Integrated reactive nitrogen budgets and future trends

Proceedings of the National Academy of Sciences of the Unite 112, 8792-8797

DOI: 10.1073/pnas.1510211112

Citation Report

#	Article	IF	CITATIONS
4	High retention of ¹⁵ Nâ€labeled nitrogen deposition in a nitrogen saturated oldâ€growth tropical forest. Global Change Biology, 2016, 22, 3608-3620.	9.5	53
5	Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 2016, 6, 25088.	3.3	145
6	Denitrification in upland of China: Magnitude and influencing factors. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3060-3071.	3.0	22
7	International food trade reduces environmental effects of nitrogen pollution in China. Environmental Science and Pollution Research, 2016, 23, 17370-17379.	5.3	10
8	Modeling forest/agricultural and residential nitrogen budgets and riverine export dynamics in catchments with contrasting anthropogenic impacts in eastern China between 1980–2010. Agriculture, Ecosystems and Environment, 2016, 221, 145-155.	5.3	15
9	Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields. Science of the Total Environment, 2016, 565, 420-426.	8.0	64
10	Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis. Field Crops Research, 2016, 192, 118-125.	5.1	109
11	Reducing China's fertilizer use by increasing farm size. Global Environmental Change, 2016, 41, 26-32.	7.8	257
12	PM2.5 pollution is substantially affected by ammonia emissions in China. Environmental Pollution, 2016, 218, 86-94.	7.5	183
13	Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agriculture, Ecosystems and Environment, 2016, 231, 24-33.	5.3	56
14	A Network Flow Analysis of the Nitrogen Metabolism in Beijing, China. Environmental Science & Technology, 2016, 50, 8558-8567.	10.0	30
15	The social costs of nitrogen. Science Advances, 2016, 2, e1600219.	10.3	118
16	Quantitative evaluation of reactive nitrogen emissions with urbanization: a case study in Beijing megacity, China. Environmental Science and Pollution Research, 2016, 23, 17689-17701.	5.3	18
17	Beef and coal are key drivers of Australia's high nitrogen footprint. Scientific Reports, 2016, 6, 39644.	3.3	51
18	A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Global Environmental Change, 2016, 36, 139-152.	7.8	202
19	The composition, seasonal variation, and potential sources of the atmospheric wet sulfur (S) and nitrogen (N) deposition in the southwest of China. Environmental Science and Pollution Research, 2016, 23, 6363-6375.	5.3	31
20	Changing patterns of urban-rural nutrient flows in China: driving forces and options. Science Bulletin, 2017, 62, 83-91.	9.0	14
21	Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Regional Environmental Change, 2017, 17, 1217-1227.	2.9	67

#	Article	IF	CITATIONS
22	Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment, 2017, 153, 32-40.	4.1	152
23	Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crops Research, 2017, 205, 135-146.	5.1	65
24	Atmospheric Nitrogen Emission, Deposition, and Air Quality Impacts in China: an Overview. Current Pollution Reports, 2017, 3, 65-77.	6.6	61
25	Dry Particulate Nitrate Deposition in China. Environmental Science & Technology, 2017, 51, 5572-5581.	10.0	24
26	How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance?. Environmental Science & Technology, 2017, 51, 7450-7457.	10.0	297
27	A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain. Scientific Reports, 2017, 7, 43853.	3.3	45
28	Model-Based Analysis of the Long-Term Effects of Fertilization Management on Cropland Soil Acidification. Environmental Science & amp; Technology, 2017, 51, 3843-3851.	10.0	115
29	Duckweed (Spirodela polyrhiza) as green manure for increasing yield and reducing nitrogen loss in rice production. Field Crops Research, 2017, 214, 273-282.	5.1	46
30	Ammonia Emissions May Be Substantially Underestimated in China. Environmental Science & Technology, 2017, 51, 12089-12096.	10.0	160
31	Land use mediates riverine nitrogen export under the dominant influence of human activities. Environmental Research Letters, 2017, 12, 094018.	5.2	21
32	Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ. Atmospheric Environment, 2017, 166, 47-61.	4.1	26
33	Nitrification inhibitor's effect on mitigating N 2 O emissions was weakened by urease inhibitor in calcareous soils. Atmospheric Environment, 2017, 166, 142-150.	4.1	34
34	Mitigating ammonia emission from agriculture reduces PM2.5 pollution in the Hai River Basin in China. Science of the Total Environment, 2017, 609, 1152-1160.	8.0	57
35	Reduction in nitrogen fertilizer use results in increased rice yields and improved environmental protection. International Journal of Agricultural Sustainability, 2017, 15, 681-692.	3.5	23
36	Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios. Science of the Total Environment, 2017, 607-608, 78-86.	8.0	22
37	Can knowledgeâ€based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A metaâ€analysis. Global Change Biology, 2017, 23, 1917-1925.	9.5	320
38	Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio, 2017, 46, 129-142.	5.5	102
39	Anthropogenic emission inventories in China: a review. National Science Review, 2017, 4, 834-866.	9.5	580

#	Article	IF	CITATIONS
40	Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. Journal of Integrative Agriculture, 2017, 16, 2848-2862.	3.5	142
41	Tracing the fate of nitrogen with 15N isotope considering suitable fertilizer rate related to yield and environment impacts in paddy field. Paddy and Water Environment, 2017, 15, 943-949.	1.8	12
42	Concepts for Considerations in the Design of an Indian Integrated Nitrogen Assessment. , 2017, , 29-43.		0
43	Assessment of Atmospheric Emissions and Depositions of Major Nr Species in Indian Region. , 2017, , 427-444.		7
44	How China's nitrogen footprint of food has changed from 1961 to 2010. Environmental Research Letters, 2017, 12, 104006.	5.2	44
45	Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability. Sustainability, 2017, 9, 1905.	3.2	26
46	Hotspots for Nitrogen and Phosphorus Losses from Food Production in China: A County-Scale Analysis. Environmental Science & Technology, 2018, 52, 5782-5791.	10.0	129
47	The Urgent Need to Re-engineer Nitrogen-Efficient Food Production for the Planet. , 2018, , 35-69.		14
48	Managing Water, Soil and Waste Resources to Achieve Sustainable Development Goals. , 2018, , .		6
49	Responses of soil organic carbon turnover to nitrogen deposition are associated with nitrogen input rates: Derived from soil 14C evidences. Environmental Pollution, 2018, 238, 500-507.	7.5	10
50	A historical view of nitrogen metabolism and its driving forces in China's chemical industry: Implications for cleaner production policy and practice. Journal of Cleaner Production, 2018, 187, 308-317.	9.3	14
51	Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. Journal of Environmental Management, 2018, 210, 171-179.	7.8	48
52	From Production to Consumption: A Coupled Human–Environmental Nitrogen Flow Analysis in China. Environmental Science & Technology, 2018, 52, 2025-2035.	10.0	41
53	Afforestation neutralizes soil pH. Nature Communications, 2018, 9, 520.	12.8	140
54	Incorporation of corn straw biochar inhibited the re-acidification of four acidic soils derived from different parent materials. Environmental Science and Pollution Research, 2018, 25, 9662-9672.	5.3	39
55	An approach to identify the spatiotemporal patterns of nitrogen flows in food production and consumption systems within watersheds. Science of the Total Environment, 2018, 624, 1004-1012.	8.0	20
56	Cleaning up nitrogen pollution may reduce future carbon sinks. Global Environmental Change, 2018, 48, 56-66.	7.8	33
57	Decision support system for management of reactive nitrogen flows in wastewater system. Environmental Science and Pollution Research, 2018, 25, 8644-8653.	5.3	4

