High-rate injection is associated with the increase in U.

Science 348, 1336-1340 DOI: 10.1126/science.aab1345

Citation Report

#	Article	IF	CITATIONS
1	Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy. Energy and Emission Control Technologies, 0, , 45.	0.5	65
2	Wastewater disposal causes sharp rise in central US earthquakes. Nature, 2015, , .	13.7	0
3	Reactivated faulting near Cushing, Oklahoma: Increased potential for a triggered earthquake in an area of United States strategic infrastructure. Geophysical Research Letters, 2015, 42, 8328-8332.	1.5	59
4	A Long-Term Earthquake Rate Model for the Central and Eastern United States from Smoothed Seismicity. Bulletin of the Seismological Society of America, 2015, 105, 2928-2941.	1.1	18
5	Myths and Facts on Wastewater Injection, Hydraulic Fracturing, Enhanced Oil Recovery, and Induced Seismicity. Seismological Research Letters, 2015, 86, 1060-1067.	0.8	299
6	Water Footprint of Hydraulic Fracturing. Environmental Science and Technology Letters, 2015, 2, 276-280.	3.9	216
7	A Century of Induced Earthquakes in Oklahoma?. Bulletin of the Seismological Society of America, 2015, 105, 2863-2870.	1.1	45
9	The Local Economic and Welfare Consequences of Hydraulic Fracturing. SSRN Electronic Journal, 0, , .	0.4	12
10	A comparison of longâ€ŧerm changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields. Journal of Geophysical Research: Solid Earth, 2016, 121, 225-247.	1.4	36
11	Fault slip controlled by stress path and fluid pressurization rate. Geophysical Research Letters, 2016, 43, 4330-4339.	1.5	54
12	Subsidence rates at the southern Salton Sea consistent with reservoir depletion. Journal of Geophysical Research: Solid Earth, 2016, 121, 5308-5327.	1.4	37
13	Special Session Complete Session. , 2016, , .		0
14	Understanding induced seismicity. Science, 2016, 354, 1380-1381.	6.0	139
15	How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?. Science Advances, 2016, 2, e1601542.	4.7	214
16	Performance test of the Seismogenic index model for forecasting magnitude distributions of fluid-injection-induced seismicity. , 2016, , .		2
17	Fracking and labquakes. Philosophical Magazine, 2016, 96, 3686-3696.	0.7	15
18	Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. Chemistry - A European Journal, 2016, 22, 32-57.	1.7	303
19	Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin. Seismological Research Letters, 2016, 87, 631-647.	0.8	329

#	Article	IF	CITATIONS
20	Reducing pollution at five critical points of shale gas production: Strategies and institutional responses. Energy Policy, 2016, 94, 40-46.	4.2	5
21	A Historical Review of Induced Earthquakes in Texas. Seismological Research Letters, 2016, 87, 1022-1038.	0.8	129
22	Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site. Science of the Total Environment, 2016, 557-558, 901-910.	3.9	108
23	Fracking in Tight Shales: What Is It, What Does It Accomplish, and What Are Its Consequences?. Annual Review of Earth and Planetary Sciences, 2016, 44, 321-351.	4.6	38
24	Assessing induced seismicity risk at CO2 storage projects: Recent progress and remaining challenges. International Journal of Greenhouse Gas Control, 2016, 49, 413-424.	2.3	95
25	Seismicâ€Hazard Forecast for 2016 Including Induced and Natural Earthquakes in the Central and Eastern United States. Seismological Research Letters, 2016, 87, 1327-1341.	0.8	62
26	Rapid Response, Monitoring, and Mitigation of Induced Seismicity near Greeley, Colorado. Seismological Research Letters, 2016, 87, 837-847.	0.8	22
27	Farâ€field pressurization likely caused one of the largest injection induced earthquakes by reactivating a large preexisting basement fault structure. Geophysical Research Letters, 2016, 43, 10,198.	1.5	116
28	Fault activation and induced seismicity in geological carbon storage – Lessons learned from recent modeling studies. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8, 789-804.	3.7	150
29	A preliminary statistical model for hydraulic fractureâ€induced seismicity in the Western Canada Sedimentary Basin. Geophysical Research Letters, 2016, 43, 10,164.	1.5	29
30	Public perceptions and acceptance of induced earthquakes related to energy development. Energy Policy, 2016, 99, 27-32.	4.2	46
31	Impact of fluid injection on fracture reactivation at The Geysers geothermal field. Journal of Geophysical Research: Solid Earth, 2016, 121, 7432-7449.	1.4	40
32	Ellenburger wastewater injection and seismicity in North Texas. Physics of the Earth and Planetary Interiors, 2016, 261, 54-68.	0.7	90
33	Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science, 2016, 353, 1419-1424.	6.0	149
34	Surface uplift and time-dependent seismic hazard due to fluid injection in eastern Texas. Science, 2016, 353, 1416-1419.	6.0	127
35	Collective properties of injectionâ€induced earthquake sequences: 1. Model description and directivity bias. Journal of Geophysical Research: Solid Earth, 2016, 121, 3609-3637.	1.4	23
36	Validating induced seismicity forecast models—Induced Seismicity Test Bench. Journal of Geophysical Research: Solid Earth, 2016, 121, 6009-6029.	1.4	21
37	Energy Resource Risk Factors. , 2016, , 301-354.		0

#	Article	IF	CITATIONS
38	Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophysical Research Letters, 2016, 43, 8482-8491.	1.5	121
39	Increased stream discharge after the 3 September 2016 M w 5.8 Pawnee, Oklahoma earthquake. Geophysical Research Letters, 2016, 43, 11,588.	1.5	52
40	An efficient repeating signal detector to investigate earthquake swarms. Journal of Geophysical Research: Solid Earth, 2016, 121, 5880-5897.	1.4	30
41	Remote monitoring of the mechanical instability induced by fluid substitution and water weakening in the laboratory. Physics of the Earth and Planetary Interiors, 2016, 261, 69-87.	0.7	19
42	Were the May 2012 Emiliaâ€Romagna earthquakes induced? A coupled flowâ€geomechanics modeling assessment. Geophysical Research Letters, 2016, 43, 6891-6897.	1.5	53
43	Evolution of Porosity and Channelization of an Erosive Medium Driven by Fluid Flow. Physical Review Letters, 2016, 117, 028001.	2.9	20
44	Fault activation by hydraulic fracturing in western Canada. Science, 2016, 354, 1406-1409.	6.0	400
45	An efficient repeating signal detector to detect and characterize induced seismicity. , 2016, , .		0
46	Exploring the potential linkages between oilâ€field brine reinjection, crystalline basement permeability, and triggered seismicity for the Dagger Draw Oil field, southeastern New Mexico, <scp>USA</scp> , using hydrologic modeling. Geofluids, 2016, 16, 971-987.	0.3	9
47	Potentially Induced Earthquakes during the Early Twentieth Century in the Los Angeles Basin. Bulletin of the Seismological Society of America, 2016, 106, 2419-2435.	1.1	14
48	Linking fossil reefs with earthquakes: Geologic insight to where induced seismicity occurs in Alberta. Geophysical Research Letters, 2016, 43, 2534-2542.	1.5	67
49	Likelihood testing of seismicityâ€based rate forecasts of induced earthquakes in Oklahoma and Kansas. Geophysical Research Letters, 2016, 43, 4913-4921.	1.5	12
50	Potential Signatures and the Means of Detecting a Hypothetical Ground Source Cooled Nuclear Reactor. Science and Global Security, 2016, 24, 92-113.	0.1	3
51	Induced Seismicity. , 2016, , 175-210.		2
52	Earthquakes in Northwest Louisiana and the Texas–Louisiana Border Possibly Induced by Energy Resource Activities within the Haynesville Shale Play. Seismological Research Letters, 2016, 87, 285-294.	0.8	18
53	Review of the scientific evidence to support environmental risk assessment of shale gas development in the UK. Science of the Total Environment, 2016, 563-564, 731-740.	3.9	23
54	Smallâ€Magnitude Earthquakes in North entral Wyoming Recorded during the Bighorn Arch Seismic Experiment. Bulletin of the Seismological Society of America, 2016, 106, 281-288.	1.1	12
55	The Petroleum Geologist and the Insurance Policy. Seismological Research Letters, 2016, 87, 171-176.	0.8	2

