Development of a 63K SNP Array for Cotton and High-I Interspecific Populations of <i>Gossypium</i> spp.

G3: Genes, Genomes, Genetics 5, 1187-1209 DOI: 10.1534/g3.115.018416

Citation Report

#	Article	IF	CITATIONS
1	The Utilization of Translocation Lines and Microsatellite Markers for the Identification of Unknown Cotton Monosomic Lines. , 0, , .		1
2	Bioinformatics Tools and Genomic Resources Available in Understanding the Structure and Function of Gossypium. , 2016, , .		4
3	SNPâ€Based MAS in Cotton under Depressedâ€Recombination for <i>Ren</i> ^{<i>lon</i>} –Flanking Recombinants: Results and Inferences on Wideâ€Cross Breeding Strategies. Crop Science, 2016, 56, 1526-1539.	1.8	7
4	High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. BMC Genomics, 2016, 17, 909.	2.8	51
5	A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics, 2016, 17, 903.	2.8	113
6	RNA-Seq-Mediated Transcriptome Analysis of a Fiberless Mutant Cotton and Its Possible Origin Based on SNP Markers. PLoS ONE, 2016, 11, e0151994.	2.5	28
7	Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population. Frontiers in Plant Science, 2016, 7, 1356.	3.6	105
8	Introductory Chapter: Introduction to Cotton Research Highlights. , 0, , .		3
9	argyle: An R Package for Analysis of Illumina Genotyping Arrays. G3: Genes, Genomes, Genetics, 2016, 6, 281-286.	1.8	36
10	Narrowing down the single homoeologous <i>Fa<scp>PFRU</scp></i> locus controlling flowering in cultivated octoploid strawberry using a selective mapping strategy. Plant Biotechnology Journal, 2016, 14, 2176-2189.	8.3	48
11	Progress in genome sequencing will accelerate molecular breeding in cotton (Gossypium spp.). 3 Biotech, 2016, 6, 217.	2.2	15
12	A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Horticulture Research, 2016, 3, 16036.	6.3	47
13	Molecular mapping of bunchy top disease resistance in Gossypium hirsutum L Euphytica, 2016, 210, 135-142.	1.2	17
14	A Genetic Map Between <i>Gossypium hirsutum</i> and the Brazilian Endemic <i>G. mustelinum</i> and Its Application to QTL Mapping. G3: Genes, Genomes, Genetics, 2016, 6, 1673-1685.	1.8	19
15	Development, genetic mapping and QTL association of cotton PHYA, PHYB, and HY5-specific CAPS and dCAPS markers. BMC Genetics, 2016, 17, 141.	2.7	15
16	The Immature Fiber Mutant Phenotype of Cotton (<i>Gossypium hirsutum</i>) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene. G3: Genes, Genomes, Genetics, 2016, 6, 1627-1633.	1.8	24
17	SNP Marker Discovery in Pima Cotton (Gossypium barbadense L.) Leaf Transcriptomes. Genomics Insights, 2016, 9, GEI.S40377.	3.0	8
18	Development and validation of the Axiom [®] Apple480K <scp>SNP</scp> genotyping array. Plant Journal, 2016, 86, 62-74.	5.7	156

