Comprehensive Benchmark of Association (Free) Energy Complexes

Journal of Chemical Theory and Computation 11, 3785-3801 DOI: 10.1021/acs.jctc.5b00296

Citation Report

#	Article	IF	CITATIONS
8	Benchmarking Ground-State Geometries and Vertical Excitation Energies of a Selection of P-Type Semiconducting Molecules with Different Polarity. Journal of Physical Chemistry A, 2015, 119, 12876-12891.	1.1	25
9	Consistent structures and interactions by density functional theory with small atomic orbital basis sets. Journal of Chemical Physics, 2015, 143, 054107.	1.2	605
10	Assessment of semiempirical enthalpy of formation in solution as an effective energy function to discriminate nativeâ€like structures in protein decoy sets. Journal of Computational Chemistry, 2016, 37, 1962-1972.	1.5	9
11	Converging ligandâ€binding free energies obtained with freeâ€energy perturbations at the quantum mechanical level. Journal of Computational Chemistry, 2016, 37, 1589-1600.	1.5	46
12	Halogen bonded supramolecular capsules: a challenging test case for quantum chemical methods. Chemical Communications, 2016, 52, 9893-9896.	2.2	26
13	"Planetary Orbit―Systems Composed of Cycloparaphenylenes. Journal of Organic Chemistry, 2016, 81, 4559-4565.	1.7	22
14	Comment on "Theoretical studies on a carbonaceous molecular bearing: association thermodynamics and dual-mode rolling dynamics―by H. Isobe, K. Nakamura, S. Hitosugi, S. Sato, H. Tokoyama, H. Yamakado, K. Ohno and H. Kono, Chem. Sci., 2015, 6 , 2746. Chemical Science, 2016, 7, 2924-2928.	3.7	4
15	Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chemical Reviews, 2016, 116, 5301-5337.	23.0	312
16	Prebiotic synthesis of nucleic acids and their building blocks at the atomic level – merging models and mechanisms from advanced computations and experiments. Physical Chemistry Chemical Physics, 2016, 18, 20047-20066.	1.3	48
17	Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chemical Reviews, 2016, 116, 5520-5566.	23.0	216
18	Dispersion-Corrected Mean-Field Electronic Structure Methods. Chemical Reviews, 2016, 116, 5105-5154.	23.0	1,032
19	Noncovalent Interactions by Quantum Monte Carlo. Chemical Reviews, 2016, 116, 5188-5215.	23.0	114
20	Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 502-513.	0.5	53
21	QM/MM Calculations on Proteins. Methods in Enzymology, 2016, 577, 119-158.	0.4	75
22	Small Atomic Orbital Basis Set Firstâ€Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources. ChemistryOpen, 2016, 5, 94-109.	0.9	57
23	Assessment of DFT Functionals for QTAIM Topological Analysis of Halogen Bonds with Benzene. Journal of Physical Chemistry A, 2016, 120, 9071-9080.	1.1	37
24	Double helicenes. Chemical Physics Letters, 2016, 666, 13-18.	1.2	3
25	Theoretical investigation of the interactions between the ï€â€systems of molecular organic semiconductors and an analysis of the contributions of repulsion and electrostatics. International Journal of Quantum Chemistry, 2016, 116, 1138-1152	1.0	5

#	Article	IF	Citations
26	Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties. Journal of Chemical Theory and Computation, 2016, 12, 1097-1120.	2.3	74
27	Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chemical Reviews, 2016, 116, 5038-5071.	23.0	346
28	Towards full Quantumâ€Mechanicsâ€based Protein–Ligand Binding Affinities. ChemPhysChem, 2017, 18, 898-905.	1.0	46
29	First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chemical Reviews, 2017, 117, 4714-4758.	23.0	408
30	Noncovalent Interactions and Internal Dynamics in Pyridine–Ammonia: A Combined Quantumâ€Chemical and Microwave Spectroscopy Study. Chemistry - A European Journal, 2017, 23, 4876-4883.	1.7	39
31	Revealing the Intermolecular Interactions of Asphaltene Dimers by Quantum Chemical Calculations. Energy & Fuels, 2017, 31, 2488-2495.	2.5	59
