The Role of RNA Interference (RNAi) in Arbovirus-Vecto

Viruses 7, 820-843 DOI: 10.3390/v7020820

Citation Report

#	Article	IF	CITATIONS
1	Control methods against invasive <i>Aedes</i> mosquitoes in Europe: a review. Pest Management Science, 2015, 71, 1471-1485.	1.7	162
2	Arbovirus–mosquito interactions: RNAi pathway. Current Opinion in Virology, 2015, 15, 119-126.	2.6	93
3	Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in <i>Aedes aegypti</i> mosquito cells. Nucleic Acids Research, 2015, 43, 6545-6556.	6.5	154
4	Bunyaviruses: from transmission by arthropods to virus entry into the mammalian host first-target cells. Future Virology, 2015, 10, 859-881.	0.9	20
5	RNA Interference – Natural Gene-Based Technology for Highly Specific Pest Control (HiSPeC). , 0, , .		47
6	Aedes aegypti Immune Responses to Dengue Virus. , 2016, , 129-143.		2
7	Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways. PLoS Pathogens, 2016, 12, e1005536.	2.1	79
8	PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes. PLoS Pathogens, 2016, 12, e1006017.	2.1	151
9	The evolving world of small <scp>RNAs</scp> from <scp>RNA</scp> viruses. Wiley Interdisciplinary Reviews RNA, 2016, 7, 575-588.	3.2	28
10	DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology, 2016, 498, 164-171.	1.1	41
11	Functions of Small RNAs in Mosquitoes. Advances in Insect Physiology, 2016, 51, 189-222.	1.1	18
12	Complexity of virus–vector interactions. Current Opinion in Virology, 2016, 21, 81-86.	2.6	37
13	Mosquito Defense Strategies against Viral Infection. Trends in Parasitology, 2016, 32, 177-186.	1.5	154
14	The interaction of fungi with the environment orchestrated by RNAi. Mycologia, 2016, 108, 556-571.	0.8	32
15	A lipidomic concept in infectious diseases. Asian Pacific Journal of Tropical Biomedicine, 2017, 7, 265-274.	0.5	14
16	Analysis of the miRNA profile in C6/36 cells persistently infected with dengue virus type 2. Virus Research, 2017, 232, 139-151.	1.1	37
17	Addressing knowledge gaps in molecular, sero-surveillance and monitoring approaches on Zika epidemics and other arbovirus co-infections: A structured review. Parasite Epidemiology and Control, 2017, 2, 50-60.	0.6	6
18	Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. MSphere, 2017, 2, .	1.3	92

#	Article	IF	CITATIONS
19	In silico target network analysis of de novo-discovered, tick saliva-specific microRNAs reveals important combinatorial effects in their interference with vertebrate host physiology. Rna, 2017, 23, 1259-1269.	1.6	36
20	Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more?. Current Opinion in Insect Science, 2017, 22, 45-53.	2.2	45
21	Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nature Communications, 2017, 8, 1262.	5.8	45
22	A New Clade of Insect-Specific Flaviviruses from Australian <i>Anopheles</i> Mosquitoes Displays Species-Specific Host Restriction. MSphere, 2017, 2, .	1.3	64
23	Aedes aegypti microRNA miR-2b regulates ubiquitin-related modifier to control chikungunya virus replication. Scientific Reports, 2017, 7, 17666.	1.6	24
24	RNA Interference Restricts Rift Valley Fever Virus in Multiple Insect Systems. MSphere, 2017, 2, .	1.3	52
25	The Antiviral RNAi Response in Vector and Non-vector Cells against Orthobunyaviruses. PLoS Neglected Tropical Diseases, 2017, 11, e0005272.	1.3	43
26	Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Neglected Tropical Diseases, 2017, 11, e0006010.	1.3	76
27	Dengue-1 virus and vector competence of Aedes aegypti (Diptera: Culicidae) populations from New Caledonia. Parasites and Vectors, 2017, 10, 381.	1.0	24
28	Targeting Dengue Virus Replication in Mosquitoes. , 2017, , 201-217.		5
28 29	Targeting Dengue Virus Replication in Mosquitoes. , 2017, , 201-217. Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482.	23.0	5 211
		23.0 0.9	
29	Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482. Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences		211
29 30	 Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482. Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. Archives of Virology, 2018, 163, 1331-1335. How Do Virus–Mosquito Interactions Lead to Viral Emergence?. Trends in Parasitology, 2018, 34, 	0.9	211 14
29 30 31	 Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482. Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. Archives of Virology, 2018, 163, 1331-1335. How Do Virus–Mosquito Interactions Lead to Viral Emergence?. Trends in Parasitology, 2018, 34, 310-321. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. Journal of General 	0.9 1.5	211 14 80
29 30 31 32	Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482. Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. Archives of Virology, 2018, 163, 1331-1335. How Do Virus–Mosquito Interactions Lead to Viral Emergence?. Trends in Parasitology, 2018, 34, 310-321. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. Journal of General Virology, 2018, 99, 258-264. Antiviral RNA Interference Activity in Cells of the Predatory Mosquito, Toxorhynchites amboinensis.	0.9 1.5 1.3	211 14 80 36
29 30 31 32 33	 Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482. Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. Archives of Virology, 2018, 163, 1331-1335. How Do Virusâ€^{er}Mosquito Interactions Lead to Viral Emergence?. Trends in Parasitology, 2018, 34, 310-321. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. Journal of General Virology, 2018, 99, 258-264. Antiviral RNA Interference Activity in Cells of the Predatory Mosquito, Toxorhynchites amboinensis. Viruses, 2018, 10, 694. Mosquitoes as Arbovirus Vectors: From Species Identification to Vector Competence. Parasitology 	0.9 1.5 1.3 1.5	211 14 80 36 7

