Efflux pump-mediated drug resistance in Burkholderia

Frontiers in Microbiology 06, 305 DOI: 10.3389/fmicb.2015.00305

Citation Report

#	Article	IF	CITATIONS
1	Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infectious Diseases, 2015, 1, 512-522.	1.8	442
2	Complete Genome Sequence Analysis of Pandoraea pnomenusa Type Strain DSM 16536T Isolated from a Cystic Fibrosis Patient. Frontiers in Microbiology, 2016, 7, 109.	1.5	12
3	Finafloxacin overcomesBurkholderia pseudomalleiefflux-mediated fluoroquinolone resistance. Journal of Antimicrobial Chemotherapy, 2016, 72, dkw529.	1.3	13
4	Burkholderia pseudomallei: First case of melioidosis in Portugal. IDCases, 2016, 3, 10-11.	0.4	6
5	Polymyxin Susceptibility Testing: a Cold Case Reopened. Clinical Microbiology Newsletter, 2016, 38, 69-77.	0.4	15
6	Burkholderia pseudomallei: Challenges for the Clinical Microbiology Laboratory. Journal of Clinical Microbiology, 2016, 54, 2866-2873.	1.8	39
7	Antibiotic resistance in Burkholderia species. Drug Resistance Updates, 2016, 28, 82-90.	6.5	255
8	Versatile nourseothricin and streptomycin/spectinomycin resistance gene cassettes and their use in chromosome integration vectors. Journal of Microbiological Methods, 2016, 129, 8-13.	0.7	5
9	Intrinsic Resistance of Burkholderia cepacia Complex to Benzalkonium Chloride. MBio, 2016, 7, .	1.8	38
10	Multidrug Efflux Pumps and Their Inhibitors Characterized by Computational Modeling. , 2016, , 797-831.		7
11	Aminoglycosides: An Overview. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a027029.	2.9	590
12	Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 926-935.	1.4	54
13	Antibiotic Resistance Markers in Burkholderia pseudomallei Strain Bp1651 Identified by Genome Sequence Analysis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	46
14	Virulence traits associated with Burkholderia cenocepacia ST856 epidemic strain isolated from cystic fibrosis patients. Antimicrobial Resistance and Infection Control, 2017, 6, 57.	1.5	7
15	Antibodies against In Vivo -Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei. Infection and Immunity, 2017, 85, .	1.0	17
16	Mechanisms of Resistance to Folate Pathway Inhibitors in <i>Burkholderia pseudomallei</i> : Deviation from the Norm. MBio, 2017, 8, .	1.8	47
17	Relationships Between Resistance and Virulence in Burkholderia pseudomallei. Current Tropical Medicine Reports, 2017, 4, 127-135.	1.6	0
18	Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria. MBio, 2017, 8, .	1.8	151

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	A 17-Year Nationwide Study of Burkholderia cepacia Complex Bloodstream Infections Among Patients in the United States Veterans Health Administration. Clinical Infectious Diseases, 2017, 65, 1327-1334.	2.9	27
20	Molecular Simulations of Carbohydrates with a Fucose-Binding Burkholderia ambifaria Lectin Suggest Modulation by Surface Residues Outside the Fucose-Binding Pocket. Frontiers in Pharmacology, 2017, 8, 393.	1.6	8
21	Burkholderia cepacia Complex Infections Among Cystic Fibrosis Patients: Perspectives and Challenges. , 0, , .		6
22	Subfunctionalization influences the expansion of bacterial multidrug antibiotic resistance. BMC Genomics, 2017, 18, 834.	1.2	5
23	Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier. Research in Microbiology, 2018, 169, 351-356.	1.0	45
24	Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward â€ ⁻ molecularly targeted' therapy. Expert Review of Anti-Infective Therapy, 2018, 16, 89-110.	2.0	58
25	Use of Immunohistochemistry to Demonstrate In Vivo Expression of the <i>Burkholderia mallei</i> Virulence Factor BpaB During Experimental Glanders. Veterinary Pathology, 2018, 55, 258-267.	0.8	1
26	Development and validation of a triplex quantitative real-time PCR assay to detect efflux pump-mediated antibiotic resistance in <i>Burkholderia pseudomallei</i> . Future Microbiology, 2018, 13, 1403-1418.	1.0	7
27	The heritable natural competency trait of Burkholderia pseudomallei in other Burkholderia species through comE and crp. Scientific Reports, 2018, 8, 12422.	1.6	5
29	Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. International Journal of Nanomedicine, 2018, Volume 13, 1179-1213.	3.3	191
30	Transcriptional and post-transcriptional regulation of PenA β-lactamase in acquired Burkholderia pseudomallei β-lactam resistance. Scientific Reports, 2018, 8, 10652.	1.6	16
31	The Mla Pathway Plays an Essential Role in the Intrinsic Resistance of Burkholderia cepacia Complex Species to Antimicrobials and Host Innate Components. Journal of Bacteriology, 2018, 200, .	1.0	32
32	Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the Burkholderia cepacia complex. PLoS ONE, 2018, 13, e0201835.	1.1	45
33	Efflux Pumps of Burkholderia thailandensis Control the Permeability Barrier of the Outer Membrane. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	17
34	An in situ high-throughput screen identifies inhibitors of intracellularBurkholderia pseudomalleiwith therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18597-18606.	3.3	13
35	A Substrate-Activated Efflux Pump, DesABC, Confers Zeamine Resistance to Dickeya zeae. MBio, 2019, 10, .	1.8	13
36	Burkholderia pseudomallei. , 2019, , 185-211.		0
37	Accurate identification and epidemiological characterization of Burkholderia cepacia complex: an update. Annals of Clinical Microbiology and Antimicrobials, 2019, 18, 7.	1.7	52

