Insights on the Emergence of Mycobacterium tuberculo Mycobacterium kansasii

Genome Biology and Evolution 7, 856-870 DOI: 10.1093/gbe/evv035

Citation Report

#	Article	IF	CITATIONS
1	Draft Genome Sequence of Mycobacterium arupense Strain GUC1. Genome Announcements, 2015, 3, .	0.8	0
2	Population genomics of <i>Mycobacterium tuberculosis</i> in the Inuit. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13609-13614.	7.1	77
3	Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens. Frontiers in Public Health, 2015, 3, 283.	2.7	24
4	Perspectives on mycobacterial vacuole-to-cytosol translocation: the importance of cytosolic access. Cellular Microbiology, 2016, 18, 1070-1077.	2.1	26
5	The distinct fate of smooth and rough <i>Mycobacterium abscessus</i> variants inside macrophages. Open Biology, 2016, 6, 160185.	3.6	132
6	Does Choice Matter? Reference-Based Alignment for Molecular Epidemiology of Tuberculosis. Journal of Clinical Microbiology, 2016, 54, 1891-1895.	3.9	25
7	ESX secretion systems: mycobacterial evolution to counter host immunity. Nature Reviews Microbiology, 2016, 14, 677-691.	28.6	306
8	Treatment of Non-Tuberculous Mycobacterial Lung Disease. Current Treatment Options in Infectious Diseases, 2016, 8, 275-296.	1.9	46
9	Evolution of <i>Mycobacterium tuberculosis</i> : New Insights into Pathogenicity and Drug Resistance. Microbiology Spectrum, 2016, 4, .	3.0	17
10	Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9051-9056.	7.1	36
11	Tuberculosis. Nature Reviews Disease Primers, 2016, 2, 16076.	30.5	830
12	pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nature Microbiology, 2016, 1, 15019.	13.3	81
13	Mycobacterial Pan-Genome Analysis Suggests Important Role of Plasmids in the Radiation of Type VII Secretion Systems. Genome Biology and Evolution, 2016, 8, 387-402.	2.5	81
14	Complications in the study of ancient tuberculosis: Presence of environmental bacteria in human archaeological remains. Journal of Archaeological Science, 2016, 68, 5-11.	2.4	16
15	ESX-1 and phthiocerol dimycocerosates of <i>Mycobacterium tuberculosis</i> act in concert to cause phagosomal rupture and host cell apoptosis. Cellular Microbiology, 2017, 19, e12726.	2.1	174
16	The role of hydrophobicity in tuberculosis evolution and pathogenicity. Scientific Reports, 2017, 7, 1315.	3.3	75
17	Genomic characterization of Nontuberculous Mycobacteria. Scientific Reports, 2017, 7, 45258.	3.3	176
18	Recombinant BCG Expressing ESX-1 of Mycobacterium marinum Combines Low Virulence with Cytosolic	6.4	98

CITATION REPORT

#	Article	IF	CITATIONS
19	Ready Experimental Translocation of Mycobacterium canettii Yields Pulmonary Tuberculosis. Infection and Immunity, 2017, 85, .	2.2	12
20	The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. Advances in Experimental Medicine and Biology, 2017, 1019, 1-26.	1.6	52
22	<scp>D</scp> iscovery of the type VII ESXâ€i secretion needle?. Molecular Microbiology, 2017, 103, 7-12.	2.5	30
23	Evolution of <i>Mycobacterium tuberculosis</i> : New Insights into Pathogenicity and Drug Resistance. , 0, , 495-515.		3
24	Toxin–antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathogens and Disease, 2018, 76, .	2.0	76
25	Ecology and evolution of Mycobacterium tuberculosis. Nature Reviews Microbiology, 2018, 16, 202-213.	28.6	414
26	Impact of Genomics on Clarifying the Evolutionary Relationships amongst Mycobacteria: Identification of Molecular Signatures Specific for the Tuberculosis-Complex of Bacteria with Potential Applications for Novel Diagnostics and Therapeutics. High-Throughput, 2018, 7, 31.	4.4	7
27	Whole genome sequence of Mycobacterium kansasii isolates of the genotype 1 from Brazilian patients with pulmonary disease demonstrates considerable heterogeneity. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180085.	1.6	7
28	Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Frontiers in Microbiology, 2018, 9, 67.	3.5	878
29	Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing. Scientific Reports, 2018, 8, 12040.	3.3	25
30	Shared Pathogenomic Patterns Characterize a New Phylotype, Revealing Transition toward Host-Adaptation Long before Speciation of Mycobacterium tuberculosis. Genome Biology and Evolution, 2019, 11, 2420-2438.	2.5	29
31	Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiology Spectrum, 2019, 7, .	3.0	13
32	<i>Mycobacterium tuberculosis</i> infection of host cells in space and time. FEMS Microbiology Reviews, 2019, 43, 341-361.	8.6	234
33	Mycobacterial Evolution Intersects With Host Tolerance. Frontiers in Immunology, 2019, 10, 528.	4.8	29
34	Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. , 2019, , 1129-1153.		1
35	Update on the virulence factors of the obligate pathogen Mycobacterium tuberculosis and related tuberculosis-causing mycobacteria. Infection, Genetics and Evolution, 2019, 72, 67-77.	2.3	16
36	Nontuberculous mycobacteria: Insights on taxonomy and evolution. Infection, Genetics and Evolution, 2019, 72, 159-168.	2.3	46
38	CAPRIB: a user-friendly tool to study amino acid changes and selection for the exploration of intra-genus evolution. BMC Genomics, 2020, 21, 832.	2.8	2

