Protective efficacy of adenovirus/protein vaccines again monkeys

Science 349, 320-324 DOI: 10.1126/science.aab3886

Citation Report

#	Article	IF	CITATIONS
1	Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1. Viruses, 2015, 7, 5115-5132.	3.3	42
2	Evaluating the efficacy of therapeutic HIV vaccines through analytical treatment interruptions. Journal of the International AIDS Society, 2015, 18, 20497.	3.0	22
3	Novel immunological strategies for HIV-1 eradication. Journal of Virus Eradication, 2015, 1, 232-236.	0.5	6
4	Dissecting Polyclonal Vaccine-Induced Humoral Immunity against HIV Using Systems Serology. Cell, 2015, 163, 988-998.	28.9	326
5	Immune correlates of vaccine protection against HIV-1 acquisition. Science Translational Medicine, 2015, 7, 310rv7.	12.4	179
6	Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2015, 89, 12189-12210.	3.4	88
7	AIDS Vaccines. , 2016, , 401-422.		1
8	Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses. Frontiers in Immunology, 2016, 7, 589.	4.8	32
9	Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control. PLoS Pathogens, 2016, 12, e1005315.	4.7	220
10	Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses. PLoS Pathogens, 2016, 12, e1005817.	4.7	119
11	Epitope Mapping of a Monoclonal Antibody Directed against Neisserial Heparin Binding Antigen Using Next Generation Sequencing of Antigen-Specific Libraries. PLoS ONE, 2016, 11, e0160702.	2.5	11
12	Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathogens, 2016, 12, e1005537.	4.7	51
13	An HIV gp120-CD4 Immunogen Does Not Elicit Autoimmune Antibody Responses in Cynomolgus Macaques. Vaccine Journal, 2016, 23, 618-627.	3.1	7
14	Dimeric FcÎ ³ R Ectodomains as Probes of the Fc Receptor Function of Anti-Influenza Virus IgG. Journal of Immunology, 2016, 197, 1507-1516.	0.8	90
15	TRIM5α Resistance Escape Mutations in the Capsid Are Transferable between Simian Immunodeficiency Virus Strains. Journal of Virology, 2016, 90, 11087-11095.	3.4	6
16	Diversity of Antiviral IgG Effector Activities Observed in HIV-Infected and Vaccinated Subjects. Journal of Immunology, 2016, 197, 4603-4612.	0.8	44
17	Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 2016, 14, 97-111.	6.1	47
18	Transient CD4 ⁺ T Cell Depletion Results in Delayed Development of Functional Vaccine-Elicited Antibody Responses. Journal of Virology, 2016, 90, 4278-4288.	3.4	13

#	ARTICLE A PartialE3Deletion in Replication-Defective Adenoviral Vectors Allows for Stable Expression of	IF	CITATIONS
19	Potentially Toxic Transgene Products. Human Gene Therapy Methods, 2016, 27, 187-196.	2.1	3
21	Inhibitory receptor expression on memory CD8 T cells following Ad vector immunization. Vaccine, 2016, 34, 4955-4963.	3.8	22
22	IgG Binding Characteristics of Rhesus Macaque FcÎ ³ R. Journal of Immunology, 2016, 197, 2936-2947.	0.8	43
23	Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science, 2016, 353, 1045-1049.	12.6	129
24	Antibody-Dependent Cellular Cytotoxicity Activity of Effector Cells from HIV-Infected Elite and Viral Controllers. AIDS Research and Human Retroviruses, 2016, 32, 1079-1088.	1.1	15
25	Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16068.	4.1	48
26	Rationally Designed Vaccines Targeting the V2 Region of HIV-1 gp120 Induce a Focused, Cross-Clade-Reactive, Biologically Functional Antibody Response. Journal of Virology, 2016, 90, 10993-11006.	3.4	33
27	Non-human primates in HIV research: Achievements, limits and alternatives. Infection, Genetics and Evolution, 2016, 46, 324-332.	2.3	39
28	Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001. Journal of Virology, 2016, 90, 10362-10378.	3.4	26
29	Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nature Communications, 2016, 7, 10844.	12.8	201
30	Modulating Antibody Functionality in Infectious Disease and Vaccination. Trends in Molecular Medicine, 2016, 22, 969-982.	6.7	71
31	Adjuvants for HIV vaccines. Current Opinion in HIV and AIDS, 2016, 11, 585-592.	3.8	14
32	Antibody responses to prime–boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140. Aids, 2016, 30, 2405-2414.	2.2	14
33	Persistent HIV-1 replication during antiretroviral therapy. Current Opinion in HIV and AIDS, 2016, 11, 417-423.	3.8	133
34	Nonhuman primate models for the evaluation of HIV-1 preventive vaccine strategies. Current Opinion in HIV and AIDS, 2016, 11, 546-554.	3.8	40
35	The first 24 h. Current Opinion in HIV and AIDS, 2016, 11, 561-568.	3.8	10
36	Pox-Protein Public Private Partnership program and upcoming HIV vaccine efficacy trials. Current Opinion in HIV and AIDS, 2016, 11, 614-619.	3.8	20
37	New concepts in HIV-1 vaccine development. Current Opinion in Immunology, 2016, 41, 39-46.	5.5	77