32	Theoretical Investigation of the Binding of Nucleobases to Cucurbiturils by Dispersion Corrected DFT Approaches. Journal of Physical Chemistry B, 2017, 121, 4733-4744.	1.2	40
33	A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (<i>Z</i> = 1–86). Journal of Chemical Theory and Computation, 2017, 13, 1989-2009.	2.3	1,072
34	Accurate Intermolecular Potential for the C ₆₀ Dimer: The Performance of Different Levels of Quantum Theory. Journal of Chemical Theory and Computation, 2017, 13, 274-285.	2.3	20
35	Comprehensive theoretical study of all 1812 C ₆₀ isomers. Physical Chemistry Chemical Physics, 2017, 19, 14296-14305.	1.3	58
36	Transferable Atom-Centered Potentials for the Correction of Basis Set Incompleteness Errors in Density-Functional Theory. Journal of Chemical Theory and Computation, 2017, 13, 3505-3524.	2.3	29
37	Enantiomerically pure tetraphenylene-based homochiral macrocyclic tetramer and its recognition property towards C76 fullerene. Tetrahedron, 2017, 73, 3606-3611.	1.0	1
38	On the competition between weak O H⋯F and C H⋯F hydrogen bonds, in cooperation with C H⋯O contacts, in the difluoromethane – tert-butyl alcohol cluster. Journal of Molecular Spectroscopy, 2017, 337, 90-95.	0.4	26
39	Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions. Journal of Chemical Physics, 2017, 146, 120901.	1.2	90
40	Quantum Chemical Dissection of the Shortest P=Oâ‹â‹â‹l Halogen Bond: The Decisive Role of Crystal Packing Effects. Chemistry - A European Journal, 2017, 23, 5687-5691.	1.7	20
41	Bidirectional Photomodulation of Surface Tension in Langmuir Films. Angewandte Chemie - International Edition, 2017, 56, 291-296.	7.2	13
42	Bidirectional Photomodulation of Surface Tension in Langmuir Films. Angewandte Chemie, 2017, 129, 297-302.	1.6	8
43	Influence of size, shape, heteroatom content and dispersive contributions on guest binding in a coordination cage. Chemical Communications, 2017, 53, 11933-11936.	2.2	27

#	ARTICLE	IF	CITATIONS
44	Toward the Accurate Prediction of Liquid Phase Oxidation of Aromatics: A Detailed Kinetic Mechanism for Toluene Autoxidation. Energy & amp; Fuels, 2017, 31, 12893-12913.	2.5	15
45	MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA, <scp>l</scp> -Histidine Ligand, and Mg ²⁺ . Journal of Chemical Theory and Computation, 2017, 13, 5658-5670.	2.3	17
46	Benchmark Databases of Intermolecular Interaction Energies: Design, Construction, and Significance. Annual Reports in Computational Chemistry, 2017, 13, 3-91.	0.9	8
47	Anion Binding in Solution: Beyond the Electrostatic Regime. CheM, 2017, 3, 411-427.	5.8	129
48	A general intermolecular force field based on tight-binding quantum chemical calculations. Journal of Chemical Physics, 2017, 147, 161708.	1.2	53
49	Optimizing the Accuracy and Computational Cost in Theoretical Squaramide Catalysis: The Henry Reaction. Chemistry - A European Journal, 2017, 23, 15336-15347.	1.7	18
50	Enhancing charge mobilities in organic semiconductors by selective fluorination: a design approach based on a quantum mechanical perspective. Chemical Science, 2017, 8, 6947-6953.	3.7	20
51	HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions. Journal of Physical Chemistry B, 2017, 121, 11144-11162.	1.2	62
52	Binding free energies in the SAMPL5 octa-acid host–guest challenge calculated with DFT-D3 and CCSD(T). Journal of Computer-Aided Molecular Design, 2017, 31, 87-106.	1.3	21
53	A Comprehensive Overview of the DFT-D3 London-Dispersion Correction. , 2017, , 195-219.		57
54	Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set. Journal of Chemical Theory and Computation, 2018, 14, 1254-1266.	2.3	69
55	Tailorâ€made computational protocols for precise characterization of small biological building blocks using QM and MM approaches. Biopolymers, 2018, 109, e23109.	1.2	10