#	Article	IF	CITATIONS
58	Effects of wheat straw addition on dynamics and fate of nitrogen applied to paddy soils. Soil and Tillage Research, 2018, 178, 92-98.	5.6	64
59	Detection and attribution of nitrogen runoff trend in China's croplands. Environmental Pollution, 2018, 234, 270-278.	7.5	47
60	Nutrient-derived environmental impacts in Chinese agriculture during 1978–2015. Journal of Environmental Management, 2018, 217, 762-774.	7.8	38
61	A modification of the Regional Nutrient Management model (ReNuMa) to identify long-term changes in riverine nitrogen sources. Journal of Hydrology, 2018, 561, 31-42.	5.4	21
62	Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010. Science of the Total Environment, 2018, 618, 1497-1505.	8.0	82
63	Driving forces and impacts of food system nitrogen flows in China, 1990 to 2012. Science of the Total Environment, 2018, 610-611, 430-441.	8.0	42
64	Dry Deposition of Reactive Nitrogen From Satellite Observations of Ammonia and Nitrogen Dioxide Over North America. Geophysical Research Letters, 2018, 45, 1157-1166.	4.0	62
65	Effects of Atmospheric Dry Deposition on External Nitrogen Supply and New Production in the Northern South China Sea. Atmosphere, 2018, 9, 386.	2.3	11
66	Green Manuring Effect on Changes of Soil Nitrogen Fractions, Maize Growth, and Nutrient Uptake. Agronomy, 2018, 8, 261.	3.0	23
67	Summer fallow increases loss of residual nitrogen fertilizer in dryland of the Loess Plateau: a 15N-labeled method. Environmental Science and Pollution Research, 2018, 25, 34155-34163.	5.3	7
68	Estimating soil nitrogen balance at regional scale in China's croplands from 1984 to 2014. Agricultural Systems, 2018, 167, 125-135.	6.1	54
69	High performance sorption and desorption behaviours at high working temperatures of ammonia gas in a cobalt-substituted Prussian blue analogue. Chemical Communications, 2018, 54, 11961-11964.	4.1	22
70	Atmospheric Nitrogen Deposition Associated with the Eutrophication of Taihu Lake. Journal of Chemistry, 2018, 2018, 1-10.	1.9	18
71	Comprehensive environmental impacts of fertilizer application vary among different crops: Implications for the adjustment of agricultural structure aimed to reduce fertilizer use. Agricultural Water Management, 2018, 210, 1-10.	5.6	44
72	China's livestock transition: Driving forces, impacts, and consequences. Science Advances, 2018, 4, eaar8534.	10.3	253
73	Transcriptome Analysis of Two Rice Varieties Contrasting for Nitrogen Use Efficiency under Chronic N Starvation Reveals Differences in Chloroplast and Starch Metabolism-Related Genes. Genes, 2018, 9, 206.	2.4	65
74	The trends of aquacultural nitrogen budget and its environmental implications in China. Scientific Reports, 2018, 8, 10877.	3.3	47
75	Evaluating agricultural grey water footprint with modeled nitrogen emission data. Resources, Conservation and Recycling, 2018, 138, 64-73.	10.8	47

#	Article	IF	CITATIONS
76	Nitrogen budget and its environmental loading in an urban ecosystem with the rapid urbanisation of China. Chemistry and Ecology, 2018, 34, 697-712.	1.6	6
77	Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology, 2018, 24, 5590-5606.	9.5	81
78	National-scale evaluation of phosphorus emissions and the related water-quality risk hotspots accompanied by increased agricultural production. Agriculture, Ecosystems and Environment, 2018, 267, 33-41.	5.3	13
79	Surfactant-free electrochemical synthesis of metallic nanoparticles <i>via</i> stochastic collisions of aqueous nanodroplet reactors. Chemical Communications, 2018, 54, 10052-10055.	4.1	47
80	Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biology and Biochemistry, 2018, 124, 105-115.	8.8	251
81	Assessing impacts of rainfall intensity and slope on dissolved and adsorbed nitrogen loss under bare loessial soil by simulated rainfalls. Catena, 2018, 170, 51-63.	5.0	48
82	Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7010-7015.	7.1	455
83	Effects of plant diversity on greenhouse gas emissions in microcosms simulating vertical constructed wetlands with high ammonium loading. Journal of Environmental Sciences, 2019, 77, 229-237.	6.1	22
84	Application of gas cyclone–liquid jet absorption separator for purification of tail gas containing ammonia. Environmental Technology (United Kingdom), 2019, 40, 3392-3402.	2.2	8
85	Transforming nitrogen management of the urban food system in a food-sink city. Journal of Environmental Management, 2019, 249, 109180.	7.8	15
86	The environmental and socioeconomic trade-offs of importing crops to meet domestic food demand in China. Environmental Research Letters, 2019, 14, 094021.	5.2	18
87	Enhanced nitrogen imbalances in agroecosystems driven by changing cropping systems in a coastal area of eastern China: from field to watershed scale. Environmental Sciences: Processes and Impacts, 2019, 21, 1532-1548.	3.5	3
88	Comprehensive Environmental Assessment of Potato as Staple Food Policy in China. International Journal of Environmental Research and Public Health, 2019, 16, 2700.	2.6	18
89	Impacts of nitrogen deposition on terrestrial plant diversity: a meta-analysis in China. Journal of Plant Ecology, 2019, 12, 1025-1033.	2.3	17
90	Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD- and phoC-harboring functional microbial populations. Soil Biology and Biochemistry, 2019, 139, 107632.	8.8	110
91	Reducing PM2.5 and secondary inorganic aerosols by agricultural ammonia emission mitigation within the Beijing-Tianjin-Hebei region, China. Atmospheric Environment, 2019, 219, 116989.	4.1	21
92	Characteristics, sources and environmental implications of atmospheric wet nitrogen and sulfur deposition in Yangtze River Delta. Atmospheric Environment, 2019, 219, 116904.	4.1	26
93	Abundant NH ₃ in China Enhances Atmospheric HONO Production by Promoting the Heterogeneous Reaction of SO ₂ with NO ₂ . Environmental Science & amp; Technology, 2019, 53, 14339-14347.	10.0	73

#	Article	IF	CITATIONS
94	Reducing Ammonia Emissions from Dairy Cattle Production via Cost-Effective Manure Management Techniques in China. Environmental Science & Technology, 2019, 53, 11840-11848.	10.0	31
95	Understanding the biochar's role in ameliorating soil acidity. Journal of Integrative Agriculture, 2019, 18, 1508-1517.	3.5	65
96	Exploring management strategies to improve maize yield and nitrogen use efficiency in northeast China using the DNDC and DSSAT models. Computers and Electronics in Agriculture, 2019, 166, 104988.	7.7	45
97	Recent patterns of anthropogenic reactive nitrogen emissions with urbanization in China: Dynamics, major problems, and potential solutions. Science of the Total Environment, 2019, 656, 1071-1081.	8.0	35
98	Rebuilding the linkage between livestock and cropland to mitigate agricultural pollution in China. Resources, Conservation and Recycling, 2019, 144, 65-73.	10.8	124
99	Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. Journal of Cleaner Production, 2019, 225, 984-994.	9.3	107
100	Nitrogen Surplus Benchmarks for Controlling N Pollution in the Main Cropping Systems of China. Environmental Science & Technology, 2019, 53, 6678-6687.	10.0	125
101	Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes. Nature Communications, 2019, 10, 2627.	12.8	40
102	Effects of urbanization on plant phosphorus availability in broadleaf and needleleaf subtropical forests. Science of the Total Environment, 2019, 684, 50-57.	8.0	8
103	Effect of full substituting compound fertilizer with different organic manure on reactive nitrogen losses and crop productivity in intensive vegetable production system of China. Journal of Environmental Management, 2019, 243, 381-384.	7.8	30
104	Driving forces of nitrogen flows and nitrogen use efficiency of food systems in seven Chinese cities, 1990 to 2015. Science of the Total Environment, 2019, 676, 144-154.	8.0	24
105	National assessment of spatiotemporal loss in agricultural pesticides and related potential exposure risks to water quality in China. Science of the Total Environment, 2019, 677, 98-107.	8.0	26
106	Seasonality in river export of nitrogen: A modelling approach for the Yangtze River. Science of the Total Environment, 2019, 671, 1282-1292.	8.0	52
107	Sulfur deposition still contributes to forest soil acidification in the Pearl River Delta, South China, despite the control of sulfur dioxide emission since 2001. Environmental Science and Pollution Research, 2019, 26, 12928-12939.	5.3	11
108	Particleâ€attached microorganism oxidation of ammonia in a hypereutrophic urban river. Journal of Basic Microbiology, 2019, 59, 511-524.	3.3	9
109	A Measurementâ€Model Fusion Approach for Improved Wet Deposition Maps and Trends. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4237-4251.	3.3	25
110	Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat. Plant Physiology and Biochemistry, 2019, 139, 342-349.	5.8	89
111	Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production systems. Science of the Total Environment, 2019, 670, 1184-1189	8.0	42

