Whole-genome sequencing for prediction of Mycobacte susceptibility and resistance: a retrospective cohort stu

Lancet Infectious Diseases, The 15, 1193-1202

DOI: 10.1016/s1473-3099(15)00062-6

Citation Report

#	Article	IF	CITATIONS
1	Pathogens: Wantedâ€"Dead or Alive. Microbe Magazine, 2015, 10, 513-520.	0.4	2
2	A Collaborative Approach for "ReSeq-ing―Mycobacterium tuberculosis Drug Resistance: Convergence for Drug and Diagnostic Developers. EBioMedicine, 2015, 2, 1262-1265.	2.7	15
3	Genome sequence comparisons of serial multi-drug-resistant Mycobacterium tuberculosis isolates over 21 years of infection in a single patient. Microbial Genomics, 2015, 1, e000037.	1.0	15
4	Clinical implications of the global multidrug-resistant tuberculosis epidemic. Clinical Medicine, 2015, 15, s37-s42.	0.8	16
5	Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nature Communications, 2015, 6, 10063.	5.8	479
6	Clinical value of whole-genome sequencing of Mycobacterium tuberculosis. Lancet Infectious Diseases, The, 2015, 15, 1077-1090.	4.6	57
7	Towards genomic prediction of drug resistance in tuberculosis. Lancet Infectious Diseases, The, 2015, 15, 1124-1125.	4.6	9
8	Treatment of Tuberculosis. New England Journal of Medicine, 2015, 373, 2149-2160.	13.9	290
9	Molecular Typing of Mycobacterium tuberculosis Strains: A Fundamental Tool for Tuberculosis Control and Elimination. Gastroenterology Insights, 2016, 8, 6567.	0.7	19
10	Whole-genome Sequencing for Surveillance of Invasive Pneumococcal Diseases in Ontario, Canada: Rapid Prediction of Genotype, Antibiotic Resistance and Characterization of Emerging Serotype 22F. Frontiers in Microbiology, 2016, 7, 2099.	1.5	7
11	Whole genome sequencing reveals mycobacterial microevolution among concurrent isolates from sputum and blood in HIV infected TB patients. BMC Infectious Diseases, 2016, 16, 371.	1.3	11
12	Discordance across Phenotypic and Molecular Methods for Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates in a Low TB Incidence Country. PLoS ONE, 2016, 11, e0153563.	1.1	55
13	Tuberculosis 2015: Burden, Challenges and Strategy for Control and Elimination. Gastroenterology Insights, 2016, 8, 6570.	0.7	175
14	Personalizing therapy for multidrug resistant TB: the potential of Rapid Whole Genome Sequencing. Expert Review of Anti-Infective Therapy, 2016, 14, 1-3.	2.0	3
15	Tuberculosis Diagnostics: State of the Art and Future Directions. Microbiology Spectrum, 2016, 4, .	1.2	87
16	Unexpected high prevalence of resistance-associated <i>Rv0678</i> variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. Journal of Antimicrobial Chemotherapy, 2017, 72, dkw502.	1.3	134
17	Diagnosing tuberculosis in the 21st century – Dawn of a genomics revolution?. International Journal of Mycobacteriology, 2016, 5, 384-391.	0.3	22
18	Clinical implications of the global multidrug-resistant tuberculosis epidemic. Clinical Medicine, 2016, 16, 565-570.	0.8	2

#	Article	IF	Citations
19	Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 2016, 6, 27930.	1.6	179
20	Occupational Tuberculosis despite Minimal Nosocomial Contact in a Health Care Worker Undergoing Treatment with a Tumor Necrosis Factor Inhibitor. Annals of the American Thoracic Society, 2016, 13, 2275-2277.	1.5	3
21	Whole genome sequencing to complement tuberculosis drug resistance surveys in Uganda. Infection, Genetics and Evolution, 2016, 40, 8-16.	1.0	28
23	Diagnosis of active tuberculosis disease: From microscopy to molecular techniques. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2016, 4, 33-43.	0.6	97
25	Standard Genotyping Overestimates Transmission of Mycobacterium tuberculosis among Immigrants in a Low-Incidence Country. Journal of Clinical Microbiology, 2016, 54, 1862-1870.	1.8	94
26	The implications of whole-genome sequencing in the control of tuberculosis. Therapeutic Advances in Infectious Disease, 2016, 3, 47-62.	1.1	28
27	Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Medicine, 2016, 14, 46.	2.3	91
28	GenoType $<$ sup $>$ Â $^{\circ}<$ /sup $>$ MTBDR $<$ i $>$ sl $<$ /i $>$ assay for resistance to second-line anti-tuberculosis drugs. The Cochrane Library, 2016, 2016, CD010705.	1.5	42
29	Drug-resistant tuberculosis among previously treated patients in Yangon, Myanmar. International Journal of Mycobacteriology, 2016, 5, 366-367.	0.3	2
30	Recent developments in genomics, bioinformatics and drug discovery to combat emerging drug-resistant tuberculosis. Tuberculosis, 2016, 101, 31-40.	0.8	19
31	Multidrug-Resistant Tuberculosis in Children: Recent Developments in Diagnosis, Treatment and Prevention. Current Pediatrics Reports, 2016, 4, 53-62.	1.7	4
32	Evolution of $\langle i \rangle$ Mycobacterium tuberculosis $\langle i \rangle$: New Insights into Pathogenicity and Drug Resistance. Microbiology Spectrum, 2016, 4, .	1.2	17
33	Use of bacterial whole-genome sequencing to understand and improve the management of invasive <i>Staphylococcus aureus</i> infections. Expert Review of Anti-Infective Therapy, 2016, 14, 1023-1036.	2.0	16
34	Whole-genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar. Journal of Global Antimicrobial Resistance, 2016, 6, 113-117.	0.9	28
35	First Evaluation of GenoType MTBDR <i>plus</i> 2.0 Performed Directly on Respiratory Specimens in Central America. Journal of Clinical Microbiology, 2016, 54, 2498-2502.	1.8	8
36	Extensively drug-resistant tuberculosis in long-term travellers. Lancet Infectious Diseases, The, 2016, 16, 642-643.	4.6	2
38	Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nature Microbiology, 2016, 1, 16041.	5.9	247
39	Tuberculosis. Nature Reviews Disease Primers, 2016, 2, 16076.	18.1	830

#	Article	IF	Citations
40	Recent developments in the diagnosis and management of tuberculosis. Npj Primary Care Respiratory Medicine, 2016, 26, 16078.	1.1	58
41	Reply: Call for Regular Susceptibility Testing of Bedaquiline and Delamanid. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1171-1172.	2.5	5
42	Personalized Medicine for Chronic Respiratory Infectious Diseases: Tuberculosis, Nontuberculous Mycobacterial Pulmonary Diseases, and Chronic Pulmonary Aspergillosis. Respiration, 2016, 92, 199-214.	1.2	18
43	Can routine genetic testing help to end TB transmission?. Thorax, 2016, 71, 681-682.	2.7	1
44	Genomic epidemiology of Lineage 4 Mycobacterium tuberculosis subpopulations in New York City and New Jersey, 1999–2009. BMC Genomics, 2016, 17, 947.	1.2	13
45	Shedding light on the performance of a pyrosequencing assay for drug-resistant tuberculosis diagnosis. BMC Infectious Diseases, 2016, 16, 458.	1.3	9
46	Diagnostic â€~omics' for active tuberculosis. BMC Medicine, 2016, 14, 37.	2.3	70
47	Application of discrete wavelet transform for analysis of genomic sequences of Mycobacterium tuberculosis. SpringerPlus, 2016, 5, 64.	1.2	12
48	Gyrase Mutations Are Associated with Variable Levels of Fluoroquinolone Resistance in Mycobacterium tuberculosis. Journal of Clinical Microbiology, 2016, 54, 727-733.	1.8	65
49	Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respiratory Medicine, the, 2016, 4, 49-58.	5.2	282
50	Personalized medicine for patients with MDR-TB: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 852-855.	1.3	31
51	Capsular Typing Method for Streptococcus agalactiae Using Whole-Genome Sequence Data. Journal of Clinical Microbiology, 2016, 54, 1388-1390.	1.8	35
53	Genetic Determinants of Drug Resistance in <i>Mycobacterium tuberculosis</i> and Their Diagnostic Value. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 621-630.	2.5	131
54	Simultaneous drug resistance detection and genotyping of <i>Mycobacterium tuberculosis </i> low-density hydrogel microarray. Journal of Antimicrobial Chemotherapy, 2016, 71, 1520-1531.	1.3	27
55	The changing landscape in drug resistant-tuberculosis: an analysis of recent advances. Expert Review of Respiratory Medicine, 2016, 10, 603-606.	1.0	5
56	Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 509-521.	1.5	62
57	Whole genome sequencing of Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: A systematic review. Tuberculosis, 2016, 98, 77-85.	0.8	108
58	Whole-genome sequencing for the diagnosis of drug-resistant tuberculosis. Lancet Infectious Diseases, The, 2016, 16, 17.	4.6	2