#	Article	IF	CITATIONS
38	Viral vectors as vaccine platforms: from immunogenicity to impact. Current Opinion in Immunology, 2016, 41, 47-54.	5.5	137
39	Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infectious Diseases, 2016, 3, ofw034.	0.9	15
40	Report of the Cent Gardes HIV Vaccines Conference. Part 1: The antibody response; Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25–27 October 2015. Vaccine, 2016, 34, 3557-3561.	3.8	2
41	Enhanced Immune Responses to HIV-1 Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting with gp120 and SOSIP gp140 Proteins. Journal of Virology, 2016, 90, 1682-1686.	3.4	10
42	Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Review of Vaccines, 2016, 15, 719-729.	4.4	30
43	Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine, 2016, 34, 413-423.	3.8	198
44	The improved antibody response against HIV-1 after a vaccination based on intrastructural help is complemented by functional CD8+ T cell responses. Vaccine, 2016, 34, 1744-1751.	3.8	9
45	Engineering broadly neutralizing antibodies for HIV prevention and therapy. Advanced Drug Delivery Reviews, 2016, 103, 157-173.	13.7	17
46	HIV-Host Interactions: Implications for Vaccine Design. Cell Host and Microbe, 2016, 19, 292-303.	11.0	143
47	New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Review of Vaccines, 2016, 15, 1015-1027.	4.4	9
48	SIV Infection-Mediated Changes in Gastrointestinal Bacterial Microbiome and Virome Are Associated with Immunodeficiency and Prevented by Vaccination. Cell Host and Microbe, 2016, 19, 323-335.	11.0	78
49	Current views on the potential for development of a HIV vaccine. Expert Opinion on Biological Therapy, 2017, 17, 295-303.	3.1	23
50	VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology, 2017, 503, 21-30.	2.4	115
51	Systems serology for evaluation of <scp>HIV</scp> vaccine trials. Immunological Reviews, 2017, 275, 262-270.	6.0	69
52	<scp>HIV</scp> antibodies for treatment of <scp>HIV</scp> infection. Immunological Reviews, 2017, 275, 313-323.	6.0	59
53	Use of broadly neutralizing antibodies for <scp>HIV</scp> â€1 prevention. Immunological Reviews, 2017, 275, 296-312.	6.0	131
54	Complex immune correlates of protection in <scp>HIV</scp> â€1 vaccine efficacy trials. Immunological Reviews, 2017, 275, 245-261.	6.0	95
55	Survivors Remorse: antibodyâ€mediated protection against <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 271-284.	6.0	25

#	Article	IF	CITATIONS
56	Statoviruses, A novel taxon of RNA viruses present in the gastrointestinal tracts of diverse mammals. Virology, 2017, 504, 36-44.	2.4	16
57	Progress in HIV vaccine development. Human Vaccines and Immunotherapeutics, 2017, 13, 1018-1030.	3.3	80
58	Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. Journal of Immunological Methods, 2017, 443, 33-44.	1.4	158
59	HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates, Journal of Virology, 2017, 91	3.4	26
60	Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques. Journal of Virology, 2017, 91, .	3.4	5
61	Single N277A substitution in C2 of simian immunodeficiency virus envelope influences vaccine-elicited CD4i neutralizing and anti-V2 antibody responses. Vaccine, 2017, 35, 2582-2591.	3.8	1
62	Role of nonneutralizing antibodies in vaccines and/or HIV infected individuals. Current Opinion in HIV and AIDS, 2017, 12, 209-215.	3.8	11
63	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	12.8	137
64	Adenovirus prime, Env protein boost vaccine protects against neutralization-resistant SIVsmE660 variants in rhesus monkeys. Nature Communications, 2017, 8, 15740.	12.8	11
65	Mucosal Vaccination with Heterologous Viral Vectored Vaccine Targeting Subdominant SIV Accessory Antigens Strongly Inhibits Early Viral Replication. EBioMedicine, 2017, 18, 204-215.	6.1	15
66	Higher T-Cell Responses Induced by DNA/rAd5 HIV-1 Preventive Vaccine Are Associated With Lower HIV-1 Infection Risk in an Efficacy Trial. Journal of Infectious Diseases, 2017, 215, 1376-1385.	4.0	59
67	Adjuvants. Current Opinion in HIV and AIDS, 2017, 12, 278-284.	3.8	27
68	Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. Journal of Virology, 2017, 91, .	3.4	70
69	Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Review of Vaccines, 2017, 16, 973-985.	4.4	27
70	Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 ⁺ and CD8 ⁺ T-Cell Responses. Journal of Virology, 2017, 91, .	3.4	6
71	Non-neutralizing Antibodies Alter the Course of HIV-1 Infection InÂVivo. Cell, 2017, 170, 637-648.e10.	28.9	111
72	Non-human primates as a model for understanding the mechanism of action of toll-like receptor-based vaccine adjuvants. Current Opinion in Immunology, 2017, 47, 1-7.	5.5	34
73	HIV DNA-Adenovirus Multiclade Envelope Vaccine Induces gp41 Antibody Immunodominance in Rhesus Macaques. Journal of Virology, 2017, 91, .	3.4	20