56	Highly accurate equilibrium structure of the C2h symmetric N1â€ŧoâ€O2 hydrogenâ€bonded uracilâ€dimer. International Journal of Quantum Chemistry, 2018, 118, e25624.	1.0	8
57	Donor–acceptor interactions between cyclic trinuclear pyridinate gold(<scp>i</scp>)-complexes and electron-poor guests: nature and energetics of guest-binding and templating on graphite. Chemical Science, 2018, 9, 3477-3483.	3.7	19
58	Atomic Orbital Implementation of Extended Symmetry-Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large Supramolecular Complexes. Journal of Chemical Theory and Computation, 2018, 14, 2955-2978.	2.3	43
59	B97-3c: A revised low-cost variant of the B97-D density functional method. Journal of Chemical Physics, 2018, 148, 064104.	1.2	400
60	Atom-Centered Potentials with Dispersion-Corrected Minimal-Basis-Set Hartree–Fock: An Efficient and Accurate Computational Approach for Large Molecular Systems. Journal of Chemical Theory and Computation, 2018, 14, 726-738.	2.3	18
61	Understanding titanium-catalysed radical–radical reactions: a DFT study unravels the complex kinetics of ketone–nitrile couplings. Dalton Transactions, 2018, 47, 5072-5082.	1.6	18

#	Article	IF	CITATIONS
62	Dissecting the concave–convex ΀â€i€ interaction in corannulene and sumanene dimers: SAPT(DFT) analysis and performance of DFT dispersionâ€corrected methods. Journal of Computational Chemistry, 2018, 39, 93-104.	1.5	12
63	An effective tridental molecular clip for fullerenes. Journal of Physical Organic Chemistry, 2018, 31, e3727.	0.9	4
64	3. Structure and Theory. , 2018, , 51-166.		0
65	Raising the Bar in Aromatic Donor–Acceptor Interactions with Cyclic Trinuclear Gold(I) Complexes as Strong π-Donors. Journal of the American Chemical Society, 2018, 140, 17932-17944.	6.6	43
66	Heterobiaryl synthesis by contractive C–C coupling via P(V) intermediates. Science, 2018, 362, 799-804.	6.0	145
67	Cavitation energies can outperform dispersion interactions. Nature Chemistry, 2018, 10, 1252-1257.	6.6	60
68	A Nano‧ized [Mn ^{II} ₁₈] Metallamacrocycle as a Building Unit to Construct Stable Metal–Organic Frameworks: Effective Gas Adsorption and Magnetic Properties. Chemistry - A European Journal, 2018, 24, 19152-19155.	1.7	13
69	A Simple Correction for Nonadditive Dispersion within Extended Symmetry-Adapted Perturbation Theory (XSAPT). Journal of Chemical Theory and Computation, 2018, 14, 5128-5142.	2.3	19
70	Semiempirical molecular orbital models based on the neglect of diatomic differential overlap approximation. International Journal of Quantum Chemistry, 2018, 118, e25799.	1.0	46
71	Mixed Explicit–Implicit Solvation Approach for Modeling of Alkane Complexation in Water-Soluble Self-Assembled Capsules. Journal of the American Chemical Society, 2018, 140, 12527-12537.	6.6	15
72	Characterization of OCS–HCCCCH and N2O–HCCCCH Dimers: Theory and Experiment. Journal of Physical Chemistry A, 2018, 122, 5383-5390.	1.1	4
73	Ab Initio Modeling of Hydrogen Bond Interaction at Silica Surfaces With Focus on Silica/Drugs Systems. , 2018, , 297-328.		6
74	Cocrystal Ternary Phase Diagrams from Density Functional Theory and Solvation Thermodynamics. Crystal Growth and Design, 2018, 18, 5600-5608.	1.4	21
75	On the estimation of the strength of supramolecular complexes of fullerenes. International Journal of Quantum Chemistry, 2019, 119, e25670.	1.0	5
76	How to Model Inter- and Intramolecular Hydrogen Bond Strengths with Quantum Chemistry. Journal of Chemical Information and Modeling, 2019, 59, 3735-3743.	2.5	7
77	Host-guest interactions accompanying the cationic nitrogen heterocyclic guests encapsulation within pillar[5]arene: A theoretical research. Journal of Molecular Structure, 2019, 1198, 126862.	1.8	8
78	Self-consistent charge embedding at very low cost, with application to symmetry-adapted perturbation theory. Journal of Chemical Physics, 2019, 151, 031102.	1.2	17