#	ARTICLE	IF	Citations
59	Clinical implications of molecular drug resistance testing for <1>Mycobacterium tuberculosis 1 : a TBNET/RESIST-TB consensus statement. International Journal of Tuberculosis and Lung Disease, 2016, 20, 24-42.	0.6	123
60	FIND Tuberculosis Strain Bank: a Resource for Researchers and Developers Working on Tests To Detect Mycobacterium tuberculosis and Related Drug Resistance. Journal of Clinical Microbiology, 2017, 55, 1066-1073.	1.8	21
61	Challenges and opportunities for wholeâ€genome sequencing–based surveillance of antibiotic resistance. Annals of the New York Academy of Sciences, 2017, 1388, 108-120.	1.8	87
62	Some Synonymous and Nonsynonymous <i>gyrA</i> Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDR <i>sl</i> Assays. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	29
63	Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nature Genetics, 2017, 49, 395-402.	9.4	258
64	Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples. Journal of Clinical Microbiology, 2017, 55, 1285-1298.	1.8	315
65	Tuberculosis is changing. Lancet Infectious Diseases, The, 2017, 17, 359-361.	4.6	49
66	Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools. Scientific Reports, 2017, 7, 46327.	1.6	82
67	Molecular Diagnosis of Orthopedic-Device-Related Infection Directly from Sonication Fluid by Metagenomic Sequencing. Journal of Clinical Microbiology, 2017, 55, 2334-2347.	1.8	174
68	Mycobacterium tuberculosis Whole Genome Sequences From Southern India Suggest Novel Resistance Mechanisms and the Need for Region-Specific Diagnostics. Clinical Infectious Diseases, 2017, 64, 1494-1501.	2.9	76
69	Reconstructing the Ancestral Relationships Between Bacterial Pathogen Genomes. Methods in Molecular Biology, 2017, 1535, 109-137.	0.4	5
70	Molecular Investigation of Resistance to Second-Line Injectable Drugs in Multidrug-Resistant Clinical Isolates of <i>Mycobacterium tuberculosi</i> s in France. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	16
71	Diagnosis of Tuberculosis in <scp>HIV</scp> Coâ€infected Individuals: Current Status, Challenges and Opportunities for the Future. Scandinavian Journal of Immunology, 2017, 86, 76-82.	1.3	37
72	A proposed analytic framework for determining the impact of an antimicrobial resistance intervention. Animal Health Research Reviews, 2017, 18, 1-25.	1.4	7
73	Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis. Médecine Et Maladies Infectieuses, 2017, 47, 340-348.	5.1	11
74	First 2 Extensively Drug-Resistant Tuberculosis Cases From Myanmar Treated With Bedaquiline. Clinical Infectious Diseases, 2017, 65, 531-532.	2.9	5
75	Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. International Journal of Antimicrobial Agents, 2017, 50, 210-218.	1.1	65
76	The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biology, 2017, 18, 71.	3.8	95

#	ARTICLE	IF	CITATIONS
77	WGS to predict antibiotic MICs for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2017, 72, 1937-1947.	1.3	169
78	The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respiratory Medicine, the, 2017, 5, 291-360.	5.2	459
79	First- and second-line antituberculosis drug resistance patterns among previous treatment failure patients in Myanmar. Journal of Global Antimicrobial Resistance, 2017, 9, 34-35.	0.9	1
80	Real-Time Sequencing of Mycobacterium tuberculosis: Are We There Yet?. Journal of Clinical Microbiology, 2017, 55, 1249-1254.	1.8	38
81	A brief primer on genomic epidemiology: lessons learned from <i>Mycobacterium tuberculosis</i> Annals of the New York Academy of Sciences, 2017, 1388, 59-77.	1.8	24
82	Whole-Transcriptome and -Genome Analysis of Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolates Identifies Downregulation of <i>ethA</i> as a Mechanism of Ethionamide Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	32
83	Aiming for zero tuberculosis transmission in low-burden countries. Lancet Respiratory Medicine, the, 2017, 5, 846-848.	5.2	13
84	Machine learning: novel bioinformatics approaches for combating antimicrobial resistance. Current Opinion in Infectious Diseases, 2017, 30, 511-517.	1.3	55
85	Whole genome sequencing for the management of drug-resistant TB in low income high TB burden settings: Challenges and implications. Tuberculosis, 2017, 107, 137-143.	0.8	15
86	A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nature Communications, 2017, 8, 588.	5.8	87
87	Validation and Implementation of Clinical Laboratory Improvements Act-Compliant Whole-Genome Sequencing in the Public Health Microbiology Laboratory. Journal of Clinical Microbiology, 2017, 55, 2502-2520.	1.8	80
88	Limitations of the Mycobacterium tuberculosis reference genome H37Rv in the detection of virulence-related loci. Genomics, 2017, 109, 471-474.	1.3	21
89	Fluoroquinolone Resistance Mutation Detection Is Equivalent to Culture-Based Drug Sensitivity Testing for Predicting Multidrug-Resistant Tuberculosis Treatment Outcome: A Retrospective Cohort Study. Clinical Infectious Diseases, 2017, 65, 1364-1370.	2.9	17
90	Whole genome sequencing of Mycobacterium bovis to obtain molecular fingerprints in human and cattle isolates from Baja California, Mexico. International Journal of Infectious Diseases, 2017, 63, 48-56.	1.5	37
91	Whole genome sequencing of clinical strains of Mycobacterium tuberculosis from Mumbai, India: A potential tool for determining drug-resistance and strain lineage. Tuberculosis, 2017, 107, 63-72.	0.8	49
92	Tuberculosis in Swiss captive Asian elephants: microevolution of Mycobacterium tuberculosis characterized by multilocus variable-number tandem-repeat analysis and whole-genome sequencing. Scientific Reports, 2017, 7, 14647.	1.6	14
93	Evolution of Phenotypic and Molecular Drug Susceptibility Testing. Advances in Experimental Medicine and Biology, 2017, 1019, 221-246.	0.8	28
94	The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. Advances in Experimental Medicine and Biology, 2017, 1019, 43-78.	0.8	43

#	Article	IF	CITATIONS
95	Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2007-2020.	1.3	122
98	Genetic diversity of Mycobacterium tuberculosis isolates from Tochigi prefecture, a local region of Japan. BMC Infectious Diseases, 2017, 17, 365.	1.3	5
99	Microbial genome-wide association studies: lessons from human GWAS. Nature Reviews Genetics, 2017, 18, 41-50.	7.7	239
100	Mycobacteria. , 2017, , 1645-1659.e2.		3
101	Individualizing management of extensively drug-resistant tuberculosis: diagnostics, treatment, and biomarkers. Expert Review of Anti-Infective Therapy, 2017, 15, 11-21.	2.0	19
102	Whole genome sequencing for M/XDR tuberculosis surveillance and for resistance testing. Clinical Microbiology and Infection, 2017, 23, 161-166.	2.8	61
103	Drug resistance mechanisms and novel drug targets for tuberculosis therapy. Journal of Genetics and Genomics, 2017, 44, 21-37.	1.7	77
104	Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria. Clinical Microbiology and Infection, 2017, 23, 167-172.	2.8	72
105	The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clinical Microbiology and Infection, 2017, 23, 2-22.	2.8	428
106	Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: a systematic review. Clinical Microbiology and Infection, 2017, 23, 61-68.	2.8	95
107	A standardised method for interpreting the association between mutations and phenotypic drug resistance in <i>Mycobacterium tuberculosis</i> . European Respiratory Journal, 2017, 50, 1701354.	3.1	273
108	Bioinformatics in Microbiome Analysis. Methods in Microbiology, 2017, 44, 1-18.	0.4	4
109	Tuberculosis Diagnostics: State of the Art and Future Directions., 0,, 361-378.		2
110	Evolution of <i>Mycobacterium tuberculosis </i> Resistance., 0,, 495-515.		3
111	The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens. Frontiers in Microbiology, 2017, 8, 121.	1.5	80
112	Whole Genome Sequencing for Surveillance of Antimicrobial Resistance in Actinobacillus pleuropneumoniae. Frontiers in Microbiology, 2017, 8, 311.	1.5	42
113	Whole-genome sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in Southwest Nigeria. PLoS ONE, 2017, 12, e0184510.	1.1	27
114	Diagnosis and treatment of tuberculosis: latest developments and future priorities. Annals of Research Hospitals, $0, 1, 1-1$.	0.0	14