#	Article	IF	CITATIONS
74	Novel Concepts for HIV Vaccine Vector Design. MSphere, 2017, 2, .	2.9	11
75	Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies. Journal of Biological Chemistry, 2017, 292, 278-291.	3.4	18
76	Natural infection as a blueprint for rational HIV vaccine design. Human Vaccines and Immunotherapeutics, 2017, 13, 229-236.	3.3	3
77	Nonhuman Primate Models and Understanding the Pathogenesis of HIV Infection and AIDS. ILAR Journal, 2017, 58, 160-171.	1.8	27
79	Innate transcriptional effects by adjuvants on the magnitude, quality, and durability of HIV envelope responses in NHPs. Blood Advances, 2017, 1, 2329-2342.	5.2	90
80	Immunogenicity of a Multi-Epitope DNA Vaccine Encoding Epitopes from Cu–Zn Superoxide Dismutase and Open Reading Frames of Brucella abortus in Mice. Frontiers in Immunology, 2017, 8, 125.	4.8	21
81	Immune Responses in the Central Nervous System Are Anatomically Segregated in a Non-Human Primate Model of Human Immunodeficiency Virus Infection. Frontiers in Immunology, 2017, 8, 361.	4.8	6
82	Non-Neutralizing Antibodies Directed against HIV and Their Functions. Frontiers in Immunology, 2017, 8, 1590.	4.8	48
83	Emerging Targets for Developing T Cell-Mediated Vaccines for Human Immunodeficiency Virus (HIV)-1. Frontiers in Microbiology, 2017, 8, 2091.	3.5	11
84	Systems serology: profiling vaccine induced humoral immunity against HIV. Retrovirology, 2017, 14, 57.	2.0	75
85	Replication-Competent Viral Vectors for Vaccine Delivery. , 2017, , 25-63.		1
86	Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cellâ€mediated cytotoxicity assay. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 436-447.	1.5	18
87	Viral control in chronic HIV-1 subtype C infection is associated with enrichment of p24 lgG1 with Fc effector activity. Aids, 2018, 32, 1207-1217.	2.2	31
88	Highâ€resolution definition of humoral immune response correlates of effective immunity against HIV. Molecular Systems Biology, 2018, 14, e7881.	7.2	37
89	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	3.4	10
90	Rapid Cloning of Novel Rhesus Adenoviral Vaccine Vectors. Journal of Virology, 2018, 92, .	3.4	24
92	Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029124.	5.5	12
93	HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis. Journal of Virology, 2018, 92, .	3.4	45

#	Article	IF	CITATIONS
94	Passive and active antibody studies in primates to inform HIV vaccines. Expert Review of Vaccines, 2018, 17, 1-18.	4.4	36
95	Single-cycle adenovirus vectors in the current vaccine landscape. Expert Review of Vaccines, 2018, 17, 1-11.	4.4	25
96	Neutralizing Antibody Responses following Long-Term Vaccination with HIV-1 Env gp140 in Guinea Pigs. Journal of Virology, 2018, 92, .	3.4	10
97	Neutrophils mediate HIV-specific antibody-dependent phagocytosis and ADCC. Journal of Immunological Methods, 2018, 457, 41-52.	1.4	51
98	Optimization and qualification of an Fc Array assay for assessments of antibodies against HIV-1/SIV. Journal of Immunological Methods, 2018, 455, 24-33.	1.4	36
99	What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029504.	5.5	23
100	Mutation and recombination in pathogen evolution: Relevance, methods and controversies. Infection, Genetics and Evolution, 2018, 63, 295-306.	2.3	32
101	Combination Adenovirus and Protein Vaccines Prevent Infection or Reduce Viral Burden after Heterologous Clade C Simian-Human Immunodeficiency Virus Mucosal Challenge. Journal of Virology, 2018, 92, .	3.4	24
102	Harnessing Novel Imaging Approaches to Guide HIV Prevention and Cure Discoveries—A National Institutes of Health and Global HIV Vaccine Enterprise 2017 Meeting Report. AIDS Research and Human Retroviruses, 2018, 34, 12-26.	1.1	5
103	Prospects from systems serology research. Immunology, 2018, 153, 279-289.	4.4	62
104	Antibody-dependent cellular cytotoxicity in HIV infection. Aids, 2018, 32, 2439-2451.	2.2	67
105	Measuring the ability of HIV-specific antibodies to mediate trogocytosis. Journal of Immunological Methods, 2018, 463, 71-83.	1.4	32
106	NK Cells in HIV-1 Infection: From Basic Science to Vaccine Strategies. Frontiers in Immunology, 2018, 9, 2290.	4.8	79
107	Immune Protection of SIV Challenge by PD-1 Blockade During Vaccination in Rhesus Monkeys. Frontiers in Immunology, 2018, 9, 2415.	4.8	19
108	Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nature Medicine, 2018, 24, 1590-1598.	30.7	129
109	Early antiretroviral therapy limits SIV reservoir establishment to delay or prevent post-treatment viral rebound. Nature Medicine, 2018, 24, 1430-1440.	30.7	98
110	Control of Heterologous Simian Immunodeficiency Virus SIV _{smE660} Infection by DNA and Protein Coimmunization Regimens Combined with Different Toll-Like-Receptor-4-Based Adjuvants in Macaques. Journal of Virology, 2018, 92, .	3.4	39
112	Progress in Adenoviral Capsid-Display Vaccines. Biomedicines, 2018, 6, 81.	3.2	18