#	Article	IF	CITATIONS
112	Changes of urban nitrogen metabolism in the Beijing megacity of China, 2000–2016. Science of the Total Environment, 2019, 666, 1048-1057.	8.0	18
113	Urban-rural nitrogen emission from household food consumption in China: spatial pattern and dynamics analysis. International Journal of Sustainable Development and World Ecology, 2019, 26, 415-427.	5.9	2
114	Effects of nitrogen deposition and liming on the early regeneration of two dominant tree species in a subtropical forest of China. Ecoscience, 2019, 26, 269-277.	1.4	3
115	N and P runoff losses in China's vegetable production systems: Loss characteristics, impact, and management practices. Science of the Total Environment, 2019, 663, 971-979.	8.0	74
116	Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction. Science of the Total Environment, 2019, 664, 865-873.	8.0	68
117	Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 2019, 665, 739-751.	8.0	55
118	The impact of farm size on agricultural sustainability. Journal of Cleaner Production, 2019, 220, 357-367.	9.3	191
119	Farm size and fertilizer sustainable use: An empirical study in Jiangsu, China. Journal of Integrative Agriculture, 2019, 18, 2898-2909.	3.5	59
120	Mechanisms for increasing soil resistance to acidification by long-term manure application. Soil and Tillage Research, 2019, 185, 77-84.	5.6	87
121	The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environmental Pollution, 2019, 246, 559-565.	7.5	120
122	Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environmental Science and Pollution Research, 2019, 26, 464-472.	5.3	41
123	Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil Critical Zone. Geoderma, 2019, 337, 1175-1185.	5.1	45
124	Exploring Future Food Provision Scenarios for China. Environmental Science & Technology, 2019, 53, 1385-1393.	10.0	62
125	Toward a Generic Analytical Framework for Sustainable Nitrogen Management: Application for China. Environmental Science & Technology, 2019, 53, 1109-1118.	10.0	27
126	Aggregate risk of reactive nitrogen under anthropogenic disturbance in the Pearl River Delta urban agglomeration. Journal of Cleaner Production, 2019, 211, 490-502.	9.3	30
127	Bio-based elastic polyurethane for controlled-release urea fertilizer: Fabrication, properties, swelling and nitrogen release characteristics. Journal of Cleaner Production, 2019, 209, 528-537.	9.3	96
128	Reduction in nitrogen fertilizer applications by the use of polymerâ€coated urea: effect on maize yields and environmental impacts of nitrogen losses. Journal of the Science of Food and Agriculture, 2019, 99, 2259-2266.	3.5	19
129	Enhancement of rhizosphere citric acid and decrease of NO3â^'/NH4+ ratio by root interactions facilitate N fixation and transfer. Plant and Soil, 2020, 447, 169-182.	3.7	35

ARTICLE IF CITATIONS 130 Atmospheric Reactive Nitrogen in China., 2020,,. 2 Anthropogenic reactive nitrogen releases and gray water footprints in urban water pollution evaluation: the case of Shenzhen City, China. Environment, Development and Sustainability, 2020, 22, 5.0 6343-6361. Net nitrogen mineralization delay due to microbial regulation following the addition of granular 132 5.110 organic fertilizer. Geoderma, 2020, 359, 113994. Optimization of management strategies for reducing nitrogen loading in China. Science of the Total Environment, 2020, 703, 134620. Energy efficiency, productivity and profitability of rice farming using Sesbania as green 134 2.2 11 manure-cum-cover crop. Nutrient Cycling in Agroecosystems, 2020, 116, 83-101. Potential transition in the effects of atmospheric nitrogen deposition in China. Environmental Pollution, 2020, 258, 113739. Simultaneous quantification of N₂, NH₃ and N₂O emissions from 136 a flooded paddy field under different N fertilization regimes. Global Change Biology, 2020, 26, 9.5 47 2292-2303. Nitrogen storage in China's terrestrial ecosystems. Science of the Total Environment, 2020, 709, 8.0 136201. Spatio-temporal dynamics of nitrogen use efficiencies in the Chinese food system, 1990–2017. Science 138 8.0 14 of the Total Environment, 2020, 717, 134861. Sustainability assessment of the water-energy-food nexus in Jiangsu Province, China. Habitat 5.8 International, 2020, 95, 102094. The hidden costs of desert development. Ambio, 2020, 49, 1412-1422. 140 5.58 Unique adsorption and desorption behaviour of ammonia gas at heating temperature using the 2.4 Prussian blue analogue Zn3 [Co(CN)6]2. Inorganica Chimica Acta, 2020, 501, 119273. Nitrogen flow patterns in the food system among cities within urban agglomeration: A case study of 142 8.0 19 the Pearl River Delta region. Science of the Total Environment, 2020, 703, 135506. Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 143 3.4 39 20190324. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective 144 131 14.0 agricultural nitrogen management. Nature Food, 2020, 1, 648-658. Deep Nitrate Accumulation in a Highly Weathered Subtropical Critical Zone Depends on the Regolith 145 Structure and Planting Year. Environmental Science & amp; Technology, 2020, 54, 13739-13747. Towards an integrated nutrient management in crop species to improve nitrogen and phosphorus use 146 9.3 20 efficiencies of Chaohu Watershed. Journal of Cleaner Production, 2020, 272, 122765. Fall of oxidized while rise of reduced reactive nitrogen deposition in China. Journal of Cleaner Production, 2020, 272, 122875.

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
140	A high resolution map of reactive nitrogen inputs to china. Scientific Data, 2020, 7, 373.		0.0	12
149	Transboundary Environmental Footprints of the Urban Food Supply Chain and Mitigation Strate Environmental Science & Technology, 2020, 54, 10460-10471.	gies.	10.0	28
150	Substitution of Mineral Fertilizer with Organic Fertilizer in Maize Systems: A Meta-Analysis of Reduced Nitrogen and Carbon Emissions. Agronomy, 2020, 10, 1149.		3.0	41
151	National assessment of nitrogen fertilizers fate and related environmental impacts of multiple pathways in China. Journal of Cleaner Production, 2020, 277, 123519.		9.3	45
152	Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: In from stable isotope tracing and high-frequency nitrate sensing. Water Research, 2020, 186, 11	sights 6388.	11.3	66
153	Calculation of the throwing angle of a fertilizer centrifugal device as functions of random coordinates of feeding point. E3S Web of Conferences, 2020, 175, 05016.		0.5	3
154	Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement o Nature Communications, 2020, 11, 4357.	costs.	12.8	95
155	N2O and NO Emissions as Affected by the Continuous Combined Application of Organic and M Fertilizer to a Soil on the North China Plain. Agronomy, 2020, 10, 1965.	ineral N	3.0	11
156	The importance of coal combustion and heterogeneous reaction for atmospheric nitrate polluti a cold metropolis in China: Insights from isotope fractionation and Bayesian mixing model. Atmospheric Environment, 2020, 243, 117730.	on in	4.1	11
157	Sustainable agriwaste management at farm level through self-reliant farming system. Waste Management and Research, 2020, 38, 753-761.		3.9	0
158	Potential environmental benefits of substituting nitrogen and phosphorus fertilizer with usable straw in China during 2000–2017. Journal of Cleaner Production, 2020, 267, 122125.	crop	9.3	30
159	Enhanced atmospheric nitrogen deposition at a rural site in northwest China from 2011 to 201 Atmospheric Research, 2020, 245, 105071.	8.	4.1	9
160	Overcoming socioeconomic barriers to reduce agricultural ammonia emission in China. Environmental Science and Pollution Research, 2020, 27, 25813-25817.		5.3	17
161	Positive impact of a reducing agent on autotrophic nitrogen removal process and nexus of nitro oxide emission in an anaerobic downflow hanging sponge reactor. Chemosphere, 2020, 256, 12	ous 26952.	8.2	7
162	Ammonia volatilization as the major nitrogen loss pathway in dryland agro-ecosystems. Environmental Pollution, 2020, 265, 114862.		7.5	43
163	Environmental losses and driving forces of nitrogen flow in two agricultural towns of Hebei province during 1997–2017. Environmental Pollution, 2020, 264, 114636.		7.5	16
164	Anthropogenic intensification of urban reactive nitrogen inputs and potential to mitigate nitrog pollution in Guangzhou, China. Resources, Conservation and Recycling, 2020, 159, 104847.	çen	10.8	9
165	Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Advances in Agronomy, 2020, , 39-116.		5.2	67