#	Article	IF	CITATIONS
115	Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets. Future Microbiology, 2018, 13, 455-467.	1.0	21
116	ERS/ECDC Statement: European Union standards for tuberculosis care, 2017Âupdate. European Respiratory Journal, 2018, 51, 1702678.	3.1	50
117	Countrywide implementation of whole genome sequencing: an opportunity to improve tuberculosis management, surveillance and contact tracing in low incidence countries. European Respiratory Journal, 2018, 51, 1800387.	3.1	29
119	Validation of the FluoroType MTBDR Assay for Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis Complex Isolates. Journal of Clinical Microbiology, 2018, 56, .	1.8	24
120	Accuracy of whole genome sequencing versus phenotypic (MGIT) and commercial molecular tests for detection of drug-resistant Mycobacterium tuberculosis isolated from patients in Brazil and Mozambique. Tuberculosis, 2018, 110, 59-67.	0.8	26
121	Optimal Management of Drug-Resistant Tuberculosis and Human Immunodeficiency Virus: an Update. Current Treatment Options in Infectious Diseases, 2018, 10, 90-106.	0.8	O
122	A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study. Lancet Infectious Diseases, The, 2018, 18, 431-440.	4.6	121
123	Recent transmission of Mycobacterium tuberculosis in China: the implication of molecular epidemiology for tuberculosis control. Frontiers of Medicine, 2018, 12, 76-83.	1.5	13
124	Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential?. Clinical Microbiology and Infection, 2018, 24, 604-609.	2.8	97
125	Genotyping Multidrug-Resistant Mycobacterium tuberculosis from Primary Sputum and Decontaminated Sediment with an Integrated Microfluidic Amplification Microarray Test. Journal of Clinical Microbiology, 2018, 56, .	1.8	15
126	The role for rapid molecular diagnostic tests for infectious diseases in precision medicine. Expert Review of Precision Medicine and Drug Development, 2018, 3, 69-77.	0.4	7
127	Robust Prediction of Resistance to Trimethoprim in Staphylococcus aureus. Cell Chemical Biology, 2018, 25, 339-349.e4.	2.5	32
128	Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics, 2018, 34, 1666-1671.	1.8	100
129	Limited Evidence for the Need for Region-Specific, Genotypic Drug-Susceptibility Assays for Mycobacterium tuberculosis. Clinical Infectious Diseases, 2018, 66, 1481-1482.	2.9	2
130	EUSeqMyTB to set standards and build capacity for whole genome sequencing for tuberculosis in the EU. Lancet Infectious Diseases, The, 2018, 18, 377.	4.6	25
131	Population monitoring for drug-resistant tuberculosis: is genomics the answer?. Lancet Infectious Diseases, The, 2018, 18, 592-594.	4.6	0
132	Dissecting whole-genome sequencing-based online tools for predicting resistance in Mycobacterium tuberculosis: can we use them for clinical decision guidance? Tuberculosis, 2018, 110, 44-51.	0.8	25
133	Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: a multi-country population-based surveillance study. Lancet Infectious Diseases, The, 2018, 18, 675-683.	4.6	119

#	ARTICLE	IF	CITATIONS
135	Analysis of mutations in pncA reveals non-overlapping patterns among various lineages of Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 4628.	1.6	5
136	Precision medicine for drug-resistant tuberculosis in high-burden countries: is individualised treatment desirable and feasible?. Lancet Infectious Diseases, The, 2018, 18, e282-e287.	4.6	35
137	The Critical Importance of Sampling Fraction to Inferences of Mycobacterium tuberculosis Transmission. Clinical Infectious Diseases, 2018, 66, 159-160.	2.9	0
138	New opportunities for managing acute and chronic lung infections. Nature Reviews Microbiology, 2018, 16, 111-120.	13.6	80
139	Turnaround time of whole genome sequencing for mycobacterial identification and drug susceptibility testing in routine practice. Clinical Microbiology and Infection, 2018, 24, 659.e5-659.e7.	2.8	20
140	Molecular epidemiology of multi- and extensively-drug-resistant Mycobacterium tuberculosis in Ireland, 2001–2014. Journal of Infection, 2018, 76, 55-67.	1.7	12
141	What Is Resistance? Impact of Phenotypic versus Molecular Drug Resistance Testing on Therapy for Multi- and Extensively Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	83
142	Advances in Clinical Sample Preparation for Identification and Characterization of Bacterial Pathogens Using Metagenomics. Frontiers in Public Health, 2018, 6, 363.	1.3	48
143	AIMMS suite: a web server dedicated for prediction of drug resistance on protein mutation. Briefings in Bioinformatics, 2018 , , .	3.2	18
144	Paralleling of Diagnostic Endeavor for Control of Mycobacterial Infections and Tuberculosis. , 2018, ,		0
145	Highlights on the Application of Genomics and Bioinformatics in the Fight Against Infectious Diseases: Challenges and Opportunities in Africa. Frontiers in Genetics, 2018, 9, 575.	1.1	23
146	Feature selection and prediction of treatment failure in tuberculosis. PLoS ONE, 2018, 13, e0207491.	1.1	43
147	Drug-resistance profiling and transmission dynamics of multidrug-resistant Mycobacterium tuberculosis in Saudi Arabia revealed by whole genome sequencing. Infection and Drug Resistance, 2018, Volume 11, 2219-2229.	1.1	17
148	Prevalence of tuberculosis and multidrug resistant tuberculosis in the Middle East Region. Expert Review of Anti-Infective Therapy, 2018, 16, 709-721.	2.0	22
149	Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. New England Journal of Medicine, 2018, 379, 1403-1415.	13.9	405
150	Validation of the FluoroType® MTBDR assay using respiratory and lymph node samples. Tuberculosis, 2018, 113, 76-80.	0.8	6
151	Predicting bacterial resistance from whole-genome sequences using k-mers and stability selection. BMC Bioinformatics, 2018, 19, 383.	1.2	32
152	Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nature Communications, 2018, 9, 4306.	5.8	126

#	Article	IF	Citations
153	In vivo evolution of drug-resistant Mycobacterium tuberculosis in patients during long-term treatment. BMC Genomics, 2018, 19, 640.	1.2	18
154	Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 2018, 23, 1098-1113.	1.3	62
155	The Diagnosis of Pulmonary Tuberculosis: Established and Emerging Approaches for Clinicians in High-income and Low-income Settings. Clinical Pulmonary Medicine, 2018, 25, 170-176.	0.3	4
156	Whole genome sequencing of <i>Mycobacterium tuberculosis</i> . European Respiratory Journal, 2018, 52, 1801163.	3.1	35
157	Acquired Resistance to Antituberculosis Drugs in England, Wales, and Northern Ireland, 2000–2015. Emerging Infectious Diseases, 2018, 24, 524-533.	2.0	16
158	TB Transmission: Closing the Gaps. EBioMedicine, 2018, 34, 4-5.	2.7	1
159	Interaction between rpsL and gyrA mutations affects the fitness and dual resistance of Mycobacterium tuberculosis clinical isolates against streptomycin and fluoroquinolones. Infection and Drug Resistance, 2018, Volume 11, 431-440.	1.1	16
160	Genotyping and Whole-Genome Sequencing to Identify Tuberculosis Transmission to Pediatric Patients in British Columbia, Canada, 2005–2014. Journal of Infectious Diseases, 2018, 218, 1155-1163.	1.9	23
161	Lowering the Barriers to Routine Whole-Genome Sequencing of Bacteria in the Clinical Microbiology Laboratory. Journal of Clinical Microbiology, 2018, 56, .	1.8	8
162	Prevalence of drug-resistant tuberculosis in South Africa – Authors' reply. Lancet Infectious Diseases, The, 2018, 18, 836-837.	4.6	1
163	Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nature Microbiology, 2018, 3, 1032-1042.	5.9	132
164	Performance of an Xpert-based diagnostic algorithm for the rapid detection of drug-resistant tuberculosis among high-risk populations in a low-incidence setting. PLoS ONE, 2018, 13, e0200755.	1.1	14
165	Whole genome sequencing data of 1110 Mycobacterium tuberculosis isolates identifies insertions and deletions associated with drug resistance. BMC Genomics, 2018, 19, 365.	1.2	14
166	A complex scenario of tuberculosis transmission is revealed through genetic and epidemiological surveys in Porto. BMC Infectious Diseases, 2018, 18, 53.	1.3	9
167	Harmonized Genome Wide Typing of Tubercle Bacilli Using a Web-Based Gene-By-Gene Nomenclature System. EBioMedicine, 2018, 34, 131-138.	2.7	42
168	Increased Severity and Spread of <i>Mycobacterium ulcerans</i> , Southeastern Australia. Emerging Infectious Diseases, 2018, 24, 58-64.	2.0	48
169	Identification of Antifungal Targets Based on Computer Modeling. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50 102 Td
170	Drug-resistant tuberculosis: challenges and opportunities for diagnosis and treatment. Current Opinion in Pharmacology, 2018, 42, 7-15.	1.7	121