#	Article	IF	CITATIONS
39	A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nature Communications, 2020, 11, 2917.	12.8	136
40	Transposon mutagenesis inMycobacterium kansasiilinks a small RNA gene to colony morphology and biofilm formation and identifies 9,885 intragenic insertions that do not compromise colony outgrowth. MicrobiologyOpen, 2020, 9, e988.	3.0	13
41	The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis, 2020, 121, 101914.	1.9	6
42	TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nature Communications, 2020, 11, 684.	12.8	68
43	Comparative Genomic and Transcriptomic Analyses of Mycobacterium kansasii Subtypes Provide New Insights Into Their Pathogenicity and Taxonomy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 122.	3.9	10
44	Large Extracellular Cord Formation in a Zebrafish Model of Mycobacterium kansasii Infection. Journal of Infectious Diseases, 2020, 222, 1046-1050.	4.0	13
45	Pathogenic Determinants of the Mycobacterium kansasii Complex: An Unsuspected Role for Distributive Conjugal Transfer. Microorganisms, 2021, 9, 348.	3.6	5
46	Population genomics provides insights into the evolution and adaptation to humans of the waterborne pathogen Mycobacterium kansasii. Nature Communications, 2021, 12, 2491.	12.8	20
47	Control of Toxin-Antitoxin Systems by Proteases in Mycobacterium Tuberculosis. Frontiers in Molecular Biosciences, 2021, 8, 691399.	3.5	14
48	Insights into the ancestry evolution of the <i>Mycobacterium tuberculosis</i> complex from analysis of <i>Mycobacterium riyadhense</i> . NAR Genomics and Bioinformatics, 2021, 3, Iqab070.	3.2	3
49	Conserved and specialized functions of Type VII secretion systems in non-tuberculous mycobacteria. Microbiology (United Kingdom), 2021, 167, .	1.8	14
50	A Murine Model of Mycobacterium kansasii Infection Reproducing Necrotic Lung Pathology Reveals Considerable Heterogeneity in Virulence of Clinical Isolates. Frontiers in Microbiology, 2021, 12, 718477.	3.5	1
51	Comprehensive profiling of functional attributes, virulence potential and evolutionary dynamics in mycobacterial secretomes. World Journal of Microbiology and Biotechnology, 2018, 34, 5.	3.6	4
52	Crystal structure of a hemerythrin-like protein from <i>Mycobacterium kansasii</i> and homology model of the orthologous Rv2633c protein of <i>M. tuberculosis</i> . Biochemical Journal, 2020, 477, 567-581.	3.7	8
53	Mycolicibacterium stellerae sp. nov., a rapidly growing scotochromogenic strain isolated from Stellera chamaejasme. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 3465-3471.	1.7	14
56	Heterologous Production of 1-Tuberculosinyladenosine in Mycobacterium kansasii Models Pathoevolution towards the Transcellular Lifestyle of Mycobacterium tuberculosis. MBio, 2020, 11, .	4.1	9
57	Mycobacterial virulence: impact on immunogenicity and vaccine research. F1000Research, 2019, 8, 2025.	1.6	15
58	16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontubarculous Mycobacteria, PLoS ONE, 2016, 11, e0164138	2.5	4

CITATION REPORT

#	ARTICLE	IF	CITATIONS
59	Activity of N-Phenylpiperazine Derivatives Against Bacterial and Fungal Pathogens. Current Protein and Peptide Science, 2019, 20, 1119-1129.	1.4	4
69	Evaluation of Mycobacterium kansasii Extracellular Vesicles Role in BALB/c Mice Immune Modulatory. International Journal of Mycobacteriology, 2020, 9, 58-61.	0.6	0
70	Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Frontiers in Immunology, 2022, 13,	4.8	35
72	The Other Nontuberculous Mycobacteria. Chest, 2023, 163, 281-291.	0.8	5
73	<i>Galleria mellonella</i> –intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiology Reviews, 2023, 47, .	8.6	12
74	ESAT-6 a Major Virulence Factor of Mycobacterium tuberculosis. Biomolecules, 2023, 13, 968.	4.0	4
75	Comprehensive essentiality analysis of the <i>Mycobacterium kansasii</i> genome by saturation transposon mutagenesis and deep sequencing. MBio, 0, , .	4.1	3
76	Natural mutations in the sensor kinase of the PhoPR two-component regulatory system modulate virulence of ancestor-like tuberculosis bacilli. PLoS Pathogens, 2023, 19, e1011437.	4.7	4
77	Modeling nontuberculous mycobacterial infections in zebrafish. Trends in Microbiology, 2023, , .	7.7	0
79	Evolution and emergence of <i>Mycobacterium tuberculosis</i> . FEMS Microbiology Reviews, 2024, 48,	8.6	Ο