#	Article	IF	CITATIONS
113	Advances in HIV-1 Vaccine Development. Viruses, 2018, 10, 167.	3.3	56
114	Analysis of Complement-Mediated Lysis of Simian Immunodeficiency Virus (SIV) and SIV-Infected Cells Reveals Sex Differences in Vaccine-Induced Immune Responses in Rhesus Macaques. Journal of Virology, 2018, 92, .	3.4	26
115	A 30-year journey of trial and error towards a tolerogenic AIDS vaccine. Archives of Virology, 2018, 163, 2025-2031.	2.1	6
116	Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet, The, 2018, 392, 232-243.	13.7	269
117	Epigenetic Modulation of CD8+ T Cell Function in Lentivirus Infections: A Review. Viruses, 2018, 10, 227.	3.3	2
118	Immune Correlate-Guided HIV Vaccine Design. Cell Host and Microbe, 2018, 24, 25-33.	11.0	44
119	HIV Vaccine Efficacy Trials: RV144 and Beyond. Advances in Experimental Medicine and Biology, 2018, 1075, 3-30.	1.6	6
120	Monkey Models and HIV Vaccine Research. Advances in Experimental Medicine and Biology, 2018, 1075, 97-124.	1.6	11
121	Correlates of Protection Against SIVmac251 Infection in Rhesus Macaques Immunized With Chimpanzee-Derived Adenovirus Vectors. EBioMedicine, 2018, 31, 25-35.	6.1	13
122	SIV-Specific Antibodies are Elicited by a Recombinant Fowlpox Virus Co-expressing SIV Gag and envT. Indian Journal of Microbiology, 2018, 58, 345-352.	2.7	2
123	Importance of Fc-mediated functions of anti-HIV-1 broadly neutralizing antibodies. Retrovirology, 2018, 15, 58.	2.0	32
124	A flow cytometry based assay that simultaneously measures cytotoxicity and monocyte mediated antibody dependent effector activity. Journal of Immunological Methods, 2018, 462, 74-82.	1.4	19
125	<i>Mamu-B*17</i> ⁺ Rhesus Macaques Vaccinated with <i>env</i> , <i>vif</i> , and <i>nef</i> Manifest Early Control of SIVmac239 Replication. Journal of Virology, 2018, 92, .	3.4	11
126	HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1006987.	4.7	71
127	Similar Epitope Specificities of IgG and IgA Antibodies Elicited by Ad26 Vector Prime, Env Protein Boost Immunizations in Rhesus Monkeys. Journal of Virology, 2018, 92, .	3.4	9
128	Progress in achieving long-term HIV remission. Current Opinion in HIV and AIDS, 2018, 13, 435-445.	3.8	7
129	Human Immunodeficiency Virus Vaccines. , 2018, , 400-429.e25.		0
130	The potential of engineered antibodies for HIV-1 therapy and cure. Current Opinion in Virology, 2019, 38, 70-80.	5.4	34

#	Article	IF	CITATIONS
131	Vaccination of Macaques with DNA Followed by Adenoviral Vectors Encoding Simian Immunodeficiency Virus (SIV) Gag Alone Delays Infection by Repeated Mucosal Challenge with SIV. Journal of Virology, 2019, 93, .	3.4	5
132	Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques. MBio, 2019, 10, .	4.1	64
133	Immunization of BLT Humanized Mice Redirects T Cell Responses to Gag and Reduces Acute HIV-1 Viremia. Journal of Virology, 2019, 93, .	3.4	19
134	Moving the HIV vaccine field forward: concepts of protective immunity. Lancet HIV,the, 2019, 6, e406-e410.	4.7	1
135	Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. Cell Reports, 2019, 28, 877-895.e6.	6.4	36
136	Novel prime-boost vaccine strategies against HIV-1. Expert Review of Vaccines, 2019, 18, 765-779.	4.4	34
137	Production and Immunogenicity of Soluble Plant-Produced HIV-1 Subtype C Envelope gp140 Immunogens. Frontiers in Plant Science, 2019, 10, 1378.	3.6	28
138	A vaccine-induced gene expression signature correlates with protection against SIV and HIV in multiple trials. Science Translational Medicine, 2019, 11, .	12.4	26
139	Lack of therapeutic efficacy of an antibody to α ₄ β ₇ in SIVmac251-infected rhesus macaques. Science, 2019, 365, 1029-1033.	12.6	31
140	Immune correlates of the Thai RV144 HIV vaccine regimen in South Africa. Science Translational Medicine, 2019, 11, .	12.4	46
141	Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Frontiers in Immunology, 2019, 10, 697.	4.8	55
142	A Sample-Sparing Multiplexed ADCP Assay. Frontiers in Immunology, 2019, 10, 1851.	4.8	42
143	Antibody Fabâ€Fc properties outperform titer in predictive models of <scp>SIV</scp> vaccineâ€induced protection. Molecular Systems Biology, 2019, 15, e8747.	7.2	17
144	A versatile high-throughput assay to characterize antibody-mediated neutrophil phagocytosis. Journal of Immunological Methods, 2019, 471, 46-56.	1.4	124
145	Virus-like vaccines against HIV/SIV synergize with a subdominant antigen T cell vaccine. Journal of Translational Medicine, 2019, 17, 175.	4.4	5
146	Effect of Fc Receptor Genetic Diversity on HIV-1 Disease Pathogenesis. Frontiers in Immunology, 2019, 10, 970.	4.8	10
147	Arsenic Trioxide Impacts Viral Latency and Delays Viral Rebound after Termination of ART in Chronically SIVâ€Infected Macaques. Advanced Science, 2019, 6, 1900319.	11.2	21
148	Current advances in HIV vaccine preclinical studies using Macaque models. Vaccine, 2019, 37, 3388-3399.	3.8	16