#	Article	IF	CITATIONS
38	GC-072, a Novel Therapeutic Candidate for Oral Treatment of Melioidosis and Infections Caused by Select Biothreat Pathogens. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	4
39	A DedA Family Membrane Protein Is Required for Burkholderia thailandensis Colistin Resistance. Frontiers in Microbiology, 2019, 10, 2532.	1.5	43
40	Mapping the Efficacy and Mode of Action of Ethylzingerone [4-(3-Ethoxy-4-Hydroxyphenyl) Butan-2-One] as an Active Agent against <i>Burkholderia</i> Bacteria. Applied and Environmental Microbiology, 2020, 86, .	1.4	1
41	Exploring the Interplay of Resistance Nodulation Division Efflux Pumps, <i>Amp</i> C and <i>Opr</i> D in Antimicrobial Resistance of <i>Burkholderia cepacia</i> Complex in Clinical Isolates. Microbial Drug Resistance, 2020, 26, 1144-1152.	0.9	6
42	Antibiotic Substrate Selectivity of Pseudomonas aeruginosa MexY and MexB Efflux Systems Is Determined by a Goldilocks Affinity. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	18
43	Reciprocal antibiotic collateral sensitivity in Burkholderia multivorans. International Journal of Antimicrobial Agents, 2020, 56, 105994.	1.1	4
44	Human Melioidosis. Clinical Microbiology Reviews, 2020, 33, .	5.7	105
45	Evolution of gentamicin and arsenite resistance acquisition in Ralstonia pickettii water isolates. Research in Microbiology, 2021, 172, 103790.	1.0	2
46	Burkholderia ubonensis High-Level Tetracycline Resistance Is Due to Efflux Pump Synergy Involving a Novel TetA(64) Resistance Determinant. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	5
47	Tannic Acid-Stabilized Silver Nanoparticles Used in Biomedical Application as an Effective Antimelioidosis and Prolonged Efflux Pump Inhibitor against Melioidosis Causative Pathogen. Molecules, 2021, 26, 1004.	1.7	10
48	Genomic and RT-qPCR analysis of trimethoprim-sulfamethoxazole and meropenem resistance in Burkholderia pseudomallei clinical isolates. PLoS Neglected Tropical Diseases, 2021, 15, e0008913.	1.3	6
49	Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells, 2021, 10, 495.	1.8	11
50	Liposome as a delivery system for the treatment of biofilmâ€mediated infections. Journal of Applied Microbiology, 2021, 131, 2626-2639.	1.4	42
51	Proteomics insights into the <i>Burkholderia cenocepacia</i> phosphorus stress response. Environmental Microbiology, 2021, 23, 5069-5086.	1.8	15
52	Identification of a PadR-type regulator essential for intracellular pathogenesis of Burkholderia pseudomallei. Scientific Reports, 2021, 11, 10405.	1.6	1
53	Characterization of Burkholderia cepacia complex from environment influenced by human waste. International Journal of Environmental Health Research, 2021, , 1-11.	1.3	0
54	Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics, 2021, 10, 863.	1.5	21
55	Antibiotic Cycling Reverts Extensive Drug Resistance in Burkholderia multivorans. Antimicrobial Agents and Chemotherapy, 2021, 65, e0061121.	1.4	3