#	Article	IF	CITATIONS
19	Integrated mapping and characterization of the gene underlying the okra leaf trait in <i>Gossypium hirsutum</i> L. Journal of Experimental Botany, 2016, 67, 763-774.	4.8	43
20	Development and Evaluation of a High Density Genotyping †Axiom_Arachis' Array with 58 K SNPs for Accelerating Genetics and Breeding in Groundnut. Scientific Reports, 2017, 7, 40577.	3.3	144
21	Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica, 2017, 213, 1.	1.2	42
22	Genomeâ€wide association study discovered genetic variation and candidate genes of fibre quality traits in <i>Gossypium hirsutum</i> L Plant Biotechnology Journal, 2017, 15, 982-996.	8.3	199
23	Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genomeâ€wide association study using highâ€density <scp>SNP</scp> s. Plant Biotechnology Journal, 2017, 15, 1374-1386.	8.3	196
24	Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut. Molecular Plant, 2017, 10, 309-322.	8.3	114
25	Association mapping for seed cotton yield, yield components and fibre quality traits in upland cotton (<i>Gossypium hirsutum</i> L.) genotypes. Plant Breeding, 2017, 136, 958-968.	1.9	10
26	Genetic Diversity and Population Structure in the Landrace Accessions of <i>Gossypium hirsutum</i> . Crop Science, 2017, 57, 2457-2470.	1.8	12
27	Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum) Tj ETQq0 0 7, 15274.	0 rgBT /C 3.3	overlock 10 T 23
28	Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC Plant Biology, 2017, 17, 37.	3.6	56
29	Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. Molecular Plant, 2017, 10, 1047-1064.	8.3	380
30	Insights Into Upland Cotton (<i>Gossypium hirsutum</i> L.) Genetic Recombination Based on 3 High-Density Single-Nucleotide Polymorphism and a Consensus Map Developed Independently With Common Parents. Genomics Insights, 2017, 10, 117863101773510.	3.0	12
31	Identification and Characterization of Segregation Distortion Loci on Cotton Chromosome 18. Frontiers in Plant Science, 2016, 7, 2037.	3.6	24
32	Identification of Marker-Trait Associations for Lint Traits in Cotton. Frontiers in Plant Science, 2017, 8, 86.	3.6	37
33	Quantitative Trait Locus Mapping for Verticillium wilt Resistance in an Upland Cotton Recombinant Inbred Line Using SNP-Based High Density Genetic Map. Frontiers in Plant Science, 2017, 8, 382.	3.6	49
34	QTL Analysis of Transgressive Nematode Resistance in Tetraploid Cotton Reveals Complex Interactions in Chromosome 11 Regions. Frontiers in Plant Science, 2017, 8, 1979.	3.6	17
35	QTLs Analysis and Validation for Fiber Quality Traits Using Maternal Backcross Population in Upland Cotton. Frontiers in Plant Science, 2017, 8, 2168.	3.6	47
36	High-density 80ÂK SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics, 2017, 18, 654.	2.8	122

#	Article	IF	CITATIONS
37	Revolution in Genotyping Platforms for Crop Improvement. Advances in Biochemical Engineering/Biotechnology, 2018, 164, 37-52.	1.1	14
38	Historical Datasets Support Genomic Selection Models for the Prediction of Cotton Fiber Quality Phenotypes Across Multiple Environments. G3: Genes, Genomes, Genetics, 2018, 8, 1721-1732.	1.8	30
39	Genetic dissection of the fuzzless seed trait in Gossypium barbadense. Journal of Experimental Botany, 2018, 69, 997-1009.	4.8	34
40	Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genomics, 2018, 19, 882.	2.8	33
41	Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. BMC Genomics, 2018, 19, 910.	2.8	12
42	Cotton Fiber Improvement Through Breeding and Biotechnology. , 2018, , 193-215.		5
43	Genome Resequencing Reveals Genetic Variation between the Parents of An Elite Hybrid Upland Cotton. Agronomy, 2018, 8, 305.	3.0	7
44	GWAS Analysis and QTL Identification of Fiber Quality Traits and Yield Components in Upland Cotton Using Enriched High-Density SNP Markers. Frontiers in Plant Science, 2018, 9, 1067.	3.6	99
45	Single-Locus and Multi-Locus Genome-Wide Association Studies in the Genetic Dissection of Fiber Quality Traits in Upland Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2018, 9, 1083.	3.6	74
46	Identification of SNPs and Candidate Genes Associated With Salt Tolerance at the Seedling Stage in Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2018, 9, 1011.	3.6	50
47	Genome-Wide Association Studies Reveal Genetic Variation and Candidate Genes of Drought Stress Related Traits in Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2018, 9, 1276.	3.6	91
48	Identification of molecular markers associated with genic male sterility in tetraploid cotton (Gossypium hirsutum L.) through bulk segregant analysis using a cotton SNP 63K array. Czech Journal of Genetics and Plant Breeding, 2018, 54, 154-160.	0.8	5
49	Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array. Frontiers in Plant Science, 2018, 9, 104.	3.6	89
50	Genetic Map Construction and Fiber Quality QTL Mapping Using the CottonSNP80K Array in Upland Cotton. Frontiers in Plant Science, 2018, 9, 225.	3.6	66
51	Tools for Genetic Studies in Experimental Populations of Polyploids. Frontiers in Plant Science, 2018, 9, 513.	3.6	175
52	Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. Frontiers in Plant Science, 2018, 9, 886.	3.6	211
53	QTL Mapping for Fiber Quality and Yield Traits Based on Introgression Lines Derived from Gossypium hirsutum × G. tomentosum. International Journal of Molecular Sciences, 2018, 19, 243.	4.1	49
54	Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genomics, 2018, 19, 451.	2.8	22