#	Article	IF	CITATIONS
171	Extensively drug-resistant tuberculosis in Myanmar: burden and mutations causing second-line drug resistance. International Journal of Tuberculosis and Lung Disease, 2018, 22, 47-53.	0.6	6
172	TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathogens, 2018, 14, e1006939.	2.1	78
173	Control of Artifactual Variation in Reported Intersample Relatedness during Clinical Use of a Mycobacterium tuberculosis Sequencing Pipeline. Journal of Clinical Microbiology, 2018, 56, .	1.8	10
174	Molecular Diagnostics for <i>Mycobacterium tuberculosis</i> Infection. Annual Review of Medicine, 2019, 70, 77-90.	5.0	23
175	Fluoroquinolones and isoniazid-resistant tuberculosis: implications for the 2018 WHO guidance. European Respiratory Journal, 2019, 54, 1900982.	3.1	14
176	How Well Do Routine Molecular Diagnostics Detect Rifampin Heteroresistance in Mycobacterium tuberculosis?. Journal of Clinical Microbiology, 2019, 57, .	1.8	36
177	Evaluation of Whole-Genome Sequence Method to Diagnose Resistance of 13 Anti-tuberculosis Drugs and Characterize Resistance Genes in Clinical Multi-Drug Resistance Mycobacterium tuberculosis Isolates From China. Frontiers in Microbiology, 2019, 10, 1741.	1.5	53
178	The Future of TB Resistance Diagnosis: The Essentials on Whole Genome Sequencing and Rapid Testing Methods. Archivos De Bronconeumologia, 2019, 55, 421-426.	0.4	0
179	Clinical Resistome Screening of 1,110 Escherichia coli Isolates Efficiently Recovers Diagnostically Relevant Antibiotic Resistance Biomarkers and Potential Novel Resistance Mechanisms. Frontiers in Microbiology, 2019, 10, 1671.	1.5	14
180	The Future of TB Resistance Diagnosis: The Essentials on Whole Genome Sequencing and Rapid Testing Methods. Archivos De Bronconeumologia, 2019, 55, 421-426.	0.4	7
181	Management of patients with multidrug-resistant tuberculosis. International Journal of Tuberculosis and Lung Disease, 2019, 23, 645-662.	0.6	55
182	Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Medicine, 2019, 11, 45.	3.6	88
183	Whole genome sequencing for drug resistance determination in Mycobacterium tuberculosis. African Journal of Laboratory Medicine, 2019, 8, 801.	0.2	7
184	Application of Next-Generation Sequencing in Public Health Epidemiology and Outbreak Investigation. Advances in Molecular Pathology, 2019, 2, 89-97.	0.2	1
185	Next-Generation Sequencing Approaches to Predicting Antimicrobial Susceptibility Testing Results. Advances in Molecular Pathology, 2019, 2, 99-110.	0.2	4
186	Whole genome sequencing for improved understanding of Mycobacterium tuberculosis transmission in a remote circumpolar region. Epidemiology and Infection, 2019, 147, e188.	1.0	16
187	Whole-Genome Sequencing in Relation to Resistance of <i>Mycobacterium Tuberculosis</i> Acta Medica Martiniana, 2019, 19, 12-21.	0.4	3
188	Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data. PLoS Computational Biology, 2019, 15, e1007349.	1.5	64

#	Article	IF	CITATIONS
189	Accuracy of whole-genome sequencing to determine recent tuberculosis transmission: an 11-year population-based study in Hamburg, Germany. European Respiratory Journal, 2019, 54, 1901154.	3.1	21
190	Resolving a clinical tuberculosis outbreak using palaeogenomic genome reconstruction methodologies. Tuberculosis, 2019, 119, 101865.	0.8	1
191	Whole-Genome Sequencing for Drug Resistance Profile Prediction in <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	59
192	Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nature Reviews Microbiology, 2019, 17, 533-545.	13.6	237
193	Clinical significance of Inc-AC145676.2.1-6 and Inc-TGS1-1 and their variants in western Chinese tuberculosis patients. International Journal of Infectious Diseases, 2019, 84, 8-14.	1.5	17
194	BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage. Computers in Biology and Medicine, 2019, 110, 196-206.	3.9	9
195	Genomic determinants of speciation and spread of the <i>Mycobacterium tuberculosis</i> complex. Science Advances, 2019, 5, eaaw3307.	4.7	61
196	Whole genome sequencing Mycobacterium tuberculosis directly from sputum identifies more genetic diversity than sequencing from culture. BMC Genomics, 2019, 20, 389.	1.2	56
197	Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS Biology, 2019, 17, e3000265.	2.6	50
198	GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions. Nature Communications, 2019, 10, 2128.	5.8	111
199	Role and value of whole genome sequencing in studying tuberculosis transmission. Clinical Microbiology and Infection, 2019, 25, 1377-1382.	2.8	55
200	Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. EBioMedicine, 2019, 43, 356-369.	2.7	66
201	Microbial evolutionary medicine: from theory to clinical practice. Lancet Infectious Diseases, The, 2019, 19, e273-e283.	4.6	11
202	Rapid sequencing of MRSA direct from clinical plates in a routine microbiology laboratory. Journal of Antimicrobial Chemotherapy, 2019, 74, 2153-2156.	1.3	8
203	DeepAMR for predicting co-occurrent resistance of <i>Mycobacterium tuberculosis</i> Bioinformatics, 2019, 35, 3240-3249.	1.8	38
204	Bacterial Genome-Wide Association Identifies Novel Factors That Contribute to Ethionamide and Prothionamide Susceptibility in Mycobacterium tuberculosis. MBio, 2019, 10, .	1.8	39
205	Methodology for Whole-Genome Sequencing of Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates in a Routine Hospital Microbiology Laboratory. Journal of Clinical Microbiology, 2019, 57, .	1.8	22
206	Building the Framework for Standardized Clinical Laboratory Reporting of Next-generation Sequencing Data for Resistance-associated Mutations in Mycobacterium tuberculosis Complex. Clinical Infectious Diseases, 2019, 69, 1631-1633.	2.9	10

#	Article	IF	CITATIONS
207	Building a tuberculosis-free world: The Lancet Commission on tuberculosis. Lancet, The, 2019, 393, 1331-1384.	6.3	257
208	Whole Genome Sequencing of Mycobacterium tuberculosis Clinical Isolates From India Reveals Genetic Heterogeneity and Region-Specific Variations That Might Affect Drug Susceptibility. Frontiers in Microbiology, 2019, 10, 309.	1.5	41
209	Reference set of Mycobacterium tuberculosis clinical strains: A tool for research and product development. PLoS ONE, 2019, 14, e0214088.	1.1	56
210	Insights into the genetic diversity of Mycobacterium tuberculosis in Tanzania. PLoS ONE, 2019, 14, e0206334.	1.1	10
211	Comparisons of whole-genome sequencing and phenotypic drug susceptibility testing for Mycobacterium tuberculosis causing MDR-TB and XDR-TB in Thailand. International Journal of Antimicrobial Agents, 2019, 54, 109-116.	1.1	24
212	Rifampicin and rifabutin resistance in 1003 Mycobacterium tuberculosis clinical isolates. Journal of Antimicrobial Chemotherapy, 2019, 74, 1477-1483.	1.3	39
213	Drug-Resistant Tuberculosis, Lebanon, 2016 – 2017. Emerging Infectious Diseases, 2019, 25, 564-568.	2.0	15
214	SNP-IT Tool for Identifying Subspecies and Associated Lineages of <i>Mycobacterium tuberculosis </i> /i>Complex. Emerging Infectious Diseases, 2019, 25, 482-488.	2.0	64
215	Social network analysis and whole genome sequencing in a cohort study to investigate TB transmission in an educational setting. BMC Infectious Diseases, 2019, 19, 154.	1.3	15
216	A step-by-step beginner. Journal of Biological Methods, 2019, 6, e110.	1.0	27
217	Next-Generation Sequencing in Clinical Microbiology. Clinics in Laboratory Medicine, 2019, 39, 405-418.	0.7	83
220	Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins, 2019, 11, 677.	1.5	137
221	Computational pan-genome mapping and pairwise SNP-distance improve detection of Mycobacterium tuberculosis transmission clusters. PLoS Computational Biology, 2019, 15, e1007527.	1.5	13
222	Whole-Genome Sequencing for Predicting Clarithromycin Resistance in <i>Mycobacterium abscessus</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	34
223	Groups of coevolving positions provide drug resistance to Mycobacterium tuberculosis: A study using targets of first-line antituberculosis drugs. International Journal of Antimicrobial Agents, 2019, 53, 197-202.	1.1	4
224	Application of machine learning techniques to tuberculosis drug resistance analysis. Bioinformatics, 2019, 35, 2276-2282.	1.8	71
225	Phenotypic and genotypic characterization of antimicrobial resistant Escherichia coli isolated from ready-to-eat food in Singapore using disk diffusion, broth microdilution and whole genome sequencing methods. Food Control, 2019, 99, 89-97.	2.8	30
226	Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori. Journal of Clinical Medicine, 2019, 8, 53.	1.0	89