CITATION REPORT

#	Article	IF	CITATIONS
56	Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex. Viruses, 2021, 13, 1331.	1.5	29
57	Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. International Journal of Molecular Sciences, 2021, 22, 8080.	1.8	33
58	Conservation of Resistance-Nodulation-Cell Division Efflux Pump-Mediated Antibiotic Resistance in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Species. Antimicrobial Agents and Chemotherapy, 2021, 65, e0092021.	1.4	6
59	In vitro study to evaluate the antimicrobial activity of various multifunctional cosmetic ingredients and chlorphenesin on bacterial species at risk in the cosmetic industry. Journal of Applied Microbiology, 2021, , .	1.4	2
60	Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics, 2021, 10, 1117.	1.5	19
61	Antimicrobial Susceptibility of Western Hemisphere Isolates of <i>Burkholderia pseudomallei</i> : Phenotypic and Genomic Analyses. Microbial Drug Resistance, 2021, 27, 1176-1185.	0.9	3
62	Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. Journal of Medical Microbiology, 2016, 65, 1296-1306.	0.7	20
63	Molecular determinants of Burkholderia pseudomallei BpeEF-OprC efflux pump expression. Microbiology (United Kingdom), 2018, 164, 1156-1167.	0.7	13
65	Burkholderia collagen-like protein 8, Bucl8, is a unique outer membrane component of a putative tetrapartite efflux pump in Burkholderia pseudomallei and Burkholderia mallei. PLoS ONE, 2020, 15, e0242593.	1.1	5
66	Characterization of Burkholderia pseudomallei from spontaneous melioidosis in a Bornean orangutan. Veterinary World, 2020, 13, 2459-2468.	0.7	1
67	Susceptibility of Clinical Isolates of Burkholderia pseudomallei to a Lipid A Biosynthesis Inhibitor. American Journal of Tropical Medicine and Hygiene, 2017, 97, 62-67.	0.6	12
68	Burkholderia pseudomallei Toxins and Clinical Implications. , 2016, , 1-19.		0
69	Burkholderia pseudomallei Toxins and Clinical Implications. Toxinology, 2017, , 1-19.	0.2	0
70	Burkholderia pseudomallei Toxins and Clinical Implications. Toxinology, 2018, , 31-49.	0.2	0
72	Bacterial lectin BambL acts as a B cell superantigen. Cellular and Molecular Life Sciences, 2021, 78, 8165-8186.	2.4	3
73	<i>Burkholderiaceae</i> and Multidrug Resistance Genes Are Key Players in Resistome Development in a Germfree Soil Model. MSystems, 2021, 6, e0098821.	1.7	7
75	Prediction of Burkholderia pseudomallei DsbA substrates identifies potential virulence factors and vaccine targets. PLoS ONE, 2020, 15, e0241306.	1.1	5
76	Current Protocols in Laboratory Diagnosis, Genotyping, and Treatment of Burkholderia pseudomallei. Clinical Microbiology Newsletter, 2022, 44, 23-31.	0.4	2

ARTICLE IF CITATIONS Human Cryptic Host Defence Peptide GVF27 Exhibits Anti-Infective Properties against Biofilm Forming 77 1.7 3 Members of the Burkholderia cepacia Complex. Pharmaceuticals, 2022, 15, 260. Phenazines and toxoflavin act as interspecies modulators of resilience to diverse antibiotics. Molecular Microbiology, 2022, 117, 1384-1404. 1.2 Oridonin Attenuates Burkholderia cenocepacia Virulence by Suppressing Quorum-Sensing Signaling. 81 1.2 2 Microbiology Spectrum, 2022, 10, . Evaluation of Delafloxacin against a Burkholderia pseudomallei Efflux Mutant Panel. Microbiology 1.2 Spectrum, 2022, 10, . Genomic diversity of resistant and virulent factors of Burkholderia pseudomallei clinical strains 84 1.5 2 recovered from Guangdong using whole genome sequencing. Frontiers in Microbiology, 0, 13, . Comparative Analysis of Potential Determinants of Resistance to Aminoglycosides in <i>Burkholderia pseudomallei</i> Strains with Different Level of Sensitivity to Gentamicin. Problemy Osobo Opasnykh Infektsii, 2022, , 158-163. 0.2 Expression of virulence and antimicrobial related proteins in Burkholderia mallei and Burkholderia 87 1.3 1 pseudomallei. PLoS Neglected Tropical Diseases, 2023, 17, e0011006. Biofilm formation is correlated with low nutrient and simulated microgravity conditions in a 88 1.5 Burkholderia isolate from the ISS water processor assembly. Biofilm, 2023, 5, 100110. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and 89 1.7 8 Prospects. Molecules, 2023, 28, 1762. High-Throughput Screen Reveals the Structure–Activity Relationship of the Antimicrobial Lasso 5.3 Peptide Ubonodin. ACS Central Science, 2023, 9, 540-550. Assessment of adaptive immune responses of dairy cows with Burkholderia contaminans-induced 91 1 1.5 mastitis. Frontiers in Microbiology, 0, 14, . Genomic features, antimicrobial susceptibility, and epidemiological insights into Burkholderia cenocepacia clonal complex 31 isolates from bloodstream infections in India. Frontiers in Cellular 1.8 and Infection Microbiology, 0, 13, .

CITATION REPORT