#	Article	IF	CITATIONS
149	Knowns and Unknowns of Assaying Antibody-Dependent Cell-Mediated Cytotoxicity Against HIV-1. Frontiers in Immunology, 2019, 10, 1025.	4.8	37
150	The Antibodiome—Mapping the Humoral Immune Response to HIV. Current HIV/AIDS Reports, 2019, 16, 169-179.	3.1	13
151	Divergent HIV-1-Directed Immune Responses Generated by Systemic and Mucosal Immunization with Replicating Single-Cycle Adenoviruses in Rhesus Macaques. Journal of Virology, 2019, 93, .	3.4	11
152	Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. Journal of Virology, 2019, 93, .	3.4	37
153	Primary Human Neutrophils Exhibit a Unique HIV-Directed Antibody-Dependent Phagocytosis Profile. Journal of Innate Immunity, 2019, 11, 181-190.	3.8	12
154	Modified MHC Class Il–Associated Invariant Chain Induces Increased Antibody Responses againstPlasmodium falciparumAntigens after Adenoviral Vaccination. Journal of Immunology, 2019, 202, 2320-2331.	0.8	9
155	Antibody-Dependent Cellular Phagocytosis in Antiviral Immune Responses. Frontiers in Immunology, 2019, 10, 332.	4.8	156
156	Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Frontiers in Immunology, 2019, 10, 548.	4.8	194
157	Toward DNA-Based T-Cell Mediated Vaccines to Target HIV-1 and Hepatitis C Virus: Approaches to Elicit Localized Immunity for Protection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 91.	3.9	10
158	Identification of HIV gp41-specific antibodies that mediate killing of infected cells. PLoS Pathogens, 2019, 15, e1007572.	4.7	35
159	Effects of government policy, quality of human resources and professional institutions on workforce competitiveness using welding technology as mediating variable. Journal of Science and Technology Policy Management, 2019, 10, 1121-1151.	2.8	4
160	Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector. Scientific Reports, 2019, 9, 20005.	3.3	10
161	Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Frontiers in Immunology, 2019, 10, 2968.	4.8	44
162	IgG3 enhances neutralization potency and Fc effector function of an HIV V2-specific broadly neutralizing antibody. PLoS Pathogens, 2019, 15, e1008064.	4.7	66
163	Vaccine-Induced Antibodies Mediate Higher Antibody-Dependent Cellular Cytotoxicity After Interleukin-15 Pretreatment of Natural Killer Effector Cells. Frontiers in Immunology, 2019, 10, 2741.	4.8	25
164	Systems serology for decoding infection and vaccine-induced antibody responses to HIV-1. Current Opinion in HIV and AIDS, 2019, 14, 253-264.	3.8	10
165	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153
166	Coadministration of CH31 Broadly Neutralizing Antibody Does Not Affect Development of Vaccine-Induced Anti-HIV-1 Envelope Antibody Responses in Infant Rhesus Macaques. Journal of Virology, 2019, 93, .	3.4	18