#	Article	IF	CITATIONS
227	Genome-Based Prediction of Bacterial Antibiotic Resistance. Journal of Clinical Microbiology, 2019, 57,	1.8	221
228	Whole Genome Sequencing detects Inter-Facility Transmission of Carbapenem-resistant Klebsiella pneumoniae. Journal of Infection, 2019, 78, 187-199.	1.7	26
229	Genome-Wide Analysis of MDR and XDR Tuberculosis from Belarus: Machine-Learning Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1398-1408.	1.9	8
230	Terminal transfer amplification and sequencing for high-efficiency and low-bias copy number profiling of fragmented DNA samples. Protein and Cell, 2019, 10, 229-233.	4.8	3
231	Elucidation of drug resistance mutations in Mycobacterium tuberculosis isolates from North India by whole-genome sequencing. Journal of Global Antimicrobial Resistance, 2020, 20, 11-15.	0.9	6
232	Tuberculosis, HIV, and viral hepatitis diagnostics in eastern Europe and central Asia: high time for integrated and people-centred services. Lancet Infectious Diseases, The, 2020, 20, e47-e53.	4.6	13
233	Interpreting k-mer–based signatures for antibiotic resistance prediction. GigaScience, 2020, 9, .	3.3	17
234	A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response. PLoS Pathogens, 2020, 16, e1009000.	2.1	22
235	Genomic Analysis Identifies Mutations Concerning Drug-Resistance and Beijing Genotype in Multidrug-Resistant Mycobacterium tuberculosis Isolated From China. Frontiers in Microbiology, 2020, 11, 1444.	1.5	13
237	Precision global health: a roadmap for augmented action. Journal of Public Health and Emergency, 0, 4, 5-5.	4.4	5
238	Uso de las tecnologÃas de secuenciación masiva para el diagnóstico y epidemiologÃa de enfermedades infecciosas. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2020, 38, 32-38.	0.3	1
239	Antibiotic resistance surveillance systems: A review. Journal of Global Antimicrobial Resistance, 2020, 23, 430-438.	0.9	69
240	Precision Medicine in the Diagnosis and Management of Orthopedic Biofilm Infections. Frontiers in Medicine, 2020, 7, 580671.	1.2	7
241	DNA Thermo-Protection Facilitates Whole-Genome Sequencing of Mycobacteria Direct from Clinical Samples. Journal of Clinical Microbiology, 2020, 58, .	1.8	14
242	Advances in Molecular Diagnosis of Tuberculosis. Journal of Clinical Microbiology, 2020, 58, .	1.8	83
243	Use of a Whole Genome Sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017–2019: an ECDC pilot study. European Respiratory Journal, 2021, 57, 2002272.	3.1	27
244	Distinct Bacterial Pathways Influence the Efficacy of Antibiotics against Mycobacterium tuberculosis. MSystems, 2020, 5, .	1.7	37
245	Exploiting Homoplasy in Genome-Wide Association Studies to Enhance Identification of Antibiotic-Resistance Mutations in Bacterial Genomes. Evolutionary Bioinformatics, 2020, 16, 117693432094493.	0.6	8

#	Article	IF	CITATIONS
246	Identification of a Novel Plasmid-Borne Gentamicin Resistance Gene in Nontyphoidal <i>Salmonella</i> Isolated from Retail Turkey. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	6
247	How To Optimally Combine Genotypic and Phenotypic Drug Susceptibility Testing Methods for Pyrazinamide. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	18
248	Editorial on: Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter pylori. Journal of Clinical Medicine, 2020, 9, 2469.	1.0	1
249	Genomic Prediction of Antimicrobial Resistance: Ready or Not, Here It Comes!. Clinical Chemistry, 2020, 66, 1278-1289.	1.5	25
250	Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility. Journal of Bacteriology, 2020, 202, .	1.0	8
251	Novel Assays/Applications for Patients Suspected of Mycobacterial Diseases. Clinics in Laboratory Medicine, 2020, 40, 535-552.	0.7	1
252	Drug-Resistant Tuberculosis. Infectious Disease Clinics of North America, 2020, 34, 863-886.	1.9	9
253	Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nature Communications, 2020, 11, 2500.	5.8	368
254	Global Distribution and Evolution of Mycobacterium bovis Lineages. Frontiers in Microbiology, 2020, 11, 843.	1.5	37
255	A machine learning-based framework for Predicting Treatment Failure in tuberculosis: A case study of six countries. Tuberculosis, 2020, 123, 101944.	0.8	9
256	Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis, 2020, 123, 101946.	0.8	13
257	Survey of drug resistance associated gene mutations in Mycobacterium tuberculosis, ESKAPE and other bacterial species. Scientific Reports, 2020, 10, 8957.	1.6	37
258	Evidence for Expanding the Role of Streptomycin in the Management of Drug-Resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	30
259	GenomegaMap: Within-Species Genome-Wide dN/dS Estimation from over 10,000 Genomes. Molecular Biology and Evolution, 2020, 37, 2450-2460.	3.5	25
260	Bacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosis. Nature Medicine, 2020, 26, 1435-1443.	15.2	38
261	Targeted next-generation sequencing of sputum for diagnosis ofÂdrug-resistant TB: results of a national survey in DemocraticÂRepublic of theÂCongo. Scientific Reports, 2020, 10, 10786.	1.6	13
262	Genome sequencing of Mycobacterium tuberculosis clinical isolates revealed isoniazid resistance mechanisms undetected by conventional molecular methods. International Journal of Antimicrobial Agents, 2020, 56, 106068.	1.1	5
263	Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics, 2020, 21, 174.	1.2	28

#	Article	IF	CITATIONS
264	Whole genome enrichment approach for rapid detection of Mycobacterium tuberculosis and drug resistance-associated mutations from direct sputum sequencing. Tuberculosis, 2020, 121, 101915.	0.8	21
265	Whole Genome Sequencing Results Associated with Minimum Inhibitory Concentrations of 14 Anti-Tuberculosis Drugs among Rifampicin-Resistant Isolates of Mycobacterium Tuberculosis from Iran. Journal of Clinical Medicine, 2020, 9, 465.	1.0	20
266	Comparison of routine field epidemiology and whole genome sequencing to identify tuberculosis transmission in a remote setting. Epidemiology and Infection, 2020, 148, e15.	1.0	9
267	Resistance Sniffer: An online tool for prediction of drug resistance patterns of Mycobacterium tuberculosis isolates using next generation sequencing data. International Journal of Medical Microbiology, 2020, 310, 151399.	1.5	17
268	QuantTB $\hat{a}\in$ " a method to classify mixed Mycobacterium tuberculosis infections within whole genome sequencing data. BMC Genomics, 2020, 21, 80.	1.2	30
269	Distribution of Antibiotic Resistance Genes in Three Different Natural Water Bodies-A Lake, River and Sea. International Journal of Environmental Research and Public Health, 2020, 17, 552.	1.2	37
270	The Pangenome., 2020,,.		32
271	Frequency of mutations associated with resistance to first- and second-line drugs in multidrug-resistant Mycobacterium tuberculosis isolates. Journal of Global Antimicrobial Resistance, 2020, 22, 275-282.	0.9	4
272	Multi-Label Random Forest Model for Tuberculosis Drug Resistance Classification and Mutation Ranking. Frontiers in Microbiology, 2020, 11, 667.	1.5	22
273	Accuracy of a reverse dot blot hybridization assay for simultaneous detection of the resistance of four anti-tuberculosis drugs in Mycobacterium tuberculosis isolated from China. Infectious Diseases of Poverty, 2020, 9, 38.	1.5	14
274	Infectious Disease Research in the Era of Big Data. Annual Review of Biomedical Data Science, 2020, 3, 43-59.	2.8	10
275	Rapid genomic first- and second-line drug resistance prediction from clinical <i>Mycobacterium tuberculosis</i> specimens using Deeplex-MycTB. European Respiratory Journal, 2021, 57, 2001796.	3.1	47
276	Role of postâ€translational modifications in the acquisition of drug resistance in <i>MycobacteriumÂtuberculosis</i>). FEBS Journal, 2021, 288, 3375-3393.	2.2	29
277	Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. European Respiratory Journal, 2021, 57, 2002338.	3.1	58
278	Precision Global Health., 2021, , 1-32.		0
279	Computational modeling and bioinformatic analyses of functional mutations in drug target genes in Mycobacterium tuberculosis. Computational and Structural Biotechnology Journal, 2021, 19, 2423-2446.	1.9	9
280	Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Briefings in Bioinformatics, 2021, 22, .	3.2	28
281	WGS for Bacterial Identification and Susceptibility Testing in the Clinical Lab. , 2021, , 25-44.		1