79	Platinum, gold, and silver standards of intermolecular interaction energy calculations. Journal of Chemical Physics, 2019, 151, 070901.	1.2	33

#	Article	IF	CITATIONS
80	A Universal Quantitative Descriptor of the Dispersion Interaction Potential. Angewandte Chemie - International Edition, 2019, 58, 9758-9769.	7.2	41
81	Accurate and Efficient <i>ab Initio</i> Calculations for Supramolecular Complexes: Symmetry-Adapted Perturbation Theory with Many-Body Dispersion. Journal of Physical Chemistry Letters, 2019, 10, 2706-2714.	2.1	51
82	A generally applicable atomic-charge dependent London dispersion correction. Journal of Chemical Physics, 2019, 150, 154122.	1.2	697
83	Analytical gradient for the domain-based local pair natural orbital second order MÃ,ller-Plesset perturbation theory method (DLPNO-MP2). Journal of Chemical Physics, 2019, 150, 164102.	1.2	35
84	Host–Guest Relative Binding Affinities at Density-Functional Theory Level from Semiempirical Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2019, 15, 2659-2671.	2.3	19
85	Evaluation of DFT Methods and Implicit Solvation Models for Anionâ€Binding Hostâ€Guest Systems. Helvetica Chimica Acta, 2019, 102, e1900032.	1.0	13
86	Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. Journal of Chemical Theory and Computation, 2019, 15, 1743-1760.	2.3	45
87	GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. Journal of Chemical Theory and Computation, 2019, 15, 1652-1671.	2.3	1,704
88	Improved generalized energy-based fragmentation approach and its applications to the binding energies of supramolecular complexes. Electronic Structure, 2019, 1, 044003.	1.0	8
89	A Universal Quantitative Descriptor of the Dispersion Interaction Potential. Angewandte Chemie, 2019, 131, 9860-9871.	1.6	8
90	Binding affinities of cucurbit[<i>n</i>]urils with cations. Chemical Communications, 2019, 55, 14131-14134.	2.2	64
91	Structure, stability, and nature of bonding between high energy water clusters confined inside cucurbituril: A computational study. Computational and Theoretical Chemistry, 2019, 1148, 44-54.	1.1	13
92	Hydrogen-Bond-Dependent Conformational Switching: A Computational Challenge from Experimental Thermochemistry. Journal of Organic Chemistry, 2019, 84, 613-621.	1.7	5
93	Understanding non-covalent interactions in larger molecular complexes from first principles. Journal of Chemical Physics, 2019, 150, 010901.	1.2	56
94	Rationalizing the Activity of an "Artificial Diels-Alderaseâ€: Establishing Efficient and Accurate Protocols for Calculating Supramolecular Catalysis. Journal of the American Chemical Society, 2020, 142, 1300-1310.	6.6	68
95	Recent developments in symmetryâ€adapted perturbation theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1452.	6.2	102
96	Quantum Monte Carlo benchmarking of large noncovalent complexes in the L7 benchmark set. Journal of Chemical Physics, 2020, 153, 194113.	1.2	14
97	Efficient Calculation of Small Molecule Binding in Metal–Organic Frameworks and Porous Organic Cages. Journal of Physical Chemistry C, 2020, 124, 27529-27541.	1.5	32

#	Article	IF	CITATIONS
98	Efficient Computation of Free Energy Contributions for Association Reactions of Large Molecules. Journal of Physical Chemistry Letters, 2020, 11, 6606-6611.	2.1	49
99	Supramolecular Energetic and Topological Study of Halogenated Aryl Carboxylic Acids. Crystal Growth and Design, 2020, 20, 6382-6399.	1.4	4
100	Selfâ€Assembly of Hollow Organic Nanotubes Driven by Arene Regioisomerism. ChemPlusChem, 2020, 85, 2372-2375.	1.3	4
101	Efficient yet accurate dispersion-corrected semilocal exchange–correlation functionals for non-covalent interactions. Journal of Chemical Physics, 2020, 153, 084117.	1.2	10
102	Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. Angewandte Chemie, 2020, 132, 15795-15803.	1.6	40