#	Article	IF	CITATIONS
166	Modeling nitrogen flow in a coastal city—A case study of Xiamen in 2015. Science of the Total Environment, 2020, 735, 139294.	8.0	11
167	Host-specific and tissue-dependent orchestration of microbiome community structure in traditional rice paddy ecosystems. Plant and Soil, 2020, 452, 379-395.	3.7	14
168	Spatial Variation of Reactive Nitrogen Emissions From China's Croplands Codetermined by Regional Urbanization and Its Feedback to Global Climate Change. Geophysical Research Letters, 2020, 47, e2019GL086551.	4.0	18
169	Assessing the Systematic Effects of the Concentration of Nitrogen Supplied to Dual-Root Systems of Soybean Plants on Nodulation and Nitrogen Fixation. Agronomy, 2020, 10, 763.	3.0	13
170	Different characteristics of greenhouse gases and ammonia emissions from conventional stored dairy cattle and swine manure in China. Science of the Total Environment, 2020, 722, 137693.	8.0	36
171	Aggravation of reactive nitrogen flow driven by human production and consumption in Guangzhou City China. Nature Communications, 2020, 11, 1209.	12.8	43
172	Strategies to mitigate nitrate leaching in vegetable production in China: a meta-analysis. Environmental Science and Pollution Research, 2020, 27, 18382-18391.	5.3	20
173	A 4-year field measurement of N2O emissions from a maize-wheat rotation system as influenced by partial organic substitution for synthetic fertilizer. Journal of Environmental Management, 2020, 263, 110384.	7.8	24
174	Dramatic loss of inorganic carbon by nitrogenâ€induced soil acidification in Chinese croplands. Global Change Biology, 2020, 26, 3738-3751.	9.5	200
175	Effect of Long-Term Nitrogen Addition on Wheat Yield, Nitrogen Use Efficiency, and Residual Soil Nitrate in a Semiarid Area of the Loess Plateau of China. Sustainability, 2020, 12, 1735.	3.2	34
176	Challenges for Global Sustainable Nitrogen Management in Agricultural Systems. Journal of Agricultural and Food Chemistry, 2020, 68, 3354-3361.	5.2	46
177	Effects of One-Year Simulated Nitrogen and Acid Deposition on Soil Respiration in a Subtropical Plantation in China. Forests, 2020, 11, 235.	2.1	16
178	The Impact of Agricultural Production and Policy on Water Quality during the Dry Year 2018, a Case Study from Germany. Water (Switzerland), 2020, 12, 1519.	2.7	20
179	Patterns change and determinants of urban nitrogen metabolism in Chinese megacities. Journal of Cleaner Production, 2020, 264, 121597.	9.3	7
180	Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Science of the Total Environment, 2020, 741, 140488.	8.0	44
181	Integrating ecological and socioeconomic networks using nitrogen metabolism in the Yellow River Delta, China. Resources, Conservation and Recycling, 2020, 162, 105012.	10.8	13
182	The reactive nitrogen loss and GHG emissions from a maize system after a long-term livestock manure incorporation in the North China Plain. Science of the Total Environment, 2020, 720, 137558.	8.0	39
183	Atmospheric nitrogen deposition in Yangtze River Delta: insights gained from the nitrogen content and isotopic composition of the moss Haplocladium microphyllum. Atmospheric and Oceanic Science Letters, 2020, 13, 202-209.	1.3	4

#	Article	IF	CITATIONS
184	Optimizing rates and sources of nutrient input to mitigate nitrogen, phosphorus, and carbon losses from rice paddies. Journal of Cleaner Production, 2020, 256, 120603.	9.3	41
185	Temporal and spatial variations of net anthropogenic nitrogen inputs (NANI) in the Pearl River Basin of China from 1986 to 2015. PLoS ONE, 2020, 15, e0228683.	2.5	26
186	Effects of enhanced efficiency nitrogen fertilizers on NH3 losses in a calcareous fluvo-aquic soil: a laboratory study. Journal of Soils and Sediments, 2020, 20, 1887-1896.	3.0	4
187	Impact of human activities on phosphorus flows on an early eutrophic plateau: A case study in Southwest China. Science of the Total Environment, 2020, 714, 136851.	8.0	19
188	Corn Yield and Phosphorus Use Efficiency Response to Phosphorus Rates Associated With Plant Growth Promoting Bacteria. Frontiers in Environmental Science, 2020, 8, .	3.3	54
189	Characterization of the Global Sources of Atmospheric Ammonia from Agricultural Soils. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031684.	3.3	18
190	Performance adjustable porous polylactic acidâ€based membranes for controlled release fertilizers. Journal of Applied Polymer Science, 2021, 138, 49649.	2.6	9
191	Elevated CO2 concentration modifies the effects of organic fertilizer substitution on rice yield and soil ARGs. Science of the Total Environment, 2021, 754, 141898.	8.0	12
192	Anthropogenic nitrogen and phosphorus inputs in a new perspective: Environmental loads from the mega economic zone and city clusters. Journal of Cleaner Production, 2021, 283, 124589.	9.3	15
193	Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China. Environmental Science and Pollution Research, 2021, 28, 15350-15360.	5.3	3
194	Contribution of atmospheric N deposition to riverine N load in a forest-dominated watershed through field monitoring for three years. Chemosphere, 2021, 266, 128951.	8.2	7
195	Estimation of nitrogen runoff loss from croplands in the Yangtze River Basin: A meta-analysis. Environmental Pollution, 2021, 272, 116001.	7.5	31
196	Nitrogen flow characteristics of solid waste in China. Ecotoxicology and Environmental Safety, 2021, 208, 111596.	6.0	12
197	Nitrogen emissions in Latin America: A conceptual framework of drivers, impacts, and policy responses. Environmental Development, 2021, 38, 100605.	4.1	9
198	Identifying key pathways in manure and sewage management of dairy farming based on a quantitative typology: A case study in China. Science of the Total Environment, 2021, 760, 143326.	8.0	12
199	An improved method used for evaluating potential environmental pollution risk based on spatial distribution and density of farms. Environmental Science and Pollution Research, 2021, 28, 10564-10575.	5.3	7
200	Decoupling livestock and crop production at the household level in China. Nature Sustainability, 2021, 4, 48-55.	23.7	126
201	Research Progress on the Effect of Nitrogen Addition on Main Functional Characters of Early Spring Herbaceous Plants. International Journal of Ecology, 2021, 10, 129-137.	0.1	1

#	Article	IF	CITATIONS
202	Uniform fertilization method based on differential pressure tank with optimal fertilizer concentration and constant fertigation flux. Irrigation Science, 2021, 39, 347-362.	2.8	4
203	Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability, 2021, 13, 2400.	3.2	81
204	Hydromorphology of coastal zone and structure of watershed agro-food system are main determinants of coastal eutrophication. Environmental Research Letters, 2021, 16, 023005.	5.2	20
205	Disruption of the global nitrogen cycle: A grand challenge for the twenty-first century. Ambio, 2021, 50, 759-763.	5.5	15
206	Modeling Ammonia and Its Uptake by Secondary Organic Aerosol Over China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034109.	3.3	15
207	Soil Nitrous Oxide Emissions by Atmospheric Nitrogen Deposition over Global Agricultural Systems. Environmental Science & Technology, 2021, 55, 4420-4429.	10.0	39
208	The nitrogen and carbon footprints of vegetable production in the subtropical high elevation mountain region. Ecological Indicators, 2021, 122, 107298.	6.3	10
209	Effect of substituting nitrogen fertilizer with nitrogen-fixing cyanobacteria on yield in a double-rice cropping system in southern China. Journal of Applied Phycology, 2021, 33, 2221-2232.	2.8	12
210	Changes in the nitrogen footprint of green tea consumption in Japan from 1965 to 2016. Environmental Science and Pollution Research, 2021, 28, 44936-44948.	5.3	9
211	Carbon and nitrogen footprints accounting of peanut and peanut oil production in China. Journal of Cleaner Production, 2021, 291, 125964.	9.3	29
212	Producing more potatoes with lower inputs and greenhouse gases emissions by regionalized cooperation in China. Journal of Cleaner Production, 2021, 299, 126883.	9.3	19
213	The land carrying capacity and environmental risk assessment of livestock and poultry breeding considering crop planting. Environmental Science and Pollution Research, 2021, 28, 51356-51368.	5.3	10
214	The effects of the depth of fertilization on losses of nitrogen and phosphorus and soil fertility in the red paddy soil of China. PeerJ, 2021, 9, e11347.	2.0	3
215	Biological nitrogen fixation of Chinese Milk Vetch (Astragalus sinicus L.) as affected by exogenous carbon and nitrogen input. Symbiosis, 2021, 85, 69-77.	2.3	3
216	Nitrogen flows associated with food production and consumption system of Shanghai. Environmental Pollution, 2021, 279, 116906.	7.5	12
217	15N natural abundance of vehicular exhaust ammonia, quantified by active sampling techniques. Atmospheric Environment, 2021, 255, 118430.	4.1	11
218	Structure of rhizospheric microbial community and N cycling functional gene shifts with reduced N input in sugarcane-soybean intercropping in South China. Agriculture, Ecosystems and Environment, 2021, 314, 107413.	5.3	19
219	China's food loss and waste embodies increasing environmental impacts. Nature Food, 2021, 2, 519-528	14.0	142