#	Article	IF	CITATIONS
37	miRNAs in Insects Infected by Animal and Plant Viruses. Viruses, 2018, 10, 354.	1.5	13
38	Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells. Journal of Virology, 2018, 92, .	1.5	54
39	Honey Bee and Bumble Bee Antiviral Defense. Viruses, 2018, 10, 395.	1.5	63
40	Small interfering RNA pathway contributes to antiviral immunity in Spodoptera frugiperda (Sf9) cells following Autographa californica multiple nucleopolyhedrovirus infection. Insect Biochemistry and Molecular Biology, 2018, 101, 24-31.	1.2	32
41	Zika virus outbreak in the Pacific: Vector competence of regional vectors. PLoS Neglected Tropical Diseases, 2018, 12, e0006637.	1.3	27
42	Molecular Responses to the Zika Virus in Mosquitoes. Pathogens, 2018, 7, 49.	1.2	13
43	Spindle-E Acts Antivirally Against Alphaviruses in Mosquito Cells. Viruses, 2018, 10, 88.	1.5	29
44	Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant. Viruses, 2018, 10, 129.	1.5	15
45	Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-blocking. Viruses, 2018, 10, 141.	1.5	135
46	The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome, 2018, 6, 49.	4.9	193
47	Mosquito Innate Immunity. Insects, 2018, 9, 95.	1.0	111
48	Arboviruses and the Challenge to Establish Systemic and Persistent Infections in Competent Mosquito Vectors: The Interaction With the RNAi Mechanism. Frontiers in Physiology, 2019, 10, 890.	1.3	20
49	Novel insights into endogenous RNA viral elements in Ixodes scapularis and other arbovirus vector genomes. Virus Evolution, 2019, 5, vez010.	2.2	34
50	Progress towards Understanding the Mosquito-Borne Virus Life Cycle. Trends in Parasitology, 2019, 35, 1009-1017.	1.5	21
51	The Tudor protein Veneno assembles the ping-pong amplification complex that produces viral piRNAs in <i>Aedes</i> mosquitoes. Nucleic Acids Research, 2019, 47, 2546-2559.	6.5	35
52	Nucleic Acid Sensing in Invertebrate Antiviral Immunity. International Review of Cell and Molecular Biology, 2019, 345, 287-360.	1.6	28
53	Assessing the Potential Interactions between Cellular miRNA and Arboviral Genomic RNA in the Yellow Fever Mosquito, Aedes aegypti. Viruses, 2019, 11, 540.	1.5	19
54	RNA regulatory processes in RNA virus biology. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1536.	3.2	31