103	The first microsolvation step for furans: New experiments and benchmarking strategies. Journal of Chemical Physics, 2020, 152, 164303.	1.2	28
104	TURBOMOLE: Modular program suite for <i>ab initio</i> quantum-chemical and condensed-matter simulations. Journal of Chemical Physics, 2020, 152, 184107.	1.2	616
105	Improved Basis-Set Incompleteness Potentials for Accurate Density-Functional Theory Calculations in Large Systems. Journal of Chemical Theory and Computation, 2020, 16, 4176-4191.	2.3	15
106	DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. Journal of Chemical Physics, 2020, 152, 124101.	1.2	589
107	Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch. Journal of Chemical Theory and Computation, 2020, 16, 4951-4962.	2.3	24
108	Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. Journal of Chemical Theory and Computation, 2020, 16, 2258-2273.	2.3	39
109	A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals. Journal of Chemical Theory and Computation, 2020, 16, 875-891.	2.3	23
110	Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, 2020, , .	0.4	22
111	Ab Initio Extended Hartree–Fock plus Dispersion Method Applied to Dimers with Hundreds of Atoms. Journal of Physical Chemistry A, 2020, 124, 1196-1203.	1.1	11
112	Clamâ€like Cyclotricatechyleneâ€based Capsules: Identifying the Roles of Protonation State and Guests as well as the Drivers for Stability and (Antiâ€)Cooperativity. Chemistry - an Asian Journal, 2020, 15, 1301-1314.	1.7	4
113	Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. Angewandte Chemie - International Edition, 2020, 59, 15665-15673.	7.2	224
114	Extended <scp>tightâ€binding</scp> quantum chemistry methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1493.	6.2	596
115	Sensory Perception of Nonâ€Đeuterated and Deuterated Organic Compounds. Chemistry - A European Journal, 2021, 27, 1046-1056.	1.7	1

#	Article	IF	CITATIONS
116	SAMPL7: Host–guest binding prediction by molecular dynamics and quantum mechanics. Journal of Computer-Aided Molecular Design, 2021, 35, 63-77.	1.3	9
117	ReSCoSS: a flexible quantum chemistry workflow identifying relevant solution conformers of drug-like molecules. Journal of Computer-Aided Molecular Design, 2021, 35, 399-415.	1.3	15
118	Accurate prediction of standard enthalpy of formation based on semiempirical quantum chemistry methods with artificial neural network and molecular descriptors. International Journal of Quantum Chemistry, 2021, 121, e26441.	1.0	13
119	Calculation of absolute molecular entropies and heat capacities made simple. Chemical Science, 2021, 12, 6551-6568.	3.7	83
120	Isomerization and Fragmentation Reactions on the [C ₂ SH ₄] Potential Energy Surface: The Metastable Thione <i>S</i> -Methylide Isomer. Journal of Organic Chemistry, 2021, 86, 2941-2956.	1.7	11
121	Perylene bisimide cyclophanes as receptors for planar transition structures – catalysis of stereoinversions by shape-complementarity and noncovalent π–Ĩ€ interactions. Organic Chemistry Frontiers, 2021, 8, 4408-4418.	2.3	8
122	Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. Journal of Chemical Theory and Computation, 2021, 17, 1701-1714.	2.3	49
123	r2SCAN-3c: A "Swiss army knife―composite electronic-structure method. Journal of Chemical Physics, 2021, 154, 064103.	1.2	290
124	r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications. Journal of Chemical Physics, 2021, 154, 061101.	1.2	70
125	CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions?. Journal of Chemical Theory and Computation, 2021, 17, 2783-2806.	2.3	42
126	Coupled cluster benchmarks of large noncovalent complexes: The L7 dataset as well as DNA–ellipticine and buckycatcher–fullerene. Journal of Chemical Physics, 2021, 154, 154104.	1.2	25
127	Exploring Avenues beyond Revised DSD Functionals: II. Random-Phase Approximation and Scaled MP3 Corrections. Journal of Physical Chemistry A, 2021, 125, 4628-4638.	1.1	12