#	Article	IF	CITATIONS
220	Entwining ecosystem services, Land Use Change and human well-being by nitrogen flows. Journal of Cleaner Production, 2021, 308, 127442.	9.3	15
221	Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China. Land, 2021, 10, 858.	2.9	27
222	Linking Dietary Patterns to Environmental Degradation: The Spatiotemporal Analysis of Rural Food Nitrogen Footprints in China. Frontiers in Nutrition, 2021, 8, 717640.	3.7	4
223	Historical trends of riverine nitrogen loading from land to the East China Sea: a model-based evaluation. Environmental Research Communications, 2021, 3, 085005.	2.3	1
224	Long-term straw return with N addition alters reactive nitrogen runoff loss and the bacterial community during rice growth stages. Journal of Environmental Management, 2021, 292, 112772.	7.8	14
225	Controlled release urea improves rice production and reduces environmental pollution: a research based on meta-analysis and machine learning. Environmental Science and Pollution Research, 2022, 29, 3587-3599.	5.3	24
226	Runoff Losses in Nitrogen and Phosphorus From Paddy and Maize Cropping Systems: A Field Study in Dongjiang Basin, South China. Frontiers in Plant Science, 2021, 12, 675121.	3.6	12
227	Reconciling regional nitrogen boundaries with global food security. Nature Food, 2021, 2, 700-711.	14.0	51
228	Response of soil bacterial communities, antibiotic residuals, and crop yields to organic fertilizer substitution in North China under wheat–maize rotation. Science of the Total Environment, 2021, 785, 147248.	8.0	31
229	Mapping multiple water pollutants across China using the grey water footprint. Science of the Total Environment, 2021, 785, 147255.	8.0	34
230	Optimization of cultivated land pattern for achieving cultivated land system security: A case study in Heilongjiang Province, China. Land Use Policy, 2021, 108, 105589.	5.6	53
231	Manure application accumulates more nitrogen in paddy soils than rice straw but less from fungal necromass. Agriculture, Ecosystems and Environment, 2021, 319, 107575.	5.3	26
232	Reforming smallholder farms to mitigate agricultural pollution. Environmental Science and Pollution Research, 2022, 29, 13869-13880.	5.3	17
233	Intensive vegetable production results in high nitrate accumulation in deep soil profiles in China. Environmental Pollution, 2021, 287, 117598.	7.5	20
234	Nitrogen budgets in Japan from 2000 to 2015: Decreasing trend of nitrogen loss to the environment and the challenge to further reduce nitrogen waste. Environmental Pollution, 2021, 286, 117559.	7.5	26
235	Uncertainty of nitrogen budget in China. Environmental Pollution, 2021, 286, 117216.	7.5	11
236	Long-term dynamics of nitrogen flow in a typical agricultural and pastoral region on the Qinghai-Tibet Plateau and its optimization strategy. Environmental Pollution, 2021, 288, 117684.	7.5	9
237	Human-caused increases in reactive nitrogen burial in sediment of global lakes. Innovation(China), 2021, 2, 100158.	9.1	6

#	Article	IF	Citations
238	An empirical model to estimate ammonia emission from cropland fertilization in China. Environmental Pollution, 2021, 288, 117982.	7.5	22
239	Nitrogen budgets of contrasting crop-livestock systems in China. Environmental Pollution, 2021, 288, 117633.	7.5	12
240	Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China. Environmental Pollution, 2021, 290, 118091.	7.5	17
241	High atmospheric wet nitrogen deposition and major sources in two cities of Yangtze River Delta: Combustion-related NH3 and non-fossil fuel NOx. Science of the Total Environment, 2022, 806, 150502.	8.0	14
242	Sources of atmospheric pollution in India. , 2022, , 1-37.		6
243	Biochar derived from spent mushroom substrate reduced N2O emissions with lower water content but increased CH4 emissions under flooded condition from fertilized soils in Camellia oleifera plantations. Chemosphere, 2022, 287, 132110.	8.2	21
244	An Overview of Atmospheric Reactive Nitrogen in China from a Global Perspective. , 2020, , 1-10.		3
245	Effects of reducing chemical fertilizer combined with organic amendments on ammonia-oxidizing bacteria and archaea communities in a low-fertility red paddy field. Environmental Science and Pollution Research, 2020, 27, 29422-29432.	5.3	18
246	Deficit irrigation combined with reduced N-fertilizer rate can mitigate the high nitrous oxide emissions from Chinese drip-fertigated maize field. Global Ecology and Conservation, 2019, 20, e00803.	2.1	21
247	A food system revolution for China in the post-pandemic world. Resources, Environment and Sustainability, 2020, 2, 100013.	5.9	14
248	Assessment of nitrogen hotspots induced by cropping systems in the Bohai Rim region in China by integrating DNDC modelling and the reactive nitrogen spatial intensity (NrSI) framework. Environmental Research Letters, 2020, 15, 105008.	5.2	4
249	Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes. PLoS ONE, 2017, 12, e0180613.	2.5	9
250	Long-term nitrogen deposition does not exacerbate soil acidification in tropical broadleaf plantations. Environmental Research Letters, 0, , .	5.2	2
251	Calculation of spatially explicit amounts and intervals of agricultural lime applications at county-level in China. Science of the Total Environment, 2022, 806, 150955.	8.0	7
252	Seasonal River Export of Nitrogen to Guanting and Baiyangdian Lakes in the Hai He Basin. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005689.	3.0	7
253	Air Quality Deterioration in a Pristine Area due to a Petroleum Refinery and Associated Activities. Asian Journal of Atmospheric Environment, 2017, 11, 254-269.	1.1	0
254	Reactive Nitrogen Budgets in China. , 2020, , 87-109.		1
255	NH ₃ aliasing absorption spectra at 1103.4 cm ^{–1} based on continuous quantum cascade laser. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 074201.	0.5	0

#	Article	IF	CITATIONS
256	In-situ automatic measuring device for ammonia volatilization in farmland. , 2021, , .		0
257	Comprehensive quantification of global cropland ammonia emissions and potential abatement. Science of the Total Environment, 2022, 812, 151450.	8.0	18
258	Nitrogen losses from food production in the North China Plain: A case study for Quzhou. Science of the Total Environment, 2022, 816, 151557.	8.0	15
259	Properties of ammoniaâ€oxidising bacteria and archaea in a hypereutrophic urban river network. Freshwater Biology, 0, , .	2.4	2
260	Dataâ€driven estimates of fertilizerâ€induced soil NH ₃ , NO and N ₂ O emissions from croplands in China and their climate change impacts. Global Change Biology, 2022, 28, 1008-1022.	9.5	51
261	Influence of Simulated Nitrogen Deposition on the Soil Seed Bank of a Subtropical Evergreen Broadleaved Forest. Forests, 2021, 12, 1538.	2.1	1
262	Temporal and spatial variations in nitrogen use efficiency of crop production in China. Environmental Pollution, 2022, 293, 118496.	7.5	23
263	The sustainability of staple crops in China can be substantially improved through localized strategies. Renewable and Sustainable Energy Reviews, 2022, 154, 111893.	16.4	26
264	Nitrogen and Sulfur Additions Improved the Diversity of nirK- and nirS-Type Denitrifying Bacterial Communities of Farmland Soil. Biology, 2021, 10, 1191.	2.8	2
265	Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield. Agriculture (Switzerland), 2021, 11, 1207.	3.1	28
266	Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition through terrestrial ecosystem changes. Atmospheric Chemistry and Physics, 2021, 21, 17743-17758.	4.9	5
267	Fertilizer-induced nitrous oxide emissions from global orchards and its estimate of China. Agriculture, Ecosystems and Environment, 2022, 328, 107854.	5.3	15
268	Pollution controls in Lake Tai with the reduction of the watershed nitrogen footprint. Journal of Cleaner Production, 2022, 332, 130132.	9.3	5
269	Manure applications combined with chemical fertilizer improves soil functionality, microbial biomass and rice production in a paddy field. Agronomy Journal, 2022, 114, 1431-1446.	1.8	12
270	Rapid Increase in China's Industrial Ammonia Emissions: Evidence from Unit-Based Mapping. Environmental Science & Technology, 2022, 56, 3375-3385.	10.0	20
271	Global reactive nitrogen loss in orchard systems: A review. Science of the Total Environment, 2022, 821, 153462.	8.0	22
272	Spatial characteristics of nutrient budget on town scale in the Three Gorges Reservoir area, China. Science of the Total Environment, 2022, 819, 152677.	8.0	5
273	Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China's population. Nature Food, 2022, 3, 152-160.	14.0	50