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
55	A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton. Theoretical and Applied Genetics, 2018, 131, 2413-2425.	3.6	31
56	Genome-wide association study of Gossypium arboreum resistance to reniform nematode. BMC Genetics, 2018, 19, 52.	2.7	7
57	A genomeâ€wide association study of earlyâ€maturation traits in upland cotton based on the CottonSNP80K array. Journal of Integrative Plant Biology, 2018, 60, 970-985.	8.5	28
58	PLANET-SNP pipeline: PLants based ANnotation and Establishment of True SNP pipeline. Genomics, 2019, 111, 1066-1077.	2.9	3
59	Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Theoretical and Applied Genetics, 2019, 132, 2829-2845.	3.6	41
60	Association mapping seed kernel oil content in upland cotton using genome-wide SSRs and SNPs. Molecular Breeding, 2019, 39, 1.	2.1	13
61	Genome mapping and molecular markers identification for yield, yield component and fibre quality traits in tetraploid cotton. Plant Breeding, 2019, 138, 880-896.	1.9	3
62	Identification of genomewide single-nucleotide polymorphisms associated with presummer, summer and autumn bolls in upland cotton. Journal of Genetics, 2019, 98, 1.	0.7	1
63	Dissecting the genetic architecture of seed-cotton and lint yields in Upland cotton using genome-wide association mapping. Breeding Science, 2019, 69, 611-620.	1.9	2
64	Genome-wide association study reveals the genetic control underlying node of the first fruiting branch and its height in upland cotton (Gossypium hirsutum L.). Euphytica, 2019, 215, 1.	1.2	8
65	Role of SNPs in determining QTLs for major traits in cotton. Journal of Cotton Research, 2019, 2, .	2.5	18
66	Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theoretical and Applied Genetics, 2019, 132, 2509-2523.	3.6	56
67	Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1. Plant Science, 2019, 286, 89-97.	3.6	35
68	Quantitative trait locus mapping for plant height and branch number in an upland cotton recombinant inbred line with an SNP-based high-density genetic map. Euphytica, 2019, 215, 1.	1.2	4
69	Transcriptional profiling of contrasting genotypes revealed key candidates and nucleotide variations for drought dissection in Camellia sinensis (L.) O. Kuntze. Scientific Reports, 2019, 9, 7487.	3.3	32
70	Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton. Theoretical and Applied Genetics, 2019, 132, 1991-2002.	3.6	36
71	Machine Learning as an Effective Method for Identifying True Single Nucleotide Polymorphisms in Polyploid Plants. Plant Genome, 2019, 12, 180023.	2.8	50
72	Identifying Functional Genes Influencing Gossypium hirsutum Fiber Quality. Frontiers in Plant Science, 2019, 9, 1968.	3.6	22