#	Article	IF	CITATIONS
55	Mosquito Small RNA Responses to West Nile and Insect-Specific Virus Infections in Aedes and Culex Mosquito Cells. Viruses, 2019, 11, 271.	1.5	72
56	Arbovirus lifecycle in mosquito: acquisition, propagation and transmission. Expert Reviews in Molecular Medicine, 2019, 21, e1.	1.6	38
57	Small RNA responses of Culex mosquitoes and cell lines during acute and persistent virus infection. Insect Biochemistry and Molecular Biology, 2019, 109, 13-23.	1.2	47
58	Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasites and Vectors, 2019, 12, 165.	1.0	83
59	Vertical transmission of Zika virus in Culex quinquefasciatus Say and Aedes aegypti (L.) mosquitoes. Scientific Reports, 2019, 9, 5257.	1.6	34
60	Winning the Tug-of-War Between Effector Gene Design and Pathogen Evolution in Vector Population Replacement Strategies. Frontiers in Genetics, 2019, 10, 1072.	1.1	39
61	Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs. Virology, 2019, 528, 89-100.	1.1	31
62	aBravo Is a Novel Aedes aegypti Antiviral Protein That Interacts with, but Acts Independently of, the Exogenous siRNA Pathway Effector Dicer 2. Viruses, 2020, 12, 748.	1.5	5
63	Ross River Virus Provokes Differentially Expressed MicroRNA and RNA Interference Responses in Aedes aegypti Mosquitoes. Viruses, 2020, 12, 695.	1.5	11
64	Analysis of novel siRNA and piRNA and identification of vsiRNA and vpiRNA expressed in the midgut of Aedes albopictus during dengue infection. Entomological Research, 2020, 50, 463-474.	0.6	1
65	Deep Sequencing of Small RNAs in the Whitefly Bemisia tabaci Reveals Novel MicroRNAs Potentially Associated with Begomovirus Acquisition and Transmission. Insects, 2020, 11, 562.	1.0	4
66	Risk of yellow fever virus transmission in the Asia-Pacific region. Nature Communications, 2020, 11, 5801.	5.8	27
67	Differential vector competence of Ornithodoros soft ticks for African swine fever virus: What if it involves more than just crossing organic barriers in ticks?. Parasites and Vectors, 2020, 13, 618.	1.0	17
68	The Aedes aegypti Domino Ortholog p400 Regulates Antiviral Exogenous Small Interfering RNA Pathway Activity and <i>ago-2</i> Expression. MSphere, 2020, 5, .	1.3	12
69	Functional analysis of <i>Dicerâ€2</i> gene in <i>Bombyx mori</i> resistance to BmNPV virus. Archives of Insect Biochemistry and Physiology, 2020, 105, e21724.	0.6	12
70	Movement of small RNAs in and between plants and fungi. Molecular Plant Pathology, 2020, 21, 589-601.	2.0	71
71	Antiviral Effectors and Gene Drive Strategies for Mosquito Population Suppression or Replacement to Mitigate Arbovirus Transmission by Aedes aegypti. Insects, 2020, 11, 52.	1.0	26
72	Impact of alphavirus 3'UTR plasticity on mosquito transmission. Seminars in Cell and Developmental Biology, 2021, 111, 148-155.	2.3	8

#	Article	IF	CITATIONS
73	RNAi-based system a new tool for insects' control. , 2021, , 509-534.		0
75	A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Research, 2021, 31, 512-528.	2.4	29
76	West Nile Virus. Neglected Tropical Diseases, 2021, , 197-224.	0.4	0
78	Life as a Vector of Dengue Virus: The Antioxidant Strategy of Mosquito Cells to Survive Viral Infection. Antioxidants, 2021, 10, 395.	2.2	8
79	Improved transient silencing of gene expression in the mosquito female <scp> <i>Aedes aegypti</i> </scp> . Insect Molecular Biology, 2021, 30, 355-365.	1.0	3
80	The dinucleotide composition of the Zika virus genome is shaped by conflicting evolutionary pressures in mammalian hosts and mosquito vectors. PLoS Biology, 2021, 19, e3001201.	2.6	15
81	Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nature Communications, 2021, 12, 2766.	5.8	19
82	The antiviral immunity of ticks against transmitted viral pathogens. Developmental and Comparative Immunology, 2021, 119, 104012.	1.0	7
83	An Aedes aegypti-Derived Ago2 Knockout Cell Line to Investigate Arbovirus Infections. Viruses, 2021, 13, 1066.	1.5	10
84	Flavivirus integrations in Aedes aegypti are limited and highly conserved across samples from different geographic regions unlike integrations in Aedes albopictus. Parasites and Vectors, 2021, 14, 332.	1.0	6
85	Persistence of Ambigrammatic Narnaviruses Requires Translation of the Reverse Open Reading Frame. Journal of Virology, 2021, 95, e0010921.	1.5	20
86	Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathogens and Disease, 2021, 79, .	0.8	7
87	Interactions of the Insect-Specific Palm Creek Virus with Zika and Chikungunya Viruses in Aedes Mosquitoes. Microorganisms, 2021, 9, 1652.	1.6	10
88	Ultrastructural insights into the replication cycle of salmon pancreas disease virus (SPDV) using salmon cardiac primary cultures (SCPCs). Journal of Fish Diseases, 2021, 44, 2031-2041.	0.9	1
89	Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathogens, 2021, 17, e1009870.	2.1	23
90	Interaction of Viruses with the Insect Intestine. Annual Review of Virology, 2021, 8, 115-131.	3.0	26
91	Vector Transmission of Animal Viruses. , 2021, , 542-551.		1
92	Arboviruses and apoptosis: the role of cell death in determining vector competence. Journal of General Virology, 2016, 97, 1033-1036.	1.3	38