#	Article	IF	CITATIONS
274	Wheat grain zinc concentration as affected by soil nitrogen and phosphorus availability and root mycorrhizal colonization. European Journal of Agronomy, 2022, 134, 126469.	4.1	10
275	Long-term riverine nitrogen dynamics reveal the efficacy of water pollution control strategies. Journal of Hydrology, 2022, 607, 127582.	5.4	13
276	Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food, 2021, 2, 1014-1022.	14.0	92
277	Effects of aquatic nitrogen pollution on particle-attached ammonia-oxidizing bacteria in urban freshwater mesocosms. World Journal of Microbiology and Biotechnology, 2022, 38, 64.	3.6	2
278	Nitrogen Transport/Deposition from Paddy Ecosystem and Potential Pollution Risk Period in Southwest China. Water (Switzerland), 2022, 14, 539.	2.7	3
279	Global and Regional Patterns of Soil Nitrous Acid Emissions and Their Acceleration of Rural Photochemical Reactions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	7
280	Nitrate Regeneration and Loss in the Central Yellow Sea Bottom Water Revealed by Nitrogen Isotopes. Frontiers in Marine Science, 2022, 9, .	2.5	6
281	Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121998119.	7.1	69
282	Characteristics and preparation of oil-coated fertilizers: A review. Journal of Controlled Release, 2022, 345, 675-684.	9.9	18
283	Nitrogen flow in the food production and consumption system within the Yangtze River Delta city cluster: Influences of cropland and urbanization. Science of the Total Environment, 2022, 824, 153861.	8.0	12
284	Unexpected nitrogen flow and water quality change due to varying atmospheric deposition. Journal of Hydrology, 2022, 609, 127679.	5.4	13
285	Socioeconomic barriers of nitrogen management for agricultural and environmental sustainability. Agriculture, Ecosystems and Environment, 2022, 333, 107950.	5.3	20
286	Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China. Nature Food, 2022, 3, 161-168.	14.0	39
287	Nitrogen budgets for freshwater aquaculture and mariculture in a large tropical island – A case study for Hainan Island 1998–2018. Marine Environmental Research, 2022, 177, 105642.	2.5	10
288	A nitrate budget of the Bohai Sea based on an isotope mass balance model. Biogeosciences, 2022, 19, 2397-2415.	3.3	9
289	Effects of climate change, crop planting structure, and agricultural management on runoff, sediment, nitrogen and phosphorus losses in the Hai-River Basin since the 1980s. Journal of Cleaner Production, 2022, 359, 132066.	9.3	8
290	Bottom-up estimates of reactive nitrogen loss from Chinese wheat production in 2014. Scientific Data, 2022, 9, .	5.3	4
291	Partial Substation of Organic Fertilizer With Chemical Fertilizer Improves Soil Biochemical Attributes, Rice Yields, and Restores Bacterial Community Diversity in a Paddy Field. Frontiers in Plant Science, 2022, 13, .	3.6	11

#	Article	IF	CITATIONS
292	Addressing nitrogenous gases from croplands toward low-emission agriculture. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	32
293	China's nitrogen management of wheat production needs more than high nitrogen use efficiency. European Journal of Agronomy, 2022, 139, 126557.	4.1	4
294	Shallow groundwater enhances water productivity of maize in arid area. Irrigation Science, 2022, 40, 885-908.	2.8	2
295	Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity. Pedosphere, 2023, 33, 407-420.	4.0	15
296	Applying C:N ratio to assess the rationality of estimates of carbon sequestration in terrestrial ecosystems and nitrogen budgets. , 2022, 1, .		11
297	What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environmental Science and Pollution Research, 2022, 29, 56887-56907.	5.3	44
298	Closing Greenhouse Gas Emission Gaps of Staple Crops in China. Environmental Science & Technology, 2022, 56, 9302-9311.	10.0	14
299	Reforming China's fertilizer policies: implications for nitrogen pollution reduction and food security. Sustainability Science, 2023, 18, 407-420.	4.9	14
300	Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China. International Journal of Environmental Research and Public Health, 2022, 19, 8147.	2.6	13
301	Scenarios and sustainability of the economy–nitrogen-resource–environment system using a system dynamic model on the Qinghai-Tibet Plateau. Journal of Environmental Management, 2022, 318, 115623.	7.8	3
302	Climate warming weakens the negative effect of nitrogen addition on the microbial contribution to soil carbon pool in an alpine meadow. Catena, 2022, 217, 106513.	5.0	4
303	Negligible ammonia volatilization loss with one-time root-zone targeted application of common nitrogen, phosphorus, and potassium fertilizers in transplanted rice cultivation. Agriculture, Ecosystems and Environment, 2022, 338, 108072.	5.3	5
304	Partial substitution of urea fertilizers by manure increases crop yield and nitrogen use efficiency of a wheat–maize double cropping system. Nutrient Cycling in Agroecosystems, 2023, 127, 11-21.	2.2	6
305	Characteristics of nitrogen flow and its environmental effects in the Yellow River Basin, China. Environmental Technology (United Kingdom), 2024, 45, 495-507.	2.2	1
306	WHCNS-Veg Modelling of N2O, NH3 and NO3â^' Dynamics in a Vegetable Production System under Different Fertilization and Irrigation Regimes. Atmosphere, 2022, 13, 1289.	2.3	4
307	Characteristics of nitrogen flow and environmental cost of reactive nitrogen in the source area of the Yellow River Basin, China. Environment, Development and Sustainability, 0, , .	5.0	0
308	Coupling the environmental impacts of reactive nitrogen losses and yield responses of staple crops in China. Frontiers in Plant Science, 0, 13, .	3.6	1
309	Dynamic Changes of Nitrogen Loads in Source–Sink Landscapes under Urbanization. Land, 2022, 11, 1371.	2.9	4

#	Article	lF	CITATIONS
310	Biophysical and economic constraints on China's natural climate solutions. Nature Climate Change, 2022, 12, 847-853.	18.8	55
311	Do mariculture products offer better environment and nutritional choices compared to land-based protein products in China?. Journal of Cleaner Production, 2022, 372, 133697.	9.3	7
312	Quantifying the wet deposition of reactive nitrogen over China: Synthesis of observations and models. Science of the Total Environment, 2022, 851, 158007.	8.0	1
313	Effects of enhanced-efficiency nitrogen fertilizers on CH4 and CO2 emissions in a global perspective. Field Crops Research, 2022, 288, 108694.	5.1	8
314	Large differences in ammonia emission factors between greenhouse and open-field systems under different practices across Chinese vegetable cultivation. Science of the Total Environment, 2022, 852, 158339.	8.0	2
315	Reactive nitrogen budgets in human-nature coupling system in lakeside area with insufficient data - A case study of Mwanza, Tanzania. Science of the Total Environment, 2023, 855, 158915.	8.0	3
316	Quantifying in situ N2 fluxes from an intensively managed calcareous soil using the 15N gas-flux method. Journal of Integrative Agriculture, 2022, 21, 2750-2766.	3.5	5
317	Nitrogen deposition enhances the deterministic process of the prokaryotic community and increases the complexity of the microbial co-network in coastal wetlands. Science of the Total Environment, 2023, 856, 158939.	8.0	18
318	Evaluation of Nitrogen Fertilizer Fates and Related Environmental Risks for Main Cereals in China's Croplands from 2004 to 2018. Plants, 2022, 11, 2507.	3.5	1
319	Caseous reactive nitrogen losses of agricultural systems in China influenced by crop trade. Environmental Research Letters, 2022, 17, 104040.	5.2	1
320	Would You Buy Plant-Based Beef Patties? A Survey on Product Attribute Preference and Willingness to Pay among Consumers in Liaoning Province, China. Nutrients, 2022, 14, 4393.	4.1	4
321	Nitrogen budgets and nitrogen use efficiency as agricultural performance indicators in Lake Victoria basin. Frontiers in Sustainable Food Systems, 0, 6, .	3.9	1
322	Driving mechanism for farmers' participation in improving farmland ecosystem: Evidence from China. Journal of Cleaner Production, 2022, 380, 134895.	9.3	6
323	Review of Nonpoint Source Pollution Models: Current Status and Future Direction. Water (Switzerland), 2022, 14, 3217.	2.7	7
324	Traceability of nitrate polluted hotspots in plain river networks of the Yangtze River delta by nitrogen and oxygen isotopes coupling bayesian model. Environmental Pollution, 2022, 315, 120438.	7.5	11
325	The driving factors and buffering mechanism regulating cropland soil acidification across the Sichuan Basin of China. Catena, 2023, 220, 106688.	5.0	7
326	Reducing food-system nitrogen input and emission through circular agriculture in montane and coastal regions. Resources, Conservation and Recycling, 2023, 188, 106726.	10.8	5
327	Driving forces of nitrogen use efficiency in Chinese croplands on county scale. Environmental Pollution, 2023, 316, 120610.	7.5	14