#	Article	IF	CITATIONS
73	Fiber Quality Improvement in Upland Cotton (Gossypium hirsutum L.): Quantitative Trait Loci Mapping and Marker Assisted Selection Application. Frontiers in Plant Science, 2019, 10, 1585.	3.6	24
74	Ramularia leaf spot: an emergent disease of cotton in Brazil. Tropical Plant Pathology, 2019, 44, 473-482.	1.5	6
75	High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.). BMC Genomics, 2019, 20, 889.	2.8	32
76	63K SNP chip based linkage mapping and QTL analysis for fibre quality and yield component traits in Gossypium barbadense L. cotton. Euphytica, 2019, 215, 1.	1.2	11
77	Genome-wide association mapping of stress-tolerance traits in cotton. Crop Journal, 2019, 7, 77-88.	5.2	26
78	Whole genome sequencing of a MAGIC population identified genomic loci and candidate genes for major fiber quality traits in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2019, 132, 989-999.	3.6	43
79	Genomic divergence in cotton germplasm related to maturity and heterosis. Journal of Integrative Plant Biology, 2019, 61, 929-942.	8.5	21
80	Genomeâ€wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yieldâ€related traits in a <i>Gossypium hirsutum</i> recombinant inbred line population. Plant Biotechnology Journal, 2020, 18, 239-253.	8.3	49
81	Enhancing Upland cotton for drought resilience, productivity, and fiber quality: comparative evaluation and genetic dissection. Molecular Genetics and Genomics, 2020, 295, 155-176.	2.1	18
82	Identification of candidate genes for key fibreâ€related <scp>QTL</scp> s and derivation of favourable alleles in <i>Gossypium hirsutum</i> recombinant inbred lines with <i>G.Âbarbadense</i> introgressions. Plant Biotechnology Journal, 2020, 18, 707-720.	8.3	67
83	A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton. Theoretical and Applied Genetics, 2020, 133, 563-577.	3.6	57
84	QTL mapping and GWAS for field kernel water content and kernel dehydration rate before physiological maturity in maize. Scientific Reports, 2020, 10, 13114.	3.3	6
85	Genome-wide association study reveals the genetic basis of fiber quality traits in upland cotton (Gossypium hirsutum L.). BMC Plant Biology, 2020, 20, 395.	3.6	20
86	A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton. Theoretical and Applied Genetics, 2020, 133, 3395-3408.	3.6	24
87	High-Temperature and Drought-Resilience Traits among Interspecific Chromosome Substitution Lines for Genetic Improvement of Upland Cotton. Plants, 2020, 9, 1747.	3.5	12
88	Use of Targeted Amplicon Sequencing in Peanut to Generate Allele Information on Allotetraploid Sub-Genomes. Genes, 2020, 11, 1220.	2.4	3
89	Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population. Genetics, 2020, 215, 579-595.	2.9	42
90	QTL analysis of agronomic, fiber quality, and abiotic stress tolerance traits in a recombinant inbred population of pima cotton. Crop Science, 2020, 60, 1823-1843.	1.8	9

#	Article	IF	CITATIONS
91	Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Frontiers in Genetics, 2020, 11, 447.	2.3	48
92	QTL mapping for plant height and fruit branch number based on RIL population of upland cotton. Journal of Cotton Research, 2020, 3, .	2.5	6
93	Introgression Leads to Genomic Divergence and Responsible for Important Traits in Upland Cotton. Frontiers in Plant Science, 2020, 11, 929.	3.6	15
94	Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton. BMC Genomics, 2020, 21, 431.	2.8	19
95	Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics, 2020, 52, 525-533.	21.4	249
96	Genomics-Assisted Breeding for Fiber Quality Traits in Cotton. , 2021, , 157-172.		0
97	Historical Perspectives: From Conventional to Precision Breeding in Cotton. , 2021, , 3-23.		0
98	Detection of ploidy and chromosomal aberrations in commercial oil palm using high-throughput SNP markers. Planta, 2021, 253, 63.	3.2	6
99	Evaluation and genome-wide association study of resistance to bacterial blight race 18 in U.S. Upland cotton germplasm. Molecular Genetics and Genomics, 2021, 296, 719-729.	2.1	7
100	Identification of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) that are associated with the nectariless trait of Gossypium hirsutum L. Euphytica, 2021, 217, 1.	1.2	4
101	Population structure and genetic diversity of the Pee Dee cotton breeding program. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
102	Prospects for Molecular Breeding in Cotton, <i>Gossypium</i> spp. , 0, , .		6
103	Genome-wide association study of micronaire using a natural population of representative upland cotton (Gossypium hirsutum L). Journal of Cotton Research, 2021, 4, .	2.5	6
104	Finding Needles in a Haystack: Using Geo-References to Enhance the Selection and Utilization of Landraces in Breeding for Climate-Resilient Cultivars of Upland Cotton (Gossypium hirsutum L.). Plants, 2021, 10, 1300.	3.5	3
105	Highâ€density linkage map construction and QTL analysis of fiber quality and lint percentage in tetraploid cotton. Crop Science, 2021, 61, 3340-3360.	1.8	7
106	Genome-Wide Association Analysis Reveals Loci and Candidate Genes Involved in Fiber Quality Traits Under Multiple Field Environments in Cotton (Gossypium hirsutum). Frontiers in Plant Science, 2021, 12, 695503.	3.6	12
107	GBS-SNP and SSR based genetic mapping and QTL analysis for drought tolerance in upland cotton. Physiology and Molecular Biology of Plants, 2021, 27, 1731-1745.	3.1	11
108	Genome-wide association study for tolerance to drought and salt tolerance and resistance to thrips at the seedling growth stage in US Upland cotton. Industrial Crops and Products, 2021, 169, 113645.	5.2	11