	CITATION	Report	
#	Article	IF	CITATIONS
56	"Who Is at â€~Fault?'―The Media and the Stories of Induced Seismicity. Politics and Policy, 2017, 45,	31-5 0. 6	3
57	Gravitational body forces focus North American intraplate earthquakes. Nature Communications, 2017, 8, 14314.	5.8	26
58	Variation in slip rates on active faults: Natural growth or stress transients?. Geology, 2017, 45, 287-288.	2.0	8
59	Seismicity of the rocky mountains and Rio Grande Rift from the EarthScope Transportable Array and CREST temporary seismic networks, 2008–2010. Journal of Geophysical Research: Solid Earth, 2017, 122, 2173-2192.	1.4	21
60	Identifying potentially induced seismicity and assessing statistical significance in Oklahoma and California. Journal of Geophysical Research: Solid Earth, 2017, 122, 2153-2172.	1.4	10
61	Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts. Geophysical Research Letters, 2017, 44, 711-717.	1.5	145
62	Stickâ€slip dynamics of flowâ€induced seismicity on rate and state faults. Geophysical Research Letters, 2017, 44, 4098-4106.	1.5	27
63	Induced Seismicity in Oklahoma Affects Shallow Groundwater. Seismological Research Letters, 2017, 88, 956-962.	0.8	17
64	Influence of Lithostatic Stress on Earthquake Stress Drops in North America. Bulletin of the Seismological Society of America, 2017, 107, 856-868.	1.1	72
65	Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 2017, 51, 5377-5385.	4.6	71
66	The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth and Planetary Science Letters, 2017, 472, 50-61.	1.8	214
67	Rupture Process of theMwÂ5.8 Pawnee, Oklahoma, Earthquake from Sentinelâ€I InSAR and Seismological Data. Seismological Research Letters, 2017, 88, 994-1004.	0.8	56
68	Foreshock Seismicity Suggests Gradual Differential Stress Increase in the Months Prior to the 3 September 2016 <i>M</i> _w 5.8 Pawnee Earthquake. Seismological Research Letters, 2017, 88, 1032-1039.	0.8	21
69	Humanâ€induced seismicity and largeâ€scale hydrocarbon production in the <scp>USA</scp> and <scp>C</scp> anada. Geochemistry, Geophysics, Geosystems, 2017, 18, 2467-2485.	1.0	42
70	Fault lines: Seismicity and the fracturing of energy narratives in Oklahoma. Energy Research and Social Science, 2017, 31, 128-136.	3.0	18
71	Self-activated fragmentation. International Journal of Fracture, 2017, 206, 171-193.	1.1	5
72	Seismic reservoir characterization of Duvernay shale with quantitative interpretation and induced seismicity considerations $\hat{a} \in \mathcal{X}$ A case study. Interpretation, 2017, 5, T185-T197.	0.5	35
73	Relocated Hypocenters and Structural Analysis from Waveform Modeling of Aftershocks from the 2011 Prague, Oklahoma, Earthquake Sequence. Bulletin of the Seismological Society of America, 2017, 107, 553-562.	1.1	4

#	Article	IF	CITATIONS
74	An Analytical Model Predicts Pressure Increase During Waste Water Injection to Prevent Fracturing and Seismic Events. , 2017, , .		2
75	Low stress drops observed for aftershocks of the 2011 <i>M</i> _{<i>w</i>} 5.7 Prague, Oklahoma, earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 3813-3834.	1.4	56
76	Bayesian identification of multiple seismic change points and varying seismic rates caused by induced seismicity. Geophysical Research Letters, 2017, 44, 3509-3516.	1.5	12
77	Estimating spatially varying event rates with a change point using Bayesian statistics: Application to induced seismicity. Structural Safety, 2017, 65, 1-11.	2.8	13
78	Geologic influence on induced seismicity: Constraints from potential field data in Oklahoma. Geophysical Research Letters, 2017, 44, 152-161.	1.5	46
79	Current Water Management Practices, Challenges, and Innovations for US Unconventional Oil and Gas Development. Current Sustainable/Renewable Energy Reports, 2017, 4, 209-218.	1.2	5
80	Source Spectral Properties of Small to Moderate Earthquakes in Southern Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122, 8021-8034.	1.4	44
81	A Possible Causative Mechanism of Raton Basin, New Mexico and Colorado Earthquakes Using Recent Seismicity Patterns and Pore Pressure Modeling. Journal of Geophysical Research: Solid Earth, 2017, 122, 8051-8065.	1.4	25
82	Passive Seismic Complete Session. , 2017, , .		0
83	The costs of induced seismicity: A hedonic analysis. Economics Letters, 2017, 160, 86-90.	0.9	15
83 84	The costs of induced seismicity: A hedonic analysis. Economics Letters, 2017, 160, 86-90. Multi-hazard risk pathway scenarios associated with unconventional gas development: Identification and challenges for their assessment. Energy Procedia, 2017, 125, 116-125.	0.9	15 5
83 84 85	The costs of induced seismicity: A hedonic analysis. Economics Letters, 2017, 160, 86-90. Multi-hazard risk pathway scenarios associated with unconventional gas development: Identification and challenges for their assessment. Energy Procedia, 2017, 125, 116-125. Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?. Journal of Seismology, 2017, 21, 1613-1621.	0.9 1.8 0.6	15 5 7
83 84 85 86	The costs of induced seismicity: A hedonic analysis. Economics Letters, 2017, 160, 86-90. Multi-hazard risk pathway scenarios associated with unconventional gas development: Identification and challenges for their assessment. Energy Procedia, 2017, 125, 116-125. Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?. Journal of Seismology, 2017, 21, 1613-1621. Aseismic Motions Drive a Sparse Seismicity During Fluid Injections Into a Fractured Zone in a Carbonate Reservoir. Journal of Geophysical Research: Solid Earth, 2017, 122, 8285-8304.	0.9 1.8 0.6 1.4	15 5 7 67
83 84 85 86 87	The costs of induced seismicity: A hedonic analysis. Economics Letters, 2017, 160, 86-90. Multi-hazard risk pathway scenarios associated with unconventional gas development: Identification and challenges for their assessment. Energy Procedia, 2017, 125, 116-125. Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?. Journal of Seismology, 2017, 21, 1613-1621. Aseismic Motions Drive a Sparse Seismicity During Fluid Injections Into a Fractured Zone in a Carbonate Reservoir. Journal of Geophysical Research: Solid Earth, 2017, 122, 8285-8304. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160001.	0.9 1.8 0.6 1.4 1.6	15 5 7 67 49
83 84 85 86 87 88	The costs of induced seismicity: A hedonic analysis. Economics Letters, 2017, 160, 86-90. Multi-hazard risk pathway scenarios associated with unconventional gas development: Identification and challenges for their assessment. Energy Procedia, 2017, 125, 116-125. Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?. Journal of Seismology, 2017, 21, 1613-1621. Aseismic Motions Drive a Sparse Seismicity During Fluid Injections Into a Fractured Zone in a Carbonate Reservoir. Journal of Geophysical Research: Solid Earth, 2017, 122, 8285-8304. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160001. Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: Selectivity and implications for treatment. Journal of Membrane Science, 2017, 543, 319-327.	0.9 1.8 0.6 1.4 1.6 4.1	 15 5 7 67 49 34
83 84 85 86 87 88 88 89	The costs of induced seismicity: A hedonic analysis. Economics Letters, 2017, 160, 86-90. Multi-hazard risk pathway scenarios associated with unconventional gas development: Identification and challenges for their assessment. Energy Procedia, 2017, 125, 116-125. Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?. Journal of Seismology, 2017, 21, 1613-1621. Aseismic Motions Drive a Sparse Seismicity During Fluid Injections Into a Fractured Zone in a Carbonate Reservoir. Journal of Geophysical Research: Solid Earth, 2017, 122, 8285-8304. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160001. Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: Selectivity and implications for treatment. Journal of Membrane Science, 2017, 543, 319-327. A Decade of Induced Slip on the Causative Fault of the 2015 <i>M M A Decade of Induced Slip on the Causative Fault of the 2015 <i>M <i>M Kap-7894.</i></i></i>	0.9 1.8 0.6 1.4 1.6 4.1 1.4	 15 5 7 67 49 34 46
 83 84 85 86 87 88 89 90 	The costs of induced seismicity: A hedonic analysis. Economics Letters, 2017, 160, 86-90. Multi-hazard risk pathway scenarios associated with unconventional gas development: Identification and challenges for their assessment. Energy Procedia, 2017, 125, 116-125. Was the Mw 7.5 1952 Kern County, California, earthquake induced (or triggered)?. Journal of Seismology, 2017, 21, 1613-1621. Aseismic Motions Drive a Sparse Seismicity During Fluid Injections Into a Fractured Zone in a Carbonate Reservoir. Journal of Geophysical Research: Solid Earth, 2017, 122, 8285-8304. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160001. Application of a lyotropic liquid crystal nanofiltration membrane for hydraulic fracturing flowback water: Selectivity and implications for treatment. Journal of Membrane Science, 2017, 543, 319-327. A Decade of Induced Slip on the Causative Fault of the 2015 <i>M Sub> <i>M Autor, 122, 7879-7894. Water Issues Related to Transitioning from Conventional to Unconventional Oil Production in the Permian Basin. Environmental Science & amp; Technology, 2017, 51, 10903-10912.</i></i>	0.9 1.8 0.6 1.4 1.6 4.1 1.4 4.6	 15 5 7 67 49 34 34 46 129

