Variations in the GLA gene correlate with globotriaosyle globotriaosylsphingosine analog levels in urine and plas

Clinica Chimica Acta 447, 96-104

DOI: 10.1016/j.cca.2015.06.003

Citation Report

#	Article	IF	CITATIONS
1	Tandem Mass Spectrometry Quantitation of Lysoâ€Cb 3 and Six Related Analogs in Plasma for Fabry Disease Patients. Current Protocols in Human Genetics, 2016, 90, 17.23.1-17.23.9.	3. 5	14
2	Relative distribution of Gb ₃ isoforms/analogs in NOD/SCID/Fabry mice tissues determined by tandem mass spectrometry. Bioanalysis, 2016, 8, 1793-1807.	0.6	14
3	Tandem Mass Spectrometry of Sphingolipids. Advances in Clinical Chemistry, 2016, 77, 177-219.	1.8	5
4	Biomarkers associated with clinical manifestations in Fabry disease patients with a late-onset cardiac variant mutation. Clinica Chimica Acta, 2017, 466, 185-193.	0.5	44
5	Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study. Journal of the American Society of Nephrology: JASN, 2017, 28, 1631-1641.	3.0	244
6	A simple method for quantification of plasma globotriaosylsphingosine: Utility for Fabry disease. Molecular Genetics and Metabolism, 2017, 122, 121-125.	0.5	24
8	European expert consensus statement on therapeutic goals in Fabry disease. Molecular Genetics and Metabolism, 2018, 124, 189-203.	0.5	122
9	<p>Multiple phenotypic domains of Fabry disease and their relevance for establishing genotype–phenotype correlations</p> . The Application of Clinical Genetics, 2019, Volume 12, 35-50.	1.4	37
10	Effectiveness of plasma lyso-Gb3 as a biomarker for selecting high-risk patients with Fabry disease from multispecialty clinics for genetic analysis. Genetics in Medicine, 2019, 21, 44-52.	1.1	61
11	Biomarkers in Anderson–Fabry Disease. International Journal of Molecular Sciences, 2020, 21, 8080.	1.8	35
12	A comprehensive testing algorithm for the diagnosis of Fabry disease in males and females. Molecular Genetics and Metabolism, 2020, 130, 209-214.	0.5	26
13	Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clinica Chimica Acta, 2020, 509, 195-209.	0.5	5
14	An expert consensus document on the management of cardiovascular manifestations of Fabry disease. European Journal of Heart Failure, 2020, 22, 1076-1096.	2.9	96
15	Circular RNA-based biomarkers in blood of patients with Fabry disease and related phenotypes. Journal of Medical Genetics, 2021, , jmedgenet-2020-107086.	1.5	2
16	Biomarkers in Fabry Disease. Implications for Clinical Diagnosis and Follow-up. Journal of Clinical Medicine, 2021, 10, 1664.	1.0	12
17	Narrative review on Morbus Fabry: diagnosis and management of cardiac manifestations. Cardiovascular Diagnosis and Therapy, 2021, 11, 650-660.	0.7	5
18	Plasma Globotriaosylsphingosine and α-Galactosidase A Activity as a Combined Screening Biomarker for Fabry Disease in a Large Japanese Cohort. Current Issues in Molecular Biology, 2021, 43, 389-404.	1.0	2
19	Clinical and diagnostic aspects of Fabry disease management: a narrative review with a particular focus on Brazilian experts' perspectives. Journal of Inborn Errors of Metabolism and Screening, 0, 10, .	0.3	1

#	Article	IF	CITATIONS
20	Metabolic Fingerprinting of Fabry Disease: Diagnostic and Prognostic Aspects. Metabolites, 2022, 12, 703.	1.3	4
21	Late-onset and classic phenotypes of Fabry disease in males with the <i>GLA </i> Thr 410Ala mutation. Open Heart, 2023, 10, e002251.	0.9	1