#	Article	IF	CITATIONS
282	The 2021 WHO Catalogue of <i>Mycobacterium Tuberculosis</i> Complex Mutations Associated with Drug Resistance: A New Global Standard for Molecular Diagnostics. SSRN Electronic Journal, 0, , .	0.4	4
283	Identification of a predominant genotype of Mycobacterium tuberculosis in Brazilian indigenous population. Scientific Reports, 2021, 11, 1224.	1.6	3
284	Precision Global Health., 2021,, 1667-1698.		0
285	A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Research, 0, 10, 80.	0.8	8
286	Continuous Genomic Surveillance Monitored the <i>In Vivo</i> Evolutionary Trajectories of Vibrio parahaemolyticus and Identified a New Virulent Genotype. MSystems, 2021, 6, .	1.7	6
287	A unified haplotype-based method for accurate and comprehensive variant calling. Nature Biotechnology, 2021, 39, 885-892.	9.4	56
288	Clinical and public health utility of Mycobacterium tuberculosis whole genome sequencing. International Journal of Infectious Diseases, 2021, 113, S40-S42.	1.5	15
289	Fast Tunable Biological Fluorescence Detection Device with Integrable Liquid Crystal Filter. Crystals, 2021, 11, 272.	1.0	1
290	Targeted next generation sequencing directly from sputum for comprehensive genetic information on drug resistant Mycobacterium tuberculosis. Tuberculosis, 2021, 127, 102051.	0.8	22
291	Local and Travel-Associated Transmission of Tuberculosis at Central Western Border of Brazil, 2014–2017. Emerging Infectious Diseases, 2021, 27, 905-914.	2.0	4
292	Machine learning and applications in microbiology. FEMS Microbiology Reviews, 2021, 45, .	3.9	81
294	Resistance to Second-Line Anti-TB Drugs in Cambodia: A Phenotypic and Genetic Study. Infection and Drug Resistance, 2021, Volume 14, 1089-1104.	1.1	6
295	Globally diverse Mycobacterium tuberculosis resistance acquisition: a retrospective geographical and temporal analysis of whole genome sequences. Lancet Microbe, The, 2021, 2, e96-e104.	3.4	37
296	Predicting rifampicin resistance mutations in bacterial RNA polymerase subunit beta based on majority consensus. BMC Bioinformatics, 2021, 22, 210.	1.2	5
297	Stepwise pathogenic evolution of <i>Mycobacterium abscessus</i> . Science, 2021, 372, .	6.0	91
298	A Bioinformatics Whole-Genome Sequencing Workflow for Clinical Mycobacterium tuberculosis Complex Isolate Analysis, Validated Using a Reference Collection Extensively Characterized with Conventional Methods and <i>In Silico</i>	1.8	18
299	Inductive Matrix Completion with Feature Selection. Computational Mathematics and Mathematical Physics, 2021, 61, 719-732.	0.2	3
300	Multidrug-resistant tuberculosis imported into low-incidence countries—a GeoSentinel analysis, 2008–2020. Journal of Travel Medicine, 2021, 28, .	1.4	10

#	Article	IF	CITATIONS
301	Whole genome analysis of extensively drug resistant Mycobacterium tuberculosis strains in Peru. Scientific Reports, 2021, 11, 9493.	1.6	9
302	Desempenho do teste Xpert® MTB/RIF na detecção laboratorial de tuberculose em amostras pulmonares e extrapulmonares. Research, Society and Development, 2021, 10, e36610716533.	0.0	O
303	Framing Bacterial Genomics for Public Health (Care). Journal of Clinical Microbiology, 2021, 59, e0013521.	1.8	6
305	Heterogeneous Streptomycin Resistance Level Among Mycobacterium tuberculosis Strains From the Same Transmission Cluster. Frontiers in Microbiology, 2021, 12, 659545.	1.5	10
306	Cryo-EM structure and resistance landscape of M.Âtuberculosis MmpL3: An emergent therapeutic target. Structure, 2021, 29, 1182-1191.e4.	1.6	25
307	The Epistatic Landscape of Antibiotic Resistance of Different Clades of Mycobacterium tuberculosis. Antibiotics, 2021, 10, 857.	1.5	8
309	Reversible gene silencing through frameshift indels and frameshift scars provide adaptive plasticity for Mycobacterium tuberculosis. Nature Communications, 2021, 12, 4702.	5.8	14
310	An end-to-end heterogeneous graph attention network for <i>Mycobacterium tuberculosis</i> drug-resistance prediction. Briefings in Bioinformatics, 2021, 22, .	3.2	7
311	INGOT-DR: an interpretable classifier for predicting drug resistance in M. tuberculosis. Algorithms for Molecular Biology, 2021, 16, 17.	0.3	9
316	A review: antimicrobial resistance data mining models and prediction methods study for pathogenic bacteria. Journal of Antibiotics, 2021, 74, 838-849.	1.0	10
318	Genomic-based surveillance reveals high ongoing transmission of multi-drug-resistant Mycobacterium tuberculosis in Southern Brazil. International Journal of Antimicrobial Agents, 2021, 58, 106401.	1.1	12
319	Clinical Interpretation of Drug Susceptibility Tests in Tuberculosis. Current Respiratory Medicine Reviews, 2021, 16, 102-112.	0.1	1
320	Food Security: Microbiological and Chemical Risks. Advanced Sciences and Technologies for Security Applications, 2020, , 231-274.	0.4	8
321	Evaluation of a novel line probe assay to detect resistance to pyrazinamide, a key drug used for tuberculosis treatment. Clinical Microbiology and Infection, 2018, 24, 60-64.	2.8	21
322	Advances in the diagnosis of tuberculosis-Journey from smear microscopy to whole genome sequencing. Indian Journal of Tuberculosis, 2020, 67, S61-S68.	0.3	5
323	A biochemically-interpretable machine learning classifier for microbial GWAS. Nature Communications, 2020, $11,2580$.	5.8	51
324	Ultrafast search of all deposited bacterial and viral genomic data. Nature Biotechnology, 2019, 37, 152-159.	9.4	123
325	Recent developments in the diagnosis of drug-resistant tuberculosis. Microbiology Australia, 2019, 40, 82.	0.1	3