#	ARTICLE	IF	Citations
93	Patchy DNA forms of the Zika virus RNA genome are generated following infection in mosquito cell cultures and in mosquitoes. Journal of General Virology, 2017, 98, 2731-2737.	1.3	22
94	The antiviral piRNA response in mosquitoes?. Journal of General Virology, 2018, 99, 1551-1562.	1.3	38
97	Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs. PLoS Neglected Tropical Diseases, 2016, 10, e0004452.	1.3	113
98	Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes. PLoS Neglected Tropical Diseases, 2017, 11, e0005760.	1.3	113
99	RNA interference (RNAi): Application in crop improvement: A review. Agricultural Reviews, 2016, 37, .	0.1	3
100	Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. ELife, 2019, 8, .	2.8	104
107	Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathogens, 2022, 18, e1010202.	2.1	6
108	Molecular pathogenesis of dengue virus infection in Aedes mosquitoes. Journal of Insect Physiology, 2022, 138, 104367.	0.9	5
109	An Insight Into the microRNA Profile of the Ectoparasitic Mite Varroa destructor (Acari: Varroidae), the Primary Vector of Honey Bee Deformed Wing Virus. Frontiers in Cellular and Infection Microbiology, 2022, 12, 847000.	1.8	2
111	Impact of temperature on dengue and chikungunya transmission by the mosquito Aedes albopictus. Scientific Reports, 2022, 12, 6973.	1.6	24
112	Vector-Borne Viral Diseases as a Current Threat for Human and Animal Health—One Health Perspective. Journal of Clinical Medicine, 2022, 11, 3026.	1.0	22
113	Transcriptomic and small RNA response to Mayaro virus infection in Anopheles stephensi mosquitoes. PLoS Neglected Tropical Diseases, 2022, 16, e0010507.	1.3	3
114	Interaction between endogenous microRNAs and virus-derived small RNAs controls viral replication in insect vectors. PLoS Pathogens, 2022, 18, e1010709.	2.1	7
115	Detection of Proteins with Viral Suppressor of RNA Interference Activities from Insect-transmitted Viruses Using <i>Drosophila</i> S2 Cells. Japan Agricultural Research Quarterly, 2022, 56, 245-250.	0.1	0
117	Experimental infection of <scp> <i>Aedes</i> (<i>Stegomyia</i>) <i>albopictus</i> </scp> and <scp> <i>Culex pipiens</i> </scp> mosquitoes with Bluetongue virus. Medical and Veterinary Entomology, 0, , .	0.7	1
118	RNA Interference to Modify Phenotypes in Agriculturally Important Pest and Beneficial Insects: Useful Examples and Future Challenges. , 2022, , 74-99.		0
119	Sequence, Secondary Structure, and Phylogenetic Conservation of MicroRNAs in <i>Arabidopsis thaliana</i> . Bioinformatics and Biology Insights, 2022, 16, 117793222211421.	1.0	1
120	Culex Mosquito Piwi4 Is Antiviral against Two Negative-Sense RNA Viruses. Viruses, 2022, 14, 2758.	1.5	3

		CITATION REPORT		
#	Article		IF	CITATIONS
121	Vector-virus interaction affects viral loads and co-occurrence. BMC Biology, 2022, 20, .		1.7	6
122	Mosquito defense mechanisms against medically important arboviruses: The vector-pat interface. , 2023, , 151-159.	thogen		Ο
123	RNA interference is essential to modulating the pathogenesis of mosquito-borne viruses fever mosquito <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences States of America, 2023, 120, .	s in the yellow s of the United	3.3	10
124	Characterisation of the antiviral RNA interference response to Toscana virus in sand fly o Pathogens, 2023, 19, e1011283.	cells. PLoS	2.1	Ο