#	Article	IF	CITATIONS
328	Urgency of controlling agricultural nitrogen sources to alleviate summertime air pollution in the North China Plain. Chemosphere, 2023, 311, 137124.	8.2	3
329	Are Socialized Services of Agricultural Green Production Conducive to the Reduction in Fertilizer Input? Empirical Evidence from Rural China. International Journal of Environmental Research and Public Health, 2022, 19, 14856.	2.6	14
330	Water Quality in a Small Lowland River in Different Land Use. Hydrology, 2022, 9, 200.	3.0	2
331	Uncertainty quantification of nitrogen use efficiency prediction in China using Monte Carlo simulation and quantile regression forests. Computers and Electronics in Agriculture, 2023, 204, 107533.	7.7	3
332	Aggravation of nitrogen losses driven by agriculture and livestock farming development on the Qinghai-Tibet Plateau. Journal of Environmental Management, 2023, 326, 116795.	7.8	3
333	Benchmarking sidestream shortcut nitrogen removal processes against nitrous oxide recovery from a life cycle perspective. Journal of Cleaner Production, 2023, 384, 135530.	9.3	4
334	A meta-analysis on plant volatile organic compound emissions of different plant species and responses to environmental stress. Environmental Pollution, 2023, 318, 120886.	7.5	11
335	Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?. Agricultural Systems, 2023, 205, 103575.	6.1	4
336	Effects of long-term straw returning on rice yield and soil properties and bacterial community in a rice-wheat rotation system. Field Crops Research, 2023, 291, 108800.	5.1	16
337	Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants, 2022, 11, 3200.	3.5	15
338	Chemical Composition and Deposition Characteristics of Precipitation into a Typical Temperate Forest in Northeastern China. Forests, 2022, 13, 2024.	2.1	0
339	How large is the mitigation potential of natural climate solutions in China?. Environmental Research Letters, 2023, 18, 015001.	5.2	3
340	A 12% switch from monogastric to ruminant livestock production can reduce emissions and boost crop production for 525 million people. Nature Food, 2022, 3, 1040-1051.	14.0	15
341	Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	2.7	2
342	Diverse functions of GmNLA1 members in controlling phosphorus homeostasis highlight coordinate response of soybean to nitrogen and phosphorus availability. Crop Journal, 2022, , .	5.2	1
343	Integrated crop–livestock–bioenergy system brings co-benefits and trade-offs in mitigating the environmental impacts of Chinese agriculture. Nature Food, 2022, 3, 1052-1064.	14.0	14
344	Alternating processes of dry and wet nitrogen deposition have different effects on the function of canopy leaves: Implications for leaf photosynthesis. Frontiers in Plant Science, 0, 13, .	3.6	1
345	Peak and fall of China's agricultural GHG emissions. Journal of Cleaner Production, 2023, 389, 136035.	9.3	16

# 346	ARTICLE Source availability and hydrological connectivity determined nitrate-discharge relationships during rainfall events in karst catchment as revealed by high-frequency nitrate sensing. Water Research, 2023, 231, 119616.	lF 11.3	CITATIONS 8
347	Cost-effective mitigation of nitrogen pollution from global croplands. Nature, 2023, 613, 77-84.	27.8	91
348	Accounting for the nitrogen footprint of food production in Chinese provinces during 1998–2018. Journal of Cleaner Production, 2023, 389, 136011.	9.3	3
349	Zeolite reduces N leaching and runoff loss while increasing rice yields under alternate wetting and drying irrigation regime. Agricultural Water Management, 2023, 277, 108130.	5.6	7
350	Optimizing nutrient inputs by balancing spring wheat yield and environmental effects in the Hetao Irrigation District of China. Scientific Reports, 2022, 12, .	3.3	2
351	Measurement report: Chemical components and ¹³ C and ¹⁵ N isotope ratios of fine aerosols over Tianjin, North China: year-round observations. Atmospheric Chemistry and Physics, 2023, 23, 2119-2143.	4.9	2
352	Multi-sectoral analysis of smarter urban nitrogen metabolism: A case study of Suzhou, China. Ecological Modelling, 2023, 478, 110286.	2.5	4
353	The nitrogen footprint and reactive nitrogen reduction potential of cotton production in China. Journal of Cleaner Production, 2023, 402, 136808.	9.3	3
354	Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis. Science of the Total Environment, 2023, 876, 162712.	8.0	5
355	Integrating crop and soil nutrient management for higher wheat grain yield and protein concentration in dryland areas. European Journal of Agronomy, 2023, 147, 126827.	4.1	3
356	Change in maize yield, N use efficiencies and climatic warming potential after urea combined with Nitrapyrin and NBPT during the growing season in a black soil. Soil and Tillage Research, 2023, 231, 105721.	5.6	4
357	Model-based optimal management strategies to mitigate soil acidification and minimize nutrient losses for croplands. Field Crops Research, 2023, 292, 108827.	5.1	5
358	Rebuilding the crop-livestock integration system in China ——Based on the perspective of circular economy. Journal of Cleaner Production, 2023, 393, 136347.	9.3	11
359	Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food, 2023, 4, 236-246.	14.0	42
360	Preparation of Nitrate Bilayer Membrane Ion-Selective Electrode Modified by Pericarpium Granati-Derived Biochar and Its Application in Practical Samples. Electrocatalysis, 2023, 14, 534-545.	3.0	2
361	Driving reactive nitrogen emissions in China: Competition between scale and efficiency. Journal of Industrial Ecology, 2023, 27, 951-963.	5.5	1
362	Ageing threatens sustainability of smallholder farming in China. Nature, 2023, 616, 96-103.	27.8	46
363	Can knowledge-based practices achieve high yields with lower input and GHG emissions in the Chinese orchard system?. Ecosystem Health and Sustainability, 0, , .	0.0	0

#	Article	IF	CITATIONS
364	Food Nitrogen Footprint Increased by 35% on the Third Pole During 1998–2018. GeoHealth, 2023, 7, .	4.0	2
365	Climate change unequally affects nitrogen use and losses in global croplands. Nature Food, 2023, 4, 294-304.	14.0	8
366	Uncovering the spatio-temporal dynamics of crop-specific nutrient budgets in China. Journal of Environmental Management, 2023, 340, 117904.	7.8	2
367	Apricot (Prunus armeniaca) Performance under Foliar Application of Humic Acid, Brassinosteroids, and Seaweed Extract. Horticulturae, 2023, 9, 519.	2.8	3
368	Declines in nutrient losses from China's rice paddies jointly driven by fertilizer application and extreme rainfall. Agriculture, Ecosystems and Environment, 2023, 353, 108537.	5.3	6
369	Towards circular nitrogen use in the agri-food system at village and county level in China. Agricultural Systems, 2023, 209, 103683.	6.1	1
370	Fertilization strategies for abating N pollution at the scale of a highly vulnerable and diverse semi-arid agricultural region (Murcia, Spain). Environmental Research Letters, 2023, 18, 064030.	5.2	2
371	Modeling regional nitrogen cycle in the atmosphere: Present situation and its response to the future emissions control strategy. Science of the Total Environment, 2023, 891, 164379.	8.0	1
372	Modification of exploration of longâ€ŧerm nutrient trajectories for nitrogen (ELEMeNT-N) model to quantify legacy nitrogen dynamics in a typical watershed of eastern China. Environmental Research Letters, 2023, 18, 064005.	5.2	0
373	Nitrogen removal through denitrification in China's aquatic system. Science of the Total Environment, 2023, 891, 164317.	8.0	4
374	Nesting nitrogen budgets through spatial and system scales in the Spanish agro-food system over 26 years. Science of the Total Environment, 2023, 892, 164467.	8.0	3
375	Spatially eutrophication potential and policy implication of nitrogen emission for surface water: A case study in Guangzhou city, China. Journal of Environmental Management, 2023, 342, 118336.	7.8	2
377	Nitrogen cycles in global croplands altered by elevated CO2. Nature Sustainability, 2023, 6, 1166-1176.	23.7	2
378	Optimizing nitrogen input and nitrogen use efficiency through soil nitrogen balance in a long-term winter wheat-summer maize rotation system in North China. European Journal of Agronomy, 2023, 149, 126908.	4.1	3
379	Distinct characteristics of the bacterial community in the rhizosphere soils of sweet potato storage roots and fibrous roots following long-term fertilization. Applied Soil Ecology, 2023, 191, 105053.	4.3	0
380	Insights into the Nitrogen Footprint of food consumption in Spain: Age and gender impacts on product choices and sustainability. Science of the Total Environment, 2023, 900, 165792.	8.0	0
381	Changing food nitrogen flow in a food-exporting city. Frontiers in Sustainable Food Systems, 0, 7, .	3.9	0
382	Evaluating Nationwide Non-Point Source Pollution of Crop Farming and Related Environmental Risk in China. Processes, 2023, 11, 2377.	2.8	1