128	Scalable, Divergent Synthesis of a High Aspect Ratio Carbon Nanobelt. Journal of the American Chemical Society, 2021, 143, 8619-8624.	6.6	43
129	Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. Journal of Chemical Theory and Computation, 2021, 17, 4250-4261.	2.3	186
130	Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nature Communications, 2021, 12, 3927.	5.8	57
131	Fluorescent Bis-Calix[4]arene-Carbazole Conjugates: Synthesis and Inclusion Complexation Studies with Fullerenes C60 and C70. Molecules, 2021, 26, 5000.	1.7	1
132	Simple, reliable, and universal metrics of molecular planarity. Journal of Molecular Modeling, 2021, 27, 263.	0.8	90
133	Performance of small basis set Hartree–Fock methods for modeling non-covalent interactions. Electronic Structure, 2021, 3, 034007.	1.0	6

ARTICLE IF CITATIONS Topology Automated Force-Field Interactions (TAFFI): A Framework for Developing Transferable Force 134 2.5 11 Fields. Journal of Chemical Information and Modeling, 2021, 61, 5013-5027. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory. Accounts of Chemical Research, 2021, 54, 3679-3690. Unraveling weak interactions between fluorinated gases and ionic liquids. Chemical Engineering 136 1.9 12 Science, 2021, 244, 116792. <scp>QM</scp>/<scp>MM</scp> calculations combined with the dimer approach on the static disorder at organicâ€organic interfaces of thinâ€film organic solar cells composed of small molecules. Journal of Physical Organic Chemistry, 2017, 30, e3740. 0.9 What Next for Quantum Mechanics in Structure-Based Drug Discovery?. Methods in Molecular 138 0.4 11 Biology, 2020, 2114, 339-353. Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data. Acta Crystallographica Section D: Structural Biology, 2019, 1.1 75, 368-380. GoodVibes: automated thermochemistry for heterogeneous computational chemistry data. 140 0.8 212 F1000Research, 0, 9, 291. Third-Order Many-Body Expansion of OSV-MP2 Wave Function for Low-Order Scaling Analytical 2.3 Gradient Computation. Journal of Chemical Theory and Computation, 2021, 17, 6841-6860. Computational and data driven molecular material design assisted by low scaling quantum mechanics 142 3.7 16 calculations and machine learning. Chemical Science, 2021, 12, 14987-15006. Perylene Bisimide Cyclophanes as Biaryl Enantiomerization Catalystsâ"€Explorations into π–Ĩ€ Catalysis 143 1.7 and Host–Guest Chirality Transfer. Journal of Organic Chemistry, 2022, 87, 5485-5496. A density-functional benchmark of vibrational free-energy corrections for molecular crystal 144 7 1.2 polymorphism. Journal of Chemical Physics, 2022, 156, 114108. The PM6-FGC Method: Improved Corrections for Amines and Amides. Molecules, 2022, 27, 1678. Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree–Fock Methods Corrected with Atom-Centered Potentials. Journal of Chemical Theory and 146 2.37 Computation, 2022, 18, 2208-2232. Searching for a Reliable Density Functional for Molecule–Environment Interactions, Found B97M-V/def2-mTZVP. Journal of Physical Chemistry A, 2022, 126, 2397-2406. 1.1 Small-Basis Set Density-Functional Theory Methods Corrected with Atom-Centered Potentials. Journal 148 2.34 of Chemical Theory and Computation, 2022, 18, 2913-2930. Computational Modeling of Supramolecular Metallo-organic Cages–Challenges and Opportunities. 149 24 ACS Catalysis, 2022, 12, 5806-5826. Efficient calculation of protein–ligand binding free energy using GFN methods: the power of the 150 1.310 cluster model. Physical Chemistry Chemical Physics, 2022, 24, 14339-14347. The Role of Packing, Dispersion, Electrostatics, and Solvation in Highâ€Affinity Complexes of 151 Cucurbit $[\langle i \rangle n \langle i \rangle]$ urils with Uncharged Polar Guests. Chemistry - A European Journal, 2022, 28, .