#	Article	IF	CITATIONS
326	Whole-genome sequencing analysis of multidrug-resistant Mycobacterium tuberculosis from Java, Indonesia. Journal of Medical Microbiology, 2020, 69, 1013-1019.	0.7	7
327	Genomic variant-identification methods may alter Mycobacterium tuberculosis transmission inferences. Microbial Genomics, 2020, 6, .	1.0	24
328	Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens. Microbiology (United Kingdom), 2018, 164, 1213-1219.	0.7	61
329	Automated detection of bacterial growth on 96-well plates for high-throughput drug susceptibility testing of Mycobacterium tuberculosis. Microbiology (United Kingdom), 2018, 164, 1522-1530.	0.7	21
355	Evaluation of Whole-Genome Sequencing for Mycobacterial Species Identification and Drug Susceptibility Testing in a Clinical Setting: a Large-Scale Prospective Assessment of Performance against Line Probe Assays and Phenotyping. Journal of Clinical Microbiology, 2018, 56, .	1.8	72
356	Laboratory diagnosis of tuberculosis. , 0, , 99-115.		1
357	Challenges in childhood tuberculosis. , 0, , 234-262.		2
358	Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe. Wellcome Open Research, 2019, 4, 191.	0.9	103
359	Whole-Genome Sequencing Analysis of Serially Isolated Multi-Drug and Extensively Drug Resistant Mycobacterium tuberculosis from Thai Patients. PLoS ONE, 2016, 11, e0160992.	1.1	13
360	Half of rifampicin-resistant Mycobacterium tuberculosis complex isolated from tuberculosis patients in Sub-Saharan Africa have concomitant resistance to pyrazinamide. PLoS ONE, 2017, 12, e0187211.	1.1	8
361	Whole-genome sequence analysis and comparisons between drug-resistance mutations and minimum inhibitory concentrations of Mycobacterium tuberculosis isolates causing M/XDR-TB. PLoS ONE, 2020, 15, e0244829.	1.1	17
362	Mutations in dnaA and a cryptic interaction site increase drug resistance in Mycobacterium tuberculosis. PLoS Pathogens, 2020, 16, e1009063.	2.1	23
363	Big Data is changing the battle against infectious diseases. Canada Communicable Disease Report, 2015, 41, 215-217.	0.6	3
364	Mycobacteriophage-based test system for phenotypic drug sensitivity of clinical isolates of tuberculous mycobacteria. Tuberculosis and Lung Diseases, 2020, 98, 14-22.	0.2	1
365	Clinical Management of Drug-resistant Mycobacterium tuberculosis Strains: Pathogen-targeted Versus Host-directed Treatment Approaches. Current Pharmaceutical Biotechnology, 2019, 20, 272-284.	0.9	3
367	A joint cross-border investigation of a cluster of multidrug-resistant tuberculosis in Austria, Romania and Germany in 2014 using classic, genotyping and whole genome sequencing methods: lessons learnt. Eurosurveillance, 2017, 22, .	3.9	26
368	Meta-narrative review of molecular methods for diagnosis and monitoring of multidrug-resistant tuberculosis treatment in adults. International Journal of Mycobacteriology, 2018, 7, 299.	0.3	12
369	Mycobacterium tuberculosis Drug Resistance and Transmission among Human Immunodeficiency Virus–Infected Patients in Ho Chi Minh City, Vietnam. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1397-1406.	0.6	14

#	Article	IF	CITATIONS
370	Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory. PeerJ, 2018, 6, e4218.	0.9	43
371	Utilization of whole genome sequencing for resolution of discrepant Mycobacterium tuberculosis drug susceptibility results: A case report. IDCases, 2021, 26, e01308.	0.4	1
372	Analysis of Factors Influencing Multidrug-Resistant Tuberculosis and Validation of Whole-Genome Sequencing in Children with Drug-Resistant Tuberculosis. Infection and Drug Resistance, 2021, Volume 14, 4375-4393.	1.1	3
373	Population structure, biogeography and transmissibility of Mycobacterium tuberculosis. Nature Communications, 2021, 12, 6099.	5.8	59
375	Genomic Profiling of <i>Mycobacterium tuberculosis</i> Strains, Myanmar. Emerging Infectious Diseases, 2021, 27, 2847-2855.	2.0	8
376	Whole-genome sequencing as a tool for studying the microevolution of drug-resistant serial Mycobacterium tuberculosis isolates. Tuberculosis, 2021, 131, 102137.	0.8	3
378	Drug Resistance Assays for Mycobacterium tuberculosis. , 2017, , 1359-1365.		0
385	EFFECTIVENESS OF REAL-TIME PCR FOR EXPRESS FIRST LINE DRUG SUSCEPTIBILITY TESTING OF TUBERCULOUS MYCOBACTERIA USING SPUTUM SAMPLES AND SURGICAL SPECIMENS OF LUNG TISSUE. Tuberculosis and Lung Diseases, 2019, 96, 18-24.	0.2	0
391	Bridging the TB data gap: <i>in silico</i> extraction of rifampicin-resistant tuberculosis diagnostic test results from whole genome sequence data. PeerJ, 2019, 7, e7564.	0.9	4
394	Is the efflux pump inhibitor Verapamil a potential booster for isoniazid against Mycobacterium tuberculosis?. Brazilian Journal of Pharmaceutical Sciences, 0, 56, .	1.2	0
396	A Comprehensive Evaluation of GeneLEAD VIII DNA Platform Combined to Deeplex Myc-TB® Assay to Detect in 8 Days Drug Resistance to 13 Antituberculous Drugs and Transmission of Mycobacterium tuberculosis Complex Directly From Clinical Samples. Frontiers in Cellular and Infection Microbiology, 2021, 11, 707244.	1.8	14
397	A Review of Artificial Intelligence Applications in Bacterial Genomics. , 2020, , .		1
398	Whole Genome Sequencing: Applications and Cluster Investigations. , 2021, , 231-240.		0
399	New technologies for the diagnosis of drug-resistant tuberculosis. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2019, 74, 413-422.	0.2	1
400	Evaluation of drug susceptibility profile of Mycobacterium tuberculosis Lineage 1 from Brazil based on whole genome sequencing and phenotypic methods. Memorias Do Instituto Oswaldo Cruz, 2021, 115, e200520.	0.8	2
401	A Pangenomic Perspective on the Emergence, Maintenance, and Predictability of Antibiotic Resistance., 2020, , 169-202.		5
403	Whole-Genome Sequence of Drug-Resistant Mycobacterium tuberculosis Strain S7, Isolated from a Patient with Pulmonary Tuberculosis. Microbiology Resource Announcements, 2020, 9, .	0.3	1
404	Case Report: Disseminated, rifampicin resistant Mycobacterium bovis (BCG) infection in an immunocompromised child. Wellcome Open Research, 2020, 5, 242.	0.9	O

#	Article	IF	CITATIONS
406	Retrospective evaluation of routine whole genome sequencing of <i>Mycobacterium tuberculosis</i> at the Belgian National Reference Center, 2019. Acta Clinica Belgica, 2022, 77, 853-860.	0.5	5
407	Case Report: Fascioliasis Hepatica Precisely Diagnosed by Metagenomic Next-Generation Sequencing and Treated With Albendazole. Frontiers in Medicine, 2021, 8, 773145.	1.2	3
410	Whole-genome sequencing of <i>Mycobacterium tuberculosis</i> for prediction of drug resistance. Epidemiology and Infection, 2022, 150, e22.	1.0	11
411	Phenotype Prediction of DNA Sequence Data: A Machine- and Statistical Learning Approach. , 2020, , .		2
412	Current Methods and Role of Next-Generation Sequencing in the Diagnosis of Antimicrobial Resistance in Tuberculosis. Clinical Microbiology Newsletter, 2022, 44, 1-12.	0.4	3
413	Le diagnostic par biologie moléculaire de la tuberculose, un progrès majeur au Nord comme au Sud. , 2022, , .		0
414	Experimental Confirmation that an Uncommon <i>rrs</i> Gene Mutation (g878a) of Mycobacterium tuberculosis Confers Resistance to Streptomycin. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0191521.	1.4	3
415	Infection prevention and control insights from a decade of pathogen whole-genome sequencing. Journal of Hospital Infection, 2022, 122, 180-186.	1.4	24
416	Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis. Microbial Genomics, 2022, 8, .	1.0	0
418	Genomic signatures of pre-resistance in Mycobacterium tuberculosis. Nature Communications, 2021, 12, 7312.	5.8	33
419	Tuberculosis drug resistance profiling based on machine learning: A literature review. Brazilian Journal of Infectious Diseases, 2022, 26, 102332.	0.3	7
421	Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of <i>M. tuberculosis </i> . European Respiratory Journal, 2022, 60, 2200239.	3.1	29
422	Deep-Learning-Aided Detection of Mycobacteria in Pathology Specimens Increases the Sensitivity in Early Diagnosis of Pulmonary Tuberculosis Compared with Bacteriology Tests. Diagnostics, 2022, 12, 709.	1.3	10
423	Drug resistance prediction and resistance genes identification in <i>Mycobacterium tuberculosis</i> based on a hierarchical attentive neural network utilizing genome-wide variants. Briefings in Bioinformatics, 2022, 23, .	3.2	6
424	Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Frontiers in Microbiology, 2022, 13, 775030.	1.5	22
427	A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Research, 0, 10, 80.	0.8	0
428	Evaluating the clinical impact of routine whole genome sequencing in tuberculosis treatment decisions and the issue of isoniazid mono-resistance. BMC Infectious Diseases, 2022, 22, 349.	1.3	9
429	Application of Metagenomic Next-Generation Sequencing in Mycobacterium tuberculosis Infection. Frontiers in Medicine, 2022, 9, 802719.	1.2	3