#	Article	IF	CITATIONS
92	Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling. Journal of Volcanology and Geothermal Research, 2017, 345, 98-108.	0.8	23
93	Induced earthquakes in the development of unconventional energy resources. Science China Earth Sciences, 2017, 60, 1632-1644.	2.3	22
94	Evaluating the effectiveness of induced seismicity mitigation: Numerical modeling of wastewater injection near Greeley, Colorado. Journal of Geophysical Research: Solid Earth, 2017, 122, 6569-6582.	1.4	23
95	Reservoir Structure and Wastewaterâ€Induced Seismicity at the Val d'Agri Oilfield (Italy) Shown by Threeâ€Dimensional <i>V_p</i> and <i>V_p</i> / <i>V_s</i> Local Earthquake Tomography. Journal of Geophysical Research: Solid Earth, 2017, 122, 9050-9082.	1.4	42
96	Perméabilité de la croûte. Hydrogeology Journal, 2017, 25, 2221-2224.	0.9	20
97	Discriminating between natural versus induced seismicity from long-term deformation history of intraplate faults. Science Advances, 2017, 3, e1701593.	4.7	32
98	Integrating induced seismicity with rock mechanics: a conceptual model for the 2011 Preese Hall fracture development and induced seismicity. Geological Society Special Publication, 2017, 454, 327-359.	0.8	6
99	Fault Reactivation in Compartmentalized Reservoirs: Effect of Fault Transmissibility Enhancement on Pressure Transient Behavior. , 2017, , .		1
100	Characterizing the Potential for Injectionâ€Induced Fault Reactivation Through Subsurface Structural Mapping and Stress Field Analysis, Wellington Field, Sumner County, Kansas. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,132.	1.4	32
101	Waveformâ€Relocated Earthquake Catalog for Oklahoma and Southern Kansas Illuminates the Regional Fault Network. Seismological Research Letters, 2017, 88, 1252-1258.	0.8	106
102	Poroelastic Properties of the Arbuckle Group in Oklahoma Derived from Well Fluid Level Response to the 3 September 2016 <i>M</i> _w Â5.8 Pawnee and 7 November 2016 <i>M</i> _w Â5.0 Cushing Earthquakes. Seismological Research Letters, 2017, 88, 963-970.	0.8	29
103	Water Use for Hydraulic Fracturing of Oil and Gas in the South Platte River Basin, Colorado. Journal of the American Water Resources Association, 2017, 53, 839-853.	1.0	10
104	Assessing Groundâ€Motion Amplitudes and Attenuation for Smallâ€ŧoâ€Moderate Induced and Tectonic Earthquakes in the Central and Eastern United States. Seismological Research Letters, 2017, 88, 1379-1389.	0.8	24
105	The Effects of Varying Injection Rates in Osage County, Oklahoma, on the 2016 <i>M</i> _w Â5.8 Pawnee Earthquake. Seismological Research Letters, 2017, 88, 1040-1053.	0.8	121
106	Quantity of flowback and produced waters from unconventional oil and gas exploration. Science of the Total Environment, 2017, 574, 314-321.	3.9	230
107	Real-time envelope cross-correlation detector: application to induced seismicity in the Insheim and Landau deep geothermal reservoirs. Journal of Seismology, 2017, 21, 193-208.	0.6	17
108	Using Simulated Ground Motions to Constrain Nearâ€5ource Groundâ€Motion Prediction Equations in Areas Experiencing Induced Seismicity. Bulletin of the Seismological Society of America, 2017, 107, 2078-2093.	1.1	5
109	Modeling of the in situ state of stress in elastic layered rock subject to stress and strain-driven tectonic forces. Solid Earth, 2017, 8, 479-498.	1.2	9

C	E A 751	DEDC	NDT.
			ו גוו
\sim		ICLI C	

#	Article	IF	CITATIONS
110	Best Management Practices From the "Responsible Shale Energy Extraction―Conference: Guiding Industry in Environmental Stewardship. Advances in Chemical Pollution, Environmental Management and Protection, 2017, , 381-405.	0.3	2
111	Seismicity Induced by Wastewater Injection in Washington County, Ohio: Influence of Preexisting Structure, Regional Stress Regime, and Well Operations. Journal of Geophysical Research: Solid Earth, 2018, 123, 4123-4140.	1.4	7
112	Induced Earthquakes from Longâ€Term Gas Extraction in Groningen, the Netherlands: Statistical Analysis and Prognosis for Acceptableâ€Risk Regulation. Risk Analysis, 2018, 38, 1455-1473.	1.5	27
113	Locations of Injectionâ€Induced Earthquakes in Oklahoma Controlled by Crustal Structures. Journal of Geophysical Research: Solid Earth, 2018, 123, 2332-2344.	1.4	30
114	Convolutional neural network for earthquake detection and location. Science Advances, 2018, 4, e1700578.	4.7	578
115	The Geological Susceptibility of Induced Earthquakes in the Duvernay Play. Geophysical Research Letters, 2018, 45, 1786-1793.	1.5	78
116	How faults wake up: The Guthrie-Langston, Oklahoma earthquakes. The Leading Edge, 2018, 37, 100-106.	0.4	65
117	Maturity of nearby faults influences seismic hazard from hydraulic fracturing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1720-E1729.	3.3	60
118	Earthquakes in Kansas Induced by Extremely Farâ€Field Pressure Diffusion. Geophysical Research Letters, 2018, 45, 1395-1401.	1.5	57
119	Oklahoma's induced seismicity strongly linked to wastewater injection depth. Science, 2018, 359, 1251-1255.	6.0	125
120	Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science, 2018, 359, 304-308.	6.0	181
121	The Dallasâ€Fort Worth Airport Earthquake Sequence: Seismicity Beyond Injection Period. Journal of Geophysical Research: Solid Earth, 2018, 123, 553-563.	1.4	53
122	A classification of induced seismicity. Geoscience Frontiers, 2018, 9, 1903-1909.	4.3	28
123	Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults. Tectonophysics, 2018, 733, 108-118.	0.9	36
124	Numerical Models of Pore Pressure and Stress Changes Along Basement Faults Due to Wastewater Injection: Applications to the 2014 Milan, Kansas Earthquake. Geochemistry, Geophysics, Geosystems, 2018, 19, 1178-1198.	1.0	22
125	Induced Seismicity. Annual Review of Earth and Planetary Sciences, 2018, 46, 149-174.	4.6	154
126	Connecting earth and sky: Persuading climate skeptics through analogy. The Extractive Industries and Society, 2018, 5, 293-296.	0.7	0
127	The availability of hydrogeologic data associated with areas identified by the US Geological Survey as experiencing potentially induced seismicity resulting from subsurface injection. Hydrogeology Journal, 2018, 26, 743-754.	0.9	2

CITATION R	EPORT	
ARTICLE Empirical and Numerical Investigation of the Effects of Hydraulic Fracturing Injection Rate on the Magnitude Distribution of Induced Seismicity Events. , 2018, , .	IF	CITATIONS
Hydromechanical Earthquake Nucleation Model Forecasts Onset, Peak, and Falling Rates of Induced Seismicity in Oklahoma and Kansas. Geophysical Research Letters, 2018, 45, 2963-2975.	1.5	63
Temporal Correlation Between Seismic Moment and Injection Volume for an Induced Earthquake Sequence in Central Oklahoma. Journal of Geophysical Research: Solid Earth, 2018, 123, 3047-3064.	1.4	24
Global review of human-induced earthquakes. Earth-Science Reviews, 2018, 178, 438-514.	4.0	324
Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California. Pure and Applied Geophysics, 2018, 175, 49-65.	0.8	66
Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach. Science of the Total Environment, 2018, 613-614, 208-217.	3.9	47
Wastewater from hydraulic fracturing in the UK: assessing the viability and cost of management. Environmental Science: Water Research and Technology, 2018, 4, 325-335.	1.2	8
Managing geoenergy-induced seismicity with society. Journal of Risk Research, 2018, 21, 1287-1294.	1.4	20
Crustal Deformation in the Hutubi Underground Gas Storage Site in China Observed by GPS and InSAR Measurements. Seismological Research Letters, 2018, 89, 1467-1477.	0.8	11
Natural and Induced Seismicity in the Texas and Oklahoma Panhandles. Seismological Research Letters, 2018, 89, 2437-2446.	0.8	11
The 2013–2016 Induced Earthquakes in Harper and Sumner Counties, Southern Kansas. Bulletin of the Seismological Society of America, 2018, 108, 674-689.	1.1	55
Spatiotemporal Assessment of Induced Seismicity in Oklahoma: Foreseeable Fewer Earthquakes for Sustainable Oil and Gas Extraction?. Geosciences (Switzerland), 2018, 8, 436.	1.0	2
Tailoring Treated Brines for Reuse Scenarios. , 2018, , .		0
Geospatial analysis of Oklahoma (USA) earthquakes (2011–2016): Quantifying the limits of regional-scale earthquake mitigation measures. Geology, 2018, 46, 215-218.	2.0	22

142	Multiple Changeâ€Point Detection in Spatiotemporal Seismicity Data. Bulletin of the Seismological Society of America, 2018, 108, 1147-1159.	1.1	9
143	Seismicity Rate Surge on Faults after Shutâ€in: Poroelastic Response to Fluid Injection. Bulletin of the Seismological Society of America, 2018, 108, 1889-1904.	1.1	19
144	Proximity of Precambrian basement affects the likelihood of induced seismicity in the Appalachian, Illinois, and Williston Basins, central and eastern United States. , 2018, 14, 1365-1379.		59
145	Association between Oklahoma earthquakes and anxiety-related Google search episodes. Environmental Epidemiology, 2018, 2, e016.	1.4	21