#	Article	IF	CITATIONS
167	A Summary of the Fourth Annual Virology Education HIV Microbiome Workshop. AIDS Research and Human Retroviruses, 2020, 36, 349-356.	1.1	4
168	The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Review of Vaccines, 2020, 19, 25-41.	4.4	11
169	HIV immunoprophylaxis: preparing the pathway from proof of concept to policy decision and use. Lancet HIV,the, 2020, 7, e141-e148.	4.7	2
170	Passive Transfer of Vaccine-Elicited Antibodies Protects against SIV in Rhesus Macaques. Cell, 2020, 183, 185-196.e14.	28.9	25
171	Priming with DNA Expressing Trimeric HIV V1V2 Alters the Immune Hierarchy Favoring the Development of V2-Specific Antibodies in Rhesus Macaques. Journal of Virology, 2020, 95, .	3.4	5
172	Roles of fragment crystallizable-mediated effector functions in broadly neutralizing antibody activity against HIV. Current Opinion in HIV and AIDS, 2020, 15, 316-323.	3.8	6
173	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	27.8	765
174	Polyfunctional Fc Dependent Activity of Antibodies to Native Trimeric Envelope in HIV Elite Controllers. Frontiers in Immunology, 2020, 11, 583820.	4.8	8
175	Tracking the Trajectory of Functional Humoral Immune Responses Following Acute HIV Infection. Frontiers in Immunology, 2020, 11, 1744.	4.8	4
176	Topical Tenofovir Pre-exposure Prophylaxis and Mucosal HIV-Specific Fc-Mediated Antibody Activities in Women. Frontiers in Immunology, 2020, 11, 1274.	4.8	1
177	The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Frontiers in Immunology, 2020, 11, 1817.	4.8	189
178	Distinct Early Serological Signatures Track with SARS-CoV-2 Survival. Immunity, 2020, 53, 524-532.e4.	14.3	334
180	Adjuvanted HIV-1 vaccine promotes antibody-dependent phagocytic responses and protects against heterologous SHIV challenge. PLoS Pathogens, 2020, 16, e1008764.	4.7	37
181	A Summary of the Fifth Annual Virology Education HIV Microbiome Workshop. AIDS Research and Human Retroviruses, 2020, 36, 886-895.	1.1	2
182	A Mucosal Adenovirus Prime/Systemic Envelope Boost Vaccine Regimen Elicits Responses in Cervicovaginal and Alveolar Macrophages of Rhesus Macaques Associated With Delayed SIV Acquisition and B Cell Help. Frontiers in Immunology, 2020, 11, 571804.	4.8	2
183	New GMP manufacturing processes to obtain thermostable HIV-1 gp41 virosomes under solid forms for various mucosal vaccination routes. Npj Vaccines, 2020, 5, 41.	6.0	26
184	Rapid Induction of Multifunctional Antibodies in Rabbits and Macaques by Clade C HIV-1 CAP257 Envelopes Circulating During Epitope-Specific Neutralization Breadth Development. Frontiers in Immunology, 2020, 11, 984.	4.8	9
185	Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Reports, 2020, 31, 107624.	6.4	43

# 186	ARTICLE Antibody-Dependent Cellular Phagocytosis of HIV-1-Infected Cells Is Efficiently Triggered by IgA Targeting HIV-1 Envelope Subunit gp41. Frontiers in Immunology, 2020, 11, 1141.	IF 4.8	CITATIONS
187	Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies. PLoS Pathogens, 2020, 16, e1008083.	4.7	50
188	Innovations in HIV-1 Vaccine Design. Clinical Therapeutics, 2020, 42, 499-514.	2.5	20
189	Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Letters, 2020, 594, 1918-1946.	2.8	27
190	Genetic Adjuvants in Replicating Single-Cycle Adenovirus Vectors Amplify Systemic and Mucosal Immune Responses against HIV-1 Envelope. Vaccines, 2020, 8, 64.	4.4	11
191	Vaccines and Broadly Neutralizing Antibodies for HIV-1 Prevention. Annual Review of Immunology, 2020, 38, 673-703.	21.8	74
192	Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nature Nanotechnology, 2021, 16, 1-14.	31.5	150
193	Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine, 2021, 39, 3081-3101.	3.8	51
194	Prevention of Respiratory Syncytial Virus Infection in Healthy Adults by a Single Immunization of Ad26.RSV.preF in a Human Challenge Study. Journal of Infectious Diseases, 2022, 226, 396-406.	4.0	45
195	Distinct Features and Functions of Systemic and Mucosal Humoral Immunity Among SARS-CoV-2 Convalescent Individuals. Frontiers in Immunology, 2020, 11, 618685.	4.8	87
196	HIV vaccinology: 2021 update. Seminars in Immunology, 2021, 51, 101470.	5.6	31
197	Evidence of a tolerogenic vaccine against AIDS in the Chinese macaque prefigures a potential human vaccine. Archives of Virology, 2021, 166, 1273-1282.	2.1	1
198	Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine–Induced Anti-V2 Antibodies Alone. Journal of Immunology, 2021, 206, 1266-1283.	0.8	8
199	Codon Usage and Adenovirus Fitness: Implications for Vaccine Development. Frontiers in Microbiology, 2021, 12, 633946.	3.5	10
200	Modified Adenovirus Prime-Protein Boost Clade C HIV Vaccine Strategy Results in Reduced Viral DNA in Blood and Tissues Following Tier 2 SHIV Challenge. Frontiers in Immunology, 2020, 11, 626464.	4.8	4
201	Exploration of a Sequential Gp140-Gp145 Immunization Regimen with Heterologous Envs to Induce a Protective Cross-Reactive HIV Neutralizing Antibody Response In Non-human Primates. Virologica Sinica, 2021, 36, 784-795.	3.0	1
202	Non-neutralizing Antibodies May Contribute to Suppression of SIVmac239 Viremia in Indian Rhesus Macaques. Frontiers in Immunology, 2021, 12, 657424.	4.8	2
203	Adjuvantâ€mediated enhancement of the immune response to HIV vaccines. FEBS Journal, 2022, 289, 3317-3334.	4.7	10