#	Article	IF	CITATIONS
383	Effects of long-term organic and inorganic fertilization on greenhouse gas emissions and soil nutrient stoichiometry in a rice–rice–fallow cropping system. Agriculture, Ecosystems and Environment, 2023, 357, 108695.	5.3	1
384	Regional-Scale Virtual Nitrogen, Phosphorus, and Potassium Factors of Potato Production in China. Agronomy, 2023, 13, 2430.	3.0	0
385	Can China reach the win-win goals for food security and pollution control from the perspective of nitrogen flow analysis?. Journal of Cleaner Production, 2023, 423, 138757.	9.3	0
386	Improving potential of reactive nitrogen and carbon footprint of intensified greenhouse cucumber-tomato production with optimized drip irrigation with nitrogen reduction strategies. Journal of Cleaner Production, 2023, 424, 138898.	9.3	Ο
387	Urban nitrogen budgets: Evaluating and comparing the path of nitrogen through cities for improved management. Science of the Total Environment, 2023, 904, 166827.	8.0	2
388	Opportunity and shift of nitrogen use in China. Geography and Sustainability, 2024, 5, 33-40.	4.3	1
389	Research progress of urban nitrogen cycle and metabolism. Ecological Modelling, 2023, 486, 110508.	2.5	0
390	Achieving Sustainable Earth Futures in the Anthropocene by Including Local Communities in Critical Zone Science. Earth's Future, 2023, 11, .	6.3	3
391	City-level decoupling between livestock and crop production and its effect on fertilizer usage: Evidence from China. Science of the Total Environment, 2023, 905, 167115.	8.0	3
392	Evaluation of agricultural and rural pollution under environmental measures in the Yangtze River Economic Belt, China. Scientific Reports, 2023, 13, .	3.3	2
393	Leaching of soil legacy nitrogen in intact soil columns and significance of soil macropore structure. Science of the Total Environment, 2024, 906, 167546.	8.0	0
394	Insight into Municipal Reactive Nitrogen Emissions and Their Influencing Factors: A Case Study of Xiamen City, China. Atmosphere, 2023, 14, 1549.	2.3	0
395	Nitrate contamination of soil and water: Implications for ecosystem functions and human health. , 2024, , 351-373.		0
396	Nitrogen flows with its yearly change and magnitude in urban waste in Tokyo: Implications for nitrogen management. Bioresource Technology Reports, 2024, 25, 101689.	2.7	0
397	Nitrate transformation and source tracking of rivers draining into the Bohai Sea using a multi-tracer approach combined with an optimized Bayesian stable isotope mixing model. Journal of Hazardous Materials, 2024, 463, 132901.	12.4	4
399	The dynamic characteristics of multiâ€media carbon pollution and their spatial influencing factors: A case study of the Greater Bay Area of China. Journal of Industrial Ecology, 2024, 28, 130-143.	5.5	0
400	Pursuing zero-grain livestock production in China. One Earth, 2023, , .	6.8	0
401	行æ [~] Ÿè¾¹ç•Œä¸‹çš"啿Œç»é£Ÿç‰©ç³»ç»Ÿè⁻"ä¼°åŠç−ç•¥ç"ç©¶èį›å±•. SCIENTIA SINICA Terrae, 2023, , . 	0.3	0

#	Article	IF	CITATIONS
402	Fate of nitrogen in French human excreta: Current waste and agronomic opportunities for the future. Science of the Total Environment, 2024, 912, 168978.	8.0	0
403	Building a More Secure Territory Spatial Pattern in China: An Analysis Based on Human-Environment Interactions. Land, 2023, 12, 2137.	2.9	0
404	Spatial–temporal differentiation and control strategies of nitrogen environmental loss in China's coastal regions based on flow analysis. Journal of Environmental Management, 2024, 351, 119667.	7.8	0
405	A combination of straw incorporation and polymer-coated urea offsets soil ammonia and nitrous oxide emissions in winter wheat fields. Journal of Integrative Agriculture, 2023, , .	3.5	1
407	Modelling future climate effects on N2O emission and soil carbon storage in maize fields under controlled-release urea and straw incorporation. Journal of Environmental Management, 2024, 351, 119854.	7.8	0
408	Decoding China's anthropogenic typical pollutant discharge patterns: Long-term dynamics and hotspot transitions driven by population, diet, and sanitation. Water Research, 2024, 250, 121049.	11.3	0
409	Atmospheric Nitrogen Pollution Control Benefits the Coastal Environment. Environmental Science & Technology, 0, , .	10.0	0
411	Unraveling safe boundaries for net anthropogenic nitrogen inputs: A case study focusing on village scale. Journal of Cleaner Production, 2023, , 140462.	9.3	0
412	Patterns and drivers of atmospheric inorganic nitrogen deposition in Northeast Asia. Journal of Environmental Management, 2024, 349, 119343.	7.8	0
413	Azospirillum isscasi sp. nov., a bacterium isolated from rhizosphere soil of rice. International Journal of Systematic and Evolutionary Microbiology, 2024, 74, .	1.7	0
414	Water pollution scenarios and response options for China. Science of the Total Environment, 2024, 914, 169807.	8.0	0
415	Managing urban development could halve nitrogen pollution in China. Nature Communications, 2024, 15, .	12.8	1
416	The application of biochar improves the nutrient supply efficiency of organic fertilizer, sustains soil quality and promotes sustainable crop production. Food and Energy Security, 2024, 13, .	4.3	1
417	Temporal rich club phenomenon and its formation mechanisms. Physical Review E, 2024, 109, .	2.1	0
418	Major drivers of soil acidification over 30Âyears differ in paddy and upland soils in China. Science of the Total Environment, 2024, 916, 170189.	8.0	0
419	A new perspective on anthropogenic nitrogen loss mitigation strategies: Integrated control via sustainable regional integration. Science of the Total Environment, 2024, 916, 170188.	8.0	0
420	Research progress in assessment and strategies for sustainable food system within planetary boundaries. Science China Earth Sciences, 2024, 67, 375-386.	5.2	0
421	Heterotroph removal alters the difference in plant biomass among plant species compositions in systems with different N availability. Ecoscience, 2023, 30, 187-196.	1.4	0

#	Article	IF	CITATIONS
422	Digital economy empowers sustainable agriculture: Implications for farmers' adoption of ecological agricultural technologies. Ecological Indicators, 2024, 159, 111723.	6.3	0
423	Assessing nutrient fate from terrestrial to freshwater systems using a semi-distributed model for the Fuxian Lake Basin, China. Science of the Total Environment, 2024, 921, 171068.	8.0	0
424	Nitrogen Utilization and Loss of the Tea Plantation System on Sloped Farmland: A Short-Term Response to Substitution with Organic Fertilizer. Agronomy, 2024, 14, 392.	3.0	0
425	Derivation of human health and odor risk control values for soil ammonia nitrogen by incorporating solid-liquid partitioning, ammonium/ammonia equilibrium: A case study of a retired nitrogen fertilizer site in China. Ecotoxicology and Environmental Safety, 2024, 273, 116133.	6.0	0
426	Mitigation Measures Could Aggravate Unbalanced Nitrogen and Phosphorus Emissions from Land-Use Activities. Environmental Science & Technology, 2024, 58, 4627-4636.	10.0	0
427	Modeling denitrification nitrogen losses in China's rice fields based on multiscale fieldâ€experiment constraints. Global Change Biology, 2024, 30, .	9.5	0
428	Toward Low-Carbon Rice Production in China: Historical Changes, Driving Factors, and Mitigation Potential. Environmental Science & Technology, 2024, 58, 5772-5783.	10.0	0
429	All-Natural Plant-Derived Polyurethane as a Substitute of a Petroleum-Based Polymer Coating Material Journal of Agricultural and Food Chemistry, 2024, 72, 6444-6453	5.2	0