#

128

130

132

134

136

138

140

#	Article	IF	CITATIONS
146	Hazard Implications of the 2016 Mw 5.0 Cushing, OK Earthquake from a Joint Analysis of Damage and InSAR Data. Remote Sensing, 2018, 10, 1715.	1.8	16
147	Numerical Modeling of Injectionâ€Induced Earthquakes Using Laboratoryâ€Derived Friction Laws. Water Resources Research, 2018, 54, 9833-9859.	1.7	20
148	Integrating Poroelastic Effects of Wastewater Injection and Rupture Dynamics to Understand Induced Seismicity. , 2018, , .		2
149	Wastewater Injection and Slip Triggering: Results from a 3d Coupled Reservoir/Rate-and-State Model. , 2018, , .		Ο
150	A Probabilistic Approach to Injectionâ€Induced Seismicity Assessment in the Presence and Absence of Flow Boundaries. Geophysical Research Letters, 2018, 45, 8182-8189.	1.5	7
151	Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. Nature Communications, 2018, 9, 3946.	5.8	107
152	3â€Ð Modeling of Induced Seismicity Along Multiple Faults: Magnitude, Rate, and Location in a Poroelasticity System. Journal of Geophysical Research: Solid Earth, 2018, 123, 9866-9883.	1.4	25
153	The housing market impacts of wastewater injection induced seismicity risk. Journal of Environmental Economics and Management, 2018, 92, 251-269.	2.1	21
154	Induced Seismicity in Western Canada Linked to Tectonic Strain Rate: Implications for Regional Seismic Hazard. Geophysical Research Letters, 2018, 45, 11,104.	1.5	30
155	Dynamic and Quasiâ€Dynamic Modeling of Injectionâ€Induced Earthquakes in Poroelastic Media. Journal of Geophysical Research: Solid Earth, 2018, 123, 5730-5759.	1.4	27
156	Induced earthquake and liquefaction hazards in Oklahoma, USA: Constraints from InSAR. Remote Sensing of Environment, 2018, 218, 1-12.	4.6	17
157	Tidal Response of Groundwater in a Leaky Aquifer—Application to Oklahoma. Water Resources Research, 2018, 54, 8019-8033.	1.7	70
158	The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 2018, 361, 899-904.	6.0	154
159	An updated stress map of the continental United States reveals heterogeneous intraplate stress. Nature Geoscience, 2018, 11, 433-437.	5.4	54
160	Increased likelihood of induced seismicity in highly overpressured shale formations. Geophysical Journal International, 2018, 214, 751-757.	1.0	82
161	Enhanced biofiltration of O&G produced water comparing granular activated carbon and nutrients. Science of the Total Environment, 2018, 640-641, 419-428.	3.9	27
162	Geomechanical Sensitivities of Injectionâ€Induced Earthquakes. Geophysical Research Letters, 2018, 45, 8958-8965.	1.5	11
163	3.6 Geothermal Energy Production. , 2018, , 252-303.		3

ARTICLE IF CITATIONS # Associations of unconventional natural gas development with depression symptoms and disordered 1.6 43 164 sleep in Pennsylvania. Scientific Reports, 2018, 8, 11375. A Flatfile of Ground Motion Intensity Measurements from Induced Earthquakes in Oklahoma and 1.6 Kansas. Earthquake Spectra, 2018, 34, 1-20. 166 Oklahoma earthquakes and the price of oil. Energy Policy, 2018, 121, 365-373. 4.2 8 Mapping the energy footprint of produced water management in New Mexico. Environmental Research Letters, 2018, 13, 024008. Effects of the Anisotropy of the Fault Zone Permeability on the Timing of Triggered Earthquakes: Insights from 3D-Coupled Fluid Flow and Geomechanical Deformation Modeling. Pure and Applied 168 0.8 6 Geophysics, 2018, 175, 4131-4144. Modelling fluid-induced seismicity rates associated with fluid injections: examples related to fracture stimulations in geothermal areas. Geophysical Journal International, 2018, 215, 471-493. 1.0 Induced seismicity hazard and risk by enhanced geothermal systems: an expert elicitation approach. 170 2.2 13 Environmental Research Letters, 2018, 13, 034004. The Cross-Correlation and Reshuffling Tests in Discerning Induced Seismicity. Pure and Applied 171 0.8 Geophysics, 2018, 175, 3395-3401. Small Earthquakes Matter in Injectionâ€Induced Seismicity. Geophysical Research Letters, 2018, 45, 172 1.5 30 5445-5453. Aeromagnetic Data Reveal Potential Seismogenic Basement Faults in the Induced Seismicity Setting of 1.5 Oklahoma. Geophysical Research Letters, 2018, 45, 5948-5958. Experiences and learnings from induced seismicity regulation in Alberta. Interpretation, 2018, 6, 174 0.5 20 SE15-SE21. Cumulative spatial impact layers: A novel multivariate spatioâ€temporal analytical summarization tool. Transactions in GIS, 2019, 23, 908-936. Flood 2018 and the status of reservoir-induced seismicity in Kerala, India. Natural Hazards, 2019, 99, 177 1.6 21 307-319. Tomography, Seismotectonics, and Mantle Dynamics of Central and Eastern United States. Journal of Geophysical Research: Solid Earth, 2019, 124, 8890-8907. 178 1.4 Disentangling the Simultaneous Effects of Inertial Losses and Fracture Dilation on Permeability of 179 17 1.5 Pressurized Fractured Rocks. Geophysical Research Letters, 2019, 46, 8862-8871. Ground Motions from Induced Earthquakes in Oklahoma and Kansas. Seismological Research Letters, 2019, 90, 160-170. High density oilfield wastewater disposal causes deeper, stronger, and more persistent earthquakes. 181 5.8 31 Nature Communications, 2019, 10, 3077. Aftershock deficiency of induced earthquake sequences during rapid mitigation efforts in Oklahoma. 1.8 28 Earth and Planetary Science Letters, 2019, 522, 135-143.

#	Article	IF	CITATIONS
183	Evaluation of a nanoporous lyotropic liquid crystal polymer membrane for the treatment of hydraulic fracturing produced water via cross-flow filtration. Journal of Membrane Science, 2019, 592, 117313.	4.1	19
184	Evaluation of Groundâ€Motion Models for USGS Seismic Hazard Forecasts: Induced and Tectonic Earthquakes in the Central and Eastern United States. Bulletin of the Seismological Society of America, 2019, 109, 322-335.	1.1	12
185	On the Portability of ML–Mc as a Depth Discriminant for Small Seismic Events Recorded at Local Distances. Bulletin of the Seismological Society of America, 2019, 109, 1661-1673.	1.1	12
186	Managing Basinâ€Scale Fluid Budgets to Reduce Injectionâ€Induced Seismicity from the Recent U.S. Shale Oil Revolution. Seismological Research Letters, 2019, 90, 171-182.	0.8	40
187	Hydraulic Fracture Injection Strategy Influences the Probability of Earthquakes in the Eagle Ford Shale Play of South Texas. Geophysical Research Letters, 2019, 46, 12958-12967.	1.5	33
188	Earthquake Catalogs for the USGS National Seismic Hazard Maps. Seismological Research Letters, 2019, 90, 251-261.	0.8	37
189	Seismicity risks by water injection induced for extraction of crude oil. , 2019, , .		0
190	3-D mechanical analysis of complex reservoirs: a novel mesh-free approach. Geophysical Journal International, 2019, 219, 1118-1130.	1.0	13
191	TexNet: A Statewide Seismological Network in Texas. Seismological Research Letters, 0, , .	0.8	31
192	A New Approach To Evaluate Fault-Sliding Potential With Reservoir Depletion. SPE Journal, 2019, 24, 2320-2334.	1.7	2
193	Response of Induced Seismicity to Injection Rate Reduction: Models of Delay, Decay, Quiescence, Recovery, and Oklahoma. Water Resources Research, 2019, 55, 656-681.	1.7	26
194	Rise and reduction of induced earthquakes in the Groningen gas field, 1991–2018: statistical trends, social impacts, and policy change. Environmental Earth Sciences, 2019, 78, 1.	1.3	22
195	A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel, 2019, 242, 195-210.	3.4	154
196	Forum: The Environmental History of Energy Transitions. Environmental History, 2019, 24, 463-533.	0.1	8
197	Determinants of earthquake damage liability assignment in Oklahoma: A Bayesian Tobit censored approach. Energy Policy, 2019, 131, 422-433.	4.2	18
198	Conventional Oil—The Forgotten Part of the Waterâ€Energy Nexus. Ground Water, 2019, 57, 669-677.	0.7	21
199	Traffic Light Systems: To What Extent Can Induced Seismicity Be Controlled?. Seismological Research Letters, 2019, 90, 1145-1154.	0.8	50
200	The promise and perils of produced waters: intelligent trial and error as an anticipatory framework for enabling responsible innovation. Journal of Responsible Innovation, 2019, 6, 305-322.	2.3	4