#	Article	IF	CITATIONS
430	The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe, The, 2022, 3, e265-e273.	3.4	114
431	Whole-Genome Sequencing to Identify Missed Rifampicin and Isoniazid Resistance Among Tuberculosis Isolatesâ€"Chennai, India, 2013â€"2016. Frontiers in Microbiology, 2021, 12, 720436.	1.5	3
432	Whole genome sequencing reveals large deletions and other loss of function mutations in Mycobacterium tuberculosis drug resistance genes. Microbial Genomics, 2021, 7, .	1.0	6
433	An accessible, efficient and global approach for the large-scale sequencing of bacterial genomes. Genome Biology, 2021, 22, 349.	3.8	20
434	Performance and Agreement Between WGS Variant Calling Pipelines Used for Bovine Tuberculosis Control: Toward International Standardization. Frontiers in Veterinary Science, 2021, 8, 780018.	0.9	3
463	Gene evolutionary trajectories in <i>Mycobacterium tuberculosis</i> reveal temporal signs of selection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113600119.	3.3	13
464	Mycobacterium bovis and M. caprae in Bulgaria: insight into transmission and phylogeography gained through whole-genome sequencing. BMC Veterinary Research, 2022, 18, 148.	0.7	4
465	First-line drug resistance profiling of : a machine learning approach AMIA Annual Symposium proceedings, 2021, 2021, 891-899.	0.2	0
466	Distribution of Common and Rare Genetic Markers of Second-Line-Injectable-Drug Resistance in Mycobacterium tuberculosis Revealed by a Genome-Wide Association Study. Antimicrobial Agents and Chemotherapy, 2022, 66, e0207521.	1.4	2
467	CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nature Microbiology, 2022, 7, 766-779.	5.9	68
468	M. tuberculosis microvariation is common and is associated with transmission: Analysis of three years prospective universal sequencing in England. Journal of Infection, 2022, 85, 31-39.	1.7	0
470	Tuberculosis reinfection and relapse in eastern China: a prospective study using whole-genome sequencing. Clinical Microbiology and Infection, 2022, 28, 1458-1464.	2.8	10
471	Factors contributing to the high prevalence of multidrug-resistance/Rifampicin-resistance in patients with tuberculosis: an epidemiological cross sectional and qualitative study from Khabarovsk krai region of Russia. BMC Infectious Diseases, 2022, 22, .	1.3	4
473	A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis. Molecular Therapy - Nucleic Acids, 2022, 29, 354-367.	2.3	3
474	A convolutional neural network highlights mutations relevant to antimicrobial resistance in Mycobacterium tuberculosis. Nature Communications, 2022, 13, .	5.8	18
475	High clustering rate and genotypic drug-susceptibility screening for the newly recommended anti-tuberculosis drugs among global extensively drug-resistant <i>Mycobacterium tuberculosis</i> isolates. Emerging Microbes and Infections, 2022, 11, 1857-1866.	3.0	6
476	Genome-wide association studies of global Mycobacterium tuberculosis resistance to 13 antimicrobials in 10,228 genomes identify new resistance mechanisms. PLoS Biology, 2022, 20, e3001755.	2.6	27
477	Predicting antibiotic resistance in complex protein targets using alchemical free energy methods. Journal of Computational Chemistry, 0, , .	1.5	2

#	Article	IF	CITATIONS
478	Molecular genetic and clinical characteristic analysis of primary signet ring cell carcinoma of urinary bladder identified by a novel <scp>OR2L5</scp> mutation. Cancer Medicine, 0, , .	1.3	3
479	Evaluation of whole-genome sequence to predict drug resistance of nine anti-tuberculosis drugs and characterize resistance genes in clinical rifampicin-resistant Mycobacterium tuberculosis isolates from Ningbo, China. Frontiers in Public Health, 0, 10, .	1.3	1
480	Whole genome sequencing for tuberculosis in Victoria, Australia: A genomic implementation study from 2017 to 2020. The Lancet Regional Health - Western Pacific, 2022, 28, 100556.	1.3	4
481	The impact of Mycobacterium tuberculosis complex in the environment on one health approach. Frontiers in Public Health, 0, 10 , .	1.3	10
482	Rapid Identification of Drug Resistance and Phylogeny in M. tuberculosis, Directly from Sputum Samples. Microbiology Spectrum, 2022, 10, .	1.2	7
483	Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes, 2022, 13, 1566.	1.0	32
484	Whole-genome sequencing for surveillance of fluoroquinolone resistance in rifampicin-susceptible tuberculosis in a rural district of Shanghai: A 10-year retrospective study. Frontiers in Public Health, 0, 10, .	1.3	3
486	Mycobacterium tuberculosis functional genetic diversity, altered drug sensitivity, and precision medicine. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	3
487	Review and Updates on the Diagnosis of Tuberculosis. Journal of Clinical Medicine, 2022, 11, 5826.	1.0	13
488	Performance of lipid fingerprint by routine MALDI-ToF for the diagnosis of Mycobacterium tuberculosis complex species. Clinical Microbiology and Infection, 2022, , .	2.8	0
489	Host DNA depletion can increase the sensitivity of Mycobacterium spp. detection through shotgun metagenomics in sputum. Frontiers in Microbiology, 0, 13 , .	1.5	2
490	The Role of Phosphorylation and Acylation in the Regulation of Drug Resistance in Mycobacterium tuberculosis. Biomedicines, 2022, 10, 2592.	1.4	5
491	Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	1.8	6
496	Next-Generation Sequencing Approaches to Predicting Antimicrobial Susceptibility Testing Results. Clinics in Laboratory Medicine, 2022, 42, 557-572.	0.7	5
497	COVIDSeq as Laboratory Developed Test (LDT) for Diagnosis of SARSCoV- 2 Variants of Concern (VOC). Archives of Clinical and Biomedical Research, 2022, 06, .	0.1	6
498	Evaluation of Nanopore sequencing for Mycobacterium tuberculosis drug susceptibility testing and outbreak investigation: a genomic analysis. Lancet Microbe, The, 2023, 4, e84-e92.	3.4	20
499	Antimicrobial resistance and molecular typing of Salmonella in the chicken production chain in Hubei Province, China. Animal Diseases, 2022, 2, .	0.6	4
500	Experiences from 4 Years of Organization of an External Quality Assessment for Mycobacterium tuberculosis Whole-Genome Sequencing in the European Union/European Economic Area. Microbiology Spectrum, 2023, 11, .	1.2	2

#	ARTICLE	IF	CITATIONS
501	Clinical utility of target-based next-generation sequencing for drug-resistant TB. International Journal of Tuberculosis and Lung Disease, 2023, 27, 41-48.	0.6	4
503	The mutation rate of rpoB gene showed an upward trend with the increase of MIRU10, MIRU39 and QUB4156 repetitive number. BMC Genomics, 2023, 24, .	1.2	1
504	Drug Resistance of Mycobacterium tuberculosis Based on Whole-Genome Sequencing in the Yi Ethnic Group, Sichuan Province, China. Journal of Immunology Research, 2023, 2023, 1-8.	0.9	1
505	Molecular Capture of Mycobacterium tuberculosis Genomes Directly from Clinical Samples: A Potential Backup Approach for Epidemiological and Drug Susceptibility Inferences. International Journal of Molecular Sciences, 2023, 24, 2912.	1.8	1
506	Performances of bioinformatics tools for the analysis of sequencing data of Mycobacterium tuberculosis complex strains. Tuberculosis, 2023, 139, 102324.	0.8	0
507	Endogenous relapse and exogenous reinfection in recurrent pulmonary tuberculosis: A retrospective study revealed by whole genome sequencing. Frontiers in Microbiology, 0, 14, .	1.5	3
509	Advances in the Microbiological Diagnosis of Prosthetic Joint Infections. Diagnostics, 2023, 13, 809.	1.3	6
510	Near-field sensor array with 65-GHz CMOS oscillators can rapidly and comprehensively evaluate drug susceptibility of Mycobacterium. Scientific Reports, 2023, 13, .	1.6	1
512	Unlocking the microbial studies through computational approaches: how far have we reached?. Environmental Science and Pollution Research, 2023, 30, 48929-48947.	2.7	4
513	Advances in computational frameworks in the fight against TB: The way forward. Frontiers in Pharmacology, 0, 14 , .	1.6	1
514	Inclusion of minor alleles improves catalogue-based prediction of fluoroquinolone resistance in <i>Mycobacterium tuberculosis</i> . JAC-Antimicrobial Resistance, 2023, 5, .	0.9	4
515	Evolution and Molecular Characteristics of Mycobacterium tuberculosis and Mycobacterium bovis. Integrated Science, 2023, , 847-865.	0.1	0
526	Genomic approaches to tuberculosis management and control., 2023,, 178-190.		0
539	Antimicrobial Resistance in <i>Salmonella</i> : Its Mechanisms in Comparison to Other Microbes, and The Reversal Effects of Traditional Chinese Medicine on Its Resistance., 0,,.		0