#	Article	IF	CITATIONS
204	Targeting Fc effector function in vaccine design. Expert Opinion on Therapeutic Targets, 2021, 25, 467-477.	3.4	17
206	Functional Homology for Antibody-Dependent Phagocytosis Across Humans and Rhesus Macaques. Frontiers in Immunology, 2021, 12, 678511.	4.8	11
207	Safety and immunogenicity of an HIV-1 gp120-CD4 chimeric subunit vaccine in a phase 1a randomized controlled trial. Vaccine, 2021, 39, 3879-3891.	3.8	3
208	Measles Vaccination Elicits a Polyfunctional Antibody Response, Which Decays More Rapidly in Early Vaccinated Children. Journal of Infectious Diseases, 2022, 225, 1755-1764.	4.0	3
209	Ebola vaccine–induced protection in nonhuman primates correlates with antibody specificity and Fc-mediated effects. Science Translational Medicine, 2021, 13, .	12.4	22
211	Monocyte-derived transcriptome signature indicates antibody-dependent cellular phagocytosis as a potential mechanism of vaccine-induced protection against HIV-1. ELife, 2021, 10, .	6.0	12
213	TFH Cells Induced by Vaccination and Following SIV Challenge Support Env-Specific Humoral Immunity in the Rectal-Genital Tract and Circulation of Female Rhesus Macaques. Frontiers in Immunology, 2020, 11, 608003.	4.8	2
214	Polyfunctional Tier 2–Neutralizing Antibodies Cloned following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor. Journal of Immunology, 2021, 206, 999-1012.	0.8	5
215	Persistence of HIV-1 Env-Specific Plasmablast Lineages in Plasma Cells after Vaccination in Humans. Cell Reports Medicine, 2020, 1, 100015.	6.5	10
216	Glycopeptide epitope facilitates HIV-1 envelope specific humoral immune responses by eliciting T cell help. Nature Communications, 2020, 11, 2550.	12.8	17
217	Vi-specific serological correlates of protection for typhoid fever. Journal of Experimental Medicine, 2021, 218, .	8.5	45
219	Protein-based, but not viral vector alone, HIV vaccine boosting drives an IgG1-biased polyfunctional humoral immune response. JCI Insight, 2020, 5, .	5.0	12
220	IgG3 collaborates with IgG1 and IgA to recruit effector function in RV144 vaccinees. JCI Insight, 2020, 5,	5.0	12
221	Antibody Fc effector functions and IgG3 associate with decreased HIV-1 risk. Journal of Clinical Investigation, 2019, 129, 4838-4849.	8.2	95
222	Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. Journal of Clinical Investigation, 2020, 130, 6429-6442.	8.2	7
223	Hyperexpansion of RNA Bacteriophage Diversity. PLoS Biology, 2016, 14, e1002409.	5.6	100
224	Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathogens, 2017, 13, e1006529.	4.7	19
225	Screening epitopes on systemic lupus erythematosus autoantigens with a peptide array. Oncotarget, 2017, 8, 85559-85567.	1.8	6