#	Article	IF	CITATIONS
201	Effect of Fluid Chemistry on the Interfacial Composition, Adhesion, and Frictional Response of Calcite Single Crystals—Implications for Injectionâ€Induced Seismicity. Journal of Geophysical Research: Solid Earth, 2019, 124, 5607-5628.	1.4	11
202	Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales. Nature Climate Change, 2019, 9, 389-396.	8.1	85
203	Effect of induced seismicity on advanced gravitational wave interferometers. Classical and Quantum Gravity, 2019, 36, 10LT01.	1.5	5
204	Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science, 2019, 364, 464-468.	6.0	150
205	Application of a Small Baseline Subset Time Series Method with Atmospheric Correction in Monitoring Results of Mining Activity on Ground Surface and in Detecting Induced Seismic Events. Remote Sensing, 2019, 11, 1008.	1.8	16
206	Source Complexity of the 2015 Mw 4.0 Guthrie, Oklahoma Earthquake. Geophysical Research Letters, 2019, 46, 4674-4684.	1.5	28
208	Leakage and Increasing Fluid Pressure Detected in Oklahoma's Wastewater Disposal Reservoir. Journal of Geophysical Research: Solid Earth, 2019, 124, 2896-2919.	1.4	27
209	Facilitating sustainable geo-resources exploitation: A review of environmental and geological risks of fluid injection into hydrocarbon reservoirs. Earth-Science Reviews, 2019, 194, 455-471.	4.0	13
210	The Effect of Varying Fluid Injection Activities on Induced Earthquakes through Joint-Enriched Finite Element Analyses. , 2019, , .		0
211	Energy of injection-induced seismicity predicted from in-situ experiments. Scientific Reports, 2019, 9, 4999.	1.6	35
212	Induced Seismicity Driven by Fluid Diffusion Revealed by a Nearâ€Field Hydraulic Stimulation Monitoring Array in the Montney Basin, British Columbia. Journal of Geophysical Research: Solid Earth, 2019, 124, 4694-4709.	1.4	42
213	Seismicity induced by hydraulic fracturing and wastewater disposal in the Appalachian Basin, USA: a review. Acta Geophysica, 2019, 67, 351-364.	1.0	38
214	Seismicity Enhances Macrodispersion in Finite Porous and Fractured Domains: A Poreâ€Scale Perspective. Journal of Geophysical Research: Solid Earth, 2019, 124, 2844-2857.	1.4	9
215	Rupture Model of the M5.8 Pawnee, Oklahoma, Earthquake From Regional and Teleseismic Waveforms. Geophysical Research Letters, 2019, 46, 2494-2502.	1.5	12
216	Accelerated Fillâ€Up of the Arbuckle Group Aquifer and Links to U.S. Midcontinent Seismicity. Journal of Geophysical Research: Solid Earth, 2019, 124, 2670-2683.	1.4	16
217	Focal Mechanism Determination and Stress Inversion for Induced Seismicity Related to Shale Gas Hydraulic Fracturing. , 2019, , .		0
218	Injectionâ€Induced Seismicity and Faultâ€Slip Potential in the Fort Worth Basin, Texas. Bulletin of the Seismological Society of America, 2019, 109, 1615-1634.	1.1	52
219	Spatiotemporal and stratigraphic trends in salt-water disposal practices of the Permian Basin, Texas and New Mexico, United States. Environmental Geosciences, 2019, 26, 107-124.	0.6	18

#	Article	IF	CITATIONS
220	Potential increase in oil and gas well leakage due to earthquakes. Environmental Research Communications, 2019, 1, 121004.	0.9	9
221	Shortâ€Term Hindcasts of Seismic Hazard in the Western Canada Sedimentary Basin Caused by Induced and Natural Earthquakes. Seismological Research Letters, 2019, 90, 1420-1435.	0.8	24
222	Well Stimulation Seismicity in Oklahoma: Cataloging Earthquakes Related to Hydraulic Fracturing. , 2019, , .		4
223	Pore-pressure diffusion, enhanced by poroelastic stresses, controls induced seismicity in Oklahoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16228-16233.	3.3	93
224	Tracking Induced Seismicity in the Fort Worth Basin: A Summary of the 2008–2018 North Texas Earthquake Study Catalog. Bulletin of the Seismological Society of America, 2019, 109, 1203-1216.	1.1	22
225	Thermo-Poroelastic Analysis of Induced Seismicity at the Basel Enhanced Geothermal System. Sustainability, 2019, 11, 6904.	1.6	13
226	The LArgeâ€n Seismic Survey in Oklahoma (LASSO) Experiment. Seismological Research Letters, 0, , .	0.8	14
227	Addressing the risks of induced seismicity in subsurface energy operations. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e324.	1.9	5
228	Locating and monitoring microseismicity, hydraulic fracture and earthquake rupture using elastic time-reversal imaging. Geophysical Journal International, 2019, 216, 726-744.	1.0	20
229	A review of mechanisms of induced earthquakes: from a view of rock mechanics. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2019, 5, 171-196.	1.3	41
230	Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. Desalination, 2019, 455, 34-57.	4.0	233
231	The water-energy-food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina. Journal of Cleaner Production, 2019, 207, 743-750.	4.6	29
232	Increased motor vehicle crashes following induced earthquakes in Oklahoma, USA. Science of the Total Environment, 2019, 650, 2974-2979.	3.9	13
233	Energy Resource Risk Factors. , 2019, , 347-417.		0
234	How to Reduce Fluid-Injection-Induced Seismicity. Rock Mechanics and Rock Engineering, 2019, 52, 475-493.	2.6	97
235	Patterns of Seismicity Associated with USGS Identified Areas of Potentially Induced Seismicity. Ground Water, 2019, 57, 86-96.	0.7	4
236	Evidencing the relationship between injected volume of water and maximum expected magnitude during the Puerto Gaitán (Colombia) earthquake sequence from 2013 to 2015. Geophysical Journal International, 2020, 220, 335-344.	1.0	9
237	Temporal patterns of induced seismicity in Oklahoma revealed from multi-station template matching. Journal of Seismology, 2020, 24, 921-935.	0.6	14

#	Article	IF	CITATIONS
238	Shortâ€ŧerm failure mechanism triggered by hydraulic fracturing. Energy Science and Engineering, 2020, 8, 592-601.	1.9	13
239	Dynamic Stressing of Naturally Fractured Rocks: On the Relation Between Transient Changes in Permeability and Elastic Wave Velocity. Geophysical Research Letters, 2020, 47, e2019GL083557.	1.5	19
240	Fragility of masonry veneers to human-induced Central U.S. earthquakes using neural network models. Journal of Building Engineering, 2020, 28, 101100.	1.6	14
241	A framework to determine sensitive inorganic monitoring indicators for tracing groundwater contamination by produced formation water from shale gas development in the Fuling Gasfield, SW China. Journal of Hydrology, 2020, 581, 124403.	2.3	27
242	Explications des pressions de fluides transitoires à longue portée engendrées par le stockage d'eaux usées de champs pétrolifÃïres à l'aide du principe de superposition hydrogéologique. Hydrogeology Journal, 2020, 28, 795-803.	0.9	4
243	Insights on Trigger Mechanisms of Two Large Hydraulic Fracturing-Induced Earthquakes and Sensitivity Analysis. , 2020, , .		0
244	Source Parameters of Three Moderate Size Earthquakes in Weiyuan, China, and Their Relations to Shale Gas Hydraulic Fracturing. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019932.	1.4	24
245	Correlation Between Poroelastic Stress Perturbation and Multidisposal Wells Induced Earthquake Sequence in Cushing, Oklahoma. Geophysical Research Letters, 2020, 47, e2020GL089366.	1.5	16
246	Magnitude thresholds and spatial footprints of damage from induced earthquakes. Earthquake Spectra, 2020, 36, 1995-2018.	1.6	7
247	Complex Shear-Wave Anisotropy from Induced Earthquakes in West Texas. Bulletin of the Seismological Society of America, 2020, 110, 2242-2251.	1.1	6
248	Earthquakes Induced by Wastewater Injection, Part I: Model Development and Hindcasting. Bulletin of the Seismological Society of America, 2020, 110, 2466-2482.	1.1	9
249	Factors Influencing the Probability of Hydraulic Fracturing-Induced Seismicity in Oklahoma. Bulletin of the Seismological Society of America, 2020, 110, 2272-2282.	1.1	22
250	Activation of optimally and unfavourably oriented faults in a uniform local stress field during the 2011 Prague, Oklahoma, sequence. Geophysical Journal International, 2020, 222, 153-168.	1.0	18
251	The State of the Art in Monitoring and Verification: an update five years on. International Journal of Greenhouse Gas Control, 2020, 100, 103118.	2.3	23
252	A new perspective on the hydraulics of oilfield wastewater disposal: how PTX conditions affect fluid pressure transients that cause earthquakes. Energy and Environmental Science, 2020, 13, 3014-3031.	15.6	8
253	Effect of Pressure Rate on Rate and State Frictional Slip. Geophysical Research Letters, 2020, 47, e2020GL089426.	1.5	8
254	Multifractal Analysis of Acoustic Emissions during Hydraulic Fracturing Experiments under Uniaxial Loading Conditions: A Niutitang Shale Example. Geofluids, 2020, 2020, 1-19.	0.3	8
255	Analysis of Microseismicity and Reactivated Fault Size to Assess the Potential for Felt Events by CO2 Injection in the Illinois Basin. Bulletin of the Seismological Society of America, 2020, 110, 2188-2204.	1.1	30