# 109	ARTICLE Biotechnology for Cotton Improvement. , 2020, , 509-525.	IF	Citations 4
111	A SNP-Based Molecular Barcode for Characterization of Common Wheat. PLoS ONE, 2016, 11, e0150947.	2.5	41
112	High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS ONE, 2017, 12, e0182918.	2.5	40
115	Quantitative Trait Locus Analysis and Identification of Candidate Genes for Micronaire in an Interspecific Backcross Inbred Line Population of Gossypium hirsutum × Gossypium barbadense. Frontiers in Plant Science, 2021, 12, 763016.	3.6	7
116	Rapid Mining of Candidate Genes for Verticillium Wilt Resistance in Cotton Based on BSA-Seq Analysis. Frontiers in Plant Science, 2021, 12, 703011.	3.6	8
117	Bioinformatics - Updated Features and Applications. , 2016, , .		4
119	Genetic mapping and transcriptomic characterization of a new fuzzless-tufted cottonseed mutant. G3: Genes, Genomes, Genetics, 2021, 11, 1-14.	1.8	7
120	Accelerated Breeding of Plants: Methods and Applications. , 2020, , 1-29.		2
121	Advances of Next-Generation Sequencing (NGS) Technologies to Enhance the Biofortifications in Crops. , 2020, , 427-450.		3
123	Constructing the wolfberry (Lycium spp.) genetic linkage map using AFLP and SSR markers. Journal of Integrative Agriculture, 2022, 21, 131-138.	3.5	6
124	Identification of genomewide single-nucleotide polymorphisms associated with presummer, summer and autumn bolls in upland cotton. Journal of Genetics, 2019, 98, .	0.7	1
125	Inheritance, QTLs, and Candidate Genes of Lint Percentage in Upland Cotton. Frontiers in Genetics, 2022, 13, 855574.	2.3	9
126	The Pivotal Role of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton. Frontiers in Genetics, 2021, 12, 642595.	2.3	10
129	CottonGen: The Community Database for Cotton Genomics, Genetics, and Breeding Research. Plants, 2021, 10, 2805.	3.5	42
130	Genetic Diversity, QTL Mapping, and Marker-Assisted Selection Technology in Cotton (Gossypium spp.). Frontiers in Plant Science, 2021, 12, 779386.	3.6	29
131	Quantitative Trait Loci and Transcriptome Analysis Reveal Genetic Basis of Fiber Quality Traits in CCRI70 RIL Population of Gossypium hirsutum. Frontiers in Plant Science, 2021, 12, 753755.	3.6	5
132	Features of Chromosome Introgression from Gossypium barbadense L. into G. hirsutum L. during the Development of Alien Substitution Lines. Plants, 2022, 11, 542.	3.5	5
133	Identification of Stable and Multiple Environment Interaction QTLs and Candidate Genes for Fiber Productive Traits Under Irrigated and Water Stress Conditions Using Intraspecific RILs of Gossypium hirsutum var. MCU5 X TCH1218. Frontiers in Plant Science, 2022, 13, 851504.	3.6	1