#	Article	IF	CITATIONS
226	Biophysical Evaluation of Rhesus Macaque Fc Gamma Receptors Reveals Similar IgG Fc Glycoform Preferences to Human Receptors. Frontiers in Immunology, 2021, 12, 754710.	4.8	8
227	Building a better antibody through the Fc: advances and challenges in harnessing antibody Fc effector functions for antiviral protection. Human Vaccines and Immunotherapeutics, 2021, 17, 4328-4344.	3.3	13
231	Immunobiological Correlates of SIV Vaccine Vectors and Macaque Tropism. Vaccine Research, 2019, 6, 23-36.	0.3	0
232	Nonhuman Primate Models for Antimicrobial Drug Discovery. , 2020, , 657-684.		0
233	Diverse antiviral IgG effector activities are predicted by unique biophysical antibody features. Retrovirology, 2021, 18, 35.	2.0	7
235	Internalization of HIV-1 by Phagocytes Is Increased When Virions Are Opsonized with Multimeric Antibody in the Presence of Complement. Journal of Virology, 2022, 96, JVI0168921.	3.4	Ο
236	Novel immunological strategies for HIV-1 eradication. Journal of Virus Eradication, 2015, 1, 232-6.	0.5	4
237	Highlights from the Third Biennial Strategies for an HIV Cure Meeting: 14-16 November 2016, Bethesda, MD, USA. Journal of Virus Eradication, 2017, 3, 69-76.	0.5	2
238	Glycosylation of Antigen-Specific Antibodies: Perspectives on Immunoglobulin G Glycosylation in Vaccination and Immunotherapy. Experientia Supplementum (2012), 2021, 112, 565-587.	0.9	1
239	Sequence and vector shapes vaccine induced antibody effector functions in HIV vaccine trials. PLoS Pathogens, 2021, 17, e1010016.	4.7	1
240	Exacerbated AIDS Progression by PD-1 Blockade during Therapeutic Vaccination in Chronically Simian Immunodeficiency Virus-Infected Rhesus Macaques after Interruption of Antiretroviral Therapy. Journal of Virology, 2022, 96, JVI0178521.	3.4	9
241	<i>Ex Vivo</i> and <i>In Vivo</i> CD46 Receptor Utilization by Species D Human Adenovirus Serotype 26 (HAdV26). Journal of Virology, 2022, 96, JV10082621.	3.4	9
242	Identification and Tracking of Alloreactive T Cell Clones in Rhesus Macaques Through the RM-scTCR-Seq Platform. Frontiers in Immunology, 2021, 12, 804932.	4.8	7
243	HIV and SARS-CoV-2: Tracing a Path of Vaccine Research and Development. Current HIV/AIDS Reports, 2022, 19, 86.	3.1	6
244	Acceptability and Consumer Willingness to pay for a hypothetical HIV vaccine in Northern Brazil: A cross-sectional study and the implications. Journal of HIV/AIDS and Social Services, 0, , 1-22.	0.7	0
245	Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis. Nature Communications, 2022, 13, 662.	12.8	18
246	Vaccine-Induced, High-Magnitude HIV Env-Specific Antibodies with Fc-Mediated Effector Functions Are Insufficient to Protect Infant Rhesus Macaques against Oral SHIV Infection. MSphere, 2022, 7, e0083921.	2.9	2
247	Cooperation Between Systemic and Mucosal Antibodies Induced by Virosomal Vaccines Targeting HIV-1 Env: Protection of Indian Rhesus Macaques Against Low-Dose Intravaginal SHIV Challenges. Frontiers in Immunology, 2022, 13, 788619.	4.8	4

#	Article	IF	CITATIONS
248	Human adenovirus type 26 basic biology and its usage as vaccine vector. Reviews in Medical Virology, 2022, 32, e2338.	8.3	4
249	Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses. Journal of Virology, 2022, , e0003422.	3.4	7
250	Sendai virus particles carrying target virus glycoproteins for antibody induction. Vaccine, 2022, 40, 2420-2431.	3.8	3
251	mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions. Science Translational Medicine, 2022, 14, eabm2311.	12.4	100
252	Functional Compartmentalization of Antibodies in the Central Nervous System During Chronic HIV Infection. Journal of Infectious Diseases, 2022, 226, 738-750.	4.0	6
285	A proposed new paradigm for an anti-AIDS tolerogenic vaccine. Exploration of Immunology, 0, , 211-219.	0.3	0
286	Therapeutic efficacy of an Ad26/MVA vaccine with SIV gp140 protein and vesatolimod in ART-suppressed rhesus macaques. Npj Vaccines, 2022, 7, 53.	6.0	4
288	Applying a clinical lens to animal models of CAR-T cell therapies. Molecular Therapy - Methods and Clinical Development, 2022, 27, 17-31.	4.1	18
290	Safety and Immunogenicity of Ad26-Vectored HIV Vaccine With Mosaic Immunogens and a Novel Mosaic Envelope Protein in HIV-Uninfected Adults: A Phase 1/2a Study. Journal of Infectious Diseases, 2023, 227, 939-950.	4.0	4
291	Programming cytomegalovirus as an HIV vaccine. Trends in Immunology, 2023, 44, 287-304.	6.8	16
292	Viral vector delivered immunogen focuses HIV-1 antibody specificity and increases durability of the circulating antibody recall response. PLoS Pathogens, 2023, 19, e1011359.	4.7	0
293	ChAdOx1 nCoV-19 (AZD1222) vaccine-induced Fc receptor binding tracks with differential susceptibility to COVID-19. Nature Immunology, 2023, 24, 1161-1172.	14.5	6
294	Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Frontiers in Immunology, 0, 14, .	4.8	3
295	Anticipating HIV viral escape – resistance to active and passive immunization. Current Opinion in HIV and AIDS, 2023, 18, 342-348.	3.8	1
296	Enhancing anti-viral neutralization response to immunization with HIV-1 envelope glycoprotein immunogens. Npj Vaccines, 2023, 8, .	6.0	1
298	Multivariate analysis of FcR-mediated NK cell functions identifies unique clustering among humans and rhesus macaques. Frontiers in Immunology, 0, 14, .	4.8	0
299	Understanding Fc function for rational vaccine design against pathogens. MBio, 2024, 15, .	4.1	0
300	Potent antibody-dependent cellular cytotoxicity of a V2-specific antibody is not sufficient for protection of macaques against SIV challenge. PLoS Pathogens, 2024, 20, e1011819.	4.7	Ο

#	Article	IF	CITATIONS
301	Spatial Heterogeneity of Brain Lipids in SIV-Infected Macaques Treated with Antiretroviral Therapy. Journal of the American Society for Mass Spectrometry, 2024, 35, 185-196.	2.8	0
302	Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses, 2024, 16, 368.	3.3	0