#	Article	IF	CITATIONS
152	Analysis of the host–guest complex formation involving bridged hexameric pyridinium–phenyl rings in the HexaCage6+ host in suit[3]ane: insights from dispersion-corrected DFT calculations for a nanometric mechanically interlocked device. Journal of Nanostructure in Chemistry, 0, , .	5.3	2
153	Anion Binding by Fluorescent Ureido-Hexahomotrioxacalix[3]arene Receptors: An NMR, Absorption and Emission Spectroscopic Study. Molecules, 2022, 27, 3247.	1.7	6
154	Optimization of the r ² SCAN-3c Composite Electronic-Structure Method for Use with Slater-Type Orbital Basis Sets. Journal of Physical Chemistry A, 2022, 126, 3826-3838.	1.1	8
155	Current Status of Quantum Chemical Studies of Cyclodextrin Host–Guest Complexes. Molecules, 2022, 27, 3874.	1.7	17
156	How to Catch the Ball: Fullerene Binding to the Corannulene Pincer. Molecules, 2022, 27, 3838.	1.7	2
157	Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C ₆₀ Dimer, DNA–Ellipticine, and HIV–Indinavir. Journal of Physical Chemistry A, 2022, 126, 4326-4341.	1.1	11
158	Semiempirical quantum mechanical methods. , 2023, , 67-92.		1
159	Trajectory surface hopping molecular dynamics on Chemiluminescence of cyclic peroxides. Journal of the Chinese Chemical Society, 2023, 70, 269-286.	0.8	1
160	Bestâ€Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angewandte Chemie, 2022, 134, .	1.6	36
161	Bestâ€Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	168
162	S66x8 noncovalent interactions revisited: new benchmark and performance of composite localized coupled-cluster methods. Physical Chemistry Chemical Physics, 2022, 24, 25555-25570.	1.3	11
163	Halogenation of the 3-position of pyridines through Zincke imine intermediates. Science, 2022, 378, 773-779.	6.0	35
164	A comprehensive benchmark investigation of quantum chemical methods for carbocations. Physical Chemistry Chemical Physics, 2023, 25, 1903-1922.	1.3	3
165	Reliable prediction of association (free) energies of supramolecular complexes with heavy main group elements – the HS13L benchmark set. Physical Chemistry Chemical Physics, 2022, 24, 28831-28843.	1.3	4
166	Efficient Computation of the Interaction Energies of Very Large Non-covalently Bound Complexes. Synlett, 2023, 34, 1135-1146.	1.0	2
167	<i>ï»، الله الله </i> 30: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double- <i>î¶</i> basis set. Journal of Chemical Physics, 2023, 158, .	1.2	18
168	An Imbalance in the Force: The Need for Standardized Benchmarks for Molecular Simulation. Journal of Chemical Information and Modeling, 2023, 63, 412-431.	2.5	4
169	Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. Journal of Chemical Theory and Computation, 2023, 19, 1499-1516.	2.3	8

		(
#	Article	IF	Citations
170	Functional group corrections to the GFN2-xTB and PM6 semiempirical methods for noncovalent interactions in alkanes and alkenes. Journal of Chemical Physics, 2023, 158, .	1.2	1
171	A Buckycatcher in Solution—A Computational Perspective. Molecules, 2023, 28, 2841.	1.7	1
172	The Interplay of Weakly Coordinating Anions and the Mechanical Bond: A Systematic Study of the Explicit Influence of Counterions on the Properties of (Pseudo)rotaxanes. Molecules, 2023, 28, 3077.	1.7	2