CITATIONS

#	Article	IF
195	Cotton Breeding. , 2022, , 609-676.	
196	Genomic prediction of cotton fibre quality and yield traits using Bayesian regression methods. Heredity, 2022, 129, 103-112.	2.6
197	Genome wide association study identifies candidate genes related to fatty acid components in upland cotton (Gossypium hirsutum L.). Industrial Crops and Products, 2022, 183, 114999.	5.2
198	Cotton Breeding in Australia: Meeting the Challenges of the 21st Century. Frontiers in Plant Science, 2022, 13, .	3.6
199	Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array. Theoretical and Applied Genetics, 2022, 135, 2279-2295.	3.6
200	Outlook for Implementation of Genomics-Based Selection in Public Cotton Breeding Programs. Plants, 2022, 11, 1446.	3.5
201	63ÂK and 50ÂK SNP array based high-density genetic mapping and QTL analysis for productivity and fiber quality traits in cotton. Euphytica, 2022, 218, .	1.2
202	SNP Genotyping for Purity Assessment of a Forage Oat (Avena sativa L.) Variety from Colombia. Agronomy, 2022, 12, 1710.	3.0
203	Insights into the Genomic Regions and Candidate Genes of Senescence-Related Traits in Upland Cotton via GWAS. International Journal of Molecular Sciences, 2022, 23, 8584.	4.1
204	Association mapping of lignin response to Verticillium Wilt through eight-way MAGIC population in upland cotton. Journal of Integrative Agriculture, 2022, , .	3.5
205	Identification of late blight resistance quantitative trait loci in <i>Solanum pimpinellifolium</i> accession PI 270441. Plant Genome, 2022, 15, .	2.8
206	The design, validation, and utility of the "ZJU CottonSNP40K―liquid chip through genotyping by target sequencing. Industrial Crops and Products, 2022, 188, 115629.	5.2
207	Identification and genomic characterization of major effect bacterial blight resistance locus (BB-13) in Upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2022, 135, 4421-4436.	3.6
208	Recent progression and future perspectives in cotton genomic breeding. Journal of Integrative Plant Biology, 2023, 65, 548-569.	8.5
209	Quantitative Trait Locus Mapping for Fusarium Wilt Race 4 Resistance in a Recombinant Inbred Line Population of Pima Cotton (Gossypium Barbadense). Pathogens, 2022, 11, 1143.	2.8
210	Population Genomics of Cotton. Population Genomics, 2022, , .	0.5
211	A method for low-coverage single-gamete sequence analysis demonstrates adherence to Mendel's first law across a large sample of human sperm. ELife, 0, 11, .	6.0

Inter-Specific Hybridization in Cotton (Gossypium hirsutum) for Crop Improvement. Agronomy, 2022, 12, 3158.

#	ARTICLE	IF	CITATIONS
213	Identification of quantitative trait loci for fiber quality, yield, and plant height traits in Upland cotton. Crop Science, 2023, 63, 1421-1441.	1.8	1
214	Detecting Cotton Leaf Curl Virus Resistance Quantitative Trait Loci in Gossypium hirsutum and iCottonQTL a New R/Shiny App to Streamline Genetic Mapping. Plants, 2023, 12, 1153.	3.5	1
215	First insight into the phylogeny of fineâ€leaved <i>Festuca</i> in the Altai Mountain Country based on genomeâ€wide genotyping. Ecology and Evolution, 2023, 13, .	1.9	1
216	Haplotyping interspecific hybrids by dual alignment to both parental genomes. Plant Genome, 0, , .	2.8	1
217	Unraveling genomic regions and candidate genes for multiple disease resistance in upland cotton using meta-QTL analysis. Heliyon, 2023, 9, e18731.	3.2	1
218	Development and validation of Kompetitive alleleâ€specific PCR (KASP) markers for bacterial blight resistant locus <i>BBâ€13</i> in Upland cotton (<i>Gossypium hirsutum</i> L.). Crop Science, O, , .	1.8	0
219	Genetic dissection of lint percentage in short-season cotton using combined QTL mapping and RNA-seq. Theoretical and Applied Genetics, 2023, 136, .	3.6	0
220	Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton (Gossypium hirsutum L.). International Journal of Molecular Sciences, 2023, 24, 14174.	4.1	2
221	Genetic diversity and population structure analyses and genome-wide association studies of photoperiod sensitivity in cotton (Gossypium hirsutum L). Theoretical and Applied Genetics, 2023, 136, .	3.6	0
222	Application of a High-Density Single Nucleotide Polymorphism Genetic Map in Mapping Quantitative Trait Loci of Early-Maturing Traits in Upland Cotton. Agronomy, 2023, 13, 2716.	3.0	0
223	Genetic linkage analysis of stable QTLs in Gossypium hirsutum RIL population revealed function of GhCesA4 in fiber development. Journal of Advanced Research, 2023, , .	9.5	0
224	Molecular-genetic and cytogenetic analyses of cotton chromosome introgression from <i>Cossypium barbadense</i> L. into the genome of <i>C. hirsutum</i> L. in BC ₂ F ₁ hybrids. Vavilovskii Zhurnal Genetiki I Selektsii, 2023. 27. 958-970.	1.1	1
225	Mining elite loci and candidate genes for root morphology-related traits at seedling stage by genome-wide association studies in Upland Cotton (Gossypium hirsutum L). Journal of Integrative Agriculture, 2024, , .	3.5	0
226	Phenotypic variability in the US upland cotton core set for root traits and water use efficiency at the late reproductive stage. Crop Science, 0, , .	1.8	0