2	35
15	Initial Assessment, Treatment, and Follow-Up of Minor Pediatric Burn Wounds in Four Patients Remotely: A Preliminary Communication. Telemedicine Journal and E-Health, 2018, 24, 379-385.	1.6	8
16	Ongoing Development and Evaluation of a Method of Telemedicine: Burn Care Management With a Smartphone. Journal of Burn Care and Research, 2018, 39, 580-584.	0.2	19
17	Accuracy of Prehospital Care Providers in Determining Total Body Surface Area Burned in Severe Pediatric Thermal Injury. Journal of Burn Care and Research, 2018, 39, 491-496.	0.2	14
19	Strengthening Recovery: A Burn Injury–Focused Mobile App to Improve Outcomes. Health and Social Work, 2019, 44, 203-207.	0.5	2

#	Article	IF	CITATIONS
20	Smart Trauma: Improving the Delivery of Evidence-Based Trauma Care. Journal of Surgical Research, 2019, 242, 252-257.	0.8	4
21	Smartphone Applications in Plastic Surgery: A Cross-Sectional Survey of 577 Plastic Surgeons, Fellows, Residents, and Medical Students. Aesthetic Surgery Journal, 2019, 39, NP530-NP537.	0.9	12
22	The Bridge: A mobile application for burn patients. Burns, 2019, 45, 699-704.	1.1	7
23	Re-evaluation of websites from burn centers in Austria, Germany and Switzerland. Burns, 2019, 45, 220-227.	1.1	3
24	lssues in reporting of systematic review methods in health app-focused reviews: A scoping review. Health Informatics Journal, 2020, 26, 2930-2945.	1.1	24
25	Mobile application-based guidelines to enhance patient care and provider education in trauma and acute care surgery. Trauma Surgery and Acute Care Open, 2020, 5, e000479.	0.8	3
26	The Promise of Smartphone Applications in the Remote Monitoring of Postsurgical Wounds: A Literature Review. Advances in Skin and Wound Care, 2020, 33, 489-496.	0.5	13
27	A systematic review into the assessment of medical apps: motivations, challenges, recommendations and methodological aspect. Health and Technology, 2020, 10, 1045-1061.	2.1	26
28	Regulation and validation of smartphone applications in plastic surgery: It's the Wild West out there. Journal of the Royal College of Surgeons of Edinburgh, 2021, 19, e412-e422.	0.8	3
29	Technical and Medical Aspects of Burn Size Assessment and Documentation. Medicina (Lithuania), 2021, 57, 242.	0.8	11
30	The effect of a known object in a static image of a burn to improve the burn size estimation. Burns, 2021, 47, 1295-1299.	1.1	0
32	A Smartphone App and Cloud-Based Consultation System for Burn Injury Emergency Care. PLoS ONE, 2016, 11, e0147253.	1.1	53
33	Is the Quality of Mobile Health Applications for Burns Being Adequately Assessed?. Journal of Burn Care and Research, 2022, 43, 814-826.	0.2	1
34	Use of smartphone in modern anesthesia and critical care. Journal of Medical Sciences (Taiwan), 2019, 39, 203.	0.1	0
35	Nursing Management of the Burn Patient. , 2020, , 347-384.		2
36	Transfer, Telemedicine and Transportation in Pre-hospital Burn Management. , 2020, , 159-170.		0
37	Burn Size Estimation, Challenges, and Novel Technology. , 2020, , 181-197.		0
38	A 1% TBSA Chart Reduces Math Errors While Retaining Acceptable First-Estimate Accuracy. Journal of Burn Care and Research, 2022, 43, 665-678.	0.2	1

CITATION REPORT

#	Article	IF	CITATIONS
39	Evidence for Chronotropic Incompetence in Well-healed Burn Survivors. Journal of Burn Care and Research, 2022, , .	0.2	0
40	The burn injury transfer feedback form: A 16 year Australian statewide review of burn inter-hospital transfer. Burns, 2023, 49, 961-972.	1.1	2
41	Can apps be used to formulate fluid therapy plans in veterinary medicine?. Journal of Veterinary Internal Medicine, 0, , .	0.6	1
42	EasyTBSA as a method for calculating total body surface area burned: a validation study. Emergency Medicine Journal, 2023, 40, 279-284.	0.4	1
43	Temporal trends in burn size estimation and the impact of the NSW Trauma App on estimation accuracy. Burns, 2023, 49, 1403-1411.	1.1	2
44	Imaging evaluated remotely through telemedicine as a reliable alternative for accurate diagnosis: a systematic review. Health and Technology, 0, , .	2.1	0