#		IF	CITATIONS
¹¹ 256	Earthquakes Induced by Wastewater Injection, Part II: Statistical Evaluation of Causal Factors and Seismicity Rate Forecasting. Bulletin of the Seismological Society of America, 2020, 110, 2483-2497.	1.1	8
257	Reply to Comment by Peterie Et Al. on "Accelerated Fillâ€Up of the Arbuckle Group Aquifer and Links to U.S. Midcontinent Seismicity― Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019275.	1.4	2
258	Geomechanical Constraints on Hydro-Seismicity: Tidal Forcing and Reservoir Operation. Water (Switzerland), 2020, 12, 2724.	1.2	4
259	Natural Seismicity in and around the Rome Trough, Eastern Kentucky, from a Temporary Seismic Network. Seismological Research Letters, 2020, 91, 1831-1845.	0.8	4
260	Developments in understanding seismicity triggered by hydraulic fracturing. Nature Reviews Earth & Environment, 2020, 1, 264-277.	12.2	123
261	Activation Rate of Seismicity for Hydraulic Fracture Wells in the Western Canada Sedimentary Basin. Bulletin of the Seismological Society of America, 2020, 110, 2252-2271.	1.1	36
262	Causal mechanism of injection-induced earthquakes through the Mw 5.5 Pohang earthquake case study. Nature Communications, 2020, 11, 2614.	5.8	48
263	Hydraulic fracturing operation for oil and gas production and associated earthquake activities across the USA. Environmental Earth Sciences, 2020, 79, 1.	1.3	7
264	Effect of Fluid Viscosity on Earthquake Nucleation. Geophysical Research Letters, 2020, 47, e2020GL087854.	1.5	10
265	Testing the efficacy of active pressure management as a tool to mitigate induced seismicity. International Journal of Greenhouse Gas Control, 2020, 94, 102894.	2.3	6
266	The Oklahoma Geological Survey Statewide Seismic Network. Seismological Research Letters, 2020, 91, 611-621.	0.8	31
267	Understanding rate effects in injection-induced earthquakes. Nature Communications, 2020, 11, 3053.	5.8	56
268	Automating the Detection of Dynamically Triggered Earthquakes via a Deep Metric Learning Algorithm. Seismological Research Letters, 2020, 91, 901-912.	0.8	9
269	A Study on the Largest Hydraulic-Fracturing-Induced Earthquake in Canada: Observations and Static Stress-Drop Estimation. Bulletin of the Seismological Society of America, 2020, 110, 2283-2294.	1.1	30
270	InSAR Evidence Indicates a Link Between Fluid Injection for Salt Mining and the 2019 Changning (China) Earthquake Sequence. Geophysical Research Letters, 2020, 47, e2020GL087603.	1.5	26
271	Will Water Issues Constrain Oil and Gas Production in the United States?. Environmental Science & Technology, 2020, 54, 3510-3519.	4.6	65
272	Techno-economic analysis of converting oil & gas produced water into valuable resources. Desalination, 2020, 481, 114381.	4.0	32
273	Hydraulic Fracturing in Southern Florida: A Critical Analysis of Potential Environmental Impacts. Natural Resources Research, 2020, 29, 3385-3411.	2.2	6

#	Article	IF	CITATIONS
274	Paradigm shifts and current challenges in wastewater management. Journal of Hazardous Materials, 2020, 390, 122139.	6.5	80
275	Clustering characteristics of gas-extraction induced seismicity in the Groningen gas field. Geophysical Journal International, 2020, 221, 879-892.	1.0	12
276	Water quality assessment downstream of oil and gas produced water discharges intended for beneficial reuse in arid regions. Science of the Total Environment, 2020, 713, 136607.	3.9	49
277	Hydraulic Fracturing Induced Seismicity in the Southern Sichuan Basin Due to Fluid Diffusion Inferred From Seismic and Injection Data Analysis. Geophysical Research Letters, 2020, 47, e2019GL084885.	1.5	54
278	Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 2020, 1, 90-102.	12.2	307
279	Surface Deformation and Induced Seismicity Due to Fluid Injection and Oil and Gas Extraction in Western Texas. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018962.	1.4	26
280	Parametric analysis of the elastohydrodynamic lubrication efficiency on induced seismicity. Geophysical Journal International, 2020, 222, 517-525.	1.0	4
281	More Than 40 yr of Potentially Induced Seismicity Close to the San Andreas Fault in San Ardo, Central California. Seismological Research Letters, 2021, 92, 187-198.	0.8	5
282	Spatial Analysis of Membrane Distillation Powered by Waste Heat from Natural Gas Compressor Stations for Unconventional Oil and Gas Wastewater Treatment in Weld County, Colorado. ACS ES&T Engineering, 2021, 1, 192-203.	3.7	4
283	Shallow Shear-Wave Velocity Structure in Oklahoma Based on the Joint Inversion of Ambient Noise Dispersion and Teleseismic <i>P</i> -Wave Receiver Functions. Bulletin of the Seismological Society of America, 2021, 111, 654-670.	1.1	3
284	Coupled poroelastic solutions for the reservoir and caprock layers with the overburden confinement effects. Geomechanics for Energy and the Environment, 2021, 25, 100215.	1.2	7
285	Influence of acetic acid dissolution time on evolution of coal phase and surface morphology. Fuel, 2021, 286, 119464.	3.4	39
286	Analysis of Local Seismic Events near a Large-N Array for Moho Reflections. Seismological Research Letters, 2021, 92, 408-420.	0.8	1
287	Hydraulic Fracturing, Cumulative Development and Earthquakes in the Peace River Region of British Columbia, Canada. Journal of Geoscience and Environment Protection, 2021, 09, 55-82.	0.2	3
288	The 2019 Mw 5.8 Changning, China earthquake: A cascade rupture of fold-accommodation faults induced by fluid injection. Tectonophysics, 2021, 801, 228721.	0.9	12
289	A Study on the Largest Hydraulic Fracturing Induced Earthquake in Canada: Numerical Modeling and Triggering Mechanism. Bulletin of the Seismological Society of America, 2021, 111, 1392-1404.	1.1	20
290	Potential Link Between 2020 Mentone, West Texas M5 Earthquake and Nearby Wastewater Injection: Implications for Aquifer Mechanical Properties. Geophysical Research Letters, 2021, 48, e2020GL090551.	1.5	13
291	Time-dependent seismic hazard and risk due to wastewater injection in Oklahoma. Earthquake Spectra, 2021, 37, 2084-2106.	1.6	7

#	Article	IF	CITATIONS
292	Data analytics to investigate the cohort of injection wells with earthquakes in Oklahoma. Earthquake Spectra, 2021, 37, 1652-1672.	1.6	1
293	Fluidâ€Earthquake and Earthquakeâ€Earthquake Interactions in Southern Kansas, USA. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020384.	1.4	14
294	Relaxation damage control via fatigue-hydraulic fracturing in granitic rock as inferred from laboratory-, mine-, and field-scale experiments. Scientific Reports, 2021, 11, 6780.	1.6	18
295	Source Spectral Properties of Earthquakes in the Delaware Basin of West Texas. Seismological Research Letters, 2021, 92, 2477-2489.	0.8	10
296	How Do Statistical Parameters of Induced Seismicity Correlate with Fluid Injection? Case of Oklahoma. Seismological Research Letters, 2021, 92, 2573-2590.	0.8	0
297	Physicsâ€Based Evaluation of the Maximum Magnitude of Potential Earthquakes Induced by the Hutubi (China) Underground Gas Storage. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021379.	1.4	9
298	Small Local Earthquake Detection Using Low-Cost MEMS Accelerometers: Examples in Northern and Central Italy. The Seismic Record, 2021, 1, 20-26.	1.3	11
299	Spatiotemporal Analysis of Seismotectonic State of Injectionâ€Induced Seismicity Clusters in the Western Canada Sedimentary Basin. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021362.	1.4	4
300	Shear-Wave Velocity Site Characterization in Oklahoma from Joint Inversion of Multimethod Surface Seismic Measurements: Implications for Central U.S. Ground-Motion Prediction. Bulletin of the Seismological Society of America, 0, , .	1.1	4
301	Seismic illumination of small-throw seismogenic faults, Anadarko Basin, Oklahoma. Interpretation, 2021, 9, SE35-SE51.	0.5	2
302	Sensitivity of the Seismic Moment Released During Fluid Injection to Fault Hydromechanical Properties and Background Stress. Frontiers in Earth Science, 2021, 9, .	0.8	2
303	Numerical analysis of injection-induced fault reactivation using hydro-mechanical coupled finite element model with cohesive zone elements. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, 1.	1.3	3
304	Theoretical analysis of ground displacements induced by deep fluid injection based on fully-coupled poroelastic simulation. Geodesy and Geodynamics, 2021, 12, 197-210.	1.0	0
305	Groundwater extraction-induced seismicity around Delhi region, India. Scientific Reports, 2021, 11, 10097.	1.6	20
306	Seismic Diffusivity and the Influence of Heterogeneity on Injectionâ€Induced Seismicity. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021768.	1.4	6
308	Widespread deep seismicity in the Delaware Basin, Texas, is mainly driven by shallow wastewater injection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
309	Damage estimation in reinforced concrete buildings from induced earthquakes in Brazil. Engineering Structures, 2021, 234, 111904.	2.6	5
310	Seismicity at Newdigate, Surrey, during 2018–2019: A Candidate Mechanism Indicating Causation by Nearby Oil Production. , 0, , .		1

#	Article	IF	CITATIONS
311	Imaging the Deep Crustal Structure of Central Oklahoma Using Stacking and Inversion of Local Earthquake Waveforms. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021368.	1.4	2
312	Complex Source Behaviors and Spatiotemporal Evolution of Seismicity During the 2015–2016 Earthquake Sequence in Cushing, Oklahoma. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022168.	1.4	10
313	Economic, Environmental, and Health Impacts of the Fracking Boom. Annual Review of Resource Economics, 2021, 13, 311-334.	1.5	21
314	Effect of Porosity and Permeability Evolution on Injectionâ€Induced Aseismic Slip. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021258.	1.4	25
315	A ground-motion prediction model for small-to-moderate induced earthquakes for Central and Eastern United States. Earthquake Spectra, 2021, 37, 1440-1459.	1.6	3
316	Nucleation and Evolution of Sliding in Continental Fault Zones under the Action of Natural and Man-Made Factors: A State-of-the-Art Review. Izvestiya, Physics of the Solid Earth, 2021, 57, 439-473.	0.2	4
317	Estimation of Absolute Stress in the Hypocentral Region of the 2019 Ridgecrest, California, Earthquakes. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022000.	1.4	18
318	Earthquakes and very deep groundwater perturbation mutually induced. Scientific Reports, 2021, 11, 13632.	1.6	8
319	Earthquake Source Mechanisms and Stress Field Variations Associated With Wastewaterâ€Induced Seismicity in Southern Kansas, USA. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021625.	1.4	4
321	Precambrian Crystalline Basement Properties From Pressure History Matching and Implications for Induced Seismicity in the US Midcontinent. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009660.	1.0	1
322	Seismicity at the Castor gas reservoir driven by pore pressure diffusion and asperities loading. Nature Communications, 2021, 12, 4783.	5.8	22
323	Are Deep Aquifers Really Confined? Insights From Deep Groundwater Tidal Responses in the North China Platform. Water Resources Research, 2021, 57, e2021WR030195.	1.7	14
324	Seismic velocity images of a crystallized crustal magma-conduit (related to the Deccan plume) below the seismically active Kachchh rift zone, Gujarat, India. Natural Hazards, 2022, 111, 239-260.	1.6	0
325	Effect of pore fluid chemistry on uniaxial compaction creep of Bentheim sandstone and implications for reservoir injection operations. Geomechanics for Energy and the Environment, 2021, 29, 100272.	1.2	6
326	Controlling Induced Earthquake Magnitude by Cycled Fluid Injection. Geophysical Research Letters, 2021, 48, e2021GL092885.	1.5	11
327	On the feasibility of using physics-informed machine learning for underground reservoir pressure management. Expert Systems With Applications, 2021, 178, 115006.	4.4	29
328	Carbon Capture and Storage in Geothermal Development. , 2021, , .		1
329	Mutagenicity assessment downstream of oil and gas produced water discharges intended for agricultural beneficial reuse. Science of the Total Environment, 2020, 715, 136944.	3.9	33

#	Article	IF	CITATIONS
330	SeiSMo., 2019,,.		3
331	Structural characterization of potentially seismogenic faults in the Fort Worth Basin. Interpretation, 2020, 8, T323-T347.	0.5	17
332	On the origin of exponential growth in induced earthquakes in Groningen. Earthquake and Structures, 2016, 11, 861-871.	1.0	1
333	Shale, Quakes, and High Stakes: Regulating Fracking-Induced Seismicity in Oklahoma, USA and Lancashire, UK. Case Studies in the Environment, 2019, 3, 1-14.	0.4	4
334	Assessing Earthquake Hazard Map Performance for Natural and Induced Seismicity in the Central and Eastern United States. Seismological Research Letters, 2018, 89, 118-126.	0.8	14
335	Contourâ€Based Frequencyâ€Domain Event Detection for Seismic Arrays. Seismological Research Letters, 2018, 89, 1514-1523.	0.8	4
336	Seismicity Study of Botswana from 1966 to 2012. International Journal of Geosciences, 2018, 09, 707-718.	0.2	10
337	Constructed wetlands for polishing oil and gas produced water releases. Environmental Sciences: Processes and Impacts, 2021, 23, 1961-1976.	1.7	1
338	Interplay of large-scale tectonic deformation and local fluid injection investigated through seismicity patterns at the Reykjanes Geothermal Field, Iceland. Geophysical Journal International, 2021, 228, 1866-1886.	1.0	4
339	Passive-seismic image-domain elastic wavefield tomography. Geophysical Journal International, 2021, 228, 1512-1529.	1.0	4
340	Numerical study of the role of localized stress perturbations on fault slip: Insights for injection-induced fault reactivation. Tectonophysics, 2021, 819, 229105.	0.9	3
342	Technical Program in full - Part II (RC 1 - VSP P1). , 2016, , .		0
344	Special Session II Complete Session. , 2017, , .		0
345	Passive seismic monitoring of an active CO2-EOR operation in Farnsworth, Texas. , 2017, , .		3
346	Seismic hazard in the Central and Eastern United States from earthquakes induced by wastewater disposal. , 2017, , .		0
348	Induced Seismicity. , 2018, , 1-20.		0
349	A Notable Earthquake Swarm in Alabama: Natural or Anthropogenic?. Seismological Research Letters, 2018, 89, 1583-1594.	0.8	1
350	Estimate temporal pore-pressure distribution from induced seismicity in Oklahoma. , 2018, , .		0

#	Article	IF	CITATIONS
351	Quantitative-statistical relationship between seismic attributes and wastewater injection parameters in Oklahoma. , 2018, , .		0
352	Induced Seismicity. , 2019, , 393-411.		0
354	Crustal Structure in Southeastern Texas From Joint Inversion of Ambient Seismic Noise and <i>P</i> to <i>S</i> Receiver Functions. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008866.	1.0	4
355	From Seismic Quiescence to Surged Activity After Decades of Wastewater Disposal: A Case Study in Centralâ€West Alberta, Canada. Geophysical Research Letters, 2021, 48, e2021GL095074.	1.5	9
356	Beyond treatment technology: Understanding motivations and barriers for wastewater treatment and reuse in unconventional energy production. Resources, Conservation and Recycling, 2022, 177, 106011.	5.3	14
357	A Review of the Economic, Environmental, and Health Impacts of the Fracking Boom. SSRN Electronic Journal, 0, , .	0.4	1
358	Hydromechanical Coupled Cohesive Zone Modeling of Induced Earthquakes under Fluid Injections. , 2020, , .		0
359	Resilience through Data Analytics: Investigating the Shift of Seismic Activities in Oklahoma. , 2021, , .		Ο
360	Raton Basin Induced Seismicity Is Hosted by Networks of Short Basement Faults and Mimics Tectonic Earthquake Statistics. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022839.	1.4	9
361	Geologic characterization of nonconformities using outcrop and core analogs: hydrologic implications for injection-induced seismicity. Solid Earth, 2020, 11, 1803-1821.	1.2	0
362	A New Method for Seismically Safe Managing of Seismotectonic Deformations in Fault Zones. Springer Tracts in Mechanical Engineering, 2021, , 45-66.	0.1	1
363	Synecdoche and Battles Over the Meaning of "Fracking― Environmental Communication, 2022, 16, 339-351.	1.2	3
364	Multivariate Statistical Appraisal of Regional Susceptibility to Induced Seismicity: Application to the Permian Basin, SW United States. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022768.	1.4	7
365	Biomass slurry fracture injection as a potential low-cost negative emissions technology. Environmental Research Letters, 2022, 17, 024013.	2.2	0
366	Complex 3D Migration and Delayed Triggering of Hydraulic Fracturingâ€Induced Seismicity: A Case Study Near Fox Creek, Alberta. Geophysical Research Letters, 2022, 49, .	1.5	10
367	From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers. Reviews of Geophysics, 2022, 60, e2021RG000744.	9.0	61
368	Review: Induced Seismicity During Geoenergy Development—A Hydromechanical Perspective. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	21
369	Treatment and Recovery of High-Value Elements from Produced Water. Water (Switzerland), 2022, 14, 880.	1.2	11

#	Article	IF	CITATIONS
370	Towards sustainable oil/gas fracking by reusing its process water: A review on fundamentals, challenges, and opportunities. Journal of Petroleum Science and Engineering, 2022, 213, 110422.	2.1	10
371	Empirical and numerical investigation into the influence of fluid injection volume and rate on induced seismicity in the Montney Formation, northeastern British Columbia. Journal of Petroleum Science and Engineering, 2022, 213, 110423.	2.1	2
372	Induced seismicity associated with geothermal fluids re-injection: Poroelastic stressing, thermoelastic stressing, or transient cooling-induced permeability enhancement?. Geothermics, 2022, 102, 102404.	1.5	4
373	Impact of injection rate ramp-up on nucleation and arrest of dynamic fault slip. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8, .	1.3	13
374	Coupled Hydromechanical Modeling of Induced Seismicity From CO ₂ Injection in the Illinois Basin. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	12
375	Does Unconventional Energy Extraction Generate More Wastewater? A Lifetime Perspective. Ecological Economics, 2022, 197, 107436.	2.9	0
376	Isotopic characteristics of the excess hydraulic fracturing flowback fluid in tight oil reservoir: Implication for source, composition, and flowback stage division. Journal of Petroleum Science and Engineering, 2022, 214, 110545.	2.1	0
377	Factors influencing public beliefs regarding the cause of induced earthquakes. Natural Hazards, 0, , .	1.6	0
378	Comparing CO2 and Variable-TDS Waste-Fluid Injection Into Deep Saline Geologic Formations. Frontiers in Energy Research, 0, 10, .	1.2	0
379	Forecasting induced seismicity in Oklahoma using machine learning methods. Scientific Reports, 2022, 12, .	1.6	10
381	Distinguishing the Causal Factors of Induced Seismicity in the Delaware Basin: Hydraulic Fracturing or Wastewater Disposal?. Seismological Research Letters, 2022, 93, 2640-2658.	0.8	8
382	Fault slip potential induced by fluid injection in the Matouying enhanced geothermal systemÂ(EGS) field, Tangshan seismic region, North China. Natural Hazards and Earth System Sciences, 2022, 22, 2257-2287.	1.5	4
383	Injection-induced fault slip assessment in Montney Formation in Western Canada. Scientific Reports, 2022, 12, .	1.6	6
384	Seismicity Induced by the Development of Unconventional Oil and Gas Resources. , 2022, , 173-213.		0
385	Short-term forecasting of Mmax during hydraulic fracturing. Scientific Reports, 2022, 12, .	1.6	2
386	Basement Fault Activation before Larger Earthquakes in Oklahoma and Kansas. The Seismic Record, 2022, 2, 197-206.	1.3	11
387	Spatiotemporal Variations in Earthquake Triggering Mechanisms During Multistage Hydraulic Fracturing in Western Canada. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	3
388	Stress Heterogeneity as a Driver of Aseismic Slip During the 2011 Prague, Oklahoma Aftershock Sequence. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	2

#	Article	IF	CITATIONS
389	Stress Variations in the Delaware Basin from Shear-Wave Splitting Analysis. Seismological Research Letters, 2022, 93, 3433-3443.	0.8	1
390	A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites. Seismological Research Letters, 2023, 94, 113-122.	0.8	3
391	Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films. Nature Reviews Chemistry, 2022, 6, 598-613.	13.8	24
392	Shape Dynamic Time Warping for Seismic Waveform Inversion. Bulletin of the Seismological Society of America, 2022, 112, 2915-2932.	1.1	2
393	Small Seismic Events in Oklahoma Detected and Located by Machine Learning–Based Models. Bulletin of the Seismological Society of America, 2022, 112, 2859-2869.	1.1	4
395	Limited Earthquake Interaction During a Geothermal Hydraulic Stimulation in Helsinki, Finland. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8
396	Underground energy-related product storage and sequestration: site characterization, risk analysis, and monitoring. Geological Society Special Publication, 2023, 528, .	0.8	7
397	An overview of underground energy-related product storage and sequestration. Geological Society Special Publication, 2023, 528, 15-35.	0.8	5
398	Transient evolution of the relative size distribution of earthquakes as a risk indicator for induced seismicity. Communications Earth & Environment, 2022, 3, .	2.6	2
399	Hydraulic Stimulation of Geothermal Reservoirs: Numerical Simulation of Induced Seismicity and Thermal Decline. Water (Switzerland), 2022, 14, 3697.	1.2	4
400	Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management. Scientific Reports, 2022, 12, .	1.6	6
401	Assessment of ground deformation and seismicity in two areas of intense hydrocarbon production in the Argentinian Patagonia. Scientific Reports, 2022, 12, .	1.6	1
402	A Seismic Fragility Framework for Earth Dams. , 2022, , .		2
403	Porosity Evolution in Rate and State Friction. Geophysical Research Letters, 2022, 49, .	1.5	4
404	Possible Continuous Vertical Water Leakage of Deep Aquifer: Records from a Deep Well in Tianjin Province, North China. Geofluids, 2022, 2022, 1-14.	0.3	4
405	Experimental study of fatigue load effect on the hydraulic fracturing behavior of granite. Fatigue and Fracture of Engineering Materials and Structures, 2023, 46, 540-554.	1.7	5
406	控å^¶å § 陆内éf¨åœ°éœ‡ç©ºé—´å^†å,ƒçš"机å^¶æ ^{~~} 什ä¹ĩi¼Ÿ. Diqiu Kexue - Zhongguo Dizhi Daxue Xueb Geosciences, 2022, 47, 3906.	ao/Earth S 0.1	cience - Jourr

407	Permeability evolution of methane and water vapor when simultaneously transporting in shale. Journal of Hydrology, 2023, 616, 128799.	2.3	1
-----	--	-----	---

#	Article	IF	CITATIONS
408	Utilizing Numerical Simulation to Understand the Implications of Injection-Induced Seismicity for Managed Aquifer Recharge in Coastal Virginia. , 2022, , .		1
409	A physics-informed optimization workflow to manage injection while constraining induced seismicity: The Oklahoma case. Frontiers in Earth Science, 0, 10, .	0.8	2
410	Interdependent effects of fluid injection parameters on triggered aseismic slip and seismicity. Scientific Reports, 2022, 12, .	1.6	0
411	Monitoring CO ₂ Injection at the CaMI Field Research Station Using Microseismic Noise Sources. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	1
412	Highâ€Rate Fluid Injection Reduces the Nucleation Length of Laboratory Earthquakes on Critically Stressed Faults in Granite. Geophysical Research Letters, 2022, 49, .	1.5	13
413	Fault Reactivation in Response to Saltwater Disposal and Hydrocarbon Production for the Venus, TX, Mw 4.0 Earthquake Sequence. Rock Mechanics and Rock Engineering, 2023, 56, 2103-2135.	2.6	3
414	Geomechanical challenges during geological CO2 storage: A review. Chemical Engineering Journal, 2023, 456, 140968.	6.6	21
415	Magnetic Anomaly Characteristics and Magnetic Basement Structure in Earthquake-Affected Changning Area of Southern Sichuan Basin, China: A New Perspective from Land-Based Stations. Remote Sensing, 2023, 15, 23.	1.8	1
416	Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nature Reviews Earth & Environment, 2023, 4, 102-118.	12.2	69
418	Experimental study on the influence of acid fracturing fluid on coal wettability. Fuel, 2023, 343, 127965.	3.4	20
419	Current Status and Future Prospects of Carbon Dioxide Geosequestration. Journal of Smart Processing, 2022, 11, 30-37.	0.0	1
420	Induced Seismicity by Groundwater Extraction at the Dead Sea Fault, Jordan. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	3
421	Discrete element modeling for the multistage hydraulic stimulation of a horizontal well in hot dry rock. Computers and Geotechnics, 2023, 156, 105274.	2.3	3
422	Machine Learning Reveals Additional Hydraulic Fractureâ€Induced Seismicity in the Eagle Ford Shale. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	2
423	Pore Pressure Diffusion and Onset of Induced Seismicity. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	6
424	Nucleation and Arrest of Fluidâ€Induced Aseismic Slip. Geophysical Research Letters, 2023, 50, .	1.5	5
425	The beginning of the beginning–-Foundations of injection-induced seismicity. The Mountain Geologist, 2022, 59, 183-200.	0.2	0
426	Heterogeneity Versus Anisotropy and the State of Stress in Stable Cratons: Observations From a Deep Borehole in Northeastern Alberta, Canada. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	1

#	Article	IF	CITATIONS
427	The temporal evolution of induced seismicity sequences generated by low-pressure, long-term fluid injection. Journal of Seismology, 2023, 27, 243-259.	0.6	2
428	Rate and State Simulation of Two Experiments With Pore Fluid Injection Under Creep Conditions. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	1
430	Oklahomaâ $€$ ™s coordinated response to more than a decade of elevated seismicity. , 2023, , 15-25.		1
433	Role of the Hydromechanical Properties of Fault on Fluid Injection-Induced Seismicity with Rate-And-State Dependent Friction Model. , 2023, , .		0
450	The physical mechanisms of induced earthquakes. Nature Reviews Earth & Environment, 2023, 4, 847-863.	12.2	1